- 1 Thank you.
- 2 MR. RAZZAGHI: Thank you very much.
- 3 DR. GLOFF: That completes the scheduled
- 4 presentations for open hearing.
- Moving ahead, we'll begin with our
- 6 topics on implementing quality by design, status,
- 7 challenges and the next steps with the introduction
- 8 by Dr. Nasr.
- 9 DR. NASR: Good afternoon. Did you have
- 10 a big lunch? Okay.
- I think the decision here is a very
- 12 important one because you heard in the morning about
- 13 ICH guidelines and some of the direction we are
- 14 moving in to, which we are, some are calling it the
- 15 new vision, others are calling it quality by design.
- 16 You heard some discussion about the desired state,
- 17 some of the challenges and resources.
- 18 So I think this, these four
- 19 presentations here will be a step trying to put the
- 20 pieces together and see where we are and where we
- 21 are heading.
- 22 And because of that, I'm going to ask

- 1 the committee several questions that again I will
- 2 propose we do what we did in the morning, you can
- 3 ask the speaker for clarification and then we can
- 4 discuss some of these questions as we have done.
- 5 Before I start my presentation, and I
- 6 will go fairly quickly, a couple of interesting
- 7 things happened yesterday that I thought would be
- 8 useful to share and to frame our discussion.
- 9 I attended the advisory committee
- 10 discussion in the morning on Levothyroxine and I
- 11 thought that was very good, but I think Dr. Duffy,
- 12 in one of his answers said some of these issues
- 13 could be better resolved on the quality by design.
- 14 Because if you can see from the
- 15 presentations yesterday the challenge we have when
- 16 we have some limited information through batch data
- 17 and try to set some arbitrary specification around
- 18 this data and then we have some problems and we
- 19 change shelf life, et cetera, based on some of these
- 20 empirical approaches that we use.
- 21 A better approach in my mind is
- 22 understanding the development and the process and

1 the manufacturing process and what some meaningful

- 2 specification that are more performance relevant.
- And I think we'll discuss that. So I
- 4 thought that was interesting, a good introduction
- 5 for what we are discussing today.
- Another thing that was interesting, I
- 7 went to a meeting, an internal agency meeting
- 8 yesterday afternoon and one of my colleagues in the
- 9 clinical side, he said Moheb, now I understand why
- 10 you changed your office from new drug chemistry to
- 11 new drug quality assessment. I said tell me more.
- 12 And he said the focus has been more on
- 13 chemistry than on quality, with many facets, which
- 14 is pharmaceutical, manufacturing, et cetera. So I
- 15 think if I can get through some of my sincere, my
- 16 good fellows and colleagues in the clinical area who
- 17 may have a little bit of interest at times in
- 18 quality, I think we are making progress.
- 19 So now, what this presentation is about.
- 20 I'm going to share with you the agency perspective
- 21 on quality by design. That will be followed by my
- 22 colleague, several of my colleagues. Dr. Chi-Wan

- 1 Chen is going to say how this is being implemented
- 2 in our office. And then Lawrence, Dr. Lawrence Yu

- 3 will talk about some of the initiatives in Office of
- 4 Generic Drugs. Dr. Steven Kozlowski talk about
- 5 challenges and issues within the Office of biotech
- 6 products and then we hear from our industry
- 7 colleague from Gordon Johnston representing GPA and
- 8 Bob Baum, representing Pharma, and then Helen will
- 9 try to wrap it up and focus the discussion and so
- 10 forth.
- 11 So that, what's a desired state. I
- 12 think we can talk about desired state in different
- 13 ways and we can (inaudible) all the things in my
- 14 mind are ways to achieve the desired state.
- Desired state was fairly well put by
- 16 Janet Woodcock in the October CMC conference when
- 17 she said that in her definition of desired state is,
- 18 "A maximally efficient, agile, flexible
- 19 pharmaceutical manufacturing sector that reliably
- 20 produces high-quality drug product without extensive
- 21 regulatory oversight."
- That is my take on our desired state and 0204
- 1 the question is how can we get there.
- 2 So with that in mind, we need to talk
- 3 about quality by design, and I think Dr. John

- 4 Berridge did a good job this morning contrasting
- 5 some traditional approaches versus quality by design
- 6 and people ask me often since I go around talking
- 7 about quality by design, what does quality by design
- 8 mean and what's the difference between quality by
- 9 design and pharmaceutical development that we have
- 10 done for years that produces high quality product.
- 11 Here is our, here is the agency
- 12 perspective on quality by design. It is a system
- 13 approach and that's a new thinking, it is not
- 14 fragmented steps, it's a system approach that you
- 15 need to put together. You start with the product in
- 16 mind and then you move to design the manufacturing
- 17 process, the impact to starting raw material and
- 18 process parameter on product or qualities
- 19 understood. Process evaluated and updated to allow
- 20 for consistent quality over time and the critical
- 21 sources of process variability are identified and
- 22 controlled.

- 1 This is a key point because traditional
- 2 approach is we try to work with the system that
- 3 either ignore or does not recognize variability, but
- 4 variability is a fact of life. You get different

- 5 equipment, you get different material, there's some
- 6 changes that takes place.
- 7 So under quality by design, which is a
- 8 systematic, scientific approach, you recognize
- 9 variability and you identify the sources of
- 10 variability and the impact on the quality and
- 11 accordingly you develop appropriate control
- 12 strategies to address variability and to ensure the
- 13 quality of product.
- 14 Another way of describing this is using
- 15 my circle and some of you have seen it before,
- 16 others have not. And this is intended in a way to
- 17 illustrate what quality by design is in a way that
- 18 is not linear and it's not step wise. It's a
- 19 comprehensive system.
- 20 So if you look at quality by design, you
- 21 start with the desired product performance of
- 22 targeted product profile and that should lead to

- 1 designing the product. So you understand what you
- 2 are trying to do, what's the patient population,
- 3 what's -- how you are going to deliver that
- 4 particular dosage form and then you think about
- 5 designing the dosage form.

- Based on the dosage form that's needed
- 7 for effective delivery of the medicine to the
- 8 patient, then you design the manufacturing process,
- 9 start thinking about what would be the appropriate
- 10 manufacturing process to do that. What are the
- 11 appropriate unit operations, some that you may have,
- 12 how can you use them to the level of that particular
- 13 dosage form and then you can start with the
- 14 manufacturing process and the expected performance,
- 15 et cetera.
- Now you start thinking about designing
- 17 and this can go back and forth in different
- 18 directions. Once you have that thoughtful design of
- 19 the dosage form, then you start thinking about the
- 20 necessary product quality attributes that are
- 21 necessary to meet what you designed in into the
- 22 product. Knowing this critical quality attribute

- 1 determine in many ways what will be the appropriate
- 2 process parameters in the manufacturing process to
- 3 deliver the product with the built-in quality
- 4 attributes that meets your initial design criteria.
- 5 That will lead to development as part of
- 6 your control strategy of process controls. The

- 7 process in many ways, in many cases is fairly
- 8 complex and multi-steps. How many of these need to
- 9 be controlled and within what limit, et cetera.
- Now, what's interesting now at least the
- 11 way I'm describing and sharing with you my thoughts
- 12 on quality by design that there is a lot of
- 13 thoughtful systematic approach in all of this, in
- 14 developing and designing the process and
- 15 manufacturing process.
- Now is the time where you start thinking
- 17 about product specification, so product
- 18 specification, it is not by accident that it is
- 19 right above desired product performance to indicate
- 20 the linkage there, but the product specification is
- 21 only one of the elements needed to ensure product
- 22 quality.

- 1 Product quality can be assured by better
- 2 design, better development, better process control,
- 3 et cetera. And the specification is only one piece
- 4 that provide assurance that the delivered product
- 5 will, will get us what we want.
- 6 Now we understand that this is a fairly
- 7 comprehensive and an expensive process. It can be

- 8 done under quality by design, many of the things
- 9 should be done before the development of the
- 10 product, before marketing, but we also understand
- 11 because of resources, business situation, et cetera,
- 12 not everything would be done and even when it's
- done, there is a lot of learning that takes place
- 14 after marketing and after commercialization.
- There's a lot of product knowledge and
- 16 there is a lot of process and understanding. You
- 17 know more about your product, you know more about
- 18 your process, there is a lot of knowledge that can
- 19 begin after the product has been on the market for a
- 20 while.
- Now, once you do that, once you learn
- 22 all of this, then there is a great opportunity for 0209
 - 1 continuous or continual improvement that takes
 - 2 place, but a key point here about continuous or
 - 3 continual improvement, and that is it is not a
 - 4 reactive approach to fix a deficiency or to address
 - 5 compliance problem.
 - 6 Continuous or continual improvement is a
 - 7 way to continue to improve your process, but that
 - 8 improvement will not take place in a way that's

- 9 proactive and effective unless you have complete
- 10 understanding, unless you've thought about the
- 11 design and development and you have an appropriate
- 12 control strategy and you have a robust policy system
- 13 that keeps everything in check.
- Now, I always get in trouble on this,
- 15 but people ask what's the difference between what we
- 16 do now and what we do in the future. So here is a
- 17 simple way to contrast.
- I would like to start by saying this is
- 19 not 100 percent accurate, it's not intended to be.
- 20 This is just to provide a way to contrast the two
- 21 approaches. You can see that some of the new tools
- 22 we use, some of the tools we use in quality by

- 1 design are currently being used or could be used
- 2 with existing process, but I'm just trying to
- 3 provide a contrast where the majority of products we
- 4 see go.
- 5 So under the current system,
- 6 pharmaceutical development in many ways is
- 7 empirical, random and focus more on optimization,
- 8 rather than on design.
- 9 Under quality by design system, it's a

- 10 systematic, it is a multi-variate experiments and
- 11 focus on control strategy and robustness. There is
- 12 obviously we have an area in between.
- Manufacturing process, we strive now,
- 14 the industry and existing regulatory system, to make
- 15 the manufacturing process fixed. You reach
- 16 commercialization, you do your three batch
- 17 validation, the process is done. Every effort
- 18 should be directed not to change it.
- 19 Under quality by design, the
- 20 manufacturing process is adjustable within design
- 21 space, managed by the company quality system. This
- 22 is realizing that variability will take place, allow

- 1 for opportunities to make changes and continuous
- 2 improvement.
- 3 Process control now, there is some
- 4 in-process testing, that's not bad. I'm not
- 5 suggesting you not to test and process, if you
- 6 continue to do what you do today.
- 7 But under quality by design, there is an
- 8 opportunity for implementational process technology
- 9 and process operations are tracked and trended.
- 10 There is a greater opportunity to do that.

- 11 Product specification, to this system
- 12 it's in many ways the primary mean for quality
- 13 control based on batch data. That's what we do now.
- 14 We've also participated in stability discussion on
- 15 Levothyroxine yesterday I think hits home. That's
- 16 what we do. And many question were raised about
- 17 that.
- 18 Under quality by design, it's part of an
- 19 overall quality control strategy based on desired
- 20 product performance. This is a challenging, but
- 21 this will be our target that's saying we should work
- 22 towards.

- 1 Control strategy, today, testing and
- 2 inspection. Under quality by design, it's a
- 3 risk-based control strategy that allow for
- 4 opportunities for real-time release. I think there
- is more opportunities, but again, with anything new,
- 6 there are some challenges.
- 7 Why quality by design. Why is the
- 8 agency interested in quality by design? Just to set
- 9 the stage correctly, we at the agency are not
- 10 responsible for product development or
- 11 pharmaceutical manufacturing. This is the

- 12 responsibility of the manufacturer.
- We are not suggesting to transfer this
- 14 to us, we don't have the ability, we don't have the
- 15 resources, it's not part of our responsibility. Our
- 16 responsibility that the product that is designed and
- 17 developed will produce with high quality sufficient
- 18 to meet its intended purpose and we need that
- 19 assurance.
- 20 So that assurance is being done through
- 21 our regulatory process, whether it's review and/or
- 22 inspection, so just to contrast these two systems

- 1 again, so what I'm trying to do is to provide this
- 2 contrast to facilitate the discussion that I
- 3 promised you would be interesting this the
- 4 afternoon.
- 5 Under the current system, development is
- 6 fairly empirical. The submission that we get in the
- 7 agency, I speak in my office here in the new drug
- 8 side, lacks pharmaceutical development and
- 9 manufacturing science, relies more on chemistry
- 10 information and batch information. What we have now
- is a traditional CMC process with its good and bad
- 12 and you have seen some of the challenges yesterday.

- 13 Under the design state, the development
- 14 will be based on quality by design, there will be a
- 15 considerably more rigorous systematic approach to
- 16 pharmaceutical development. The submission will be
- 17 knowledge rich in pharmaceutical development and
- 18 manufacturing science.
- 19 So the focus of our review would be
- 20 different. The focus would be on development and
- 21 the science and manufacturing and that's where the
- 22 focus needs to be. And because of that, our

- 1 traditional CMC review system in the new drug side
- 2 is no longer capable of doing that. That's why we
- 3 came up with the new system called pharmaceutical
- 4 quality assessment system, and that's why we
- 5 structured our office and put many activities
- 6 forward as you will hear later this afternoon.
- 7 I think it's important since we're going
- 8 to talk about what does quality by design mean and
- 9 how can you implement it is through I think three
- 10 key terms here, so you know what we mean by all of
- 11 this.
- 12 And this is not, my talk is not about
- 13 the technology, so we are not going to put a lot of

- 14 information here, but three key terms that need to,
- 15 need clarity, one is quality attribute, one is
- 16 critical quality attribute and one is critical
- 17 process parameter.
- 18 So quality attribute, to me, it means a
- 19 physical, chemical or microbiological property or
- 20 characteristic of a material that's directly or
- 21 indirectly impacts quality. So something that's
- 22 related to quality. It's about critical quality, I

- 1 guess these terms are very important as you move
- 2 into the second part of my presentation.
- 3 Critical quality attribute is a quality
- 4 attribute that must be controlled within three
- 5 defined limits, so some of the quality attributes
- 6 are critical and some are non-critical. The
- 7 critical ones must be controlled and they are
- 8 intended to be controlled to ensure that the product
- 9 meet its intended safety, efficacy, stability and
- 10 performance. This is a critical quality attribute.
- 11 Critical process parameter, or CPPs,
- 12 these are process parameters that must be controlled
- 13 within pre-defined limit to ensure product meets its
- 14 pre-defined quality attribute.

- So I thought putting this forward at
- 16 least facilitates some of the discussion so we don't
- 17 roll over this.
- Now, how can we put that in practice
- 19 when we develop dosage form. You start the product
- 20 design early in the phase development, as early as
- 21 possible. We understand this will be an iterative
- 22 and continuous process. It's not once and you're

- 1 done, you go back and forth. There is a need to
- 2 base critical quality attributes on desired/targeted
- 3 product performance requirements, you start with the
- 4 patient in mind. My concept here is not different
- 5 (inaudible) from what was presented this morning by
- 6 Dr. John Berridge.
- 7 Quality by design is full understanding
- 8 of product and process and implementation of that
- 9 understanding. So in other words, if you say I
- 10 understand but you're not showing us in the
- 11 application how you agree to apply such
- 12 understanding for the development and manufacturing
- 13 product, that's insufficient.
- 14 Quality by design is more than
- 15 traditional process and formulation optimization.

- 16 And it's more than justification of critical quality
- 17 attributes and the critical process parameters.
- 18 Product design is a systematic approach.
- 19 You start evaluating early phase data, determination
- 20 of optimum dose, route of administration,
- 21 therapeutic index, site of absorption, et cetera.
- 22 Many of the things have been gone now in some ways.

- 1 Quality by design encourage that to be done in every
- 2 case and in a systematic way.
- 3 There is a need to identify and justify
- 4 desired quality attributes and prior knowledge can
- 5 also be used here. So you don't have to start from
- 6 scratch all the time, you can use prior knowledge
- 7 from other product, from literature sources, from
- 8 your own experience to facilitate product design.
- 9 Formulation development, when it comes
- 10 to material, not only chemical testing of
- 11 pre-traditional, pre-formulation characterization
- 12 takes place, but you are talking about complete
- 13 comprehensive chemical, physical properties that
- 14 affect the critical quality attributes such as the
- ones I listed here need to be understood.
- 16 There is a need to understand

- 17 variability in order to adjust the process and/or
- 18 set appropriate controls.
- 19 And the selection of formulation
- 20 component has to be based on good science.
- 21 Process development, so many different
- 22 unit operations. There is a need to understand how 0218
- 1 process parameters affect critical quality
- 2 attributes, and that's where Q9 comes into play
- 3 because Q9 blends fairly well with Q8.
- 4 And that is a need to conduct risk
- 5 analysis and assessment. The foundation of this
- 6 risk analysis and assessment, an issue that was
- 7 raised earlier this morning, is the scientific
- 8 understanding. That is the first step, scientific
- 9 understanding is the core of what we do. If you
- 10 keep everything the way you do it and try to
- 11 identify the weak points and put controls around it,
- 12 that's not quality by design.
- 13 Conduct risk analysis assessment to
- 14 identify significant process parameters and raw
- 15 material attributes and based on that you develop
- 16 risk mitigation strategies and you establish
- 17 appropriate controls.

- 18 What about design space. You heard
- 19 about design space. You have seen different
- 20 approaches. Obviously what we are focusing on today
- 21 in this presentation and some of the follow-on
- 22 presentations is the manufacturing design space.

- We're talking about the manufacturing
- 2 design space. And it was very well put together by
- 3 ICH, Q8, I understand it's more complex than we
- 4 would expect it to be, but we wanted to do something
- 5 that would illustrate the direction we are moving
- 6 into rather than defining design space as being a
- 7 process range, which is a simple way of describing
- 8 the process parameters.
- 9 This is a multi-dimensional combination
- 10 and interaction, interaction between process
- 11 parameters is very important, of input variables and
- 12 process parameter that have been illustrated to
- 13 provide assurance of quality.
- 14 Design space is proposed by the
- 15 applicant and subject to regulatory assessment and
- 16 approval.
- 17 This is a new concept here, so the
- 18 applicant may select a very small area to study the

- 19 capability of their manufacturing process and that
- 20 would be their very limited design space, that's
- 21 okay. Or you can conduct more experimentations if
- you wish to better understand and you go beyond what 0220
 - 1 you traditionally do to establish a larger design
 - 2 space.
 - 3 That's your choice to make. You design
 - 4 it the way you want. You can make it as
 - 5 multi-dimensional and as complex as you desire, but
 - 6 that will be presented to us and that's subject to
 - 7 regulatory assessment and approval.
 - 8 Design space concept is applicable to
 - 9 new and legacy drug products. New products, of
- 10 course, you will have to do more of design and
- 11 experiment and more of development and design
- 12 earlier.
- 13 For legacy product there is a great
- 14 opportunity to use the concept of design space. Why
- 15 is that. Because there's tremendous manufacturing
- 16 experience and product knowledge. You can use that
- information, go back to this and see if you can
- 18 establish a design space and you can come and talk
- 19 to us at the agency. And based on that you may be

- 20 able to have freedom and flexibility to invoke the
- 21 process and to have some regulatory flexibility as
- 22 well. That can be applicable to new drugs or 0221
 - 1 generic drugs or biotech drug.
 - What about specification, specification
 - 3 need in the future to be more related to critical
 - 4 quality attributes. Remember, I made the
 - 5 distinction earlier about critical versus
 - 6 non-critical, so when we talk about specification,
 - 7 we are not going to go over the list of all quality
 - 8 attributes that we have identified or you have
 - 9 identified in your submission. We are going to
- 10 identify the ones that are critical. One more time,
- 11 these are the ones that affect safety, efficacy,
- 12 stability and performance.
- 13 Once you determine those critical
- 14 quality attributes, that will be the starting point
- of proposing specifications. You need to provide
- 16 the scientific rationale and just describe, there is
- 17 also an opportunity when we do that that in a
- 18 quality by design system, certain traditional end
- 19 product release testing may prove to be unnecessary.
- 20 Why; because some of these critical quality

- 21 attributes may be better controlled through the
- 22 manufacturing process rather than wait until

- 1 everything is done, hold everything and test the
- 2 batches.
- 3 There is a greater opportunity under
- 4 quality by design for real-time release and that's
- 5 an ability to evaluate and ensure acceptable quality
- of in-process and/or final product based on process
- 7 data, including valid combination of different
- 8 things. Assessment for material attributes,
- 9 assessment of critical process parameters, some of
- 10 these, all of these are a combination of, allow the
- 11 manufacturer opportunity to release the product
- 12 without waiting for end product release testing.
- We have a lot of implementation
- 14 challenges. A distinguished member of the committee
- 15 have seen myself and Jaz and Helen and others
- 16 speaking about quality by design process and
- 17 technology, design space test and (inaudible).
- Now inputting it, implementing it, we
- 19 have lots of challenges. You will see this
- 20 afternoon that there are different strategies and
- 21 approaches to accommodate diversity of drug product

- 22 that we regulate. We have small chemicals versus 0223
- 1 larger biologicals. We have oral solids, we know
- 2 more about oral solids, we think we do, now we are
- 3 struggling with ICH Q8R versus complex and novel
- 4 dosage form, drugs versus combination products,
- 5 expectation for a quality by design, base submission
- 6 while addressing traditionally requirements. That's
- 7 very challenging.
- 8 You will hear more about that by
- 9 Dr. Chen and Dr. Yu and Kozlowski.
- 10 Providing regulatory flexibility while
- 11 assuring product quality. We have additional
- 12 challenges. I think we embarked on a very good
- 13 (inaudible) industry, but I have to share with you
- 14 that as of today, there is still some continuous
- 15 apprehension about sharing information with the
- 16 agency. This is still existing. I think we, we
- 17 have done better. I think there is more trust,
- 18 there is more of a dialogue, but in general, that
- 19 apprehension is still there.
- 20 We have different regulatory processes
- 21 at the agency from BLA, NDAs, ANDAs, with some of
- the issues coming with the follow-on, and there is

- 1 associated regulatory practices, cultures. That was
- 2 a challenge.
- 3 The issue about integrating the review
- 4 and inspection together. As we embark into the new
- 5 vision of ICH, we can no longer afford to continue
- 6 to do, to evaluate our design space and then the
- 7 investigator go to the firm and say design space
- 8 what. We cannot do that. We would have to have a
- 9 completed integrated system internally at the agency
- 10 as we expect such integration to take place at the
- 11 manufacturing facility, as well.
- We have workload issues because we
- 13 cannot ignore traditional application that's coming
- 14 our way in the generic and new drug side. FDA
- 15 resources, I talked earlier, and I think I heard
- 16 some comments from committee member that you would
- 17 do something about.
- I think also there is culture changes
- 19 needed in industry and FDA. I heard over the years
- 20 that the problem is the trust. I think the trust is
- 21 not, is not the main problem. I think the problem
- 22 is changes in the culture at the agency, at the

- 1 industry.
- 2 If these cultural changes takes place,
- 3 to move in toward the focus review science rather
- 4 than traditional regulatory processes, we will trust
- 5 each other because we will be coming from the same
- 6 place.
- 7 I want to end my presentation out
- 8 erasing unnecessarily fear by making clear that
- 9 current system we have today at the agency is, is
- 10 fine, is adequate, is acceptable. We are not
- 11 changing our regulatory system or expectations.
- 12 Quality is assured by testing and
- inspections. I have challenges with that, that's
- 14 okay. There's considerable regulatory oversight.
- 15 Every time you change something, you have to come to
- 16 us for regulatory review and decision; that delays
- 17 the process, costs lots of money, but invent
- 18 innovation, et cetera.
- 19 There's substantial effort and
- 20 considerable waste on both sides, industry and
- 21 agency.
- I argue that quality by design is a

1 desired approach. Quality by design principles

- 2 should result in a higher level of assurance of
- 3 product quality. Additional product and process
- 4 understanding could lead to regulatory flexibility.
- 5 Implementation of quality by design by industry
- 6 could enhance manufacturing efficiency.
- 7 All these things will help industry,
- 8 will help the agency and ultimately will help the
- 9 public. The focus has to remain, and that's where
- 10 we cannot, where we don't have flexibility, if you
- 11 wish, we cannot have a design space around us on
- 12 availability of safe, effective and high quality
- 13 pharmaceuticals, so that's where the focus has been,
- 14 is today and will be in the future.
- 15 With that, I would like just start
- 16 asking some of my maybe not so clear questions, but
- 17 at least something for you to think about.
- 18 First question is, do you agree that the
- 19 application of quality by design principles should
- 20 result in a higher level of assurance in product
- 21 quality, more flexibility for the applicant to make
- 22 continuous improvement, and less need for the FDA

- 1 regulatory oversight on post-approval changes?
- 2 Should the FDA develop a new guidance on

- 3 quality by design to facilitate its implementation
- 4 or rely only on ICH guidelines?
- 5 That's similar to the question I posed
- 6 to you earlier, but I think after you hear all of
- 7 this presentation and after being aware of ICH
- 8 efforts in Q8, Q9, Q10, you may see that's
- 9 sufficient or maybe there is an additional need.
- 10 What are the relevant scientific area of
- 11 disagreement among the stakeholders. You will hear
- 12 from the agency, you will hear from agency
- 13 representatives, hopefully we can summarize the
- 14 areas that we continue to need to work on.
- 15 Are there additional mechanisms for
- 16 educating reviewers and industry on changes being
- 17 made? Communication is a very critical piece and I
- 18 trust that Helen Winkle will elaborate on that later
- 19 on.
- 20 Are the ONDQA plans set forth by
- 21 Dr. Chen on the Q8 to implement the policy by design
- 22 sufficient or we need to do more?

- 1 Ouestion-based review initiative is
- 2 currently limited to generic drug product. What
- 3 about drug substance?

- 4 We have talked very much on new chemical
- 5 entities, how can we facilitate the implementation
- 6 of this in the biotech, so should the agency
- 7 consider developing a similar pilot program to
- 8 explore scientific quality by design issues and some
- 9 of these issues may be unique that are important for
- 10 biotech products.
- 11 With that, I thank you for your
- 12 attention. I'll be happy to answer, clarify any
- 13 questions.
- DR. GLOFF: Thank you.
- Does anyone have any questions just to
- 16 clarify? No.
- Okay, then let's move on to Dr. Chen.
- 18 DR. CHEN: Good afternoon. I will be
- 19 here speaking to you about the, some efforts, some
- 20 plans that have been undertaken in our Office of New
- 21 Drug Quality Assessment. I'm the deputy director of
- the office and we were here a year ago reporting to

- 1 this committee about some of those plans and
- 2 efforts.
- A year later, I'm pleased to tell you
- 4 that some of those plans have been already carried

- 5 out and others that are ongoing and actually I can
- 6 tell you what the progress are.
- 7 A brief outline of what I'm about to
- 8 present. These efforts and plans include the
- 9 following: Reorganization of the office, the
- 10 establishment of the pharmaceutical quality
- 11 assessment system as Moheb Nasr already mentioned
- 12 earlier and CMC pilot programs. Some of you may
- 13 have already heard and actually I will spend the
- 14 bulk of my presentation with the focus on this pilot
- 15 program.
- 16 And other efforts that we are taking
- 17 include public meetings as a means of communication
- 18 with the public, internal trainings. And I'll end
- 19 with our next steps.
- 20 We move to White Oak about this time
- 21 last year and shortly thereafter effective November
- 22 of last year, our formerly known as Office of New

- 1 Drug Chemistry was reorganized into Office of New
- 2 Drug Quality Assessment and ONDQA. And this is not
- 3 a reorganization like any other, in name only.
- 4 There is a goal. It is intended to facilitate the
- 5 implementation of our PQAS system, and like the QBD,

- 6 we viewed this assessment, new approach to review as
- 7 a system. And it needs the structure, needs the
- 8 staffing, the right staffing, the right knowledge
- 9 and the skills and the whole culture to implement
- 10 this.
- 11 Some of the features of the new
- 12 structure include the following: We separated
- 13 pre-marketing, that is IND, NDA review functions
- 14 from the post marketing, which is the supplements,
- 15 annual report area. Also drug shortage and
- 16 academic, you know, types of activity.
- 17 And the reason for this separation is to
- 18 better utilize our limited resources and streamline
- 19 our processes with very focused attention to both
- 20 areas.
- 21 And we established a manufacturing
- 22 science branch and we have recruited and continues

- 1 to recruit pharmaceutical scientists, chemical
- 2 engineers, industrial pharmacists to compliment our
- 3 current skill sets. We have very competent staff,
- 4 but where we are lacking is where we are seeking to
- 5 bring in.
- 6 And the other features of the

- 7 restructuring is we created a position called
- 8 pharmaceutical assessment lead, or PAL, we like to
- 9 call them PAL, both in the pre-marketing division
- 10 and in the post-marketing division.
- 11 These are technical leads, not the --
- 12 without the supervisory responsibilities. They
- 13 serve as a liaison in the pre-clinical divisions to
- 14 the clinical division and they perform initial
- 15 quality assessment. That is a big picture
- 16 assessment by providing a protocol with the focus on
- 17 critical CMC issues and a proposed timeline for
- 18 completing the review.
- 19 And this will be given to the branch
- 20 chiefs for, as a recommendation, as the branch chief
- 21 makes assignment and set timelines.
- In the post-marketing division, the PAL

- 1 will perform a risk assessment to determine the
- 2 level of review needed for that supplement and
- 3 where an in-depth review is deemed appropriate, the
- 4 PAL will also perform an IQA, initial quality
- 5 assessment, again, by bringing out the critical CMC
- 6 issues.
- 7 Moheb had mentioned this pharmaceutical

- 8 quality assessment system and so did I earlier.
- 9 What does this really mean?
- 10 We feel, again, it's a system approach.
- 11 It's an approach to, a new approach to CMC review
- 12 that is science and risk-based. This approach, it
- 13 will emphasize the submission should be rich in
- 14 science and that demonstrates product knowledge and
- 15 process understanding. And we encourage firms to do
- 16 that.
- 17 We, from an assessment point of view, we
- 18 focus on critical quality attributes as they relate
- 19 to safety and effectiveness and that this approach
- 20 will enable us to provide regulatory flexibility, if
- 21 warranted, for a specification setting and
- 22 post-approval changes.

- 1 And this approach should facilitate
- 2 innovation and continuous improvement or continual
- 3 improvement through our product lifecycle.
- 4 We recognized that there was quite a lot
- of apprehension out there, even with the
- 6 introduction of Q8, and this was a year ago, May or
- 7 June, that we can talk all we want and we can sit
- 8 here waiting forever, we may not see a QBD

- 9 submission coming our way.
- 10 So, we launched this CMC pilot program
- 11 last July, a year ago July, as a mechanism to
- 12 provide firms that are interested and accepted into
- 13 the program an opportunity to submit applications
- 14 that are rich in scientific information.
- Now apply the QBD approach and
- 16 demonstrate product and process knowledge and
- 17 understanding, and we see this program as a
- 18 mechanism to allow us to evaluate some of these new
- 19 concepts, how they would, would be submitted in this
- 20 submission and how we will review them.
- 21 And these are embedded in different
- 22 initiatives and guidelines, initiatives like the

- 1 QBD, guidances like PAT, Q8 and Q9 and Q10.
- 2 Corollary to this, these concepts and
- 3 approaches, we also were looking to see if firms
- 4 could come to us with a comprehensive quality
- 5 overall summary, although I'm not going to go into
- 6 any more detail about that, and we experiment the
- 7 team review approach.
- 8 And lastly, we like to use this
- 9 mechanism to, for us to seek a public input and

- 10 whether or not there is a need to develop guidance
- on either the PQAS or QBD or anything else that
- 12 might be of value.
- 13 As I mentioned that we launched this CMC
- 14 pilot program. It was announced last, a year ago
- 15 July and with a deadline for requesting to
- 16 participate of March 31st of this year. And a
- 17 deadline for committing the NDA was accepted into
- 18 the program, it could be original or supplemental
- 19 NDA to be submitted by March 31st, although that
- 20 date may be slipping and we understand there could
- 21 be sometimes the timeline will be beyond the
- 22 applicant's control.

- 1 We set out to seek and perhaps accept
- 2 12 original or supplemental NDAs and the status
- 3 currently is there are 11 NDAs and supplements
- 4 accepted and four have been submitted already and
- 5 one has already been approved, three are still under
- 6 review. Others, that will be seven, the remaining
- 7 seven will be submitted in, within a year.
- 8 Again, I will talk more about the pilot
- 9 program.
- 10 The criteria for being accepted into the

- 11 pilot is that the submission should contain an
- 12 expanded pharmaceutical development section, more so
- 13 than even as, you know, recommend by the CDQ and
- 14 certainly more relevant scientific information
- 15 demonstrating the application of QBD, identifying
- 16 CQA, critical quality attributes, linking material
- 17 attributes and process parameters to quality
- 18 attributes, identifying possible sources of
- 19 variability and how they are controlled, describing
- 20 the process controls and the overall quality
- 21 strategy -- control strategy.
- So, taken together, this is the QBD that

- 1 Moheb describe earlier. As I said, comprehensive
- 2 QOS is one of the criteria.
- 3 The review process for NDA that's
- 4 accepted into the CMC pilot is a little bit
- 5 different from typical NDA review. We certainly
- 6 take a team approach and members of the review team
- 7 are brought together from different branches of our
- 8 office, irrespective of whether they are in that,
- 9 the branch that corresponds to the therapeutic
- 10 clinical division.
- 11 And we brought complimentary skill sets

- 12 into this team, however they -- we -- these are
- 13 reviewers that have very strong background in
- 14 pharmaceutical and manufacturing science.
- And the process is managed, overseen by
- 16 the, our ONDQA IO office for consistency and with
- 17 our own project management support for efficiency.
- We also, one feature for this review
- 19 process is it integrated review and inspection team
- 20 to come off with, our office of compliance is
- 21 involved from even before the submission is at the
- 22 door and investigator is identified early and if a

- 1 joint inspection is planned, there is a lot of
- 2 dialogue between our reviewer and the investigator.
- 3 The other feature that's different is
- 4 that there are frequent meetings in addition to the
- 5 typical end of phase two and pre-NDA meetings.
- 6 Certainly there are two meetings prior to the
- 7 application is submitted discussing high level
- 8 principles and the first one being whether the
- 9 applicant to tell us why their NDA should be
- 10 accepted. And then followed by one prior to the
- 11 submission for the applicant to meet, once the NDA
- is accepted, for the applicant to meet with our

- 13 review team.
- 14 After the submission, usually there will
- 15 be, during the review, there will be additional
- 16 meetings in addition to the typical teleconference.
- 17 And after review, after approval, there will be
- 18 opportunity for additional meetings focused on
- 19 lessons learned from both sides.
- The next few slides highlight some of
- 21 the observations or evaluations that we can make
- today based on the NDAs that we have received so far 0238
 - 1 under this program.
 - 2 Remember, expanded P2 is a criterion.
 - 3 Yes, we have seen all prior NDAs to date provided
 - 4 more scientific information in this section compared
 - 5 to typical NDAs, even under the CDD formatted
 - 6 applications. And most NDAs we have observed today
 - 7 demonstrated process reproducibility, but not
 - 8 necessarily robustness.
- 9 And there's certainly more relevant
- 10 scientific information that enable us, we find it
- 11 useful because it enable us to consider relative
- 12 flexibility that proposed by the applicant and
- 13 certainly it facilitates our, helps our

- 14 understanding of the product and process and
- 15 facilitates our review.
- 16 The other criterion is application of
- 17 QBD and there may be certain overlap between this
- 18 one and the last one I presented as far as expanded
- 19 P2; however, in terms of the application of QBD,
- 20 remember, we view the QBD as a system approach. We
- 21 are not seeing entire QBD approach being applied to
- 22 both drug substance and drug product.

- 1 Some firms choose, you know, chooses to
- 2 focus on the dosage form. Some may have QBD
- 3 elements in one or more of the unit operations in
- 4 the drug substance or the drug product, or both.
- In a nutshell, some of these elements
- 6 are being applied and being presented. The CQAs,
- 7 more understanding about formulation development,
- 8 not just about optimization, and risk assessment,
- 9 design of the experiment, not necessarily to the
- 10 edge of failure, impact of material attributes,
- 11 including drug substance, manufacturability and/or
- 12 the COAs. There is a great deal more about process
- 13 development and the impact of the process parameters
- on the CQA, design space for the material attributes

- 15 and CPPs.
- 16 Other observations as it relates to OBD,
- 17 again, reproducibility and not as much in
- 18 robustness. And interestingly, process analyzers,
- 19 and this varies, some applicants choose to rely on a
- 20 process analyzers. Again, that's a tool for PAT for
- 21 development, to collect data, to help the
- 22 development and design, but not, they are not

- 1 applying the, the same tool or technology to
- 2 commercial production.
- 3 On the other hand, other applicants do
- 4 not use the analyzer or PAT for development, but
- 5 they choose to use, apply it for commercial
- 6 production.
- 7 This slide and the next one are, bring
- 8 out the main concepts or new concepts embedded in
- 9 Q8. Design space and regulatory flexibility.
- 10 Some companies under this pilot have
- 11 now, on their own, proposed design space. Some have
- 12 right from the beginning. Some do not really
- 13 distinguish control space from design space. Some
- 14 have not studied design space.
- In all cases, if it's not presented in

- 16 the NDA, we ask about it. Have you established
- 17 design space? How do you establish design space?
- 18 Where, in other words, where it's silent, we ask.
- 19 And we ask the, whether the design space is
- 20 independent of equipment and/or scale, if it's not
- 21 addressed. And how control space relates to design
- 22 space and how control space relate to the operation,
 0241
 - 1 operational ranges in master batch record.
 - 2 And I forgot to add this to the slide,
 - 3 how design space and knowledge gained from the
 - 4 development is captured at an operational level.
 - 5 This is the second part that relates to
 - 6 Q8, regulatory flexibility. Yes, we see different
 - 7 kinds of proposals for regulatory flexibility. What
 - 8 are the examples.
 - 9 In-process testing in lieu of
- 10 end-product testing and their proposal also to apply
- 11 PAT for commercial production. Real-time release
- 12 using PAT instead of end-product testing and with
- 13 established design space, making changes using the
- 14 firm's quality system and report only in annual
- 15 report.
- And I can't emphasize enough that the

- 17 degree of flexibility that we can approve will
- 18 really depend on the level of understanding and
- 19 knowledge demonstrated in the application.
- While it's not included in our Federal
- 21 Register announcement, in July of '05, it became
- 22 apparent as this pilot program got underway, both

- 1 from the applicants' point of view and from us, that
- 2 there's -- would be, it would be desirable to have a
- 3 mechanism of a place to bring all these important
- 4 features into one place.
- What I mean by that is, say, the
- 6 critical quality attributes, critical process
- 7 parameters, are they inter-related, design space for
- 8 critical process parameters, how are these going to
- 9 be documented and utilized by our reviewers in the
- 10 post marketing, by our field investigator and by the
- 11 firm.
- So, it became apparent that it would be
- 13 desirable to have a mechanism to capture all that
- 14 information and this will also include a control
- 15 strategy and perhaps change of control protocol.
- 16 This would then enable all of us, the reviewers, the
- 17 investigator, the firm to refer to for post the

- 18 product lifecycle management.
- 19 And this document ought to be, we ought
- 20 to be able to allow the stuff to be updated as
- 21 needed, but this is an area we are exploring.
- So, what do we see the benefits, some of

- 1 these have probably already been covered by Moheb.
- 2 I think it definitely is a good way to let industry
- 3 and FDA explore ways to implement Q8 and QBD. We,
- 4 if you talk to the firms that are participating,
- 5 there's a lot of learning within the firm and I can
- 6 speak for FDA, within our own organization and
- 7 between us. It's a partnership and it's a learning
- 8 process.
- 9 And in the end, it's the good science
- 10 that rules the day. With good science, it would be
- 11 to a higher level of assurance of product quality
- 12 and hopefully better quality product, fewer product
- 13 rejects and recalls, and that would be more
- 14 efficient for you, and hopefully beneficial to the
- 15 public because through to ensure enhanced quality.
- 16 With benefits and opportunities, there
- 17 are challenges and some of these, again, have been
- 18 mentioned by Moheb. I know you as an applicant may

- 19 wonder, well, I have maybe hundreds of megabytes of
- 20 information, how am I going to get to you in one
- 21 megabyte. So it's a level of detail and how to
- 22 synthesize the information in a way that's easily

- 1 understood by the reviewer to make a good
- 2 assessment.
- 3 And the other challenge as already
- 4 alluded by Moheb is the expectations of the
- 5 QBD-based submission, while we still have to address
- 6 the traditional requirements and how we can provide
- 7 the regulatory flexibility for ensuring quality.
- And again, I'm repeating this, that's
- 9 already been said earlier, is the continual
- 10 apprehension of our sharing information, especially
- in regard to failures and the cultural changes that
- 12 are needed.
- 13 And last is the more resources. We are
- 14 finding that more resources are needed, both in the
- 15 company and in FDA because we are, for one thing, we
- 16 are in the learning process and it's, it's a new
- 17 approach for both and we just have so much to
- 18 communicate and in order to reap the most benefits.
- 19 So in summary, the pilot program got to

- 20 a good start. We are pretty much meeting our
- 21 initial goal. We pulled number 12 out of thin air.
- We thought that's probably the number of application 0245
 - 1 we can handle within the span of a year and a half,
 - 2 but we are just pleased that we are hitting that
 - 3 mark.
 - 4 And we are also pleased to see, you
 - 5 know, elements of the QBD are being included in the
 - 6 NDAs submitted so far and the comprehensive QRS kind
 - 7 of varied and we certainly need further discussion
 - 8 on this, its utility, how it should look.
 - 9 Scientific approach is, and design space
- 10 need further development, and Q8 revision hopefully
- 11 can help us achieve that.
- 12 Regulatory flexibility is being proposed
- 13 and they are being considered by us as we review
- 14 these applications.
- 15 As I mentioned earlier, the agreement,
- 16 the regulatory agreement is only an idea and we are
- 17 exploring that.
- 18 And the program certainly should help.
- 19 We know that we already are identifying areas that
- 20 need to be better defined and maybe areas that need

- 21 guidance, but challenges remain as we go forward.
- Other areas of efforts is through public

- 1 meetings. We get our message out through some of
- 2 these meetings. We co-sponsored many of these
- 3 meetings listed on the, on the slide and we, that's
- 4 a forum, it's in public meetings that we can hear
- 5 from the industry at large and we can benefit by
- 6 talking to each other.
- 7 And I think the next ones that are
- 8 upcoming are ISPE/PDA Q8, Q9 implementation workshop
- 9 in December in Washington, D.C., I believe, and
- 10 there is another big conference coming up in
- 11 February co-sponsored by FDA, ISPE and AAPS, and
- 12 none of this would be possible if we don't pay
- 13 attention to what, how, how are we going to do it.
- 14 We have to equip ourselves in our own
- organization to be able to assess and review
- 16 information that's based on quality by design. We
- 17 have a lot of hands-on training that's through the
- 18 team review like under the pilot NDA. We're doing
- 19 team review outside of pilot, as well. It's a very
- 20 good platform to cross-train people with different
- 21 skill sets.

- month, and this is in addition -- this covers both 1
- 2 the pilot NDAs and non-pilot NDAs. And we have been
- 3 doing this for two years now and it's another good
- 4 training tool.
- 5 We also have the ONDQA focus groups.
- 6 These are informal groups with a technical focus. A
- 7 few examples are listed here, focus groups on
- 8 biotech product, dissolution, drug eluting stints,
- excipients, fermentation, inhalation product and 9
- manufacturing science and so on. 10
- 11 We also hold a science forum, I guess
- once a year, and we would like to have it do this 12
- 13 twice a year, but the most recent one that was held
- 14 was about two and a half weeks ago.
- 15 We are studying a seminar series by
- 16 inviting outside experts. And we hold the training
- 17 on various topics on an ad hoc basis.
- 18 This was my last slide. Looking
- 19 forward, as we continue down this path of
- implementing QBD, what are our next steps. 20
- 21 We'd like to share the lessons learned
- 22 with each applicant under the CMC pilot and we are

- 1 doing that after the NDA is approved.
- We would then like to share this
- 3 experience and we encourage the participating
- 4 companies to do so, as well, outside of the one on
- 5 one.
- 6 And for us, we will share this
- 7 experience through our peer review forum, any other
- 8 mechanism within our organization, and would like to
- 9 share that with industry, maybe some kind of public
- 10 forum, in addition to these some other workshops
- 11 that I've already mentioned.
- 12 And last, we will need to evaluate a
- 13 need, whether there's a need for some new guidances
- in one or more of the following areas, QBD, PQAS,
- 15 comprehensive QOS, regulatory agreement.
- So with that, I conclude my
- 17 presentation. I will welcome, if you have any,
- 18 clarification questions.
- DR. GLOFF thank you.
- Dr. Karol.
- DR. KAROL: Several times today the
- 22 concept of resource constraints and resource

- 1 limitations has been brought up and I, and you
- 2 mentioned reorganization of your division or
- 3 department.
- 4 Could you tell us about that
- 5 reorganization, you know, did it call for expansion,
- 6 did it call for new expertise, you know, how
- 7 extensive was that new reorganization?
- B DR. CHEN: It, what it involved was
- 9 restructure our review functions so that we're more
- 10 focused and that's one way to better utilize our
- 11 resources. And namely, separation of pre-marketing
- 12 from post-marketing review visits. And we have the
- 13 manufacturing science branch with the addition of
- 14 the chemical engineers and pharmaceutical
- 15 scientists, not that we don't have pharmaceutical
- 16 scientists in other branches, but we try also to
- 17 recruit more people with this kind of skill sets.
- 18 And we actually have the same number of people, but
- 19 we better utilize them by restructuring.
- 20 And one area I didn't mention is a staff
- 21 headed by Dr. Jared Puchica (phonetic spelling),
- 22 sitting right behind you, with the entire effort

1 and -- to your left, to focus for our office on the

- 2 development of guidances and policies for, you know,
- 3 scientific guidances.
- We used to be, I think a lot of the
- 5 staff members have been on different technical
- 6 committees and this was on top of their regular
- 7 review duties, so that's one way we can better
- 8 utilize our resources.
- 9 So, we continue to be involved in
- 10 guidance development and the one thing I didn't
- 11 mention is research effort. We also will start
- 12 engaging in various research projects that are
- 13 cross-cutting, but QBD based and it's under also
- 14 Dr. Jared Puchica's oversight and leadership. We're
- 15 going to do more of that that we weren't able to do
- 16 in the past.
- I hope I answer your question.
- DR. NASR: Just I would like to add a
- 19 couple of things. I think the real, and I don't
- 20 want to take time from my colleagues who are going
- 21 to talk more technical stuff, but as far as the
- organization was considered to be overreaching, in

- 1 other words, prior to the organization, we had
- 2 19 chemistry teams co-located in 15 clinical

- 3 division.
- 4 We never really had a cohesive office
- 5 structure; now we do. We did not have some of the
- 6 expertise that needed to implement the quality by
- 7 design. Industrial, hands-on expertise in dosage
- 8 forms and so forth, we brought that additional
- 9 expertise. We have a few Ph.D. chemical engineers
- 10 who have endless experience, that's not hard to get,
- 11 we did that.
- 12 All that was done without additional
- 13 FTEs, without additional (inaudible) and that
- 14 creates, you know, at times, (inaudible) on our
- 15 resources because we are trying to do more work than
- 16 what we have done before by implementing two
- 17 different processes.
- I do believe, however, that once we go
- 19 through the transition and through more quality by
- 20 design submission and we understand some of these
- 21 issues, the resources may be less, there will be
- less a need of additional resources.

- 1 In addition to what she once said, we
- 2 also created a project management staff where we
- 3 have nine people now to manage the interaction and

- 4 because we need the CMC review within our office,
- 5 between our office and the other offices and these
- 6 applicants. So it was a tremendous, tremendous
- 7 change.
- 8 DR. GLOFF: Dr. Koch.
- 9 DR. KOCH: Yeah, just a quick question
- 10 or a point of clarification.
- I assume when you put together this
- 12 integrated review and inspector approach team that
- 13 you drew from some of the positive experience in
- 14 creating the patriot team in terms of team building
- 15 exercise and the cross-team training?
- DR. NASR: Yes. Dr. Chen, Dr. Chen has
- 17 not been as involved in the cross-analytical
- 18 technology steering committee, but I have been from
- 19 its inception, so the answer to your question is
- 20 yes.
- DR. CHEN: Thank you, sorry, I didn't
- 22 mean to walk out on you.

- DR. GLOFF: That's okay.
- 2 MS. WINKLE: Chi-Wan, could you explain
- 3 a little bit to the committee as to the flexibility
- 4 of ONDQA to take in quality by design information in

- 5 other applications besides those that are submitted
- 6 under the CMC pilot?
- 7 I think that they need to know that we
- 8 are looking for information elsewhere, as well.
- 9 DR. CHEN: Exactly. Thank you for the
- 10 reminder.
- 11 Yes, we have gotten inquiries from firms
- 12 that had not planned to take part in the pilot
- 13 program or have already done QBD and taken the QBD
- 14 approach and would like to include the information
- in their upcoming applications and we, we have
- 16 gotten inquiries from those, some of those
- 17 individual companies.
- And we really, I mean the only thing we
- 19 can tell them is we very much welcome that they
- 20 include that kind of information.
- 21 If they have any apprehension, let us
- 22 know, let our office know, we will keep an eye on
- 0254
 - 1 them. They will not be part of the pilot because
 - 2 it's not -- the demo is over, but we will certainly
 - 3 make a concerted effort that we will take the
 - 4 similar kind of approach to those applications.
 - DR. NASR: If I just may, madam chair,

- 6 one comment here, when we create this (inaudible),
- 7 if you wish, with a cross-analytical technology team
- 8 or quality by design CMC pilot program, I think our
- 9 effort is try to learn from this, but eventually
- 10 this should be the mainstream of what we do at the
- 11 agency.
- So, we are working now towards this,
- 13 spreading this knowledge by cross-fertilization, for
- 14 example, people who are doing the review now in
- 15 these 11 applications are not the same, are getting
- 16 different people so a reviewer in a team could be a
- 17 team leader for our next pilot.
- And we expanding this, because we don't
- 19 want to create a specialized focus group to make a
- 20 distinction between quality by design application
- 21 versus non-quality by design application, like it is
- 22 to help to understand and implement the new

- 1 concepts, but eventually it should be the
- 2 traditional new approach of CMC review.
- 3 DR. GLOFF: And actually that leads me
- 4 to one little, almost a curiosity question that I
- 5 have.
- 6 There are 11 either original NDAs or

- 7 supplemental NDAs that have been accepted under the
- 8 pilot program.
- 9 Can you give me an idea of how many
- 10 different firms that represents? Is it 11 different
- 11 firms or a smaller number, or I'm just curious to
- 12 know how many, you know, kind of the idea of --
- DR. NASR: Nine firms.
- DR. GLOFF: Oh, that's great. That
- 15 shows a great diversity of the groups that were
- 16 really interested in starting to do this right away.
- 17 Thank you.
- Dr. Meyer.
- DR. MEYER: A couple of questions. Was,
- 20 I didn't read the proposal to, for them to submit
- 21 under this pilot program, was there, were there any
- 22 published incentives?

- 1 It seems to me that they are getting
- 2 more attention, that could be good or could be bad
- 3 depending on what the attention is, so was there
- 4 some carrot that was put out there?
- 5 Is it your sense that the participants
- 6 had to do a great deal more work or were these nine
- 7 firms largely firms that normally do QBD, maybe not

- 8 by that name anyway internally, so they understand
- 9 their product better and just do good science when
- 10 they develop a product or did they make a real extra
- 11 effort to go out and determine the design space and
- 12 all the other aspects of QBD?
- And what happens, what happens to those
- 14 firms that didn't have a design space effort and you
- inquired and they said, gee, we didn't think of
- 16 that. Did you say, well, go back and do it, we'll
- 17 delay your NDA or did you say okay, and that was it?
- 18 And will you continue to accept the
- 19 traditional NDA for year 25 from now or is this
- 20 going to be coming to an end at some point in time
- 21 when they must submit the data to satisfy your
- 22 interests?

- DR. CHEN: Oh, you have just brought up
- 2 quite a number of good questions, I hope I remember
- 3 them all.
- 4 The firms that submitted the, the first
- 5 three firms submitted their NDAs to us under this
- 6 pilot came just two months after the closing date --
- 7 I'm sorry, the three or four months after the first
- 8 announcement. So you can see that they had their

- 9 QBD, whatever they had done, is already part of
- 10 their approach.
- 11 Others that are to come, hard to say
- 12 because I can't say for sure whether they are making
- 13 extra effort just to make the mark, but they are,
- 14 they have already been accepted and we recognize
- 15 that the degree of QBD approach or the different
- 16 aspects of QBD that's being focused on by the
- 17 various firms vary and as long as there are elements
- 18 of the QBD that are accepted, we'll just partner
- 19 with the firm to get the best for both.
- 20 And in terms of, I may take a question
- 21 out of sequence, but you asked what about 25 years
- 22 from now?

- DR. MEYER: Right.
- 2 DR. CHEN: Well the program was sunset
- 3 because we have a deadline, the program itself, not
- 4 the QBD in general.
- 5 The CMC pilot program was sunset when
- 6 the last NDA is approved and we have set out for the
- 7 last NDA to be accepted into the program to come
- 8 March 31st of '07. It looks like that date may be
- 9 delayed.

- I think I forgot your second question.
- DR. MEYER: Well, I guess my concern was
- 12 from the standpoint of a company that isn't into
- 13 this new thinking yet, develops a product that works
- 14 perfectly great in the clinic, in the lab, it's
- 15 pretty stable and they submit their submission and
- 16 you folks say, well, yeah, but where's your quality
- 17 by design effort here.
- 18 Will you do that at some point in time?
- DR. CHEN: Okay, I think I can better
- 20 answer your original question, I think you stated it
- 21 as --
- DR. MEYER: Now she remembers.

- DR. CHEN: Now I remember, delayed
- 2 memory.
- 3 You asked about design space, what if
- 4 the firms didn't have design space and we went and
- 5 asked them and they said they didn't have it?
- 6 DR. MEYER: Right.
- 7 DR. CHEN: Their flexibility will be
- 8 limited. Whatever is their control space will be
- 9 their operating ranges and they will have to freedom
- 10 to move outside.

- DR. MEYER: That's fair, I think --
- DR. CHEN: That makes sense.
- DR. MEYER: -- if you go the extra mile,
- 14 then you have more flexibility?
- DR. CHEN: Exactly.
- DR. MEYER: And you change if you need
- 17 to.
- DR. NASR: If I just may add a couple of
- 19 comments to your question because I do remember your
- 20 old question and the new one.
- 21 A couple of things, I think you are
- 22 raising excellent questions, you always do. But

- 1 just a couple of quick comments here.
- Number one, I think the company has to
- 3 make a decision based on their development
- 4 strategies and their business needs and their, how
- 5 they are going to handle future changes and they may
- 6 elect to use, to put more information into
- 7 submission because you will see the value of sharing
- 8 this information to better manage their own changes
- 9 and to have some flexibility as far as acceptance
- 10 criteria for a specification, not to do some
- 11 redundant unnecessary testing, to release the

- 12 product online and to manage post-marketing change.
- There's a lot of carrots there, there's
- 14 a lot of carrots, different colors, size and shapes.
- The other thing is I expect more quality
- 16 by design development as we move on from now, so the
- 17 later submission may have more quality by design and
- 18 the submission that will come through our
- 19 traditional CMC, I strongly believe it has more
- 20 quality by design through, I'm telling you this
- 21 based on my knowledge and dialogue with industry.
- 22 Another key point you raised and I don't 0261
 - 1 think she want answered is would this delay the
- 2 approval. The answer is a resounding no, it will
- 3 not.
- 4 It is our obligation in the office to
- 5 manage our resources, no matter how little or how
- 6 large they are, to assure that the applicant by
- 7 sharing the information will not be penalized. The
- 8 first drug we approved we approved in May of this
- 9 year and that was under expedited review, which is
- 10 six months, there was no delay in the approval in
- 11 sharing this information.
- DR. GLOFF: Mr. Buehler.

- MR. BUEHLER: Gary Buehler, I'm the
- 14 director of the Office of Generic Drugs.
- MR. KOZLOWSKI: Steve Kozlowski, I'm the
- 16 director of the Office of Biotechnology Products.
- DR. YU: Gary is my boss, so I have to
- 18 do a good job here.
- 19 Good afternoon distinguished chair and
- 20 members of Advisory Committee for Pharmaceutical
- 21 Science, my FDA colleagues and distinguished guests.
- It has given me great pleasure and

- 1 privilege this afternoon to report back to you what
- 2 progress in our initiative in implementing this
- 3 committee which is question-based review system.
- 4 As we discussed last year, the
- 5 question-based system basically is developed for
- 6 the -- to accommodate, to assess the QBD
- 7 applications because we believe the older
- 8 traditional, older system is not able to suit to
- 9 assess the QBD applications.
- 10 So we can look back the definition of
- 11 quality by design related in Moheb's talk, or
- 12 Dr. Chi-Wan's talk, also Dr. John Berridge's talks
- 13 this morning.

- 14 QBD means designing and developing
- 15 formulation and manufacturing processes to ensure
- 16 pre-defined product quality by understanding and
- 17 controlling formulation and manufacturing process
- 18 variables affecting the quality of a drug product.
- 19 This is a long definition for QBD, but
- 20 essentially words by Frank Hogan from our office
- 21 coined is, the key words is understanding.
- 22 Understanding source variables,

- 1 understanding critical formulation variables,
- 2 understanding critical manufacturing variables and
- 3 understanding critical product performance
- 4 attributes which can be controlled.
- 5 So come back to the QBR, as I said at
- 6 the beginning, the QBR is developed to accommodate,
- 7 to review QBD applications and QBR itself is
- 8 implementing QBD, for the review of QBD
- 9 applications.
- 10 So QBR is a general framework for
- 11 science- and risk-based assessment for the product
- 12 quality, and it contains the important scientific
- 13 and regulatory review questions, review questions to
- 14 assess critical formulation and manufacturing

- 15 variables, set regulatory standards and determines a
- 16 risk. Now this risk is not, we discussed this
- 17 morning, the risk is associated with the
- 18 manufacturing or designing of the product. For
- 19 example, as we discussed yesterday of Levothyroxine
- 20 that were defined will or could have a high risk
- 21 because of stability.
- As we always talk about quality system,

- 1 do what you say -- say what you do and do what you
- 2 says, prove it and improve it. In this case, in our
- 3 question as we use this term, our questions come
- 4 first.
- 5 Question guide reviewers to prepare a
- 6 consistent and comprehensive evaluation of the ANDA
- 7 or generic applications, assess critical formulation
- 8 and manufacturing variables and questions of the
- 9 guiding industry, of the guiding industry to
- 10 recognize issues we, OGD, generally consider
- 11 critical and direct industry towards, moving towards
- 12 quality by design, towards quality by design.
- 13 And the questions also inform the
- 14 readers of the review, which it sees the reviews,
- 15 how QBD was implement, was used in the, in the ANDAs

- 16 and provide a basis for a risk assessment, which
- 17 eventually is approve application and reduction of
- 18 post-approval changes.
- 19 So inter-relate the FDA's pharmaceutical
- 20 CGMP initiative for the 21st Century and QBD
- 21 initiatives under the QBR system, as with QBD, this
- 22 generic responses implementing quality by design in 0265
 - 1 development and in manufacturing.
 - 2 FDA, OGD has develop the question review
 - 3 the system that assess sponsors QBD and NDAs, so,
 - 4 therefore, he has a QBD implementation by the
 - 5 sponsors, QBR as developed by OGD, implement QBD's
 - 6 applications as a part of an integrated system to,
 - 7 for the first, 21st Century.
 - 8 The question come up with how will you
 - 9 justify, how would you say your QBR is QBD, is
- 10 implementing QBD. I want to relate those questions
- in which it is published on the FDA's Website,
- 12 relate to more of a circle, which is define desired
- 13 product quality -- design product performance,
- 14 product design, process design and process
- 15 performance, which also relate to the Dr. John
- 16 Berridge talk this morning, four elements.

- 17 For the first elements is design product
- 18 performance, we ask the question is, what attributes
- 19 should a drug product possess. Basically what this
- 20 mean what kind of performance do you expect it to
- 21 have, what kind of performance do you expect for the
- 22 product to deliver the performance as prescribed in
- 1 the label.

- 2 And the next question is related to the
- 3 product design, which is how was the product
- 4 designed to have those attributes, see. Were
- 5 alternative formulation or mechanism investigated?
- 6 I know we have, the many cases of this measure for
- 7 complex dosage forms, the industry have searched
- 8 different ways to reach the objectives. How were
- 9 excipient selected. And finally, how were the final
- 10 formulation optimized.
- Now this is, in the optimization
- 12 generally industry got to use some kind of DOE
- 13 experiment. This not simply tells you what is
- 14 formulation, one of the formulation, which this
- 15 tells you some kinds of space in the formulation
- 16 space, in this range of excipients, in this
- 17 interactions, does those excipients well deliver the

- 18 desired performance of the product.
- 19 The next question is related process
- 20 design. What are the unit operations in the drug
- 21 product manufacturing processes? Why was the
- 22 manufacturing processes selected? How were the unit
 - 1 operation related to the drug product quality?
- Now in the absolute term as Dr. Mansoor
- 3 Kahn, who is a director of BQI (inaudible) point
- 4 out, the product design and process design cannot be
- 5 absolutely separate. For example, if you use
- 6 excipients for direct compression, you cannot use
- 7 wet granulation because there's no water sampling,
- 8 yet in our review process we feel comfortable to
- 9 separate this product design and process design
- 10 questions.

- 11 And finally, the product process
- 12 performance, how were the critical process
- parameters identified, monitored and controlled?
- 14 Those pretty much very simple -- the critical, the
- 15 chemical engineering process, assimilation process,
- 16 investigation and process control questions.
- 17 And in the proposal scale-up plan, what
- 18 operating parameters will be adjusted to ensure

- 19 product meets all the in-process and final product
- 20 specifications?
- 21 In-process controls, I'm sorry to say,
- 22 in-process control and final product specification,

- 1 what evidence supports the plan to scale-up the
- 2 process to commercial batches?
- The reason we ask a lot of, a bunch of
- 4 the scale-up question is in the ideal situation, as
- 5 in ideal situation, the process, performance, or
- 6 process capability or robust ought to be evaluate
- 7 based on actual commercial batches, based on the
- 8 limits and the depend -- that divide by standard
- 9 derivations, and the reality is what, when we
- 10 approve applications for the generic world, we do
- 11 have very limited available commercial batches, yet
- 12 a company do fantastic job in expand design for
- 13 small batches. So this case we feel comfortable ask
- 14 the questions from process understanding for small
- 15 batches and process -- and the scale-up questions to
- 16 predict some kind product and process performance of
- 17 commercial batches.
- 18 We understand QBD for generic drugs as
- 19 unique. That's part of reason first. As a target,

- 20 target product quality profile or product,
- 21 performance attributes is well defined. That's
- 22 simply the characterization from physical, chemical,
 0269
 - 1 biopharmaceutical characterization of reference or
 - 2 (inaudible) brand product.
 - 3 So, generic company or generic sponsors
 - 4 knows exactly what target product profile won't be.
 - 5 For example, impurity file, for example, impurity,
 - 6 for example, assay, for example, dissolution, so
 - 7 that the generic companies have a clear idea about
 - 8 target product profile, what attributes should
 - 9 product possess to deliver the same to the innovator
- 10 with respect to pharmaceutical equivalence, with
- 11 respect to bioequivalence.
- 12 Second point is also generic sponsor has
- 13 extensive formulation and manufacturing experience
- 14 for many, many, many drug, drug manufacturers. For
- 15 simple reasons, those are generic companies make
- 16 generic copies for every single brand name almost,
- 17 almost every single brand name product on the
- 18 market, so they gain tremendous experience.
- 19 For example, as, one of the largest
- 20 company has 390 product on the market right now,

- 21 probably is the largest.
- 22 And finally, the generic companies well,

- 1 have a well-defined biopharmaceutics of properties
- 2 of drug such as, in many case, Polymorphism,
- 3 absorption, pharmacokinetic information.
- While those information in the, not,
- 5 usually especially in human information not variable
- 6 or not well defined in early stage drug development,
- 7 yet this product on the market was several years,
- 8 those information generate, generate well understood
- 9 and mechanism is understood in the public domain, in
- 10 the public picture. Let's give the generic firms
- 11 advantage to implement quality by design.
- 12 And this slides next I want, that has
- 13 been somewhat quite similar to what Moheb wanted to
- 14 discuss, I want to point out in the older paradigm,
- 15 which is quality by end product testing or quality
- 16 by, quality by controlling is good intention, but
- 17 result in tremendous number of supplements which
- 18 overwhelmed us and also have a specification, a
- 19 specification is, as John point out this morning, is
- 20 based on batches, based on, and one or two or three
- 21 batches, based on process or manufacturing

22 capabilities.

- 1 And a new paradigm, those specification
- 2 are based on performance, are based on safety,
- 3 are -- should not based on manufacturing capability,
- 4 should not based on two or three batches of data.
- And secondly, we're hoping, we believe,
- 6 we're confident that we'll have a significant
- 7 supplemental redactions. At the last years, we say
- 8 well up to 80 percent. The words we said still
- 9 stands today.
- 10 Now it's very clear from changing from
- 11 quality by testing to quality by design means more
- 12 data, more information to review. When you have
- 13 more data, more information to review, you will say
- 14 it takes longer for reviewers to review
- 15 applications. When it takes longer to review
- 16 applications, this means takes longer to approach
- 17 generic applications and this what happened, I know
- 18 this not acceptable to you. This not acceptable to
- 19 me. This not acceptable to my boss, to our bureau,
- 20 this not acceptable for all across, this not
- 21 acceptable to the American public.
- So, therefore, we have to figure out a

- 1 way while we're reviewing more applications -- more
- 2 informations, we have to figure out a way to
- 3 efficiently and best review an approval of generic
- 4 applications.
- Now Dr. Karol, in the center in the
- 6 slides the words actually do not say a resource
- 7 again, because you can see the number of questions
- 8 increase about 30 percent, yet resource increase
- 9 5 percent, and all of us figure, it does not take a
- 10 rocket scientist to figure out, if we do not make
- 11 any changes, if we in a steady quote, we in deep
- 12 trouble.
- 13 And we'll feel sorry for the public.
- 14 That's the reason we're trying to figure out a way
- 15 where we'll have more information, implemented QBD
- 16 review, yet we need to save the time for efficient
- 17 review and efficient approval.
- In this case I have data to prove we do
- 19 have issue with resource, so under the QBR, when we
- 20 trying to say that what can we do to become more
- 21 efficient so that when we have a more information,
- 22 we could have a faster, it's going to win to us,

- 1 OGD, a win for the generic sponsors and finally the
- 2 big winners, the largest winner is the American
- 3 public.
- So, we have to look at older system what
- 5 we're doing right now. And older system and older
- 6 system of review, I'm not saying this current, this
- 7 because we're partially implement it, in the older
- 8 system of review, reviewers prepare a summary of the
- 9 application and they write deficiency letters in
- 10 response to missing information or insufficient
- 11 specification. And in the older system, there's no
- 12 pharmaceutical development information.
- So when we're looking for more efficient
- 14 with, aha, one of the issue we can take advantage
- 15 with, that's because all the reviewers write summary
- of the old applications which is 30, 40 pages
- 17 application, or 50 pages of application take very
- long to write them, so almost 1,000 pages.
- So, under the QBR, quality review will
- 20 include the comprehensive evaluation of the sponsors
- 21 quality by design, set regulatory specification
- 22 relevant to quality, determine risk.

1 There's one (inaudible) components you

- 2 say here, oh, well reviews, it surely during the
- 3 review, during the assessment, not during the
- 4 summary. All of us, majority of us have written
- 5 papers for publication. I use analogies to analyze
- 6 here.
- 7 In the older system, the reviewers of
- 8 the peer reviewers need to write abstract were
- 9 after. That's not quite correct. That's too time
- 10 consuming. If I review one of the Pharma research
- 11 application, if I have to write abstract for this
- 12 papers, I almost completely say no, I'm not going to
- 13 do this, because this.
- So, therefore, in the new system, if
- 15 we're competitive, new system is we thought authors
- 16 should write abstract, authors should write a
- 17 summary.
- 18 The same thing applied here. Generic
- 19 sponsors ought write summary because they know the
- 20 product, they have better that knows the product
- 21 best. They ought to write abstract.
- So as you can see from older system to

- 1 the new system here, in the older system, here's no
- 2 pharmaceutical development information or quality by

- 3 design information. And in the older system, we
- 4 pretty much say the specification-based review,
- 5 reviewer had to write the summary, sponsor provided
- 6 body of data.
- 7 In the new system, in this QBR system,
- 8 we assess the quality by design, we assess the
- 9 specification of performance and sponsors to write
- 10 summary of QBD and sponsors provide body of data.
- 11 When my staff, myself come up this idea,
- 12 we're so happy, we say well, we solve the problem.
- 13 We almost want to celebrate and we could not
- 14 oversleep the night. And then we wake up the next
- 15 day in the morning, we realize this is not a new
- 16 idea at all. This actually 10 years old idea. It's
- 17 sad to me.
- 18 And, in fact, ICH discovered a long time
- 19 ago and ICH is basically the ICH applications
- 20 sponsor will have to provide quality over summary.
- 21 In fact, we realize to held accounted to have the
- 22 use for many years. In Japan even use longer. It's 0276
 - 1 really sad to this.
 - But on that side, we feel good because
 - 3 that's what increase efficiency.

- 4 Nevertheless, prepare QOS is a challenge
- 5 to all generic sponsors. We realize that, we
- 6 understand that, because simply there's no
- 7 sufficient guidance out there, what information
- 8 should be put in the QOS.
- 9 What, for example, for generic
- 10 validation section should be there, should I provide
- 11 all the chromatogram information, validation
- 12 information or I simply provide a summary.
- 13 Therefore, OGD staff only reviews what, what
- 14 connection had.
- I have to say this, prepare these two
- 16 molecules is much more difficult than many of us
- 17 had, including myself, had anticipated, yet all
- 18 reviewers get this job done and all the CMC leaders,
- 19 Gary, myself and Frank, all the, the (inaudible)
- 20 really proud of all of yous have done terrific job,
- 21 accomplished something which is truly really, really
- 22 challenge.

- 1 Provide model questions on the Website
- 2 for the sponsors provide some kind of quidance. I
- 3 know I've been working with it a very long time and
- 4 when you do anything, it's almost impossible that

- 5 almost anyone will say, almost 1 or 2 percent say I
- 6 don't like what you've done, that's not acceptable
- 7 to us.
- 8 But for this case, it's very
- 9 exceptional. When Gary, myself, visit the
- 10 companies, when we're visit -- the meetings, the
- 11 message from the generic sponsors are uniform, they
- 12 are really fantastic.
- In fact, for the historical record,
- 14 never happened before, we even received a positive
- 15 notes from generic sponsors, which is unbelievable,
- 16 that's the first time ever happened.
- 17 Sometimes you working 16 hours a day,
- 18 you never receive any response. You always receive
- 19 a certain, you know, criticism, especially when you
- 20 have so many petitions. So that it's a, I have to
- 21 say this feeling is really touching. It's really
- feel good about it. Even if it only happen once. I 0278
 - 1 think --
 - 2 And finally, I want to say where we are
 - 3 today. Generic drug industry is on board. I
 - 4 believe that, of course Gordie and Frank have
 - 5 authority to say this, will receive 35 QBR ANDAs.

- 6 Now this number is changing every day. When you're
- 7 talking about, okay, Lai Ming, she would tell you
- 8 right now probably 40, so this not, this already
- 9 past and will (inaudible) over 20 generic companies
- 10 and major companies I have been aware, they are
- 11 (inaudible) the applications.
- 12 And so we have the last months, we have
- 13 first the QBR approvals, that takes four month,
- 14 releasing final take up eight month because other
- 15 disciplines.
- In the generic approval, CMC is not only
- 17 discipline. We have, we have a microbial
- 18 review, we have a clinical review, we have a, we
- 19 have the bio-consulate review, so in total it takes
- 20 eight month.
- 21 But it's still historic and we
- 22 accelerate, but still very fast. And under

- 1 leadership of Veli (phonetic spelling) and his
- 2 division, thank you, Veli.
- Now this slides talk to you about review
- 4 experience. If you notice that even though it's not
- 5 very clear you have a quote here, the speaker's,
- 6 that's what this means, those slides, those comments

- 7 are not from me, from reviewers, are from reviewers.
- 8 With acceptable QBR ANDAs will enhanced
- 9 product and review assessment, insight into
- 10 sponsor's development plan and better understanding
- 11 of sponsor's rationale for decisions and, therefore,
- 12 less misunderstanding.
- 13 If less misunderstanding, my interpret
- 14 this means less deficiency, fewer deficiencies.
- 15 And finally, reviewers saves time,
- 16 roughly 20 percent. This is because they don't have
- 17 to type all of the tables and facts stuff and avoid
- 18 a lot of transcription and errors. I think more
- 19 important is we implement the QBD and the savings is
- 20 actual, is bonus.
- 21 Now this slides have been shown a couple
- times, each time shows we have more information

- 1 because we keep track all the activity going out.
- 2 And when in February 2005, in February 2005 when I
- 3 gave a talk to GPhA, Chai Wi say we plan have two
- 4 years to implement. We plan to have fully
- 5 implementation of QBR in January 2007. January
- 6 2007.
- 7 And at the last year's GPhA, technical

- 8 committee meeting, which was in October, we stated,
- 9 we planned to implement January 2007.
- In June of (inaudible) drug information
- 11 association meeting we state we planned to implement
- 12 2007, January 2007. Today I want to state again, we
- 13 plan to fully implement January 2007. We do not
- 14 expect any delays.
- What is the challenge is facing us? As
- 16 you can see, our new review system under QBR, we
- 17 heavily rely on the quality of QOS prepared by
- 18 sponsors and we receive so many applications, more
- 19 than 30 application will look, ran through, we find
- 20 some issues by all reviews. Many cases they are too
- 21 long, non-critical information, sometimes leave out
- 22 questions, sometimes there's inconsistent between

- 1 quality over summary and the body of data.
- 2 Systems errors, I hoping the sponsor
- 3 will correct them in the future. And OGD's action
- 4 is a communication. And, in fact, after we discover
- 5 this issue, we arrange teleconference call with them
- 6 and we will provide training to generic sponsors
- 7 October 20th in how to prepare high quality QOS.
- 8 In fact, Gordie will tell me the day

- 9 before yesterday already more than 90, 91, right,
- 10 register for this workshop, even though I guess GPha
- 11 just announced past Monday -- this Monday? This
- 12 Monday, thank you.
- 13 And that challenge for external and the
- 14 challenge for us, the true challenge for us is
- 15 knowledge of formulation and manufacturing science.
- As I state, we transform from
- 17 specification-based review to quality by design
- 18 based review. That require all of you to understand
- 19 formulation, to have a knowledge of formulation, to
- 20 have a knowledge of manufacturing science and we're
- 21 really proud of our chemists, they are working very
- 22 hard and for the fiscal year 2006 we approve 510

- 1 applications, another historical record and we're
- 2 really proud of them, yet when we move into QBD, we,
- 3 they have to master knowledge of the formulation and
- 4 manufacturing science.
- 5 So, therefore, we take some actions,
- 6 including recording, internal trainings, we provide
- 7 all seminars, workshops. In fact, we provide
- 8 internal training and we invited the members from
- 9 the OTR, give us the talks on the manufacturing

- 10 science, whilst inviting industry experts,
- 11 everybody, we can't invite them, give us a talk and
- 12 we have external trainings.
- 13 And you can see that I want to thank you
- 14 NIPTE. NIPTE is for give us humongous discount,
- 15 which I cannot disclose at this conference,
- 16 humongous discount.
- 17 And we have, at the beginning I thought
- 18 we going to send it to probably two or three real
- 19 chemist to go to, during the Summer, in August to go
- 20 to Purdue to have a training. You know, during
- 21 August it's probably after, say, the west is not
- 22 best place to have vacation, you should go to beach
- 0283
 - 1 or mountains, but yet we have so many review
 - 2 chemists that decide to go there to have training
 - 3 and so it's a really, really touching and effort is
 - 4 very rewarding.
 - 5 Finally, next steps, we have a risk
 - 6 assessment, a supplement reduction with you know
 - 7 what to do, because this what have to be, we have to
 - 8 finish before we fully implement all QBR.
 - 9 We are planning to provide two
- 10 opportunities for the supplements reduction for QBR,

- 11 ANDAs, at the time approval. We are planning a
- 12 significant number of reduction and I can say at
- 13 least 50 percent, up to 80 percent.
- We are also planning because of the
- 15 request of GPA, planning for all ANDAs at the
- 16 sufficient product commercial manufacturing history,
- 17 history that will provide a relief for supplemental
- 18 changes. Details stayed on.
- 19 Conclusion, after the generic drugs is
- 20 implementing a new pharmaceutical quality assessment
- 21 system that enhance the quality of the generic
- 22 drugs, that improves the review quality and

- 1 consistency, reduce the review time and reduce,
- 2 reduce supplements.
- With that, I conclude my talk. Any
- 4 comments and criticism I welcome. Thank you.
- DR. GLOFF: Thank you.
- Any questions, requests? Dr. Meyer,
- 7 then Dr. Venitz.
- B DR. YU: You are not allowed.
- 9 DR. MEYER: Pardon me?
- DR. YU: I'm just joking, you are not
- 11 allowed.

- Go ahead.
- DR. MEYER: One of the key driving
- 14 forces it seems to me in the generic world when
- 15 you're developing a product is to have a successful
- 16 bioequivalence study and when you do your pilot
- 17 batch, let's say, and you fail and you go back and
- 18 you correct the formulation as monitored by
- 19 dissolution, let's say, and you go into humans again
- 20 and you fail again and you do that a couple of times
- 21 and you finally, aha, I got it right, send that off
- 22 to the agency and hope for approval.

- 1 The agency right now doesn't demand the
- 2 failed bioequivalence studies is my understanding
- 3 and that seems to be a key element of understanding
- 4 how the formulation impacted the product at least
- 5 from the marketed formulation point of view.
- 6 DR. YU: You're correct, but let me
- 7 explain a little bit.
- 8 First of all, in the generic drug
- 9 approvals, you have to design the product to be
- 10 equivalent, either, sometimes we call it quality by
- 11 design or pharmaceutical equivalent, and then
- 12 confirm by further studies. And by further studies

- is, is either submitted to our division or division
- 14 bioequivalence.
- 15 And in our pharmaceutical development
- 16 report, we want, you provide -- we want the generic
- 17 sponsors to share with us the product development
- 18 history. In other words, if you tried the first
- 19 time and you failed and you tried again, those, a
- 20 very brief history in summary are to provide in your
- 21 pharmaceutical development report. Our chemist will
- 22 evaluate those development report.

- 1 Regarding field device studies, I think
- 2 director Gary Buehler can provide a more clear
- 3 comment on that one.
- 4 MR. KOZLOWSKI: Yeah, just to clarify
- 5 what Lawrence said, in the pharmaceutical
- 6 development report, we don't want all the data from
- 7 your failed bioequivalent studies, but basically we
- 8 want a statement saying we did this with this
- 9 formulation and it failed, so we made this change in
- 10 the formulation, we tried again and that failed, so
- 11 we made this change.
- So basically in that pharmaceutical
- 13 development report, we're interested in the CMC

- 14 portion of it, why it failed and what changes you
- 15 made in the formulation.
- Now as far as the failed studies and you
- 17 know our interests in the failed studies, that's a
- 18 totally different sort of, you know, basket of
- 19 apples. There we're only interested in the
- 20 formulations that are related to the to be marketed
- 21 formulation and we are working on a rule for this
- 22 and we're still working on it. We hope to get it

- 1 out soon, but, you know, don't -- I wouldn't get
- 2 into that. But we are working on it.
- We do recognize the problem. We
- 4 recognize that there is valuable information in
- 5 seeing these failed studies and we want to see them
- 6 and hopefully in the not too distant future we will
- 7 be able to get that out.
- 8 DR. MEYER: One 15-second question. I
- 9 notice on your second slide you have a series of
- 10 pentagons that get larger and larger, is that to
- 11 contrast the military budget with the FDA's?
- 12 (Laughter).
- DR. YU: That's one, okay.
- 14 Let's give the thing a class, thank you.

- DR. NASR: We are not even on that
- 16 slide.
- 17 DR. GLOFF: Dr. Venitz?
- DR. VENITZ: Dr. Meyer asked my
- 19 question.
- DR. MEYER: Oh, okay.
- 21 DR. GLOFF: Thanks.
- 22 Any other clarifications?

- Okay, then, we'll move on to
- 2 Dr. Kozlowski and then when his presentation is
- 3 finished with any clarifications, we will then take
- 4 a short break.
- DR. KOZLOWSKI: I'd like to thank the
- 6 committee for having the opportunity to speak.
- 7 I'd like to start off when I was in the
- 8 audience I noticed that the colors from this
- 9 projector are different from that and I found that
- 10 it bothered me a lot and I was thinking what John
- 11 Berridge said in the morning that we have to embrace
- 12 variability and I realized just what a challenge
- 13 that is for us.
- So, I'd like to start with an overview
- of what I'm going to talk about. OBP products, the

- 16 type of products that we have, and how quality by
- 17 design can be applied to them, the issue of relevant
- 18 product attributes, because I think the more complex
- 19 your product is, the more of a challenge it is to
- 20 define relevant product attributes.
- 21 Manufacturing process for the biotech
- 22 products and how that would fit into QBD and then

- 1 finally implementation. And I think the other two
- 2 offices have much more formal implementation plans
- 3 that have already achieved particular goals.
- 4 I think our office is beginning to think
- 5 about how to have such implementation plans.
- 6 So, OBP products are mostly proteins,
- 7 growth factors, enzymes, toxins, and also monoclonal
- 8 antibodies which are becoming a big part of the
- 9 biotech product lines. Our products are usually
- 10 produced from cell culture, recombinant or
- 11 non-recombinant various substrates and also
- 12 transgenic plants and animals and because of their
- 13 source material they have unique issues with
- 14 adventitious and endogenous agents and their
- 15 purification and their manufacturing involves a
- 16 number of somewhat different risks than other

- 17 products.
- The products I'm talking about were
- 19 transferred from CBER to CDER in October of 2003 and
- 20 I think the relationship between process and product
- 21 is interesting in coming from that scenario, that
- 22 background. And then there are protein products

- 1 regulated, you know, in Moheb's group in ONDQA, so
- 2 these are not the only protein products within CDER.
- 3 So complex molecules, there's obviously
- 4 the sequence, there's higher order structure, post
- 5 translational modifications and a lot of
- 6 heterogeneity in these products, a lot of
- 7 variability. It's not a single product.
- 8 And so to contrast the statin with a
- 9 monoclonal antibody, obviously molecular weight,
- 10 there's a huge difference, just in terms of looking
- 11 at the structure, this is a third of a monoclonal
- 12 antibody or an Fab. And the varying, variance of
- 13 the monoclonal antibodies are far larger in size
- 14 than the statin, itself, is.
- 15 So, historically these products were
- 16 regulated as biologics within CBER and one of the
- 17 attributes of crude biologics in terms of how they

- 18 were regulated was we could never know what mattered
- 19 in terms of attributes.
- So, I have a triangle here linking
- 21 clinical parameters to manufacturing process to
- 22 quality attributes. And the way these were

- 1 regulated in the past is we sort of ignored the
- 2 attributes. Obviously there was testing done, but
- 3 the process was defined as the product.
- 4 So if you changed the process at all,
- 5 you really had to re-evaluate the product
- 6 clinically.
- 7 With the advent of a number of new ideas
- 8 such as specified biologics, well-characterized
- 9 biologics, for these products the attribute
- 10 component of this triangle became more important and
- 11 there was the idea that by understanding some of the
- 12 attributes, one could then avoid having to repeat
- 13 clinical studies for any process changes and the
- 14 whole idea of comparability for these products
- 15 extended from this concept of specified or
- 16 well-characterized biologics.
- 17 How has quality been regulated for these
- 18 well-characterized products. So I'd say in good

- 19 cases there's a comprehensive QBC, or quality by
- 20 control strategy. And that involves looking at the
- 21 process in a variety of ways, facilities and
- 22 equipment, control of raw materials and aspects of

- 1 which in the case of good companies are very QBD
- 2 like, such as process robustness. At the same time,
- 3 one looks at the product and looks at the testing of
- 4 the product and the data supporting that testing.
- 5 And so all this together has led to I
- 6 think good quality products over time, but clearly
- 7 there's room for improvement in implementing more of
- 8 these in a systematic way as Moheb described.
- 9 So again, I'm not going to go through
- 10 the definitions of quality by design, you've heard
- 11 them numerous times, but I will take the circle that
- 12 Lawrence took advantage of in referring to and I'll
- 13 be referring to Moheb's circle, too, because I think
- 14 that's an excellent way of encompassing a lot of the
- 15 issues of quality by design as a complete system and
- 16 I'd like to divide that into two pieces.
- 17 And say that if you take the triangle
- 18 that I pointed out before, one side of the circle
- 19 relates to the relationship between attributes and

- 20 between process. So if you know your attributes and
- 21 then you can relate that to the process, that's the
- 22 kernel that defines many of the activities involved 0293
 - 1 in that half of the circle.
 - 2 The other side of that is linking safety
 - 3 and efficacy to the product attributes. And I think
 - 4 for biotech products, the sort of lower triangle
 - 5 linking attributes to process is, in fact, has its
 - 6 own unique challenges for unique processes, but that
 - 7 concept is very similar in this broad principles to
 - 8 that of small molecules.
 - 9 I think the upper triangle, which deals
- 10 with linking attributes to safety and efficacy, may
- 11 be a more complex problem for products that have
- 12 many, many attributes, many of which the impact of
- 13 is unknown.
- 14 So, to move to that issue, product
- 15 attributes. So when we look at complex biologics,
- 16 the question is how many quality attributes can we
- 17 even measure, not how much are relevant to begin
- 18 with, but how many can we even measure.
- 19 So when we test these products, they are
- 20 release tests. And those truly are the tip of the

- 21 iceberg. They tell us very little about the overall
- 22 complete structure of the product, but hopefully

- 1 they are selected to be reasonable, reasonable
- 2 attributes that relate to safety and efficacy.
- 3 There's characterization in which we
- 4 move further down the iceberg and we get a better
- 5 idea about truly the overall structure of our
- 6 products.
- 7 And characterization is an area now
- 8 where there's been massive expansion for these
- 9 products. And finally, there's the process and just
- 10 like originally for these biologic products or
- 11 biotech products, the process was the product.
- Now the process is at part of the
- 13 product that we don't really understand.
- Now characterization, as I said, has
- 15 expanded greatly and things like mass spectroscopy,
- 16 NMR and using orthogonal methods has truly expanded
- 17 the ability to look at this and how big that
- 18 question mark is at the bottom of the iceberg I
- 19 think really is an open question. Certainly for the
- 20 more simple proteins, that may be a very, very small
- 21 space. For the more complicated ones, there may

- 22 still be something to that buried under the water.
- 0295
- And again, to talk about complexity. So
- 2 if you think about attributes and you think about
- 3 combinations of those attributes, you can get some
- 4 massive numbers.
- 5 So this is a monoclonal antibody
- 6 framework. I've listed some of the common variants
- 7 that we see all the time in applications that
- 8 involve monoclonal antibodies, from cycling of
- 9 agglutinated the end terminus to clipping of alysing
- 10 at the C-term Lys to deamidation, oxidation in
- 11 different glycoforms.
- 12 If you look at all these and, again,
- 13 these are typical numbers from what you see in a
- 14 product, if you work out all those combinations, you
- 15 have almost 10,000 possibilities for half an
- 16 antibody.
- 17 If you believe those are truly
- 18 independent, and I don't think that's the case, but
- 19 if one says that and you kick the other half of the
- 20 antibody together, you have 10 to the 8th potential
- 21 combinatoric variance, so how do you even begin to
- 22 deal with this number.

- 1 And I think most of the time what we do
- 2 now and rightly so is we do an informal risk
- 3 management. We say many of those things don't
- 4 matter, the levels at which many of those things can
- 5 be measured aren't achievable yet, so we're not
- 6 worrying about them, but they remain part of the
- 7 question.
- 8 So again, how do we figure out which of
- 9 those are relevant. So Q6B, the ICH guideline on
- 10 specifications for biotech products talks about
- 11 defining the molecular and biological
- 12 characteristics related to safety and efficacy. And
- 13 can we define them often, it's extremely difficult.
- 14 Our default is to look at many attributes which is a
- 15 burden on any industry and not necessarily the right
- 16 plan long-term.
- 17 And one of the areas in which I think
- 18 one can make progress here is biological
- 19 characterization. We know an awful lot about
- 20 physiochemical characterization for these products
- 21 and that's expanding. The tools to link those
- 22 attributes to function will really enhance our

- 1 ability to eliminate consideration over many of
- 2 those things that are unimportant and to talk about
- 3 one way that that's already happening in the hands
- 4 of some company is sort of matrixing and using
- 5 systems like information from all the product
- 6 development.
- 7 So in the development of these products
- 8 there are a lot of lots, certainly different than a
- 9 generic situation where you may only have a few
- 10 lots, but these are complex products. In the hands
- of most manufacturers, they go through a number of
- 12 iterations. So they are developed lots, they are
- 13 stressed lots, there are sometimes variants which
- 14 the company will want to purify because they are
- 15 uncertain about their effects. They are the
- 16 extremes that go in the clinic, a narrower range
- 17 than those other lots, but still with some
- 18 variability and then there's the whole spectrum of
- 19 lots that go in the clinic.
- 20 And those lots can be looked at in terms
- of multiple cellular assays, which are often done
- 22 anyway to develop the final potency assay, small

1 animal and complex bioassays which, again, are often

- 2 done in candidate selection and development, and
- 3 then clinical pharmacology and clinical studies
- 4 themselves.
- 5 And finally, when there's a validated
- 6 bioassay, all those lots should be looked at, if
- 7 possible, in that assay.
- 8 And although any bit of information here
- 9 alone isn't necessarily all that reliable, it's like
- 10 the story of a bunch of people who are blindfolded
- in a room with an elephant and one feels the trunk
- 12 and one feels the tail and one feels the side.
- 13 Alone that information isn't good, but if there's
- 14 communication, then it may very well be there's a
- 15 lot that can be learned from this. And we certainly
- 16 have used information like this in allowing sponsors
- 17 to broaden specifications and to discuss the
- 18 importance of specifications with us.
- Now, all this information together makes
- 20 one thing about how to define critical quality
- 21 attributes. And one talks about design space for
- 22 manufacturing, there can also be a multivariate

- 1 approach to critical quality attributes.
- 2 And again, in linking attributes to

- 3 safety and efficacy, it may be that there is a range
- 4 for a particular glycoform, but that range changes
- 5 in the presence of another glycoform or in the
- 6 presence of a charge variant. And so in an ideal
- 7 world, critical quality attributes for these
- 8 products would consider interactions.
- 9 Granted, again, with all these possible
- 10 interactions, 10 to the 8th, this is a futile
- 11 exercise to be done in a non-thought out way. But
- 12 there are clearly examples where attributes really
- might both affect PK or might both affect
- 14 immunogenicity in a clear way. Looking at them
- 15 together would be a very useful way in defining the
- 16 space that one can operate in for a product
- 17 attribute.
- 18 Now, you define these attributes, often
- 19 they are done, even by the best of industry now, on
- 20 the product they have made. Now is the product they
- 21 have made the product they really wanted to make.
- 22 And again, going back to the early