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We discuss various properties of the ground
state of a Bose-condensed dilute gas con-
fined by an external potential. We devote
particular attention to the role played by
the interaction in determining the kinetic
energy of the system and the aspect ratio
of the velocity distribution. The structure of
the wave function near the classical turn-
ing point is discussed and the drawback of
the Thomas-Fermi approximation is ex-
plicitly pointed out. We consider also states
with quantized vorticity and calculate the

critical angular velocity for the production
of vortices. The presence of vortex states
is found to increases the stability of the
condensate in the case of attractive inter-
actions.
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1. Introduction

In this paper we discuss some relevant properties of
the ground state of a Bose-condensed atomic gas con-
fined by an external potential. Our starting point is the
Gross-Pitaevskii equation which gives the proper
Schrödinger equation for the order parameter of an in-
homogeneous dilute Bose-condensed gas at zero tem-
perature. Using this equation it is possible to discuss
various ground state properties of the system: the form

of the atomic cloud, the role of the interatomic potential,
the velocity distribution, and so on. All these quantities
are essential for the interpretation of the recent experi-
ments on Bose-Einstein condensation in ultracold alkali
atom gases [1–3]. An important feature is the profound
difference between systems interacting with repulsive
and attractive forces. In the latter case, in particular, the
stationary solution given by the Gross-Pitaevskii equa-
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tion is of metastable type. If the number of atoms is too
large such a solution becomes unstable and the system
collapses. In this paper we will also discuss some rota-
tional properties of the system, in particular the struc-
ture of vortices and the critical angular frequency
needed to generate a rotational instability.

The Gross-Pitaevskii equation for the order parameter
c (r ) = kĉ(r )l has the well known form [4]:

F2
"2

2m
,2 + Vext(r ) +

4p"2a
m

uc (r )u2Gc (r ) = mc (r ), (1)

whereVext is the external confining potential, which is
usually chosen in the form of an anisotropic harmonic
well. The role of interactions is accounted for by the
non-linear term and is parametrized by thes-wave scat-
tering lengtha. The quantitym is the chemical potential
and is fixed by imposing the proper normalization,
N =e rdr , to the density of the systemr = uc u2. The
Gross-Pitaevskii equation ignores interaction effects due
to the atoms outside the condensate. This is an excellent
approximation for a dilute Bose gas at low temperature
where the depletion of the condensate is negligible.

An important question to discuss concerning the
ground state of a trapped Bose gas is the role of the
interatomic potential. At first sight one would in fact
expect that the role of interactions be negligible in a
dilute system, where the usual expansion parametera3r
is extremely small. Actually it turns out that the interac-
tion can have a deep influence on the solution of Eq. (1),
where its effect turns out to be fixed by the adimen-
sional parameterNa/aHO, where aHO = Ï" /(mvHO) is
the harmonic oscillator length. This parameter can be
indeed rather large despite the smallness ofa3r . The
final result is that the system is still fully Bose con-
densed, but the structure of its wave function can be
strongly affected by the interatomic forces.

For the above reasons it is useful to discuss the solu-
tion of the Gross-Pitaevskii equation in two relevant
limits: the noninteracting model and the strongly repul-
sive limit, which corresponds to the Thomas-Fermi ap-
proximation. We will make a comparison with the exact
numerical solution of the Gross-Pitaevskii equation in
order to point out the role of the interaction. We will
devote special attention to the structure of the conden-
sate wave function near the boundary, close to the classi-
cal turning point, and we will finally study the case of
quantized vortices.

2. The Noninteracting Model

When the scattering lengtha vanishes, the problem
reduces to the solution of a one-body Schro¨dinger equa-

tion. Let us puta = 0 in Eq. (1) and take the external
potential as an anisotropic harmonic oscillator:

Vext(r ) =
m
2

(v 2
' x2 + v 2

' y2 + v2
z z2). (2)

The ground state wave function becomes

c (r ) = ÎN
a3

'

l1/4p23/4expF2
1

2a2
'

(x2 + y2 + lz2)G, (3)

wherel = vz/v'. The Gaussian has different transverse
and vertical widths. In particular one has
kx2l = ky2l = (1/2)a2

' andkz2l = (1/2)l21a2
'. The chemi-

cal potential is (1 +l /2)"v' and coincides with the
energy per particle, while the kinetic energy per particle
has the simple form

Ekin

N
=

1
2m

kp2l =
1
2

(1 + l /2)"v'. (4)

An interesting quantity to discuss is the ratioÏkp2
z l/kp2

x l
which provides a measure of theaspect ratio, character-
izing the anisotropy of the velocity distribution. Using
the wave function Eq. (3) one finds

Ïkp2
z l/kp2

x l = Ïkx2l/kz2l = Ïl . (5)

Values of the aspect ratio different from 1 reflect a
peculiar and unique feature of Bose-Einstein condensa-
tion.

3. The Strongly Repulsive Limit (Thomas-
Fermi Approximation)

The opposite limit is obtained when the interaction is
so strong, or the number of particles so large, that the
kinetic energy term,2c can be neglected in the Gross-
Pitaevskii equation, Eq. (1). It corresponds to very large
values of the dimensionless parameter

u =
8paN

a'

. (6)

Also in this case the solution of the Gross-Pitaevskii
equation is trivial and the wave function has the form:

r (r ) = |c (r )|2 =
m

4p"2a
[m 2 Vext(r )] (7)

if the right hand side is positive, andr = 0 elsewhere.
The chemical potential is easily calculated by imposing
the normalization conditione r dr = N. One finds
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m =
1
2 S15

8p
luD2/5

"v'. (8)

Due to the different scaling properties of the wave
function with respect to the variablez (compare Eqs. (3)
and (7)), the aspect ratioÏkp2

z l/kp2
x l in this case is equal

to l differently from the noninteracting case Eq. (5).
The wave function Eq. (7) is expected to approximate

well the exact solution of the Gross-Pitaevskii equation
Eq. (1) for largeN, apart from the structure of the
surface region where the exact wave function has to
vanish smoothly. Some relevant observables, as the ki-
netic energy, can be significantly affected by this sur-
face structure, as we will see in Sec. 5.

4. Solution of the Gross-Pitaevskii
Equation

The Gross-Pitaevskii equation, Eq. (1) can be solved
numerically [5,6]. We transform the differential equa-
tion in a functional minimization and use a steepest
descent method to solve the minimization problem on a
grid of points. As an example of atoms with repulsive
interaction we choose87Rb, as in the experiment of Ref.
[1]. For thes-wave triplet-spin scattering length we use
a = 100a0, wherea0 is the Bohr radius. The asymmetry
parameter is takenl = vz/v' = Ï8 and the axial fre-
quencyvz/2p = 220 Hz. The corresponding character-
istic length isa' = 1.2223 1024 cm.

Results for the chemical potential and the energy per
particle are shown in Table 1. Both quantities are ex-
pressed in units of"v', or of the equivalent temperature
"v'/kB = 3.73 nK. The partial contributions to the en-
ergy per particle coming from the kinetic energy (kin),
the harmonic oscillator potential (HO) and the internal
potential energy (pot) are also given. TheN = 1 case
coincides with the noninteracting anisotropic harmonic

Table 1. Results for the ground state of87Rb atoms in a trap with
vz/2p = 220 Hz andl = vz/v' = Ï8. Chemical potential and energy
in units "v'

N m (E/N) (E/N)kin (E/N)HO (E/N)pot

1 2.414 2.414 1.207 1.207 0.000
100 2.88 2.66 1.06 1.39 0.21
200 3.21 2.86 0.98 1.52 0.36
500 3.94 3.30 0.86 1.81 0.63

1000 4.77 3.84 0.76 2.15 0.93
2000 5.93 4.61 0.66 2.64 1.32
5000 8.14 6.12 0.54 3.57 2.02

10000 10.5 7.76 0.45 4.57 2.74
15000 12.2 8.98 0.41 5.31 3.26
20000 13.7 9.98 0.38 5.91 3.68

oscillator: in this case the total energy per particle coin-
cides with the analytic value (1 +l /2) = 2.414. WhenN
increases the repulsion among atoms tends to lower the
central density, expanding the cloud of atoms towards
regions where the trapping potential is higher. A typical
profile of the condensate wave functionc is plotted
along thex-axis forN = 5000 in Fig. 1. The exact min-
imization of the Gross-Pitaevskii functional (solid line)
is compared with the noninteracting case (dashed line)
and the Thomas-Fermi limit (dot-dashed).

Fig. 1. Ground state wave function (in arbitrary units) alongx (in units
a') for 5000 atoms of87Rb. Dashed line: noninteracting case. Dot-
dashed line: Thomas-Fermi approximation. Solid line: numerical so-
lution of the Gross-Pitaevskii equation.

When N is large we observe an increase of both
interaction and harmonic oscillator potential energy per
particle (the latter effect follows from the expansion of
the cloud). Conversely, the kinetic energy per particle
decreases because the density distribution is flattened.
In the strongly repulsive limit,N → `, one should find
that the internal potential energy is much greater than
the kinetic energy. Indeed the convergence towards this
limit turns out to be rather slow as we will show in the
next section.

Another interesting quantity which can be easily cal-
culated from the ground state wave function is the aspect
ratio of the velocity distribution, that is the ratioÏkp2

z l/
kp2

x l. This quantity is equal toÏl in the noninteracting
case and should approachl in the strongly repulsive
limit. The numerical results, as a function ofN, are
shown in Fig. 2. The two limiting cases are shown as
dashed lines. One clearly sees that the convergence to
the value 2.828 =l is very slow; the aspect ratio remains
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Fig. 2. Ratio of the axial to transverse average velocity as a function
of N in 87Rb. The lower and upper dashed lines corresponds toÏl and
l , respectively.

well below the asymptotic value even forN = 20000.
The aspect ratio measured in Ref. [1] is estimated to be
about 50 % larger than the noninteracting value, while
the number of particles is of the order of 5000. The
agreement with our results is good, even if one has to
consider that the experimental estimate implicitly as-
sumes a ballistic expansion of the atoms after switching
off the external trap. The effects of the interaction on the
expansion of the gas should be explicitly taken into
account in order to draw more definitive conclusions.

As an example of atoms with attractive interaction we
choose7Li, as in the experiment of Ref. [2]. For the
s-wave triplet-spin scattering length we usea = 2 27a0.
The axial frequency reported in Ref. [2] isvz/2p = 117
Hz and the corresponding characteristic length is
a' = 2.9723 1024 cm. The transverse frequency isvz/
2p = 163 Hz, so that the asymmetry parameter is
l = vz/v' = 0.72.

The first important point to stress is that Gross-
Pitaevskii functional has no global minimum for nega-
tive scattering length. This reflects the tendency of the
system to collapse. For spatially inhomogeneous sys-
tems, however, the zero-point energy can exceed the
attractive potential, producing local minima of the func-
tional when the density of atoms is not too high.

The most striking difference with respect to the re-
pulsive case is that here the central density of the cloud
increases rapidly withN, as shown in Fig. 3. This is the
effect of adding more and more attractive potential en-
ergy. When the central density reaches a certain critical
limit the system collapses and the solution of the Gross-
Pitaevskii equation does not converge anymore. In7Li,
with the input parameters given above, the critical num-
berN turns out to be about 1400. In [6] we have found

Fig. 3. Ground state wave function (in arbitrary units) alongx (in units
a') for 1000 atoms of7Li. Dashed line: noninteracting case. Solid line:
numerical solution of the Gross-Pitaevskii equation.

that a stationary solution of the Gross-Pitaevskii equa-
tion with larger values ofN can be obtained if a vortex
line is present in the system. The possible occurrence of
vortices in these trapped Bose gases will be discussed in
the Sec. 6.

5. Wave Function at the Boundary

As one clearly sees in Fig. 1, the Thomas-Fermi ap-
proximation fails to reproduce the structure of the order
parameter at the surface of the atomic cloud in the case
of positive scattering length (repulsive interaction). Sev-
eral measurable quantities can be significantly affected
by the behavior of the wave function in this region. In
order to provide a good model for these quantities one
has to go beyond the Thomas-Fermi approximation. One
of these relevant observables is the kinetic energy

Ekin =
"2

2mE dr |,c |2. (9)

In fact the Thomas-Fermi approximation (7) for the
wave function is not appropriate to evaluateEkin; it pro-
duces alogarithmic divergence in the integrand of Eq.
(9), occurring at the classical turning point, where
Vext = m . This reveals that the evaluation ofEkin requires
higher accuracy in the description of the boundary re-
gion. In order to provide the proper description of
the condensate wave function near the boundary we
have recently proposed [7] a suitable expansion of the
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Gross-Pitaevskii equation near the classical turning
point. The resulting analysis allows one to obtain the
proper expansion for the kinetic energy. We briefly
sketch here the case of isotropic traps (a' = az = aHO).

Let R be the boundary of system spherical system,
determined by the equationm = Vext(R). Near this point
one can carry out the expansion

Vext(r ) 2 m . (r 2 R)F (10)

whereF = mv 2
HOR is the modulus of the attractive exter-

nal force evaluated atr = R. Close to the boundary,
where |r 2 R| << R, the Gross-Pitaevskii equation takes
the form

2
"2

2m
d2

dr 2 c + (r 2 R)Fc +
4p"2a

2m
c3 = 0. (11)

Let us now introduce the dimensionless variable

j =
(r 2 R)

d
(12)

where

d = S2m
"2 FD21/3

(13)

is a typical thickness of the boundary giving, as we will
see later, the distance from the classical radiusR where
the Thomas-Fermi approximation starts failing. Then
we introduce the dimensionless functionf defined by

c (r ) =
1

d(8pa)1/2 f (j ), (14)

in terms of which the Gross-Pitaevskii equation, Eq.
(11) takes the universal form

f" 2 (j + f2)f = 0. (15)

Its solution provides, via Eqs. (12–14), the proper struc-
ture of the condensate wave function near the classical
turning pointR. It is worth noting that Eq. (15) does not
depend on the form of the external potential nor on the
size of the interatomic force. These physical parameters
enter the transformations Eqs. (12) and (14) which fix,
together with the solution of Eq. (15), the actual behav-
ior of the wave functionc . Equation (15) can be solved
numerically. The functionf behaves likeÏ2j for
j → 2 ` and likej21/4 exp[2 (2/3)j3/2] in the opposite
limit j → `. The corresponding condensate wave func-
tion c matches the Thomas-Fermi wave function at the
left of the classical turning point and follows closely the

solution of the Gross-Pitaevskii equation in the external
surface profile. An example is given in Fig. 4 for 105

atoms of87Rb in a spherical trap.

Fig. 4. Condensate wave function (arbitrary units) for 105 atoms of
87Rb in a spherical harmonic trap of lengthaHO. Solid line: numerical
solution of the Gross-Pitaevskii equation, Eq. (1). Dot-dashed line:
Thomas-Fermi approximation, Eq. (7) (indistinguishable from the
solid line in the inner part). Dashed line: surface profile obtained from
the universal equation, Eq. (15).

The kinetic energy can be calculated by matching
properly the Thomas-Fermi approximation and the solu-
tion of the universal equation, Eq. (15). This yields the
result

Ekin

N
=

5
2

"2

mR2 Slog
R

aHO
2 0.259D, (16)

where the radiusR is related toN by the equation

N =
R5

15a a4
HO

. (17)

Equation (16) provides the proper behavior of the ki-
netic energy in the largeN limit whereR >> aHO. In Fig.
5 we compare the results obtained from Eq. (16) and
from the Gross-Pitaevskii equation. One can see that the
convergence is reached for relatively large values ofN.

6. Vortices

The structure of vortices in a trapped Bose gas can be
naturally investigated in the present formalism. Let us
consider states having a vortex line along thez-axis and
all the atoms flowing around it with quantized circula-
tion. One can write the axially symmetric condensate
wave function in the form
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Fig. 5. Kinetic energy per particle, in units"vHO, for 87Rb in a
spherical harmonic trap as a function of the number of condensed
atoms. Solid line: from the solution of the Gross-Pitaevskii equation
(1). Dashed line: approximation Eq. (16).

C (r ) = c (r ) exp[iS(r )] (18)

wherec (r ) = Ïr (r ) is the modulus, while the phaseS
acts as a velocity potential:y = (" /m),S. By choosing
S= kf , wheref is the angle around thez-axis andk is
an integer, one has vortex states with tangential velocity

y =
"

mr'

k , (19)

with r 2
' = x2 + y2. The numberk is the quantum of circu-

lation, and the angular momentum alongz is Nk" .
If the complex wave function Eq. (18) is used in the

derivation of the Gross-Pitaevkii equation, one gets

F2
"2

2m
,2 +

"2k2

2mr2
'

+
m
2

(v 2
'r 2

' + vz
2z2)

+
4p"2a

m
|c (r )|2G c (r ) = mc (r ), (20)

which differs from Eq. (1) only for the addition of a
centrifugal potential. This new term forces the solution
c to vanish on thez-axis for k Þ 0.

For noninteracting particles one falls again in the case
of the stationary Schro¨dinger equation for the an-
isotropic harmonic potential. For instance thek = 1 so-
lution has the form

c (r ) ~ r' expF2
1

2a2
'

(r 2
' + lz2)G. (21)

To get the energy per particle for thek Þ 0 states one

has simply to sumk"v' to the energy per particle of the
ground state without vortices.

In the interacting case the kinetic energy can not be
neglected even for largeN, since it determines the struc-
ture of the vortex core. In particular, the balance be-
tween the kinetic energy and the interaction energy fixes
a typical distance over which the condensate wave func-
tion can heal. For a dilute Bose gas thehealing lengthis
given by

j = (8pra)21/2 (22)

wherer is the density of the system. In the case of a
vortex it corresponds to the distance over which the wave
function increases from zero, on the vortex axis, to the
bulk density. For the trapped atoms in theN → ` limit
one finds

j
R

= Sa'

RD
2

. (23)

Thus the healing length is small compared with the size
of the cloud ifR is much bigger thana'.

The critical angular velocity required to produce vor-
tex states is easily calculated once the energies of the
states with and without vortices is known. One has to
compare the energy of a vortex state in frame rotating
with angular frequencyV , that is (E 2 VLz), with the
energy of the ground state with no vortices. Since the
angular momentum per particle isk" , the critical angu-
lar velocity is

Vc = ("k )21[(E/N)k 2 (E/N)0]. (24)

In the noninteracting case the difference of energy per
particle is simplyk"v', so thatVc = v'.

We have solved numerically the Gross-Pitaevskii
equation (20) both for rubidium and lithium. In Fig. 6
we show the wave function of a cloud of 500087Rb
atoms; thek = 1 wave function (Fig. 6b), which corre-
sponds to atoms flowing around thez-axis with angular
momentumN" , is compared with thek = 0 ground state
(Fig. 6a). The atoms are pushed away from the axis
forming a toroidal cloud. From the energy of the vortex
states we calculate the critical angular velocity, through
Eq. (24). The results fork = 1 are shown in Fig. 7. The
critical angular velocity decreases rapidly withN. For
N > 5000 it is less than 40 % of the noninteracting value,
given by the transverse angular frequencyv' of the
trap. Thehealing lengthis the distance over which the
wave function grows from zero to thebulk value. In the
limit of large systems it can be approximated by Eq. (22)
with r equal to the density in the central part of the
toroidal distribution. Both the estimate ofj and Vc
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Fig. 6. Wave function, in arbitrary units, of 500087Rb atoms. Spatial
coordinates in unitsa'. a) Ground state. b) Vortex state withk = 1.

obtained in this way are in qualitative agreement with
the behavior of the numerical solutions.

Coming back to the question of the stability for nega-
tive scattering length, we notice that, when the local
minimum associated with wave functions of the form
shown in Fig. 3 disappears, nothing preventsa priori the
existence of other local minima associated with different
configurations. Such configurations should have local
density lower than the critical one. A natural way to
obtain a favourable situation is to move the atoms away
from thez-axis, conserving the total number of particles.

Fig. 7. Critical angular velocity, in unitsv', for the formation of
k = 1 vortices in87Rb vapor as a function ofN.

This happens in the presence of a vortex. In Fig. 8 we
show the wave function for 10007Li atoms with no
vortices (Fig. 8a) and with an axial vortex of unit circu-
lation (Fig. 8b).We use the same units in both cases, so
one can see that the maximum value of the wave func-
tion inside the toroidal distribution of the vortex is ap-
proximately a factor two lower than the central value in
the state with no vorticity (the density is four times
smaller). The critical angular frequency for the forma-
tion of the vortex state in Fig. 8 is 1.12 times the trans-
verse angular frequency of the trap. In systems with
attractive interaction the critical angular velocity is
larger than for noninteracting particles, while the oppo-
site is true for repulsive interaction. This is because it
costs internal potential energy to lower the average den-
sity, as the vortex does, for attractive interactions. How-
ever, once a vortex is created, the corresponding state is
more stable than in the absence of vorticity: one can put
more atoms inside the rotating cloud before reaching the
critical density for the final collapse. Indeed we find
local minima of the Gross-Pitaevskii functional forN
much larger than 1400 ifk > 0. For k = 1 we find a
critical value of N . 4000; for k = 2 and 3 we find
critical values of 6500 and 8300, respectively. It is worth
mentioning that the number of particles in the conden-
sate reported in the experimental work of Ref. [2] is an
order of magnitude higher than the critical value for the
stability of the Gross-Pitaevskii solution without vortic-
ity (N . 1400). The presence of vortices might explain
the large size of the observed Bose-condensed gas. Fur-
ther experimental data are needed to draw more defini-
tive conclusions.
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Fig. 8. Wave function, in arbitrary units, of 10007Li atoms. Spatial
coordinates in unitsa'. a) Ground state. b) Vortex state withk = 1.
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