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1. Introduction

In this paper we shall discuss our view of why an
assembly of Bose-Einstein condensed atoms may be
considered to have a definite phase. This seems to be a
long-standing problem as well as a rather general one;
the analogous situation seems to arise in a wide range of
systems exhibiting spontaneously broken symmetry, in-
cluding the laser, superconductors, superfluids as well
as particle physics [1]. Quite a body of work exists on

the problem of the phase of a condensate and some
(albeit a rather small part) of it will be discussed below.
We present what we contend is a rather straightforward
but hopefully convincing analysis of the problem.
However, while parts of the argument seem to exist in
the literature, we have not previously found our idea
expressed in a direct form for the problem at hand.
Our simple idea can be summed up in one sentence.
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A Bose-Einstein condensate has a preferred phase
because it is meaningful, on a macroscopic timescale, to
ascribe one to it.Clarifying and justifying this statement
requires no new mathematics or physical theory.

This paper is laid out as follows. In Sec. 2 we give a
brief account of what we see as critical comments in
previous work. In Sec. 3 we discuss the nature of a
condensate and why one would wish to assign it a phase.
We then turn to the critical issue of robustness of de-
scription based on a pure state picture and show how
that bears on the issue of assigning a phase. After that
we examine the issue of survival of coherences and draw
some conclusions.

2. Comments From Some Critical Earlier
Works

We shall not be able to review the voluminous litera-
ture on this subject, but do want to draw attention to
several issues raised by others that we believe are very
much worth discussing further. We would first point to
the work of Leggett and Sols [2]. These authors argue
for a macroscopic wavefunction which has “an absolute
phase” with the important qualification that “it is imme-
diately and explicitly clear that this phase has no physi-
cal significance.” They also address the question of rel-
ative phases “for any given physical system the relative
phaseu becomes ill-defined in the the limitt → `, but
that the time (call ittu ) for this to occur may well be
long enough to allow, in principle at least, interesting
experiments.” In our discussion we shall show in
essence howtu can be defined and, what is more, how
it can be related to the interaction between the conden-
sate and its environment. They also pose, but do not
resolve, the problem of “whether a measurement can
create a relative phase when none previously existed
. . . .” In summary they state “. . . the absolute phase of
a superfluid is not a necessary, or indeed meaningful
concept. However, under certain conditions, the relative
phase of two superfluids can be meaningful, even when
they are physically separated; but these conditions are
extremely stringent.” We believe we shall present a
“canonical” resolution of these questions.

Perhaps we should emphasise that so called
“Condensed” systems come in many varieties and arise
from a number of distinct broken symmetries. Peierls,
for example [3], describes no fewer than three different
distinct types. In one case at least, that of the laser, it is
clear that the relative phases of the two lasers is mean-
ingful and interference can be clearly demonstrated. Our
contention is that the same should be true for conden-
sates. In particular, we would argue that in the case of
Bose-condensed assemblies of atoms the broken sym-

metry shares this critical feature with the laser.
The other discussion we would like to point to is that

by Javanainen [4]. It is based on a proposed relation
between quantum statistics and classical stochastic pro-
cesses. Javanainen expresses the following interpretative
hypothesis: “In any individual experiment the quantum
system executes one realisation of the classical stochas-
tic process.” Following this reasoning we would say that
a harmonic oscillator in a highly excited number state
“traverses a classical trajectory, with an initial phase
that varies randomly from realisation to realisation.”
This is again close to but not strictly equivalent to the
point we want to make.Javanainen’s analysis leads us
further to say that for the case of two separate conden-
sates, a relative phase between the condensates exists
(even if they both have a precisely defined number of
particles) because the analogous classical stochastic
process ascribes to each condensate a fixed (but ran-
dom) phase. Hence two condensates would have a fixed
(but random) phase difference. Javanainen also com-
ments on the use of a commonly known trick [5, 6], i.e.,
idea of a symmetry-breaking field with a Hamiltonian
of the form

H = lâ
+
+ l * â (1)

wherel = |l | e–iu andâ is the boson annihilation opera-
tor.

This term is often used in order to avoid the fact that
for an isolated system no particular phase is chosen. The
introduction of a term of this sort into the Hamiltonian
for a system of bosons leads to a nonzero value <â>
which remains forN → `, then l → 0. This method
works, as Gunton and Buckingham have shown [6],
because the response to such a perturbation diverges as
the transition point is approached in the thermodynamic
limit. For finite systems, however, we have to ask how
such an interaction would come about. Javanainen notes
however that “the symmetry breaking field is purely
fictitious: no physical interaction is known that leads to
the Hamiltonian (above) . . . .” Such a term was also
introduced [7] in the study of the analogy between the
theory of a laser and a phase transition. In this case one
can, in fact, think about this interaction as being due to
an externally injected classical field. This again
sidesteps the critical issue of how such a classically
definable object comes about! Javanainen also briefly
suggests a coherent histories approach and discusses the
role of measurement and pointer bases as a link between
quantum statistics and a classical stochastic process.
However, his approach does not invoke measurement
but “Instead, I suggest that if the correlation functions of
a position agree with the correlation functions of a
classical stochastic process, then let us say that position
is a classical stochastic process.” For Javanainen it is in
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effect quantum jumps which “neatly yield sponta-
neously broken symmetries.” This approach of
Javanainen goes some way to a satisfactory explanation
but not quite far enough in our opinion. Two questions
clearly arise from this approach: Firstly, what if the
statistics don’t agree with those for a classical stochastic
process? A number of approaches have in fact been
made to cast quantum mechanics in this form [8, 9]. The
second and perhaps most substantial problems is that the
state accessed by a quantum jump is dependent on how
we model the effect. For example, the different
approaches to treating open systems, using stochastic
wavefunction simulations, tend to localise the system on
different types of pure state [10,11,12].

3. The Nature of a Condensate

Before addressing the origin of the condensate phase,
we should establish more clearly what we mean by a
condensed system. We shall take the following simple
view as our starting point: A condensate occurs (or
perhaps, can occur) when a large (macroscopic) number
of bosons are put into the same one particle (first quan-
tized) state. This is reasonable as a starting point, at least
for trapped atoms and laser fields (in the laser the “first
quantized state” is simply the cavity mode). The follow-
ing three points concerning the nature of a condensate
are almost obvious. However our discussion of conden-
sate phase which follows relies on them, so we believe
it is important to state them clearly:

(1) A condensate is a quantum system. It follows,
therefore, that its properties depend in large part
on the measurements you can perform on it.

(2) Condensate areopen systems; some dynamical
processes cause members of the condensate to be
lost while other processes add particles to it.

(3) It follows from (2) that condensates are not made
in pure states. At the most fundamental level, there
should be a highly entangled state of the particles
forming the condensate plus the environment. It
inevitably follows that the best way we can find by
way of completea priori description is a mixed
state described by a density matrix. Typically, if
not always, this will be diagonal in the particle
number representation. It follows that we can pre-
dict (perhaps quite accurately) the particle number
statisticsbut all we can say about off-diagonal
matrix elements is that their average vanishes.

The last comment (3) contains the real heart of the
problem. We can interpret such a mixed state as a statis-

tical mixture of pure states, that is as a probability that
the system is in one of a number of pure states. For
example, a thermally occupied harmonic oscillator or
boson mode has the density matrix

r̂thermal= O`
n=0

n̄n

(n̄ +1)n+1 un l knu. (2)

Whereun l is a number state and n¯ is the mean number.
One can interpret this in the following way [13]. The
oscillator is in a number state. The probability that this

number state is |n> is then simply
n̄n

(1 + n̄ )n+1. This inter-

pretation is certainly bourne out if we measure the exci-
tation number for each member of a large ensemble. It
is, however, important to realise there are other interpre-
tations where we consider each member of the ensemble
to be in one of a different set of pure states. For example,
we can also write the state of our system in the form

r̂thermal=
1

pn̄ Ed2a expH–
ua u2

n̄ J ua l ka u (3)

whereua l is the coherent state and the integration runs
over the whole complex plane. We can then interpret
1

pn̄
expH–

ua u2

n̄ J as the probability density for a given

coherent state to be occupied. Actually we should be
careful as the coherent states are not orthogonal and so
treating this as a probability is risky. We can, however,
treat the quantity

1
p

ka ur̂ thermalua l = Qthermal(a)

=
1

p (n̄ +1)
expH– uau2

n̄ +1J (4)

as a probability density. Subtleties like this are not really
the point; the point is what is the best state representa-
tion: and this is the question we shall answer. We will
find that the coupling to the environment leads us to
identify the coherent state as the best representation.

To sum up: the besta priori description of a conden-
sate (or a laser mode) is a mixed state with a density
matrix that is diagonal in the particle number represen-
tation. This can be interpreted as the probability for
finding the system in a given pure statebut in any of an
infinite number of different bases. How is it then that the
fields of each condensate (laser mode) seem to “have” a
preferred (albeit random) phase leading to a nonzero
expectation value for the field? This, in essence, is the
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condensate phase problem. Our solution to it involves
the interaction with the environment and the concept of
“robustness.”

4. Robustness and the Role of the Envi-
ronment

We have noted that anya priori description of the
condensate is at best a mixed state. The question we now
address is “Is there a good pure state description?” To
answer this we need a criterion for “best.” Our criterion
for “best” is how long the state will survive in the open
environment of the condensate. This is closely related to
the question of predictability for an open quantum sys-
tem [14, 15]. A number state description with the con-
densate in a eigenstate of particle number will only
survive until one particle is lost or added; at this point it
is in a state orthogonal to the initial one. This is obvi-
ously a very fragile state when exposed to the environ-
ment. A coherent state, however, might be expected to
live longer. Long-lived states are termed (by us) “robust
states” (see also Ref. [15]) and form a more natural or
better pure-state description than short-lived states. In
this section we give a more precise measure of
“robustness” and determine states that are likely to be
robust. Our measure of robustness is based on the over-
lap between the initial state and the density matrix it
evolves to under the influence of the environment.
Robust states look like the initial state for an appreciable
time, i.e., they are a faithful likeness of the initial state
for this time. This likeness can be measured simply and
termed fidelityF. We should note that it would also be
possible to define it in terms of the overlap between the
evolved state and the state it would have evolved into in
the absence of coupling to the environment. For the
moment we will use the following simple overlap form
given by Schumacher [16]

F = kc |r̂ (t) |c l . (5)

Here |c l is the initially chosen pure state andr̂ (t ) is the
density operator it evolves into in the environment of the
condensate. It is clear that from this expression that the
fidelity, F , will always be less than or equal to unity,
attaining its maximum value if and only if

r̂ ≡ |c l kc | .

It is also clear that coupling to the environment will in
general maker̂ tend to a mixed state and causeF to
evolve towards some nonzero value given by
kc |r̂ (`) |c l where r̂ (`) is the steady state density

matrix. The speed at whichF decays is what we shall
take our measure of robustness. As long asF is signifi-
cant, |c l will remain a reasonable description of the
state. Robustness should be considered as a property of
the evolution ofF . However, for the sake of comparison
it is useful to have simple numerical quantities. We
therefore introduce two such quantities first the fidelity
loss rateL given by

L = –
dF
dt U t=0. (6)

This is quite simply related to Gallis’ linear-entropy
production rate [15] and is straightforward to calculate
but is only meaningful for short times. A second quan-
tity, more difficult to calculate but perhaps more mean-
ingful, is the fidelity time defined by

F (tFid) = e–1 . (7)

In order to see how these ideas work, we start with
something very simple—the damped Boson-mode for
which the evolution of the density operator is given by

ṙ̂ = G (2âr̂â+ – â+âr̂ – r̂â+â) . (8)

The fidelity is again given by

F = k c |r̂ ( t ) |c l (9)

and so the fidelity loss rate is

L = – k c | ṙ̂ |c l | t=0

= – G {2 k c |â|c l kc |â+ |c l–2kc |â+â|c l}

= 2G { kc |â+â|c l – |k c |â|c l |2} . (10)

This is clearly positive semi-definite since

kc |â+â|c l – |kc |â|c l |2

= kc|{ â+ – k c |â+ |c l} { â–kc |â|c l}| c l (11)
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which is the squared modulus of the state

{ â– kc |â |c l} |c l.

The fidelity loss rate is thusminimisedfor states with

â| c l = kc |â |c l |c l, (12)

i.e, right-eigenstates ofâ . These states are, of course,
the coherent states. This implies that

L { | al} = 0 (13)

and hence that the coherent states are, at least for short
times, robust against decay (see Refs. [14] and [15].

The states with the most rapid loss of fidelity will be
those with kc |â |c l = 0 (such as the number states) for
which

L { | nl} = 2 Gn. (14)

It seems that maximising <a> minimises L . As
â |al = â |al it is clear that the coherent statesalone
minimiseL . This suggests that they are excellent candi-
dates for the best pure state description. It would be
wrong, of course, to assume thatL = 0 meansF always
remains large. We can and should look to longer ties to
check on the decay ofF and hence find the fidelity time.
This is what we proceed to do now.

The master equation [Eq. (8)] can be solved exactly
for any chosen initial state. For an initial coherent state
|al or number state |nl the density matrices are

r̂ (0) = |al ka |,

→ r̂ (t ) = |ae–G tl kae–Gt| (15)

r̂ (0) = |nl kn| →r̂ (t ) =

On

l= 0

(e–2G t)n–l (1–e–2G t)l n!
l !(n–l )!

|n – l lkn – l | . (16)

The corresponding fidelities follow directly from the
overlap between two coherent states [17] and the
orthonormality of the number states. We find

F (|c l) = ukc |ae–G tl |2 = exp{– |a|2(1–e–G t) 2} (17)

and

F (|nl) = kn| r̂ (t )|nl = e–2Gnt. (18)

We are primarily concerned with large particle numbers
which implies small GtFid. This means we can set
1 – e–GFid ≅ GtFid

F (|al) ~ exp{– |a|2G 2t2} (19)

for short times. The resulting fidelity times are then

tFid(|nl ) =
1

2nG

tFid(|al ) ~
1

G |a|
. (20)

Note thatn# = |a |2, so that the fidelity time for a coherent
state is 2n# 1/2 times larger for a coherent state with about
the same number of particles. The smallest condensates
might haven# ~ 103 for which this factor is about 60.
Actually, the situation for the mean field description is
bettereven than this, for if we have decided thatk â l =
a, we find that this “mean field” decays still even more
slowly as

k â (t ) l = ae–G t .

There is now a hierarchy of decay rates

2nG — rate of changing number state

n̄1/2G — rate of leaving coherent state

G — rate of decay of mean field. (21)

In more interesting systems, the dynamics will be
complicated but for large occupation numbers we will
consistently find the same story which can be sum-
marised as follows. A useful pure state description needs
to be long-lived and hencerobust. Robustness requires
a large value ofk â l, and this means coherent states (or
states very like them). Perhaps we should mention at this
point that for the Scull-Lamb laser model [7] the nonlin-
ear saturation tends to clamp the magnitude of the field
so that it can only change by phase diffusion. The result
is that (i) number states change quickly, (ii) coherent
states for which |a |2 is very different ton#ss change less
quickly (iii) coherent states for which |a |2 ~ n#ss are
highly robust. This is reflected in the fact that (Ref. 7)

k â l ~ n#ss
1/2eiu expF–

1
4

?
2G G
n# ss

1/2 ? tG. (22)
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HereG is the gain of the laser. Note this decays at a rate
slower than for straight decay. Hence the excellent
approximation of the laser mode by a coherent state.

Let us now consider briefly a more complicated cou-
pling to the environment more suited, perhaps, to de-
scribing a trapped atom condensate. This can be written
in the form

ṙ̂ = –i FĤNL, r̂G
+G2(2â2r̂ â+2 – â+2â2 r̂ – r̂â+2â2)

+G1(2âr̂ â+ – â+âr̂ – r̂â+â)

+ G̃1(2 + âr̂a – ââ+ r̂ – r̂ââ+) (23)

Here Ĥ NL represents the nonlinear deterministic cou-
pling. The term proportional toG1 represents one body
loss. TheG̃1 term represents one body feeding (gain) of
the condensate. The term multiplied byG2 provides two
body loss, e.g., due to dipolar collisions in a trap.

It is too complicated to find the fidelity time but we
can at least findL . We find

L (uc l) = { kc u{ H2,uc l kc u] uc l}

+2G2{ kc uâ+2â2uc l – ukc uâuc lu 2}

+2G1{ kc uââuc l – ukc uâuc lu 2}

+2G̃1{ kc u (â+ â)uc l – ukc uâuc lu 2} . (24)

The Hamiltonian term is precisely zero. As beforeL is
minimised for the coherent states for which

L (u a l) = 2G̃1 . (25)

At the other extreme, for the number states we find

L (un l ) = 2G̃1n(n – 1) 2G̃1n + 2G̃1(n + 1) . (26)

We note that this result shows the important fact that
number states are evenmore sensitiveto two body loss
than to one body loss.

The analysis for timest > 0 is best carried out in the
transformed picture where the direct effects of the
deterministic coupling are eliminated. The required
transformation is given by|c l → Û|c l where Û =
exp(iĤNLt ). The detailed analysis in the transformed pic-
ture is beyond the scope of this paper although we note
that whenĤNL is a functions ofâ†â the net result is, in
general, enhanced phase diffusion. For these cases co-
herent states remain the robust states provided the cou-
pling is not too strong.

5. Summary of Analysis

The master equation for the density matrix will tell us
about the evolution and statistics for the condensate. the
results we have obtained sow that it is meaningful to
ascribe a mean field,k â l, associated with a pure state or
nearly pure state to any given realisation of a conden-
sate. This provides a justification for preferring a pure
state (or near pure state) description in terms of states
that arerobust. A robust state will remain a reasonable
description for a longer time than a nonrobust state. For
bosons coupled to an environment, robust states are near
to the coherent states (in general) in that they tend to
have ka+al , u kâlu 2, and kâ+2â2l , ukâlu 4. The larger
the system gets, the more important robustness will be;
a number state lives only until one particle has been lost,
but a coherent state lives much longer. The well-defined
“phase” for a condensate thus follows from the fact that
we can think of it as being in a state that is near to a
coherent one. For a coherent state we find [18]

DN
N

= (n̄) –1/2

Df , 1
2

(n̄ )–1/2 . (27)

These become increasingly well defined asn̄ → `. The
rapid decay of off-diagonal coherences in the coherent
state basis is, of course, well-known [19]. The point
being made in this paper is that it is also the reason why
we can often ascribe a mean field to an open system! A
condensate has a preferred phase, or a mean field be-
cause it is meaningful, on a macroscopic timescale, to
ascribe one to it. Robustness also explains why using
Bogoliubov’s trick works. Asn → ` andl → 0, only a
robust state will survive (i.e., a near coherent state).
Furthermore this interaction generates coherent states.
Other interactions would not push the system into coher-
ent states and would therefore not lead to robust states.
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6. Survival of Quantum Coherence

A condensate is an open quantum system. We can ask,
however, if our pure state description is at all meaningful
in light of the nonlinear mechanisms which can induce
a superposition of coherent states. We are thinking in
particular of the proposal of Wright, Walls and Garrison
[20] that a condensate might exhibit quantum collapses
and revivals of the mean field due to the anharmonic
nature of the interaction between the atoms forming the
condensate has a preferred phase because it is meaning-
ful, on a macroscopic timescale, to ascribe one to it.
same time-scale on which a number state decays. It
seems that the very fact that we are working in a regime
in which it is preferable to considerk âl Þ 0 and a
coherent state description would tend to rule out the
development of such short-lived quantum coherences. It
is no doubt true that the ensemble averagek â l will
decay to zero, or that given an initialk âl we can only say
that the future evolution will on average make it tend to
zero. However, there are two processes which compete
to do this; one is the quantum collapse, but the other
is the coupling to the environment. The combination
tends to diffuse the phase of a coherent state over a 2p
interval in the collapse timep /(|a |m ). Here m is a
parameter that determines the strength of the nonlinear-
ity and whose value reduces with increasing atom num-
ber. Thus for sufficiently large samples the collapse
time is much longer than the fidelity time of a number
state. The robust description of the condensate, there-
fore, is that of a coherent-like state undergoing phase
diffusion.

7. Conclusions

This paper sets out a research programme for examin-
ing the issue of symmetry breaking in mesoscopic sys-
tems. Our conclusion in terms of a robust pure-state
description based on coherent states may appear pro-
found to some and obvious to others: it may or may not
lead to experimentally testable conclusions. We believe
in fact that it should be useful in assessing such impor-
tant (and seemingly intractable) ideas as quantum mea-
surements and the classical limit.

One further issue seems worth raising. The signature
for a robust pure state description should also occur in
wave-function Monte Carlo simulations. For a large
highly excited system we should find that a method
which tends to localise on coherent states [11] should
lead to a steadier, less violently jumping evolution than
an approach which tends to localise the energy [10].
Evidence supporting this point of view can be found in

simulations of superposition’s of coherent states [12].
Quantum theory suggests that a complete description

of our open system consists of a highly entangled wave-
function with an enormous number of degrees of free-
dom. Such a wavefunction is impossible to calculate
and, even if we knew its form, would be too unwieldy to
be useful. A useful description must be based on the
system of interest—in this case the condensate plus an
environment. However, models based on this idea al-
most inevitably lead to a mixed-state description of the
system of interest. Within this description we can ask it
it is reasonable to interpret the mixed state as a probabil-
ity for a given realisation of the system to be in a pure
state. This is where the idea of robustness comes in. It
is our contention that one can indeed interpret each
system as being in a pure statebut that this description
is only useful it it changes slowly on a macroscopic
time-scale.

In reality we should consider Schro¨dinger’s cat as
being in a highly entangled superposition of nucleus
undecayed plus a live cat and of nucleus decayed plus a
dead one or, for the cat alone, statistical mixture of alive
and dead. If we ask for a definitive statement about the
state of the cat then we find it either alive or dead. That
we do not (cannot) find it as eitheru alive l +
udeadl or u alive l – u deadl is partly because we do not
look for this possibility, but more so because such a state
decays so rapidly due to the coupling to the environ-
ment. From our point of view Schro¨dinger’s cat is
u alive l or u deadl because (as with condensate phase)
it is meaningful, on a macroscopic timescale, to ascribe
one of these properties to it!
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