

Federal Energy Management Program

Introduction and Overview of Federal Building Energy Efficiency Mandates

Cyrus Nasseri US Department of Energy

FEMP 7-Part Webcast Series

- Session 1, Overview of Federal Building Energy Efficiency Mandates/An Introduction to Building Life-Cycle Costing
- Session 2, Overview of the Requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004
- Session 3, Appendix G of 90.1-2004
- Session 4, Integrated Building Design: Bringing the Pieces Together to Unleash the Power of Teamwork
- Session 5, Sustainable Design
- Session 6, Advanced Energy Design Guides
- Session 7, How to Build 30% Better

U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

For more information on webcasts

http://www.energycodes.gov/federal/webcast_federal_series.stm

Outline of Presentation

- Legislative Drivers
- Federal Rulemakings
- Executive Orders

US Congress Legislation

- Energy Policy Act of 2005 (EPACT 2005)
- Energy Independence and Security Act of 2007 (EISA 2007)
- New legislation expected in 2009

Energy Policy Act of 2005

Section 102 – Energy Management Requirements

Section 103 – Energy Use Measurement and Accountability

Section 104 – Procurement of Energy Efficient Products

Section 109 – Federal Building Performance Standards

- Mandate:
 - New Federal buildings must achieve savings of at least 30% below ASHRAE Standard 90.1-2004 or the 2004 IECC if cost-effective.
 - Buildings must also use sustainable design principles for siting, design, and construction, if cost-effective.
 - If water is used to achieve energy efficiency, water conservation technologies shall be applied, if cost-effective.

Energy Independence and Security Act of 2007

- Section 431 Energy Reduction Goals for Federal Buildings
- Section 432 Management of Energy and Water Efficiency in Federal Buildings
- Section 433 Federal Building Energy Efficiency Performance Standards
 - Requires steep reduction in fossil fuel energy relative to usage in DOE's Commercial Building Energy Consumption Survey (CBECS) or Residential Energy Consumption Survey (RECS)
 - Applies only to public buildings, buildings with \$2.5 million in annual costs, or buildings for which GSA must file a prospectus to Congress
 - New construction and major renovations
- Section 434 Management of Federal Building Efficiency

Energy Independence and Security Act of 2007 (cont'd)

- Section 435 Leasing
- Section 436 High Performance Green Federal Buildings
- Section 437 Federal Green Building Performance
- Section 441 Public-Building Life Cycle Costs
 - Changes life-cycle cost period from 25 to 40 years expands number of measures that are cost-effective
- Section 523 Standard Relating to Solar Hot Water
 - If life cycle cost-effective, as compared to other reasonably available technologies, not less than 30 percent of the hot water demand for each new Federal building or Federal building undergoing a major renovation be met through the installation and use of solar hot water heaters.

DOE's role in Congressional Legislation

- Many items in Congressional legislation direct DOE to develop formal rules to implement mandates in legislation
- For those mandates that involve Federal buildings, FEMP develops those rules

Federal Rulemakings

- Notice of Proposed Rulemaking on procurement of energy efficient products in Section 104 of EPACT 2005 – June 2007
- Final Rule on energy efficiency requirements of Federal buildings in Section 109 of EPACT 2005 Dec 2007
- Notice of Proposed Rulemaking on sustainable design requirements and water conservation in Section 109 of EPACT 2005 – Summer/Fall 2008
- Notice of Proposed Rulemaking on fossil fuel reduction requirements in Section 433 of EISA 2007 – Fall/winter 2008

Executive Orders

- The US President can issue executive orders that directly impact all Federal agencies.
- The latest executive order is EO 13423 -Strengthening Federal Environmental, Energy, and Transportation Management.

Executive Order 13423

- Reduce green house gas emissions
- Increase renewable energy usage
- Reduce water consumption
- Procure sustainable and efficient products
- Ensure new construction follows Guiding Principles
 - Employ Integrated Design Principles
 - Optimize Energy Performance
 - Protect and Conserve Water
 - Enhance Indoor Environmental Quality
 - Reduce Environmental Impact of Materials

Specific Details on Federal Energy Efficiency Design Standards

- Based on Section 109 of EPAct 2005 only at this time
- Found in 10 CFR Part 433 for commercial and high-rise multi-family residential buildings
- Currently only cover energy efficiency and not sustainable design
- Will be updated over coming months to include sustainable design and also to include fossil-fuel reductions required in Section 433 of EISA 2007

Section 109 – Federal Building Performance Standards

- Mandate
 - New Federal buildings must achieve savings of at least 30% below ASHRAE Standard 90.1-2004 or the 2004 IECC if cost-effective.
 - Buildings must also use sustainable design principles for siting, design, and construction, if cost-effective.
 - If water is used to achieve energy efficiency, water conservation technologies shall be applied to the extent that is life-cycle cost-effective

DOE Rulemakings

- Found in
 - 10 Code of Federal Regulations (CFR) Part 433
 - new commercial and high-rise multi-family residential buildings started after January 3, 2007
 - 10 CFR Part 435 Subpart A
 - new residential buildings started after January 3, 2007

Baseline Standards

- Called out in Section 109 of the Energy Policy Act of 2005
- Set the baseline for "at least 30% savings"
- Must be met as absolute minimum if no other improvements are cost effective

Baseline Standards

- ANSI/ASHRAE/ IESNA Standard 90.1-2004
 - Prevailing private sector standard for commercial and high-rise multi-family residential buildings

Baseline Standards

- Section 109 requires DOE to update the baseline standards as new versions of the prevailing private sector standards are released and are deemed cost-effective
- DOE will be evaluating the 2006 IECC and ASHRAE Standard 90.1-2007 for the next version of the rule

Energy Saving and Cost-Effectiveness Goal

- Federal building designs must be at least 30% more energy efficient than buildings built to the prevailing private sector standards, if cost-effective
- This is a "soft" goal, as the energy savings must be "at least 30%" but also "cost-effective"

Energy Saving and Cost-Effectiveness Goal

• If 30% savings cannot be achieved, you must try backing off to lesser savings, until cost-effectiveness is achieved

Energy Saving Metrics

- For commercial and high-rise multi-family residential buildings
 - Performance Rating Method in Appendix G of ASHRAE Standard 90.1-2004

Energy Saving Metrics

- Appendix G is performance-based
 - it requires the use of building simulation software to determine if the proposed design achieves the desired energy savings
- Appendix G requires simulation of a baseline building (that just meets the baseline standard) and a proposed building (that exceeds the baseline standard)

Energy Saving Metrics

- Appendix G relies on *energy cost* as the comparison, as opposed to site or source energy
- *Energy cost* is the metric used in the prevailing private sector standards
- *Energy cost* is also the metric underlying EO 13423

Cost-Effectiveness Metrics

- Life-cycle costing must be performed in accordance with 10 CFR Part 436
- Building Life Cycle-Cost (BLCC) software is available from National Institute of Standard and Technology (NIST)

Allowable Cost-Effectiveness Metrics

- Lower life-cycle cost
- Positive estimated net savings
- Savings-to-investment ratio greater than 1
- Adjusted internal rate of return estimated to be greater than Federal discount rate in OMB Circular A-94

U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Thank-You

An Introduction to NIST **Building Life-Cycle Costing**

Building and Fire Research Laboratory National Institute of Standards and Technology (NIST) U.S. Department of Commerce

Jennifer F. Helgeson

FEMP Webcast Series on Federal Commercial Buildings Session 1 August 19, 2008

- > Rationale for Life-Cycle Cost (LCC) Analysis
- > Basic LCC Methodology
- > Requirements of a LCC Analysis
- > BLCC5.3 computer program

•••• **LCC Legislation**

- > Nat'l Energy Conservation Policy Act, 1978
- Energy Policy Act 1992, 2005
- Energy Independence and Security Act, 2007
- Executive Order 13423, 2007
- > 10 CFR 436A, 1990
- > OMB Circular A-94, 1992

Life-Cycle Cost Analysis

- > a method of economic analysis that sums all relevant project costs over a given study period in present-value terms.
- most relevant when selecting among mutually exclusive project alternatives that meet minimum functional performance requirements but have different initial costs, OM&R costs, and/or expected lives.

Types of Decisions

- > Accept/Reject Projects/Alternatives
- > Optimal System Size
- > Optimal Combination of Interdependent Systems
- > Ranking Independent Projects

- > evaluates costs of acquisition, ownership & disposal
- > compares initial investment with future savings
- > includes financing costs
- includes FEMP, OMB, MILCON criteria
- Consistent with ASTM Standards

Relevant Project Costs

- Investment-related
 - First costs
 - Replacement costs
 - Salvage value (resale or disposal cost)
- > Operation-related
 - > Operation, maintenance, and repair costs
 - Energy and water costs
 - Contract-related costs (for financed projects)

LCC Analysis requires

- > dollar amounts as of today
- > no sunk costs
- > non-tangibles in narrative form

Generally, only amounts that are different need to be considered when comparing mutually exclusive alternatives • • • • Study Period

- Length of time over which an investment is analyzed
- Study period must be equal for all alternatives, depending on
 - > the expected life of the project and/or
 - >the investor's time horizon
- Base Year: analysis date to which all cash flows are discounted
- Base Case: alternative with lowest first cost

• • • Study Period

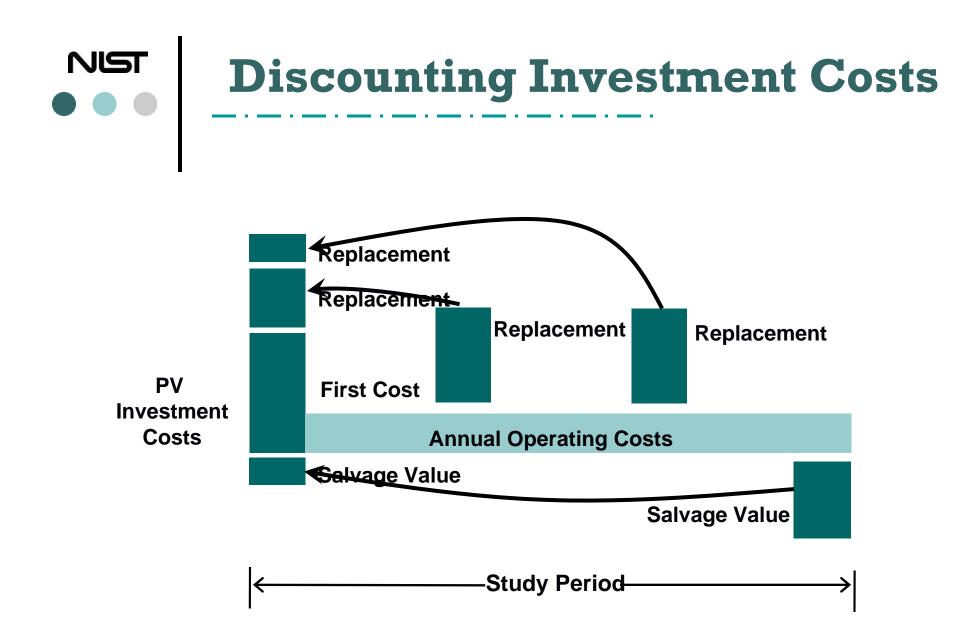
Key dates

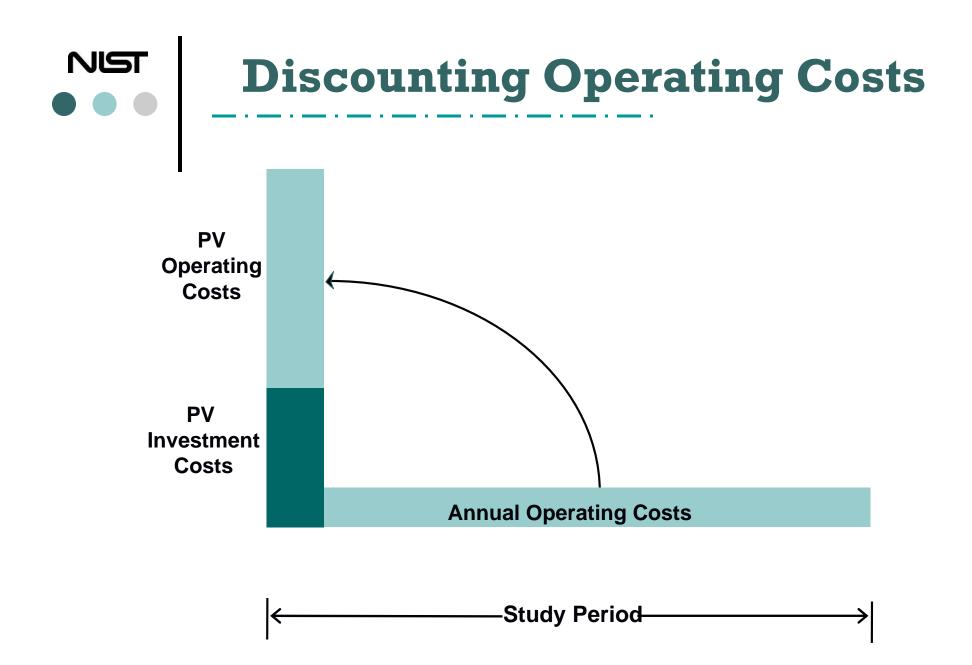
- Base Date: beginning of study period
- Service Date: beginning of operational period
- End Date: end of study period
- Planning/Construction/Implementation Period
- Contract Period

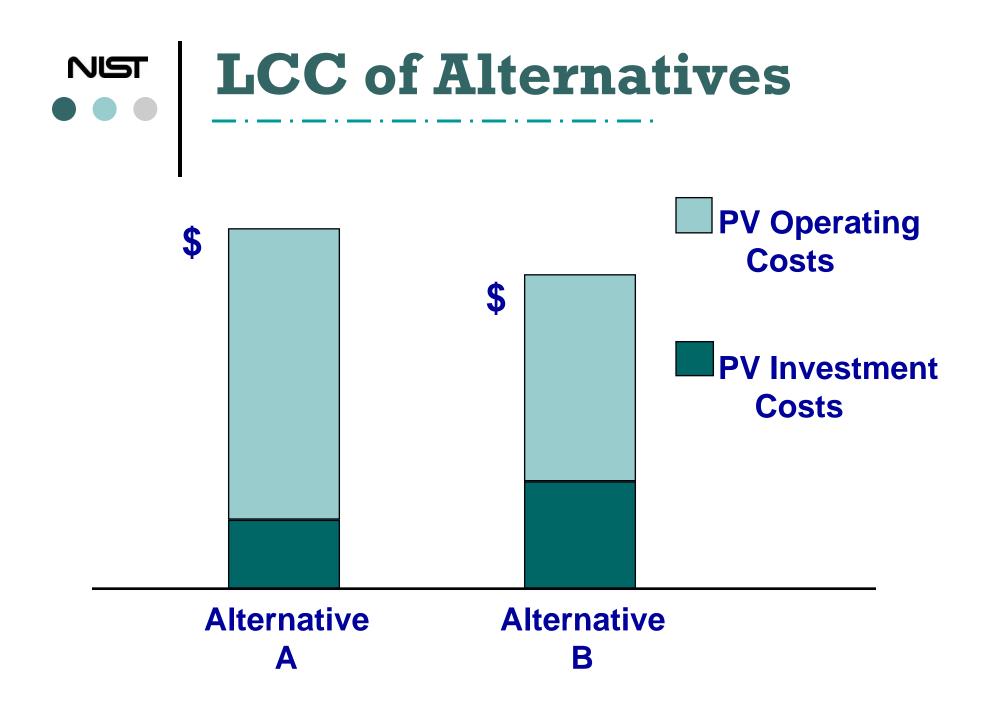
Present-Value amount

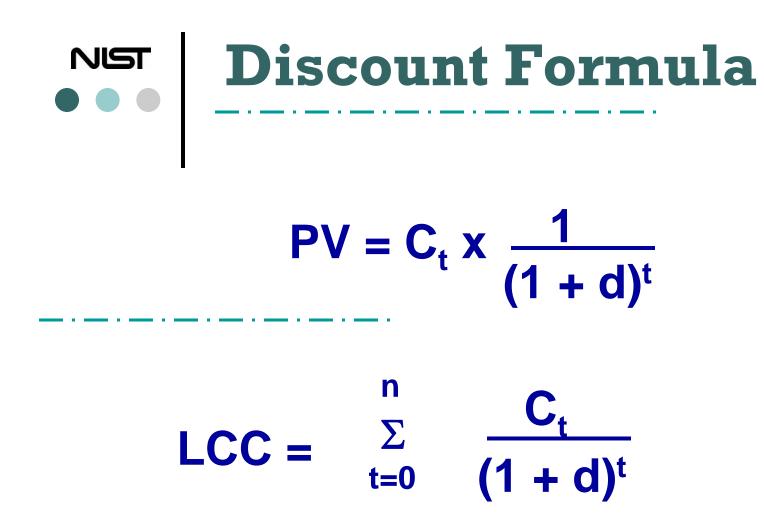
is the equivalent value to an investor, as of the Base Year, of a cash amount paid (received) at a future date

Present-Value of a Future amount


is found by discounting


Discounting

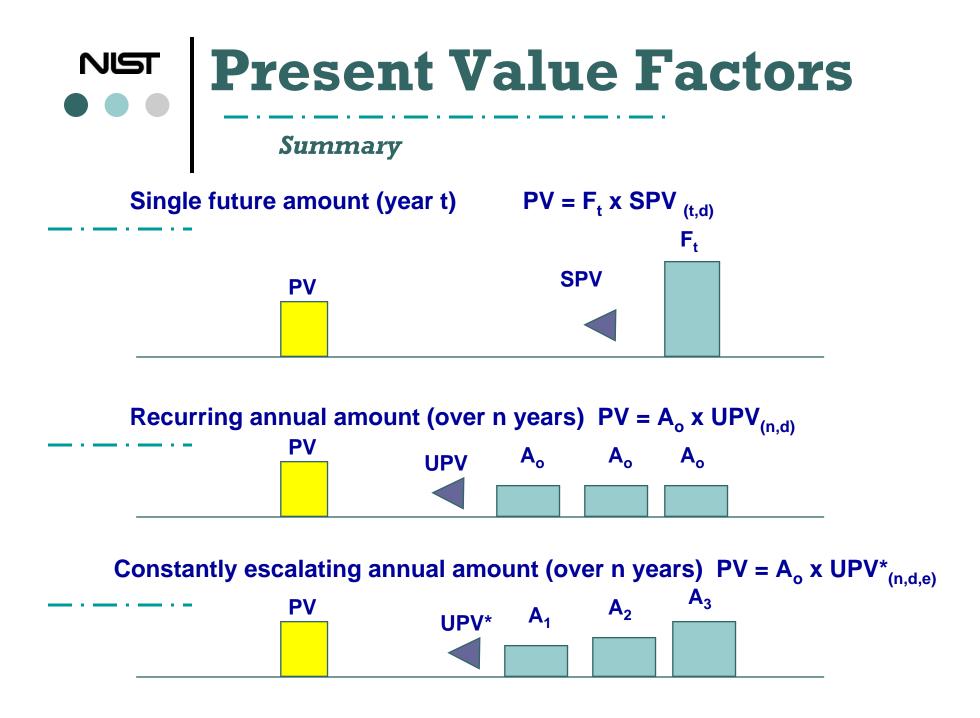

adjusts for the investor's time-value of money



- The interest rate that makes an investor indifferent between cash amounts paid (received) at different points in time
- Set by FEMP for energy and water conservation projects
- set by OMB for non-energy projects

where n = length of study period t = time of cost occurrence

SPV – Single Present Value Factor


for one time amounts or non-annually recurring amounts

UPV – Uniform Present Value Factor

for uniform annual amounts

UPV* – Modified UPV Factor

for non-uniform annual amounts

> Annual Supplement to Handbook 135

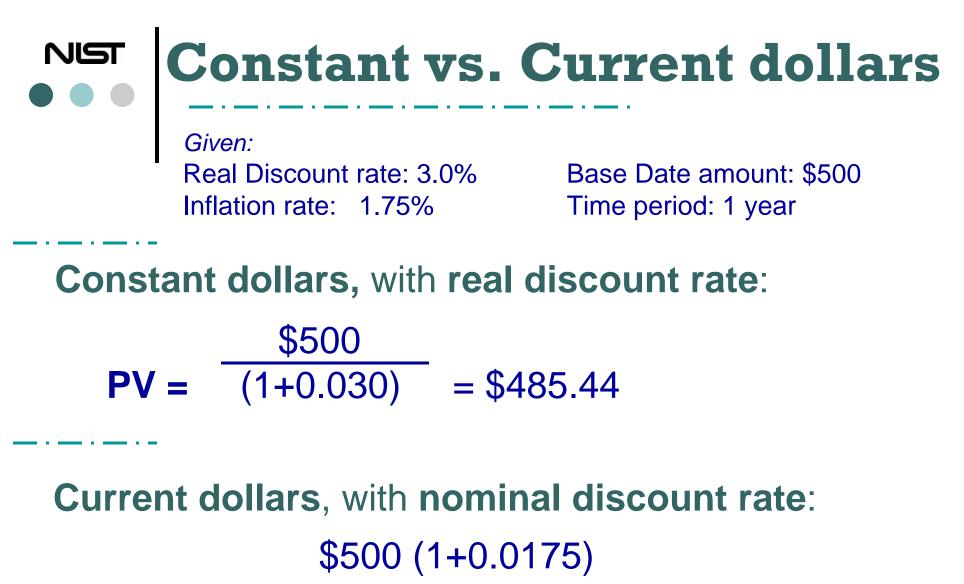
> NIST BLCC computer programs

> NIST DISCOUNT computer program

Inflation

rate of increase of the general level of prices

Escalation


rate of differential increase in the price of a particular commodity

Two Approaches to dealing with inflation:

Constant dollars (excluding inflation)
➢ a real discount rate
➢ a real escalation rate

Current dollars (including inflation)
➢ a nominal discount rate
➢ a nominal escalation rate

PV = (1+0.030)(1+0.0175) = \$485.44

Differential Escalation Rate

- Difference between the rate of a good's annual price change and general inflation
- Due to causes other than loss of purchasing power of the dollar
- > Relevant to energy pricing

Energy and water conservation projects, 10 CFR 436/Handbook 135

- DOE/FEMP discount rate (updated annually)
- Maximum 40-year service period
- Local energy prices
- DOE energy price escalation rates
- > Agency-Funded Projects: Constant-Dollar Analysis
- Financed Projects: Current-Dollar Analysis

Federal Criteria – Non-FEMP Analyses

Other federal projects (non-energy or non-water conservation) ≻OMB Circular A-94 ≻OMB discount rates (updated annually)

MILCON analyses (energy and non-energy)
FEMP discount rates for energy conservation
>OMB discount rates for non-energy projects

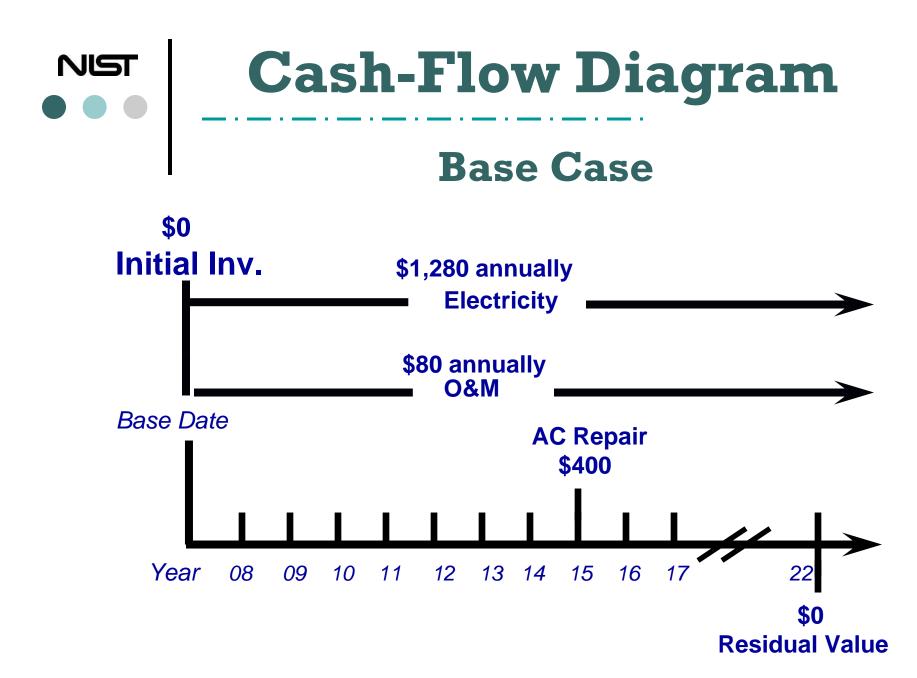
Image: Wight with the second secon

- Base Case: Existing Baseboard Heating System with Window AC
- Alternative: Heat Pump
 - Location:MarylandDiscount Rate:3.0 % real; 5.0 % nominalStudy Period:15 yearsBase Date:March 2008

Base Case Data

Baseboard Heat / Window AC

- Initial investment: **\$**0
- > Expected Life:
- > Electricity:

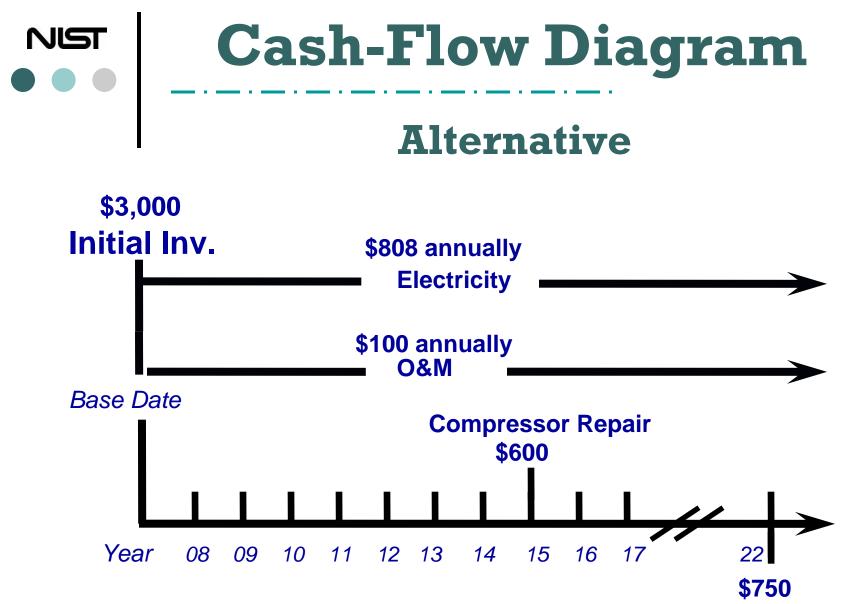

15 years

\$80

16,000 kWh \$0.08/kWh, commercial

- > Annual O&M:
- > AC repair:

\$400 in year 8



NIST

Alternative System Data

Heat Pump

- Initial investment: \$3,000
- > Expected Life: 20 years
- Residual Value: \$750 (25 % of initial cost)
- > Electricity: 10,100 kWh \$0.08/kWh, commercial
- Annual O&M:
- Compressor repair:
- \$100
- \$600 in year 8

Residual Value

LCC Calculation

Base Case

Cost Item (1)	Base Date Cost (2)	Year of Occurrence (3)	Discount Factor (4)	Present Value (5) = (2)X(4)
Initial Investment	\$ O	Base date	Already PV	\$0
Electricity	\$ 1,280	Annual	UPV* ₁₅ 11.73	\$ 15,014
O&M Cost	\$ 80	Annual	UPV₁₅ 11.94	\$ 955
AC Repair	\$ 400	8	SPV₈ 0.789	\$ 316

Total PV LCC costs = \$16,285

LCC Calculation Alternative

Cost Items (1)	Base Date Cost (2)	Year of Occurrence (3)	Discount Factor (4)	Present Value (5) = (2)X(4)
Initial Cost	\$ 3,000	Base date	Already PV	\$ 3,000
Residual Value	\$ 750	15	SPV₁₅ 0.642	-\$ 482
Electricity	\$ 808	Annual	UPV * ₁₅ 11.73	\$ 9,478
O&M Cost	\$ 100	Annual	UPV₁₅ 11.94	\$ 1,194
Comp. Repair	\$ 600	8	SPV₈ 0.789	\$ 473

Total PV LCC costs = \$13,663

Base Case: $LCC_{BB} = $16,285$ Alternative: $LCC_{HP} = $13,663^*$

Net Savings (NS)

difference in LCCs of Base Case and Alternative

Savings-to-Investment Ratio (SIR)

Ratio of PV operational savings to PV additional investment costs

NS for heat pump

> Net Savings = LCC_{BB} - LCC_{HP}

> NS = \$16,285 - \$13,663 = **\$2,622**

NIST Savings-to-Investment Ratio An example

SIR for heat pump

operation-related savings additional investment costs

 $SIR_{HP} = 2.04$

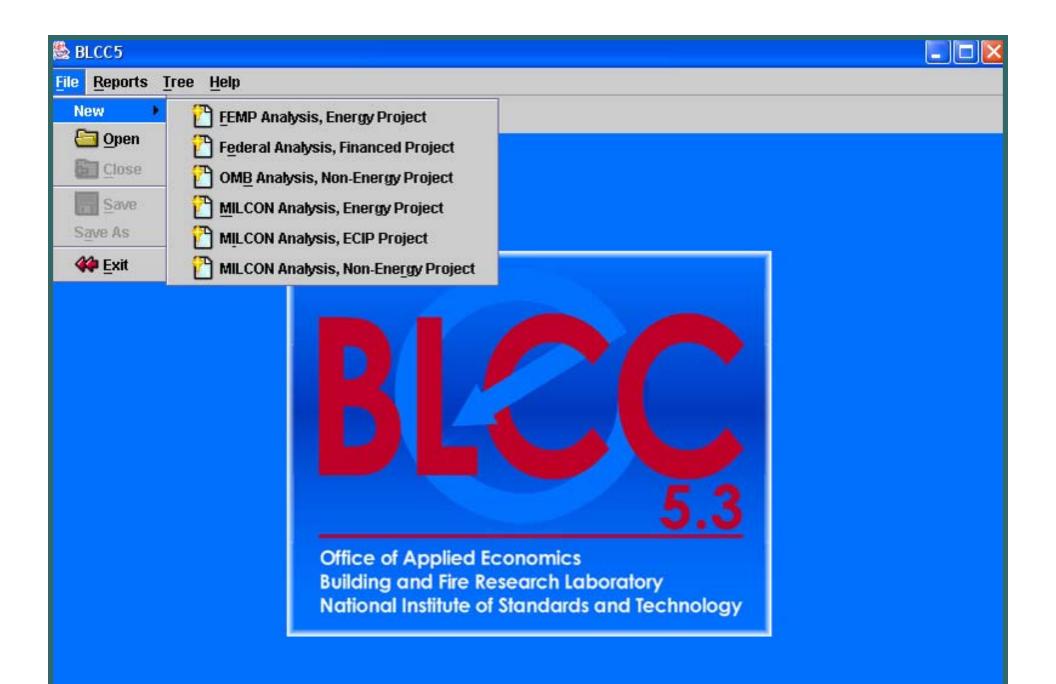
- > Identify feasible project alternatives
- > Establish common assumptions
 - Base Year
 - > Study period
 - Discount rate (real vs. nominal)
 - Inflation assumption (constant \$ vs. current \$)
- > Identify relevant project costs
- Convert all \$-amounts to present value
- Compute and compare LCCs of alternatives
- Interpret results


Alternative Financing

Compare LCCs of >agency-funded and financed projects individual ECMs or in combination Inclusion of contract costs Phasing-in of ECMs over study period Comparison of contract payments and savings

NIST **NIST LCC Support Software** BLCC5 FEMP >MILCON **FEMP** criteria ECIP criteria and report >OMB – Non-energy projects Alternative Financing Energy Savings Performance Contract Utility Energy Services Contract

Java-programmed
 platform-independent
 xml file format


- ➢ Familiar, windowed user interface
- Program-integrated help
- Downloadable from DOE web site

Replace existing lighting system in a federal office building in Arizona with a new system financed through an ESPC (Energy Savings Performance Contract)

Amount financed:	\$380,560
Contract payments:	\$58,000
Study period:	20 years
Contract period:	10 years
>Implementation period:	1 year

Determine whether the proposed system is cost-effective and whether the expected savings cover the contract payments.

🌺 Federal Analysis, Financed Project - C:\BLCCExample08.xml

File Reports Tree Help

1 4 2 - 5 🚰 Project: ESPC Example 💠 🛅 Alternative: Base Case - Existing System 🗕 🚰 Alternative: Lighting/Daylighting System 🗕 🦀 Contract Costs - Annually Recurring Cost: Annual Contract Payment Contract Costs - Non-Annually Recurring 🗕 🚰 Energy Costs 💾 Cost: Electricity - New System Cost: Electricity - Old System Water Costs Capital Component: 🕒 Investment Cost 🔹 🚰 Replacement Costs 🗕 🎦 OM&R Costs - Annually Recurring 💾 Cost: Routine O&M - New System Cost: Routine OM&R - Old System OM&R Costs - Non-Annually Recurring

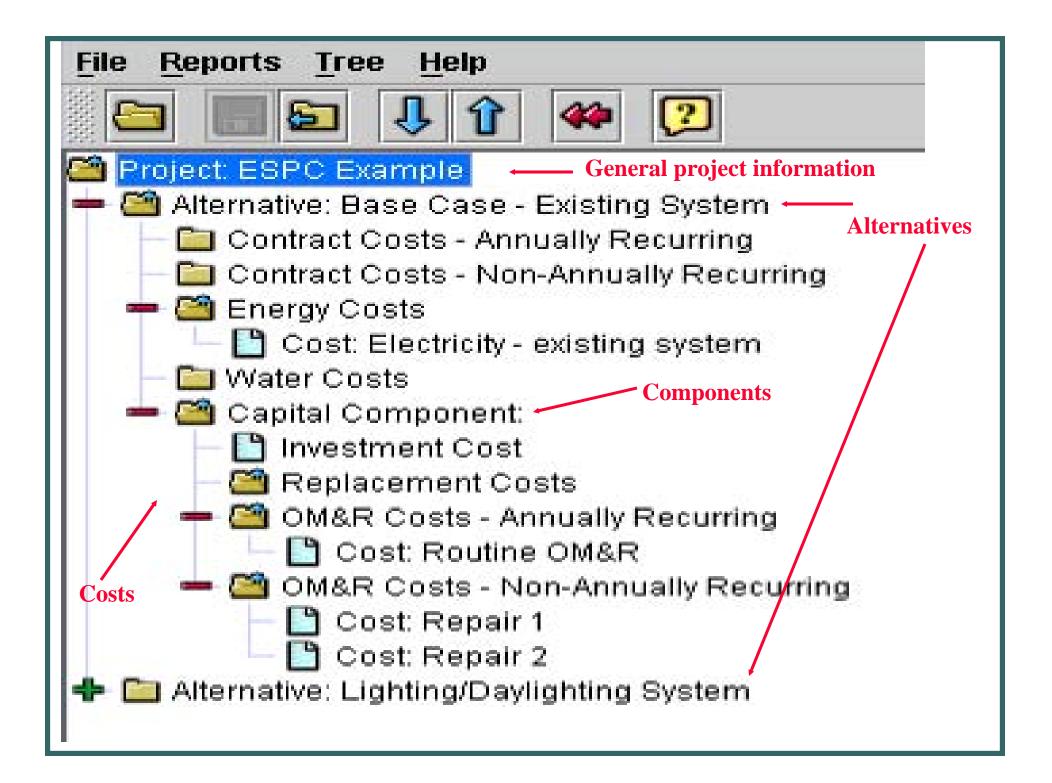
Tree structure for input data

Screen-specific help

nvestment Cost Initial Cost	
Initial Cost Paid By Agency (Base Year \$):	\$0.00
Initial Cost Financed (Base Year \$):	\$380,560.00
Annual Rate of Increase:	1.90%
Expected Life (from Base Date):	20 years 0 months
Residual Value Factor (% of Total Investment):	10.00%

Cost-Phasing of Initial Cost

Cost Adjus	tment Factor:	1.90%	
Years/Months (from Date)	Date		Portion
0 years 0 months	April 1,	2007	100.0%


Input screen highlighted

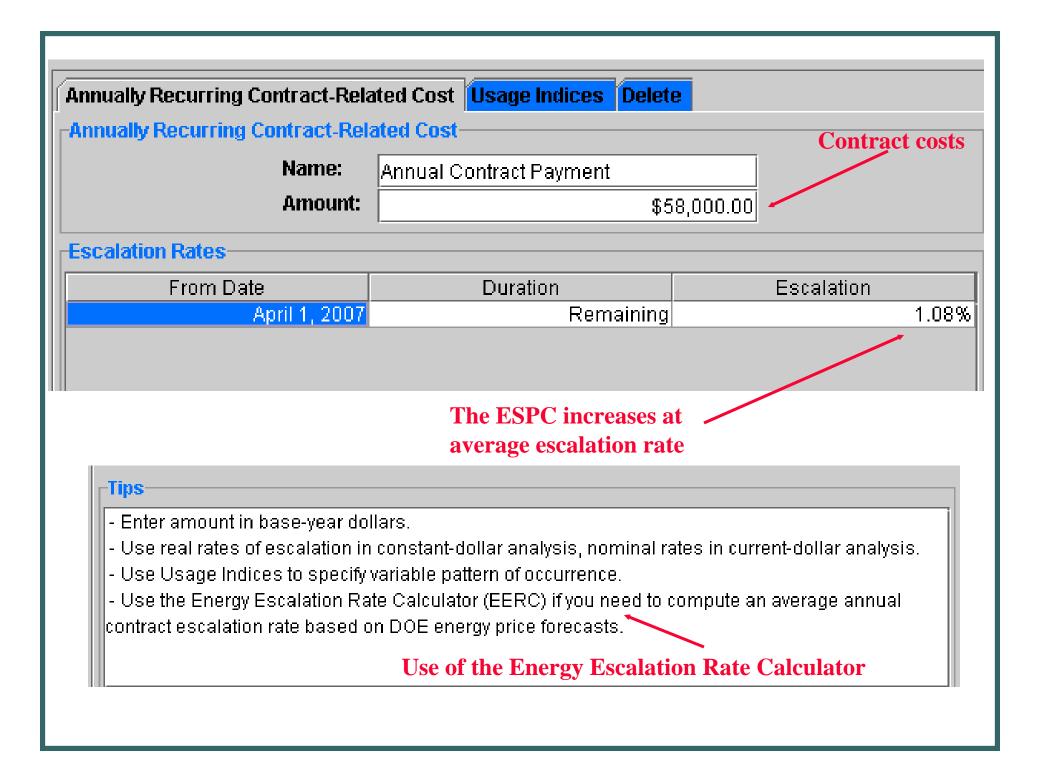
Tips

- Initial (investment) Costs Paid by Agency in base-year dollars are costs not included in annual Contract Payment (e.g., down-payment).

- Sum of Initial (investment) Cost Paid by Agency and Initial (investment) Cost Financed is used to calculate Residual Value.

Enter expected rate of equipment price increase during Study Period.

	Name:	ESPC Example
1	Location:	Arizona 💌
	Analyst:	JFH
	Comment:	Replace existing lighting system with new lighting/daylighting system.
Discounting Conven		End-of-Year Discounting
Discounting Conven		
Discounting Conven	n	 End-of-Year Discounting Mid-Year Discounting
	n	 End-of-Year Discounting Mid-Year Discounting Constant Dollar Analysis
	n	 End-of-Year Discounting Mid-Year Discounting


🔯 Federal Analysis , Financed Project - C:\BLC Reports Tree Help File Project: ESPC Example 🛅 Alternative: Base Case - Existing System 🚰 Alternative: Lighting/Daylighting System 🚞 Contract Costs - Annually Recurring Cost: Annual Contract Payment Contract Costs - Non-Annually Recurring 🛑 🚰 Energy Costs Cost: Electricity - New System 🖹 Cost: Electricity - Old System Water Costs 💠 🛅 Capital Component:

Name:	Electricity - New System	
Annual Consumption	n: 363,000.00 kwh	-
Energy Usage Indices		
From Date	Duration	Usage Index
April 1, 2007	1 year 0 months	0.0%
April 1, 2008	Remaining	100.0%
Emissions	Changing usage pattern Customized e	missions calculations
	Customized e	missions calculations
Emissions Location	Customized e	missions calculations
	Customized e	missions calculations

nergy Usage Energy Cost	Jelete		
Energy Costs Rate S	Schedule:	Commercial	•
State	State:		
Price	kwh	Arizona	4200
	al Demand Charge:		00.00
Annual Utility Rebate:			\$0.00
Annua	ar ounty Repate:	- CA	
Annua DOE Price Escalation Rates (E			le escalation rates
	Clear Rates	Editab	
DOE Price Escalation Rates (E	Clear Rates	Editable Restore DOE Rates	le escalation rates
DOE Price Escalation Rates (E From Date April 1, 20 April 1, 20	Clear Rates Dura 07 08	Editable Restore DOE Rates ation 1 year 0 months 1 year 0 months	Escalation rates 2.55% 0.62%
DOE Price Escalation Rates (E From Date April 1, 20	Clear Rates Dura 07 08	Editable Restore DOE Rates ation 1 year 0 months	Escalation rates
DOE Price Escalation Rates (E From Date April 1, 20 April 1, 20	Clear Rates Dura 07 08 09	Editable Restore DOE Rates ation 1 year 0 months 1 year 0 months	Escalation rates 2.55% 0.62%
DOE Price Escalation Rates (E From Date April 1, 20 April 1, 20 April 1, 20	Clear Rates Dura 07 08 09 10	Editable Restore DOE Rates ation 1 year 0 months 1 year 0 months 1 year 0 months 1 year 0 months	Escalation rates Escalation 2.55% 0.62% -0.10%
DOE Price Escalation Rates (E From Date April 1, 20 April 1, 20 April 1, 20 April 1, 20	Clear Rates Dura 07 08 09 10 11	Editable Restore DOE Rates ation 1 year 0 months 1 year 0 months 1 year 0 months 1 year 0 months 1 year 0 months	Escalation rates Escalation 2.55% 0.62% -0.10% -1.14%
DOE Price Escalation Rates (E From Date April 1, 20 April 1, 20 April 1, 20 April 1, 20 April 1, 20	Clear Rates Dura 07 08 09 10 11 12	Editable Restore DOE Rates ation 1 year 0 months 1 year 0 months	Escalation rates 2.55% 0.62% -0.10% -1.14% -0.49%

- Enter all dollar amounts in base-year dollars.
- Energy Usage Indices also apply to demand charges and utility rebates.
- If applicable, edit DOE price escalation rates.
- Use real rates of price escalation in constant-dollar analysis, nominal rates in current-dollar analysis.

🌺 Federal Analysis , Financed Project - C:\BLCCEx File Reports Tree Help 🚰 Project: ESPC Example 🛅 Alternative: Base Case - Existing System 📥 🚰 Alternative: Lighting/Daylighting System 🛑 🎑 Contract Costs - Annually Recurring Cost: Annual Contract Payment 🛅 Contract Costs - Non-Annually Recurring 💠 🚞 Energy Costs 🛅 Water Costs 🕂 🛅 Capital Component.

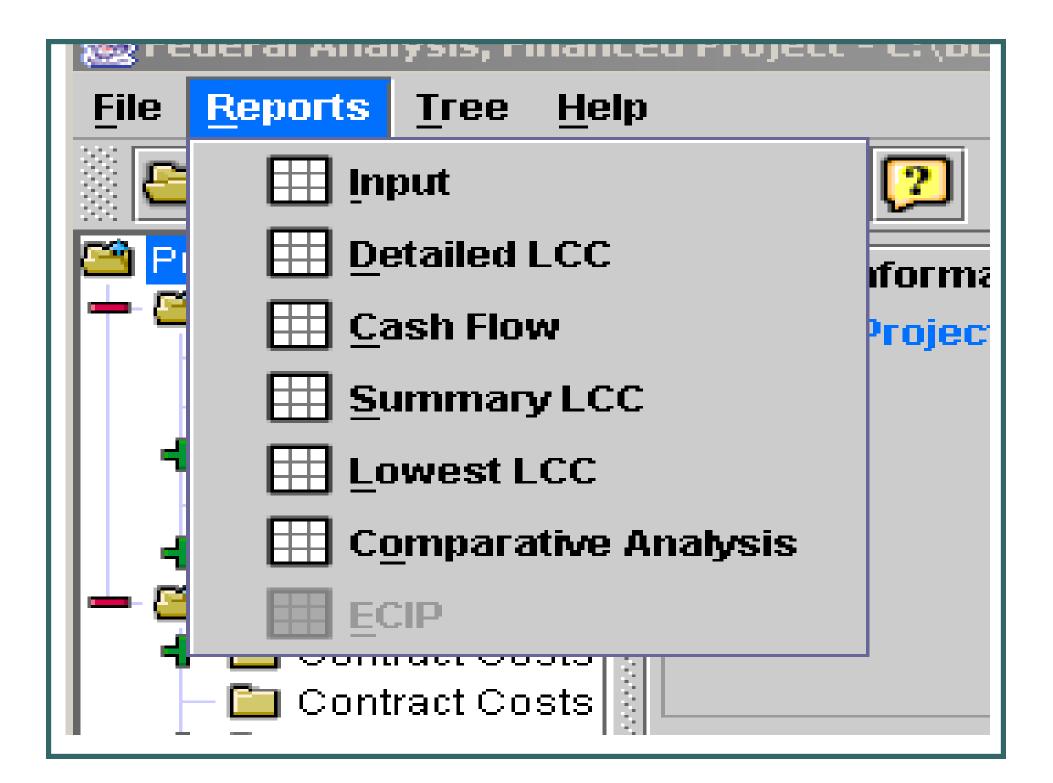
- The Energy Escalation Rate Calculator (EERC) computes an average annual escalation rate for fuel prices
- EERC is updated annually; available on the DOE website
- The rate is used to escalate the contract payments in ESPCs when payments are based on the projected annual energy cost savings
- Based on a LCC methodology; uses rates projected by EIA

EERC

File Help

Annually Recurring Contract-Related	Cost Usage Indices Delete				
Usage Indices					
From Date	Duration	Usage Factor			
April 1, 2007	1 year 0 months	0.00%			
April 1, 2008	10 years 0 months	100.00%			
April 1, 2018	Remaining	0.00%			
Contract period					

🌺 BLCC5 Help


File

🚰 BLCC5 Help 💠 🛅 Key Information 💠 🛅 Getting Help 💠 🛅 Getting Started 💠 🛅 Creating and Editing Data Files 🗕 🎬 Performing Alternative Financing Analyses 🕒 General Information on Alternative Financing Projects 💾 Timing of Life-Cycle Cost Analysis (LCCA) for Alternative Finar Base Date and Service Date in Alternative Financing Projects Cost of Feasibility Studies in Alternative Financing Projects Meaning of SIR in ESPC and UC Contracts Bundling Energy Conservation Measures Evaluating Independent versus Interdependent ECMs Escalation Rate for Contract Payments from EERC 💠 🛅 Performing OMB Analyses 💠 🛅 Performing MILCON Analyses 🕂 🛅 Emissions Calculations 💠 🛅 Reports 💠 🛅 Glossary and Acronyms Help topic **Corresponding explanation** 1

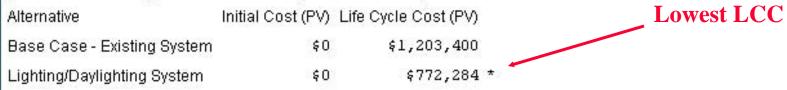
Escalation Rate of Contract Payments from EERC

Contract payments negotiated with Energy Services Companies (ESCO) are often based on projected energy cost savings. The contract payments may be fixed from year to year or may include an escalation clause that increases them annually over the duration of the contract term (performance period). The portion of the contract payments that is based on projected energy savings should be escalated at the energy price escalation rates projected by the Energy Information Administration (EIA) of the U.S. Department of Energy. A DOE/NIST computer program, Energy Escalation Rate Calculator (EERC), calculates an average annual escalation rate based on the EIA projections and weighted by the proportion of energy savings coming from each of the fuels used in the project. The calculator is updated annually with the latest EIA energy price projections, which are also embedded in the BLCC programs and in the discount factor tables of the Annual Supplement to Handbook 135. EERC can be accessed from the DOE/FEMP web site at

http://www.eere.energy.gov/femp/information/download_blcc.html.

🏯 Lowest Report

File


NIST BLCC 5.3-07: Lowest LCC

Consistent with Federal Life Cycle Cost Methodology and Procedures, 10 CFR, Part 436, Subpart A

General Information

File Name:	C:\BLCCExample08.xml
Date of Study:	Fri Apr 18 16:04:11 EDT 2008
Analysis Type:	Federal Analysis, Financed Project
Project Name:	ESPC Example
Project Location:	Arizona
Analyst:	J FH
Comment:	Replace existing lighting system with new lighting/daylighting system.
Base Date:	April 1, 2007
Study Period:	20 years 0 months (April 1, 2007 through March 31, 2027)
Discount Rate:	5%
Discounting Convention	: End-of-Year
Lowest LCC Comparative Present-V	alue Costs of Alternatives

(Shown in Ascending Order of Initial Cost, * = Lowest LCC) Alternative Initial Cost (PV) Life Cycle Cost (PV)

Comparison of Present-Value Costs PV Life-Cycle Cost Base Case Alternative Savings from Alternative Initial Investment Costs Paid By Agency:

Capital Requirements as o	\$O	\$0	\$0	
Future Costs:				
Recurring and Non-Recurri	\$0	\$455,659	-\$455,659	
Energy Consumption Costs	3	\$953,938	\$264,908	\$689,029
Energy Demand Charges		\$163,532	\$50,415	\$113,117
Energy Utility Rebates		\$0	\$0	\$O
Water Costs		\$0	\$0	\$O
Recurring and Non-Recurring OM&R Costs		\$85,930	\$22,202	\$63,729
Capital Replacements		\$0	\$0	\$0
Residual Value at End of Study Period		\$0	-\$20,900	\$20,900
Subtotal (for Future Cost Items)		\$1,203,400	\$772,284	\$431,116
Total PV Life-Cycle Cos	st	\$1,203,400	\$772,284	\$431,116
Net Savings from Alte	ernative Compar	ed with Base (Case	
PV of Operational Savings	\$865,875			
- PV of Differential Costs	\$434,759		Net Savings	
-			from Alternat	tive
Net Savings	\$431,116			

Comparative Analysis Report

Comparison of Contract Payments and Savings from Alternative (undiscounted)

1	,				
	Savings in	Savings in	Savings in	Savings in	
Year Beginning	Contract Costs	Energy Costs	Total Operational Costs	Total Costs	
Apr 2007	\$0	\$0	\$0	\$0	
Apr 2008	-\$59,259	\$64,424	\$70,239	\$10,980	
Apr 2009	-\$59,898	\$64,094	\$70,019	\$10,121	Savings
Apr 2010	-\$60,545	\$63,397	\$69,435	\$8,890	exceed costs
Apr 2011	-\$61,200	\$63,249	\$69,401	\$8,201	
Apr 2012	-\$61,860	\$63,939	\$70,208	\$8,347	
Apr 2013	-\$62,528	\$64,885	\$71,274	\$8,746	
Apr 2014	-\$63,203	\$66,057	\$74,849	\$11,646	
Apr 2015	-\$63,887	\$67,766	\$74,399	\$10,512	
Apr 2016	-\$64,576	\$69,643	\$76,402	\$11,826	
Apr 2017	-\$65,273	\$70,853	\$77,741	\$12,467	End of
Apr 2018	\$0	\$71,458	\$74,716	\$74,716	contract
Apr 2019	\$0	\$72,730	\$76,051	\$76,051	period
Apr 2020	\$0	\$74,302	\$77,686	\$77,686	
Apr 2021	\$0	\$75,950	\$82,001	\$82,001	
Apr 2022	\$0	\$77,423	\$80,937	\$80,937	

Comparative Analysis Report

Energy Savings Summary Energy Savings Summary (in stated units)

Energy-----AverageAnnualConsumption-----Life-CycleTypeBase CaseAlternativeSavingsSavingsElectricity 1,250,000.0 kWh407,447.2 kWh842,552.8 kWh16,848,750.2 kWh

Energy Savings Summary (in MBtu)

Energy	Average	Annual	Consumption	Life-Cycle
Туре	Base Case	Alternative	Savings	Savings
Electricity	4,265.2 MBtu .	1,390.3 MBtu	2,874.9 MBtu	57,490.3 MBtu

Comparative Analysis Report

Emissions Reduction Summary

EnergyAverage Annual Emissions	Life-Cycle
Type Base Case Alternative Reduction	Reduction
Electricity Emissions reductions for	air pollutants
CO2 1,187,150.01 kg 386,868.45 kg 800,281.57 kg	16,003,440.27 kg
802 820.54 kg 271.51 kg 549.03 kg	10,979.18 kg by energy type
NOx 2,367.32 kg 771.46 kg 1,595.86 kg	31,912.84 kg
Total:	
CO2 1,187,150.01 kg 386,868.45 kg 800,281.57 kg	16,003,440.27 kg
802 820.54 kg 271.51 kg 549.03 kg	10,979.18 kg <mark>totals</mark>
NOx 2,367.32 kg 771.46 kg 1,595.86 kg	31,912.84 kg

- > NIST Handbook 135
- > NIST Training Videos
- > BLCC5 Support
- FEMP-Qualified Instructors

- BLCC, associated programs and user guides: www.eere.energy.gov/femp/program/lifecycle.html
- Handbook 135 and Annual Supplement: 1-800-DOE-EREC (1-800-363-3732)
- > Technical Assistance:
 - NIST Office of Applied Economics: <u>www.bfrl.nist.gov/oae</u>
 - > LCC Method: <u>barbara.lippiatt@nist.gov</u>
 - >BLCC software: <u>amy.rushing@nist.gov</u>

Questions?

Comments?

