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Draft Guidance for Industry 
and FDA Staff  

 

Guidance for the Use of Bayesian 
Statistics in Medical Device Clinical 

Trials 
 

This draft guidance, when finalized, will represent the Food and Drug 
Administration’s (FDA’s) current thinking on this topic.  It does not create or confer 
any rights for or on any person and does not operate to bind FDA or the public.  You 
can use an alternative approach if the approach satisfies the requirements of the 
applicable statutes and regulations.  If you want to discuss an alternative approach, 
contact the FDA staff responsible for implementing this guidance.  If you cannot 
identify the appropriate FDA staff, call the appropriate number listed on the title page 
of this guidance.   

 
1. Introduction  
This document provides guidance on statistical aspects of the design and analysis of 
clinical trials for medical devices that use Bayesian statistical methods.   
 
The purpose of this guidance is to discuss important statistical issues in Bayesian clinical 
trials for medical devices and not to describe the content of a medical device submission.  
Further, while this document provides guidance on many of the statistical issues that arise 
in Bayesian clinical trials, it is not intended to be all-inclusive.  The statistical literature is 
rich with books and papers on Bayesian theory and methods; a selected bibliography has 
been included for further discussion of specific topics.   
 
FDA’s guidance documents, including this guidance, do not establish legally enforceable 
responsibilities.  Instead, guidances describe the Agency’s current thinking on a topic and 
should be viewed only as recommendations, unless specific regulatory or statutory 
requirements are cited.  The use of the word should in Agency guidances means that 
something is suggested or recommended, but not required.   
 
2. The Least Burdensome Approach 
This draft guidance document reflects our careful review of what we believe are the 
relevant issues related to the use of Bayesian statistics in medical device clinical trials 
and what we believe would be the least burdensome way of addressing these issues.  If 
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you have comments on whether there is a less burdensome approach, however, please 
submit your comments as indicated on the cover of this document. 
 
3. Foreword 

3.1 What is Bayesian statistics?  
Bayesian statistics is a statistical theory and approach to data analysis that 
provides a coherent method for learning from evidence as it accumulates.  
Traditional (frequentist) statistical methods formally use prior information only in 
the design of a clinical trial.  In the data analysis stage, prior information is 
considered only informally, as a complement to, but not part of the analysis.  In 
contrast, the Bayesian approach uses a consistent, mathematically formal method 
called Bayes’ Theorem for combining prior information with current information 
on a quantity of interest.  This is done throughout both the design and analysis 
stages of a trial.   
 
3.2 Why use Bayesian statistics for medical devices?  
When good prior information on clinical use of a device exists, the Bayesian 
approach may enable FDA to reach the same decision on a device with a smaller-
sized or shorter-duration pivotal trial.  
 
The Bayesian approach may also be useful in the absence of informative prior 
information.  First, the approach can provide flexible methods for handling 
interim analyses and other modifications to trials in midcourse (e.g., changes to 
the sample size or changes in the randomization scheme).  Second, the Bayesian 
approach can be useful in complex modeling situations where a frequentist 
analysis is difficult to implement or does not exist.   
 
Good prior information is often available for a medical device; for example, from 
earlier studies on previous generations of the device or from studies overseas.  
These studies can often be used as prior information because the mechanism of 
action of medical devices is typically physical, making the effects local and not 
systemic.  Local effects are often predictable from prior information when 
modifications to a device are minor.   
 
Bayesian methods may be controversial when the prior information is based 
mainly on personal opinion (often derived by elicitation methods).  The methods 
are often not controversial when the prior information is based on empirical 
evidence such as prior clinical trials.  Since sample sizes are typically small for 
device trials, good prior information can have greater impact on the analysis of 
the trial and thus on the FDA decision process.   
 
The FDA Modernization Act of 1997 mandates that FDA shall consider the least 
burdensome means of demonstrating effectiveness or substantial equivalence of a 
device (Section 513(a)(3)(D)(ii) and Section 513(i)(1)(D)).  The Bayesian 
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approach, when correctly employed, may be less burdensome than a frequentist 
approach.1   
 
3.3 Why are Bayesian methods more commonly used now?  
Bayesian analyses are often computationally intense.  However, recent 
breakthroughs in computational algorithms and many-fold increases in computing 
speed have made it possible to carry out calculations for virtually any Bayesian 
analysis.  These advances have resulted in a tremendous increase in the use of 
Bayesian methods over the last decade.  See Malakoff (1999).  The basic tool that 
enabled the advances is a method called Markov Chain Monte Carlo (MCMC).  
For a technical overview of MCMC methods, see Gamerman (1997). 

 
3.4 When should FDA participate in the planning of a Bayesian 
trial? 
For any Bayesian trial, we recommend you schedule meetings to discuss 
experimental design, models, and acceptable prior information with FDA before 
the study begins.  If an investigational device exemption (IDE) is required, we 
recommend you meet with FDA before you submit the IDE. 
 
3.5 What software programs are available that can perform 
Bayesian analyses? 
Currently, the only commonly available computer program dedicated to making 
Bayesian calculations is called WinBUGS2 (Bayesian Inference Using Gibbs 
Sampling).   It is non-commercial software.  FDA expects other software 
packages to become available in the future.  FDA recommends that you consult 
with FDA statisticians regarding your choice of software prior to analyzing your 
data. 
 

                                                           
1 Two examples of successful use of Bayesian methods in device trials are: 

TRANSCAN (SSE:  http://www.fda.gov/cdrh/pdf/p970033b.pdf).  Prior information was 
used to incorporate results from previous studies, resulting in a reduced sample size for 
demonstration of effectiveness. 

INTERFIX (SSE:  http://www.fda.gov/cdrh/pdf/p970015b.pdf).  An interim analysis was 
performed; based on Bayesian predictive modeling of the future success rate, the trial was 
stopped early.  No prior information was used. 
2 The WinBUGS program can be downloaded from the website of the Medical Research 
Center, Cambridge:  www.mrc-bsu.cam.ac.uk. Other open-source Bayesian software 
packages are also under development.  
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3.6 What resources are available to learn more about Bayesian 
statistics?  
Non-technical introductory references to Bayesian statistics and their application 
to medicine include Malakoff (1999), Hively (1996), Kadane (1995), Brophy & 
Joseph (1995), Lilford & Braunholtz (1996), Lewis & Wears (1993), Bland & 
Altman (1998), and Goodman (1999a, 1999b).  Berry (1997) has written for FDA 
an introduction specifically on Bayesian medical device trials.    
 
A comprehensive summary on the use of Bayesian methods to design and analyze 
clinical trials or perform healthcare evaluations appears in Spiegelhalter, Abrams, 
& Myles (2004).  
 
Introductions to Bayesian statistics that do not emphasize medical applications, in 
order of complexity, are Berry (1996), DeGroot (1986), Stern (1998), Lee (1997), 
and Gelman, et al. (2004).   
 
References with technical details and statistical terminology are Spiegelhalter, et 
al. (2000), Spiegelhalter, et al. (1994), Berry & Stangl (1996), Breslow (1990), 
and Stangl & Berry (1998).   
 
An overview of Markov Chain Monte Carlo for Bayesian inference may be found 
in Gamerman (1997).  Practical applications appear in Gilks, et al. (1996) and in 
Congdon (2003).   
 
Brophy & Joseph (1995) provide a well-known synthesis of three clinical trials 
using Bayesian methods.  
 
A list of resources on the Web appears on the International Society for Bayesian 
Statistics website.3  

3.7 The Bayesian approach should not push aside sound science. 
Scientifically sound clinical trial planning and rigorous trial conduct are important 
regardless of whether you use the Bayesian or the frequentist approach.  We 
recommend you remain vigilant regarding randomization, concurrent controls, 
prospective planning, blinding, bias, precision, and all other factors that go into a 
successful clinical trial.  See Section 5.1: Bayesian trials start with a sound 
clinical trial design.  

 
3.8 What are the potential benefits of using Bayesian methods? 
Sample size reduction or augmentation 
The Bayesian methodology may reduce the sample size FDA needs to reach a 
regulatory decision.  You may achieve this reduction by using prior information 
and interim looks during the course of the trial.  When results of a trial are 

                                                           
3 http://www.bayesian.org/
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unexpectedly good (or unexpectedly bad) at an interim look, you may be able to 
stop early and declare success (or failure). 
 
The Bayesian methodology can allow for augmentation of the sample in cases 
where more information helps FDA make a decision.  This can happen if the 
observed variability of the sample is higher than that used to plan the trial.   

  

Midcourse changes to the trial design 
With appropriate planning, the Bayesian approach can also offer the flexibility of 
midcourse changes to a trial.  Some possibilities include dropping an unfavorable 
treatment arm or modifications to the randomization scheme.  Modifications to 
the randomization scheme are particularly relevant for an ethically sensitive 
device or when enrollment becomes problematic for a treatment arm.  Bayesian 
methods can be especially flexible in allowing for changes in the treatment to 
control randomization ratio during the course of the trial.  See Kadane (1996) for 
a discussion. 
 
Exact analysis 
The Bayesian approach can sometimes be used to obtain an exact analysis when 
the corresponding frequentist analysis is only approximate or is too difficult to 
implement. 

 
3.9 What are the potential difficulties in the Bayesian approach?  

 Extensive preplanning   
Planning the design, conduct, and analysis of any trial are always important from 
a regulatory perspective, but they are crucial for the Bayesian approach.  This is 
because decisions are based on: 

• prior information 

• information obtained from the trial, and  

• the mathematical model used to combine the two.   

Different choices of prior information or different choices of model can produce 
different decisions.  As a result, in the regulatory setting, the design of a Bayesian 
clinical trial involves pre-specification of (and agreement on) both the prior 
information and the model.  This includes clinical agreement on the 
appropriateness of the prior information and statistical agreement on the 
mathematical model to be used.  Since reaching this agreement is often an 
iterative process, we recommend you meet with FDA early on to discuss and 
agree upon the basic aspects of the trial design. 
 
A change in the prior information or the model at a later stage of the trial may 
imperil the scientific validity of the trial results.  For this reason, formal 
agreement meetings may be appropriate when using a Bayesian approach.  
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Specifically, the identification of the prior information may be an appropriate 
topic of an agreement meeting.4

   
Extensive model-building 
The Bayesian approach often involves extensive mathematical modeling of a 
clinical trial, including: 

• the probability distributions chosen to reflect the prior information 

• the influence of covariates on patient outcomes or missing data 

• the relationships between various sources of prior information used in the 
model.   

We recommend you determine modeling choices through close collaboration and 
agreement with FDA’s and your statistical and clinical experts. 
 
Specific statistical and computational expertise 
The Bayesian approach often involves specific statistical expertise.  Computer-
intensive calculations are often used to: 

• analyze trial data 

• check model assumptions 

• assess prior probabilities at the design stage 

• perform simulations to assess probabilities of various outcomes 

• estimate sample size.   

The technical and statistical costs for the above are often offset by the savings of a 
shorter trial or a more flexible analysis. 

 
Choices regarding prior information 
An FDA advisory panel may question prior information you and FDA agreed 
upon beforehand.  We recommend you be prepared to clinically and statistically 
justify choices of prior information.  In some cases, we recommend you perform 
sensitivity analyses to check robustness of models and priors. 
 
Device labeling 
Results from a Bayesian trial may be expressed differently from the way trial 
results are usually described in device labels.  We recommend you ensure trial 
results reported on the device label are easy to understand. 

                                                           
4 The FDA Modernization Act (FDAMA) provided for two types of early 
collaboration meetings: agreement meetings and determination meetings. For 
details, see the FDA Guidance on early collaboration meetings at 
http://www.fda.gov/cdrh/ode/guidance/310.html. 
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Checking calculation 
The flexibility of Bayesian models and the complexity of the computational 
techniques for Bayesian analyses create greater possibility for errors and 
misunderstandings.  FDA, therefore, will carry out a detailed statistical review of 
a Bayesian submission.   
 
Since the software used in Bayesian analysis is relatively new, FDA will often 
verify results using alternate software.  FDA recommends you submit your data 
and any programs used for Bayesian statistical analyses electronically.   

 
Bayesian and traditional analyses approaches may differ 
Two investigators, each with the same data and a different preplanned analysis 
(one frequentist and one Bayesian), could conceivably reach different conclusions 
that are both scientifically valid.  While the Bayesian approach is often favorable 
to the investigator with good prior information, the approach can be more 
conservative than a frequentist approach (e.g., see Section 5:  Planning a 
Bayesian Clinical Trial).   
 
If the results from your pre-planned analysis are not as positive as expected, we 
recommend you do not switch from a frequentist to a Bayesian analysis (or vice 
versa). Such post hoc analyses are not scientifically sound and would tend to 
weaken the validity of the submission. 
 

4. Bayesian Statistics  
4.1 Introduction 
The fundamental idea in Bayesian statistics is that one’s uncertainty about an 
unknown quantity of interest is represented by probabilities for possible values of 
that quantity.  For instance, unknown quantities of interest in device trials might 
be: 

• clinical safety and effectiveness endpoints 

• a patient’s outcome to be observed in the future 

• a missing observation on a patient. 

 
Prior distribution and non-informative prior distribution 
Before a trial begins and data are obtained, the investigator assigns prior 
probabilities to the possible values of the unknown quantity, known as the prior 
distribution.  In principle, the prior can be based on the investigator’s personal 
knowledge of the quantities of interest or on another expert’s opinion, etc.  If 
absolutely nothing is known about that quantity, something called a non-
informative prior distribution may be specified.  In trials undergoing regulatory 
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review, however, the prior distribution is usually based on data from relevant 
previous trials. 

 
Bayes’ theorem and posterior probabilities 
After data are gathered and information becomes available, the prior probabilities 
are mathematically updated according to a statistical result called Bayes’ theorem.  
The updated probabilities, known as posterior probabilities, are probabilities for 
values of the unknown quantity after data are observed.  This approach is a 
scientifically valid way of combining previous information (the prior 
probabilities) with current data.  The approach adjusts to changing levels of 
evidence: today’s posterior probabilities become tomorrow’s prior probabilities.   

  
The Bayesian paradigm 
The Bayesian paradigm states that probability is the only measure of one’s 
uncertainty about an unknown quantity.  In a Bayesian clinical trial, uncertainty 
about an endpoint (also called parameter) is quantified according to probabilities, 
which are updated as information is gathered from the trial. 

 
Decision rules 
The pre-market evaluation of medical devices aims to demonstrate the safety and 
effectiveness of a new device.  This demonstration is most commonly achieved 
through statistical hypothesis testing.  For Bayesian trials, hypotheses are tested 
with decision rules.  One common type of decision rule considers that a 
hypothesis has been demonstrated (beyond a reasonable doubt) if its posterior 
probability is large enough (e.g., 95 or 99 percent).   

 
The Bayesian approach encompasses a number of key concepts, some of which 
are not part of the traditional statistical approach.  Below, we briefly discuss these 
concepts and contrast the Bayesian and frequentist approaches.   
 
4.2 What is a prior distribution?  
Suppose that x is an endpoint (parameter) of interest in a clinical trial.  The initial 
uncertainty about x should be described by a probability distribution for x, called 
the prior distribution and denoted by P(x).   
 
As an example, suppose x is the rate of a serious adverse event.  Its possible 
values will lie between 0 and 1.  One prior distribution is the uniform distribution 
indicating no preference for any value of x.  So the probability that x lies between 
0.1 and 0.2 is the same as the probability that x lies between 0.4 and 0.5, or 
between 0.65 and 0.75, or in any interval of length 0.1.   
 
Alternatively, the prior distribution might give preference to lower values of x.  
For example, the probability that x lies between 0.2 and 0.3 can be larger than the 
probability that x lies between 0.7 and 0.8. 
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4.3 What is the likelihood of the observed data?   
Now suppose data have been obtained from a clinical trial.  The likelihood of 
these data being observed can be formally expressed in terms of a likelihood 
function, P(data |x), which is the conditional probability of observing the data, 
given a specific value of x, for each possible value of x (the parameter).  The 
likelihood is the mathematical and statistical model that reflects the relationships 
between the observed outcomes in the trial, the covariates, and the endpoint x of 
interest.   

 
4.4 What is the posterior distribution? 
The final objective is to obtain the probability of each possible value of the 
endpoint x conditional on the observed data, denoted P(x| data).  Using exclusively 
the laws of probability, Bayes’ theorem combines the prior distribution for x, P(x), 
with the likelihood, P(data|x), in order to obtain the posterior distribution for x, 
P(x|data).  In the Bayesian approach, all available information about x is 
summarized by the posterior distribution, P(x |data), and all inferences about the 
endpoint are based on it.   

 
As more data are obtained, more updating can be performed.  Consequently, the 
posterior distribution that has been obtained today may serve as a prior distribution 
later, when more data are gathered.  The more information that is accrued, the less 
uncertainty there will be about the posterior distribution for x, and as more and 
more information is collected from the trial, the influence of the prior will become 
less and less.  If enough data are collected, the relative importance of the prior 
distribution will be negligible compared to the likelihood.   
 
For more introductory material on conditional probability, Bayes’ theorem, and 
Bayesian statistics, see DeGroot (1986), Lee (1997), Berry (1996), Lindley 
(1985).  For an introduction specific to medical devices, see Berry (1997). 

 
4.5 What is a predictive distribution? 
The Bayesian approach allows for the derivation of a special type of posterior 
probability; namely, the probability of future events given outcomes that have 
already been observed.  This probability is called the predictive probability.  
Collectively, the probabilities for all possible values of future outcomes are called 
the predictive distribution.  Predictive distributions have many uses, including: 

• determining when to stop a trial 

• helping a physician and patient make decisions by predicting the clinical 
outcome of the current patient, given the observed outcomes of past 
patients in a clinical trial 

• predicting a clinical outcome from a validated surrogate 

• adjusting trial results for missing data (imputation) 
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• model checking. 
   

These uses are discussed in more detail in Section 6.  Analyzing a Bayesian 
Clinical Trial.   

 
4.6 What is exchangeability? 
Exchangeability is a key idea in statistical inference in general, but it is 
particularly important in the Bayesian approach.  Two observations are 
exchangeable if they provide equivalent statistical information.  So, two patients 
randomly selected from a particular population of patients can be considered 
exchangeable.  If the patients in a clinical trial are exchangeable with the patients 
in the population for which the device is intended, then the clinical trial can be 
used to make inferences about the entire population.  Otherwise, the trial tells us 
very little about the larger population.  The concept of a representative sample 
can thus be expressed in terms of exchangeability. 
 
Exchangeability may depend on the statistical model used.  If we know, for 
example, that the adverse event rate for a particular device depends on the 
patient’s body mass index (BMI), then we say that patients are exchangeable 
conditional on BMI.  That is, two patients will provide equivalent statistical 
information, but only after we account for differences in BMI.  Therefore, any 
discussion of exchangeability should also include a discussion of the statistical 
models used. 
 
We can also think of exchangeability in terms of clinical trials.  Two trials are 
exchangeable if they provide equivalent statistical information about some super-
population of clinical trials.  Again, the trials may be exchangeable, but only after 
we account for (that is, condition on) other factors with the appropriate statistical 
model. 
 
The use of Bayesian hierarchical models enables us to combine information from 
different sources that may be exchangeable on some levels but not on others (see 
Section 5:  Planning a Bayesian Clinical Trial).  If trials are exchangeable, then 
Bayesian hierarchical models enable us to make full use of the information from 
all the trials.  For technical definitions of exchangeability, see Bernardo & Smith 
(1995). 
 
4.7 What is the likelihood principle? 
The likelihood principle is important in all of statistics, but it is especially central 
to the Bayesian approach.  The principle states that all information about the 
endpoint of interest, x, obtained from a clinical trial, is contained in the likelihood 
function.  In the Bayesian approach, the prior distribution for x is updated using 
the information provided by the trial through the likelihood function, and nothing 
else.  Bayesian analysts base all inferences about x solely on the posterior 
distribution produced in this manner. 
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A trial can be altered in many ways without changing the likelihood function.  As 
long as the modification schemes are pre-specified in the trial design, adherence 
to the likelihood principle allows for flexibility in conducting Bayesian clinical 
trials, in particular with respect to: 

• modifications to sample size 

• interim looks for the purpose of possibly stopping the trial early 

• adaptive designs in general.  

For more on the topic, see Berger & Wolpert (1988), Berger & Berry (1988), 
Irony (1993), and Barlow, et al., (1989). 
 
4.8 How do the Bayesian and frequentist approaches differ? 
As outlined above, Bayesian analysts base all inferences on the posterior 
distribution, which (in adherence to the likelihood principle) is the product only of 
the prior and the likelihood function.  Although the frequentist approach makes 
extensive use of the likelihood function, it does not always strictly adhere to the 
likelihood principle.  For example, the interpretation of a frequentist p-value is 
based on outcomes that might have occurred but were not actually observed in the 
trial; that is, on something external to the likelihood. 
 
Another way of saying this is that Bayesian inferences are based on the 
“parameter space” (the posterior distribution), while frequentist inferences are 
based on the “sample space” (the set of possible outcomes of a trial). 
 

5. Planning a Bayesian Clinical Trial 
5.1 Bayesian trials start with a sound clinical trial design 
The basic tenets of good trial design are the same for both Bayesian and 
frequentist trials.  Parts of a comprehensive trial protocol include: 

• objectives of the trial 

• endpoints to be evaluated 

• conditions under which the trial will be conducted 

• population that will be investigated 

• planned statistical analysis. 
 

We recommend you follow the principles of good clinical trial design and 
execution, including minimizing bias.  Randomization minimizes bias that can be 
introduced in the selection of which patients get which treatment.  Randomization 
allows concrete statements about the probability of imbalances in covariates due 
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to chance alone.  For reasonably large sample sizes, randomization ensures some 
degree of balance for all covariates, including those not measured in the study.   
 
Masking (also known as blinding) of physicians avoids bias that can be 
introduced by intended or unintended differences in patient care or evaluation of 
patient outcomes based on the treatment received during the course of the trial.  
Masking of patients minimizes biases due to the placebo effect.   

 
We recommend you choose beforehand the type of analysis to be used (Bayesian 
or frequentist). Switching to a more favorable analysis method introduces a bias.  
It is difficult to justify a switch or account for such a bias in the analysis stage.  In 
some cases, a Bayesian analysis of a new trial may salvage some information 
obtained in a previous non-Bayesian clinical trial that deviated from the original 
protocol.  The information provided by such a trial may be represented by a prior 
distribution to be used in a prospective Bayesian clinical trial. 
 
For further information on planning a trial, see FDA’s Statistical Guidance for 
Non-Diagnostic Medical Devices.5   

 
5.2 Selecting the relevant endpoints or parameters of interest  
Endpoints (also called parameters in this document) are the measures of safety 
and effectiveness used to support a certain claim.  Ideally, endpoints are: 

• clinically relevant 

• directly observable 

• related to the claims for the device 

• important to the patient.   
 
For example, an endpoint may be a measure of the size of a treatment effect, or 
the difference between the effects in the treatment and control groups.  The 
objective of a clinical trial is to gather information from the patients in the trial to 
make inferences about these unknown parameters. 
 
5.3 Collecting other important information: covariates 
Covariates, also known as confounding factors, are characteristics of the study 
patients that can affect their outcome.  There are many statistical techniques 
(Bayesian and frequentist) to adjust for covariates.  Covariate adjustment is 
especially important in any situation where some degree of covariate balance is 
not assured through randomization, such as a Bayesian trial in which other trials 
are used as prior information.  If adjustments are not made for differences in the 
covariate distribution between trials, the analysis can be biased.  Covariate 

                                                           
5 http://www.fda.gov/cdrh/ode/ot476.html   
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adjustment is also often used to reduce variation, which leads to a more powerful 
analysis. 
 
5.4 Choosing a comparison: controls 
To facilitate evaluation of clinical trial results, we recommend you use a 
comparator, or control group, as a reference.  Types of control groups you may 
use are: 

• Concurrent controls 

• self controls 

• historical controls. 

We believe that self controls and historical controls are scientifically less rigorous 
than concurrent controls because of: 

• potential problems with covariate adjustment 

• placebo effect 

• regression to the mean. 

 
Another way to characterize the type of control is to distinguish between controls 
that are treated with an effective therapy (active controls) vs. controls that either 
receive no treatment (inactive controls) or are treated with a sham device (placebo 
controls).  Bayesian methods are especially useful with active controlled trials 
seeking to demonstrate a new device is not only non-inferior to the active control 
but is also superior to no treatment or a sham control.  A Bayesian trial can 
investigate this question by using previous studies comparing the active control to 
the inactive control.  Bayesian methods for active control trials are discussed in 
Gould (1991) and Simon (1999).   

 
5.5 Initial information about the endpoints: prior distributions 
The initial uncertainty about the endpoints or parameters of interest, both in the 
control and treatment groups, is quantified through probability distributions, 
called prior distributions.  See Gelman et al. (2004) for background on different 
types of prior distributions.  You should select the appropriate prior information 
and incorporate it into the analysis correctly.  Discussions regarding study design 
with FDA will include an evaluation of the model to be used to incorporate the 
prior information into the analysis.  Irony & Pennello (2001) discuss prior 
distributions for trials under regulatory review.   
 
Informative priors 
Prior knowledge is described by an informative prior distribution.  Because using 
prior information may decrease the sample size in a trial, we recommend you 
identify as many sources of good prior information as possible when planning a 
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trial.  FDA should agree with your choice of prior distributions.  Possible sources 
of prior information include: 

• clinical trials conducted overseas 

• patient registries 

• clinical data on very similar products 

• pilot studies.   
 
We recommend the proposed prior information be submitted as part of the IDE 
(when an IDE is required).  In some cases, existing valid prior information may be 
unavailable for legal or other reasons (e.g., the data may belong to someone else 
who is unwilling to allow access).   
 
We recommend you hold a pre-IDE meeting with FDA to come to agreement on 
what prior information is scientifically valid and how it will be used in the 
analysis.  Quantitative priors (i.e., those based on data from other studies) are the 
easiest to evaluate.  We recommend the prior studies be similar to the current 
study in as many as possible of the following aspects:  

• protocol 

• endpoints 

• target population 

• sites 

• physicians 

• time frame.   
 
Priors based on expert opinion rather than data are problematic.  Approval of a 
device could be delayed or jeopardized if FDA advisory panel members or other 
clinical evaluators or do not agree with the opinions used to generate the prior.  
 
To avoid bias, we recommend you avoid using studies that are not representative 
(e.g., if non-favorable studies are systematically excluded).  We recommend you 
check for selection bias by examining:  

• the population of all studies that might have been considered 

• the reasons for including or excluding each study. 
 

A Bayesian analysis of a current study of a new device may include prior 
information from: 

• the new device 

• the control device 

• both devices. 
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Most commonly, prior information based on historical controls is “borrowed,” 
which can significantly decrease the sample size in a concurrent control group.  
As a result, a greater proportion of patients can be allocated to the experimental 
device, increasing the experience with that device at a faster pace.  However, if 
differences between the historical control studies and the current study are large, 
the use of a historical control as prior information for a concurrent control may 
not be advantageous.  
 
For example, consider a study with the objective of demonstrating the 
experimental device is non-inferior to the control regarding rate of complication.  
If patients in the study are more likely to have complications than those in the 
historical control studies because they are sicker, for example, indiscriminate use 
of the historical control data will bias downward the concurrent control 
complication rate.  This bias will make it more difficult to demonstrate the 
experimental device is non-inferior to the control than if the historical control data 
were ignored.  This phenomenon is less likely to occur if the historical control 
data are properly calibrated to the current study by, for example, adjusting for 
important covariates.   
 
If the prior information for a study is based on many more patients than are to be 
enrolled in the study, the prior distribution may be too informative.  In this case, 
the prior probability that the pivotal study is a success (i.e., demonstrates the 
proposed claims) will be excessively high.  If the prior probability of a successful 
study is too high, it can be lowered in various ways, including: 

• modifying or discounting the prior distribution in some way 
• increasing the stringency of the decision rule.   

 
Non-informative priors 
Lack of any prior knowledge may be reflected by a non-informative prior 
distribution.  Usually, it is easy to define maximum and minimum values for the 
parameters of interest, and in this case, a possible “non-informative” prior 
distribution is a uniform distribution ranging from the minimum to the maximum 
value.   
 
Non-informative priors are reviewed in Kass & Wasserman (1996).  Standard  
and related improper priors are explained and used extensively in Box & Tiao 
(1973).  Reference priors are extensively discussed in Bernardo & Smith (1993). 

 
5.6 Borrowing strength from other studies: hierarchical models 
Bayesian hierarchical modeling is a specific methodology you may use to 
combine prior results with a current study to obtain estimates of safety and 
effectiveness parameters.  The name hierarchical model derives from the 
hierarchy in which observations and parameters are structured.  The Bayesian 
analyst refers to this approach as “borrowing strength.”  For device trials, strength 
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can be translated into sample size, and the extent of borrowing depends on how 
closely results from the new study reflect the prior experience. 
 
If results are very similar, the current study can borrow great strength.  As current 
results vary from the previous information, the current study borrows less and 
less.  Very different results borrow no strength at all, or even potentially “borrow 
negatively”.  In a regulatory setting, hierarchical models can be very appealing:  
They reward having good prior information on device performance by lessening 
the burden in demonstrating safety and effectiveness.  At the same time, the 
approach protects against over-reliance on previous studies that turn out to be 
overly optimistic for the pivotal study parameter. 
 
An example hierarchical model 
Suppose you want to combine information from a treatment registry of an 
approved device with results from a new study.  You may decide to use two 
hierarchical levels:  the patient level and the study level. 
 
The first (patient) level of the hierarchy assumes that (1) within the current study, 
patients are exchangeable; and (2) within the registry, patients are exchangeable.  
Registry patients are not, however, exchangeable with patients in the current 
study, so patient data from the registry and the current study may not be simply 
pooled. 
 
The second (study) level of the hierarchy applies a model that assumes the 
success probabilities from the registry and the current study are exchangeable, but 
the rates may differ (e.g., they may depend on covariates).  This assumption is 
prudent any time you are not sure if patients from the prior experience (i.e., the 
registry) are directly exchangeable with the patients from the current study.  
However, the two success probabilities are related in that they are assumed 
exchangeable.  As a result, the registry provides some information about the 
success probability in the current study, although not as much information as if 
the patients in the two groups were directly poolable.   
 
Similarity of previous studies to current study 
The key clinical question in using hierarchical modeling to borrow strength from 
previous studies is whether the previous studies are sufficiently similar to the 
current study in covariates such as: 

• devices used 

• objectives 

• endpoints 

• protocol 

• patient population 

• sites 
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• physician training 

• patient management 

• time frame. 
 
Statistical adjustments for certain differences in covariates such as demographic 
and prognostic variables may be appropriate, using patient-level data.  Generally, 
proper calibration of your study depends on using the same covariate information 
at the patient level as in previous studies. 
 
Calibration based only on covariate summaries (such as from the literature) may 
be inadequate because the relationship of the covariate level to the outcome can 
be determined in the current study but not in the previous studies. This forces the 
untestable assumption that covariate effects in your study and previous studies are 
the same; that is, that study and covariate effects do not interact. 
 
When you use more than one study as prior information in a hierarchical model, 
the prior distribution can be very informative.  As discussed previously, if the 
prior probability of a successful trial is too high, we recommend the study design 
and analysis plan be modified. 
 
You may also use hierarchical models to combine data across centers in a multi-
center trial.  For an example, see the Summary of Safety and Effectiveness for 
PMA P980048, BAK/Cervical Interbody Fusion System by Sulzer Spine-Tech.6   
 
Outcomes for devices can vary substantially by site due to such differences as: 

• physician training 

• technique 

• experience with the device 

• patient management 

• patient population.   
 
A hierarchical model on centers assumes that the parameters of interest vary from 
center to center but are related via exchangeability.  This kind of model adjusts 
for center-to-center variability when estimating parameters across studies. 
 
Non-technical discussion of hierarchical models and technical details on their 
implementation appear in Gelman et al. (2004).  Other, more complex approaches 
are described in Ibrahim & Chen (2000) and Dey et al., 1998. 
 

                                                           
6 www.fda.gov/cdrh/pdf/p980048b.pdf. 
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5.7 Determining the sample size 
The sample size in a clinical trial depends on: 

• prior information  

• mathematical model used in analysis 

• distributions of parameters in the analytic model 

• specific decision criteria 

• variability of the sample.   
 
If the population of patients is highly variable, the sample size increases.  If there 
is no variability (i.e., everyone in the population has the same value for the 
measurement of interest), a single observation is sufficient.  The purpose of sizing 
a trial is to gather enough information to make a decision while not wasting 
resources or putting patients at unnecessary risk. 
  
In traditional frequentist clinical trial design, the sample size is determined in 
advance.  Instead of specifying a particular sample size, the Bayesian approach 
(and some modern frequentist methods) may specify a particular criterion to stop 
the trial.  Appropriate stopping criteria may be based on a specific amount of 
information about the parameter (e.g., a sufficiently narrow credible interval, 
defined in Section 6:  Analyzing a Bayesian Clinical Trial) or an appropriately 
high probability for a pre-specified hypothesis. 
 
At any point before or during a Bayesian clinical trial, you can obtain the 
posterior distribution for the sample size.  Therefore, at any point in the trial, you 
can compute the expected additional number of observations needed to meet the 
stopping criterion.  In other words, the sample size distribution is continuously 
updated as the trial goes on.  Because the sample size is not explicitly part of the 
stopping criterion, the trial can be ended at the precise point where enough 
information has been gathered to answer the important questions. 
 
Special considerations when sizing a Bayesian trial 
When sizing a Bayesian trial, FDA recommends you decide in advance on the 
minimum sample size according to safety and effectiveness endpoints because 
safety endpoints may lead to a larger sample size.  FDA also recommends you 
include a minimum level of information from the current trial to enable 
verification of model assumptions and appropriateness of prior information used.  
This practice also enables the clinical community to gain experience with the 
device.   
 
When hierarchical models are used, we recommend you provide a minimum 
sample size for determining the amount of information that will be “borrowed” 
from other studies.   
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We recommend the maximum sample size be defined according to economical, 
ethical, and regulatory considerations. 
 
Various approaches to sizing a Bayesian trial are described in Inoue et al. (2005), 
Katsis & Toman (1999), Rubin & Stern (1998), Lindley (1997), and Joseph et al. 
(1995a,b). 

 
5.8 Assessing the operating characteristics of a Bayesian design 
Because of the inherent flexibility in the design of a Bayesian clinical trial, a 
thorough evaluation of the operating characteristics should be part of the trial 
design.  This includes evaluation of: 

• probability of erroneously approving an ineffective or unsafe device (type 
I error) 

• probability of erroneously disapproving a safe and effective device (type II 
error) 

• power (the converse of type II error: the probability of appropriately 
approving a safe and effective device) 

• sample size distribution (and expected sample size) 

• prior probability of claims for the device 

• if applicable, probability of stopping at each interim look. 
 
A more thorough discussion appears in the Appendix. 
 

6. Analyzing a Bayesian Clinical Trial 
6.1 Summaries of the posterior distribution 
The results, conclusions, and interpretation of a Bayesian analysis all rely on the 
posterior distribution, which contains all information from the prior distribution, 
combined with the results from the trial via the likelihood.  Consequently, results 
and conclusions for a Bayesian trial are based only on the posterior distribution.  
FDA recommends you summarize the posterior distribution with a few numbers 
(e.g., posterior mean and standard deviation), especially when there are numerous 
endpoints to consider.  FDA also recommends you include graphic 
representations of the appropriate distributions.   
 
6.2 Hypothesis testing 
Statistical inference may include hypothesis testing or interval estimation, or both.  
FDA often bases approval on demonstrating claims via hypothesis tests.  For 
Bayesian hypothesis testing, you may use the posterior distribution to calculate 
the probability that a particular hypothesis, either null or alternative, is true, given 
the observed data.   
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Although probabilities of type I and II errors are frequentist notions, and not 
formally part of Bayesian hypothesis testing, Bayesian hypothesis tests often 
enjoy good frequentist properties.  FDA recommends you provide the type I and 
II error rates of your proposed hypothesis test. 
 
6.3 Interval estimation 
Bayesian interval estimates are based on the posterior distribution and are called 
credible intervals.  If the posterior probability that an endpoint lies in an interval 
is 0.95, then this interval is called a 95 percent credible interval. 
 
For construction of credible intervals, see Chen & Shao (1999) and Irony (1992).  
Other types of Bayesian statistical intervals include highest posterior density 
(HPD) intervals (Lee, 1997) and central posterior intervals. 
 
6.4 Predictive probabilities 
You may use predictive probabilities, a special type of posterior probabilities, in a 
number of ways: 

Deciding when to stop a trial 
If it is part of the clinical trial plan, you may use a predictive probability at an 
interim point as the rule for stopping your trial.  If the predictive probability that 
the trial will be successful is sufficiently high (based on results thus far), you may 
be able to stop the trial and declare success.  If the predictive probability that the 
trial will be successful is small, you may stop the trial for futility and cut losses.   
 
Exchangeability is a key issue here: these predictions are reasonable only if you 
can assume the patients who have not been observed are exchangeable with the 
patients who have.  This assumption is difficult to formally evaluate but may be 
more credible in some instances (e.g., administrative censoring) than others (e.g., 
high patient drop-out). 
 
Predicting outcomes for future patients 
You may also calculate the predictive probability of the outcome of a future 
patient, given the observed outcomes of the patients in a clinical trial, provided  
the current patient is exchangeable with the patients in the trial.  In fact, that 
probability answers the following questions:  

• Given the results of the clinical trial, what is the probability that a new 
patient receiving the experimental treatment will be successful? 

• What would that probability be if the patient were treated in the control 
group? 

 
After device approval, these probabilities could be very useful in helping 
physicians and patients make decisions regarding treatment options. 
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Predicting (imputing) missing data 
You may use predictive probabilities to predict (or impute) missing data, and trial 
results can be adjusted accordingly.  There are also frequentist methods for 
missing data imputation.   
 
Regardless of the method, the adjustment depends on the assumption that patients 
with missing outcomes follow the same statistical model as patients with observed 
outcomes.  This means the missing patients are exchangeable with the non-
missing patients, or that data are missing at random.  If this assumption is 
questionable, FDA recommends you conduct a sensitivity analysis using the 
prediction model.  For examples of missing data adjustments and sensitivity 
analysis, see the Summary and Safety Effectiveness for PMA P980048, 
BAK/Cervical Interbody Fusion System, by Sulzer Spine-Tech.7  
 
Predicting a clinical outcome from a surrogate 
If patients have two different measurements at earlier and later follow-up visits, 
you may make predictions for the later follow-up visit (even before the follow-up 
time has elapsed).  Basing predictions on measures at the earlier visit requires 
that: 

• some patients have results from both follow-up visits 

• there is sufficiently high correlation between the early and the later 
measurement.   

 
In this example, the outcome at the first time point is being used as a surrogate for 
the outcome at the second.  This type of prediction was used to justify stopping 
the clinical trial of the INTERFIX Intervertebral Body Fusion Device.8   
 
The surrogate may also be a different outcome; for example, for breast implants, 
rupture may be predictive of an adverse health outcome later.   
 
Surrogate endpoints for predictive distributions should be validated.  However, 
validation of a surrogate endpoint is a complex scientific and statistical issue that 
is outside the scope of this document. 
 
Model checking 
FDA recommends you verify all assumptions important to your analysis.  For 
example, an analysis of a contraceptive device might assume the monthly 
pregnancy rate is constant across the first year of use.  To assess this assumption, 
the observed month-specific rates may be compared to their predictive 
distribution.  You may summarize this comparison using a Bayesian p-value.  For 
more information, refer to Gelman et al. (1996; 2004).   

                                                           
7 www.fda.gov/cdrh/pdf/p980048b.pdf. 
8 See Summary of Safety and Effectiveness for PMA P970015 at    
www.fda.gov/cdrh/pdf/p970015b.pdf. 
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You may also assess model checking and fit by Bayesian deviance measures as 
described in Spiegelhalter et al. (2002).  Any predictive analysis assumes that 
patients for whom outcomes are being predicted are exchangeable with patients 
on whom the prediction is based.  This assumption may not be valid in some 
cases.  For example, patients enrolled later in a trial may have a different success 
rate with the device than those enrolled earlier if:  

• physicians have to overcome a learning curve in using the device  

• physicians form an opinion on whom the device treats best, and then 
enroll more or less favorable patients in the trial 

• an effective adjunctive therapy becomes available to the patients in the 
trial 

• an alternative treatment becomes available during the course of the trial, 
altering the characteristics of the patients who choose to enroll in the trial. 

6.5 Interim analyses 
There is more than one method for analyzing interim results in a Bayesian trial.  
FDA recommends you specify the method in the trial design and ensure FDA 
agrees in advance of the trial.  FDA may ask you to calculate the probability of a 
type I error through simulations before accepting a method.  Although this is a 
frequentist calculation, it can help in evaluating the application of a method to a 
trial.   
 

The following describes three specific Bayesian interim analysis methods: 

Applying posterior probability 
One method stops the trial early if the posterior probability of a hypothesis at the 
interim look is large enough.  In other words, the same Bayesian hypothesis test is 
repeated during the course of the trial.   

Applying predictive distribution 
Another method calculates at interim stages the probability that the hypothesis 
test will be successful.  This method uses the Bayesian predictive distribution for 
patients yet to be measured.  If the predictive probability of success is sufficiently 
high, the trial may stop early.  If the predictive probability is very low, the trial 
may stop early for futility.  This method was used in the submission of the 
INTERFIX Intervertebral Body Fusion Device.9  

Applying formal decision analysis 
A decision analysis method considers the cost of decision errors and 
experimentation in deciding whether to stop early.  Carlin, Kadane, & Gelfand 
(1998) propose a method to approximate a decision analysis approach.   

                                                           
9 See the Summary of Safety and Effectiveness for PMA P970015 at 
http://www.fda.gov/cdrh/pdf/p970015b.pdf).   
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7. Post-Market Surveillance 
FDA believes the Bayesian approach is well suited for surveillance purposes.  The key 
concept: “Today’s posterior is tomorrow’s prior” allows you to use the posterior 
distribution from a pre-market study to serve as a prior distribution for surveillance 
purposes, to the extent that data from the clinical study reflect how the device is used 
after approval.  In other words, you may readily update information provided by a pre-
market clinical trial with post-market data via Bayes’ theorem if you can justify 
exchangeability between pre- and post-market data.  You may continue to update post-
market information via Bayes’ theorem as more data are gathered.  You may also use 
Bayesian models to mine large databases of post-market medical reports.   
 
DuMouchel (1999) discusses Bayesian models for analyzing a very large frequency table 
that cross-classifies adverse events by type of drug used.  DuMouchel uses a hierarchical 
model to smooth estimates of relative frequencies of adverse events associated with drugs 
to reduce the number of falsely significant associations.  It is unclear at this time if this 
approach is as useful for medical device reports as it is with drug reports.   
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9. Appendix   
9.1 Suggested Information to Submit to FDA 
 
In addition to the standard clinical trial protocol, FDA believes there are statistical issues 
unique to Bayesian trial designs requiring additional information in your submission.  
The following suggestions (not an exhaustive listing) will facilitate a smoother review 
process and serve as a starting point when writing your protocol.  Not all points apply to 
all studies. 
 

Prior information 
FDA recommends you indicate all prior information you will use, including: 

• relevant studies 

• expert opinions 

• assumptions.  

Criterion for success 
FDA recommends you provide a criterion for success of your study (related to 
safety and effectiveness). 

Method for choosing sample size 
FDA also recommends you state your method for choosing a sample size.  To 
assist in choosing an appropriate sample size for the trial, you may simulate data 
assuming a range of different true parameter values and different sample sizes.  
For each simulated data set, we recommend you determine the posterior 
distribution of the parameter.  This posterior distribution is used in calculating the 
posterior probability of the study claim for the chosen sample size and true 
parameter value. 

 
Frequentist power tables 
FDA recommends you provide frequentist power tables of the probability of 
satisfying the study claim, given various “true” parameter values (e.g., event 
rates) and various sample sizes for the new trial.  This table provides probabilities 
of observing data that allow the study claim to be met, given the indicated true 
parameter value.  This table will also provide an estimate of the type I error rate in 
the case where the true parameter values are consistent with the null hypothesis. 

 
For example, for an adverse event rate, you can generate power tables by: 

• choosing a true adverse event rate   

• choosing a sample size, and finding the largest count of events that 
satisfies the study claim 
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• calculating the probability of observing a count less than or equal to this 
largest count (e.g., assuming a binomial distribution with the true event 
rate). 

This probability is the power of the criterion for the chosen sample size and true 
event rate.   

If the study design is complex it may be necessary to use simulation to compute 
power.  Some suggestions on simulation are outlined in Appendix 9.4: 
Simulations to Obtain Operating Characteristics. 

 
Interim looks (monitoring) 
If your design contains interim looks (monitoring), we recommend you also 
simulate those.   

 
Predictive probability 
FDA recommends you evaluate the prior predictive probability of your study 
claim.  This is the predictive probability of the study claim prior to seeing any 
new data, and it should not be too high.  In particular, we recommend the prior 
predictive probability not be as high as the simulated posterior probability of the 
claim identified in the sample size section above.  

 
FDA makes this recommendation to ensure the prior information does not 
overwhelm the current data, potentially creating a situation where unfavorable 
results from the proposed study get masked by favorable prior results.  In an 
evaluation of the prior probability of the claim, FDA will balance the 
informativeness of the prior against the gain in efficiency from using prior 
information as opposed to using noninformative priors. 

 
To calculate this prior probability, you can simulate data using only the prior 
information.  For example, if you are using a computer program that performs 
Markov Chain Monte Carlo (MCMC) simulation, you can leave blank the slot 
where you normally insert current data and have the program simulate these 
values instead.  Simulations done in this manner provide the prior probability of 
the study claim. 

 
The prior predictive probability of the study claim can be altered by inflating or 
deflating the variance between studies.  Inflating the variance by modifying the 
parameters of its prior distribution might be difficult if there are few studies, 
resulting in an unstable variance estimate.  FDA recommends first fixing the 
parameters of the prior distribution, and then experimenting with adding a 
constant to the study variance until the prior predictive probability of the claim is 
relatively low. 
 
Program code 

FDA recommends you submit the electronic program code you use to conduct 
simulations and any prior data with the IDE submission.  We also recommend you 
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include an electronic copy of the data from the study and the computer code used 
in the analysis with the PMA submission. 

 
Additional items   
A useful summary that can be computed for any simulations using posterior 
variance information is the effective sample size in the new trial.  That is, 

 
Effective sample size (ESS) is given by: 

ESS = n * V1/V2,   
 
Where n = the sample size in the new trial 

  V1 = the variance of the parameter of interest without borrowing 
 V2 = the variance of the parameter of interest with borrowing. 
 
Then, ESS – sample size from new trial = number of patients “borrowed” from 
the previous trial.  This information can be useful for deciding how much 
efficiency you are gaining from using the prior information. 

 
9.2 Model Selection  
Some statistical analysis plans allow for comparison of several possible models of the 
data and parameters before a final model is chosen for analysis.  For example, in a 
Bayesian analysis of a study outcome that borrows strength from other studies, the effects 
of a factor on the outcome might vary from study to study. 
 
One method of comparing two models tests the null hypothesis that one model is true 
against the alternative that the other model is true.  The result of such a test depends on 
the posterior probability of the alternative model, or the posterior odds for the alternative 
model.  Posterior odds refer to the ratio of the posterior probability of the alternative 
model to the posterior probability of the null model.  

  
9.3 Calculations 
Almost all quantities of interest in a Bayesian analysis involve the calculation of a 
mathematical integral.  All the following are expressed as an integral involving the 
posterior distribution: 

• the posterior mean 

• the posterior standard deviation 

• the posterior probability of a hypothesis. 
 
The following are some numerical integration techniques used to compute these integrals: 

• Gaussian quadrature 
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• posterior distribution sampling 

• Laplace approximation 

• importance sampling 

• Markov Chain Monte Carlo (MCMC) techniques (Gamerman 1997).   
 
MCMC techniques are probably the most commonly used; the most used MCMC 
technique is the Gibbs sampler.  The Metropolis-Hastings algorithm is a generalization 
that can be used in cases where the Gibbs sampler fails.   
 
MCMC techniques are popular because in many analyses, the posterior distribution is too 
complex to write down, and therefore traditional numerical integration techniques like 
quadrature and Laplace approximation cannot be carried out.  The Gibbs sampler draws 
samples from other, known distributions to create a (Markov) chain of values.  A Markov 
chain is a set of samples where the value at each point depends only on the immediately 
preceding sample.  Eventually, as the chain converges, the values sampled begin to 
resemble draws from the posterior distribution.  The draws from the Markov chain can 
then be used to approximate the posterior distribution and compute the integrals.   

 
Tanner (1996) provides a survey of computational techniques used in statistics, including 
numerical integration and MCMC techniques.  Gilks et al. (1996) explains MCMC 
techniques and their application to a variety of scientific problems.  Discussion of 
MCMC and other techniques also appear in Gelman et al. (2004).   

 
When MCMC techniques are used, FDA recommends you check that the chain of values 
generated has indeed converged at some point so that subsequent draws are from the 
posterior distribution.  If the chain has not converged, we recommend you sample more 
values.   
 
Various techniques have been developed to diagnose nonconvergence.  You may refer to 
diagnostic techniques discussed in Gelman et al. (2004), Gilks et al. (1996),  Tanner 
(1996), and the manual for CODA (Convergence Diagnosis and Output Analysis), a set 
of SPlus functions that process the output from the program BUGS (Bayesian inference 
using Gibbs sampling).10  

 
Convergence difficulties 
Depending on how the Bayesian model is parameterized, the Markov chain might 
converge very slowly.  Alternative parameterizations can help to speed up 
convergence.  One possible explanation for a chain that does not seem to 
converge is that an improper prior distribution was used (see Section 6:  
Analyzing a Bayesian Clinical Trial).  Thus, the chain does not have a 
(posterior) distribution to converge to.  When improper prior distributions are 

                                                           
10  Both programs may be downloaded from the Medical Research Center, Cambridge, at 
      http://www.mrc-bsu.cam.ac.uk   
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used, you should check that the posterior distribution is proper.  Convergence 
difficulties can also occur when the prior distribution is nearly improper.   
 
Data augmentation 
The technique of data augmentation introduces auxiliary variables into a model to 
facilitate computation.  The use of auxiliary variables can also aid in the 
interpretation of your analysis.  For example, latent variables are now commonly 
introduced in analyses of ordinal outcomes (i.e., outcomes with only a few 
possible values that are ordered).  Examples of such outcomes include answers to 
multiple-choice questions for a quality of life questionnaire.  Johnson & Albert 
(1999) discuss Bayesian analysis of ordinal outcomes using latent variables.  
Tanner (1996) discusses data augmentation as a general technique. 
 
Electronic submission of calculations 
FDA routinely checks the calculations for a Bayesian analysis (e.g., for 
convergence of the Markov chain when using MCMC techniques).  We 
recommend you submit data and any programs used for calculations to FDA 
electronically.   

 

9.4 Simulations to Obtain Operating Characteristics 
FDA recommends you provide trial simulations at the planning (or IDE) stage.  This will 
facilitate FDA’s assessment of the operating characteristics of the Bayesian trial; 
specifically, the type I and type II error rates.  We recommend your simulated trials 
mimic the proposed trial by considering the same: 

• prior information 

• sample size 

• interim analyses 

• possible modifications of the trial in midcourse.   
 
You can assess the type I error rate from simulated trials where the parameters are fixed 
at the borderline values for which the device should not be approved.  The proportions of 
successful trials in these simulations provide estimates of the type I error rate.  FDA 
recommends that several likely scenarios be simulated and that the expected sample size 
and estimated type I error be provided in each case. 
 
You can assess power and the type II error rate from simulated trials where the 
parameters are fixed at plausible values for which the device should be approved.  The 
proportions of unsuccessful trials in these simulations provide estimates of the type II 
error rate.  The complement estimates the power provided by the experimental design.  
FDA recommends several likely scenarios be simulated and that the expected sample size 
and estimated type II error rate and power be provided in each case. 
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If FDA considers the type I error rate of a Bayesian experimental design to be too large, 
we recommend you modify the design to reduce that rate.  Determination of “too large” is 
specific to a submission since some sources of type I error inflation (e.g., large amounts 
of valid prior information) may be more acceptable than others (e.g., inappropriate choice 
of prior studies or inappropriate criteria for study success).   
 
There are several options for decreasing the type I error rate: 

• increase the posterior (or predictive) probability that defines a successful trial 
(e.g., 97 percent, 98 percent, 99 percent) 

• increase the number of patients before the first interim analysis 

• discount the prior information* 

• reduce the number of interim analyses 

• increase the maximum sample size (again, to reduce the influence of the prior) 

• any combination of the above options. 

* To discount prior information, FDA recommends (1) you increase the number of 
patients before the first interim analysis until the type I error rate reduces to an 
acceptable level; or (2) you iteratively increase the variance of the prior distribution by 
trial and error until the type I error rate reduces sufficiently. 
 
In case the experimental design is modified, we recommend you carry out a new set of 
simulations to evaluate the new design. 
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