- Just one very brief question, and then I'll let
- ² you move on.
- Was there an internal examination on the
- ⁴ females or just external?
- DR. PARISI: My understanding is that, for the
- ⁶ females, particularly those who had the concerns
- ⁷ about the clitoromegaly and the labial scrotal
- ⁸ fusion or the other?
- 9 DR. JOHNSON: All infants.
- DR. PARISI: I do not believe there was an
- 11 internal examination. That was not the standard of
- 12 the physical exam.
- DR. JOHNSON: Thank you.
- DR. VISCARDI: Thank you. I am an
- ¹⁵ neonatologist, so some of my questions are going to
- 16 focus on the neonatal outcomes.
- 17 I quess my first comment is, as I looked at the
- ¹⁸ table that was provided to us on outcomes, all of
- 19 the morbidities were fairly low.
- And then I realized that, yes, these are --
- ²¹ many of these are babies who are born greater
- 22 than 32 weeks, but I also wondered if the incidences

- 1 that are given -- for instance, like for intra-
- ² ventricular hemorrhage, to diagnose that, you have
- ³ to have done a cranial ultrasound.
- 4 And was this just recorded if they had an
- ⁵ ultrasound done, or was that part of the protocol?
- And how many ultrasounds did each of the babies
- ⁷ have?
- Because, again, you're only going to ascertain
- 9 whether they had that outcome if you did more than
- ¹⁰ one ultrasound.
- The other cranial ultrasound outcome that would
- 12 have been of considerable interest is
- 13 peri-ventricular luekomalacia and that was not
- ¹⁴ reported.
- 15 So I was just curious as to whether that just
- 16 was not found in any of the infants or whether
- 17 that wasn't looked for or recorded?
- And the other incidence that was reported to be
- 19 different was the patent ductus arteriosus.
- And, again, depending on the unit, they may
- ²¹ diagnose that either as a clinically significant PDA
- ²² on clinical findings, whereas other units might make

- 1 that diagnosis by screening all infants of a
- ² particular size by doing a cardiac echocardiogram.
- So, again, I wasn't sure if there was specific
- ⁴ criteria for which some of these diagnoses were
- 5 made?
- DR. HICKOK: Yes. Let me review with you just
- ⁷ briefly the findings on this.
- And, again, in the study, because these were
- 9 not primary endpoints of the study that were looked
- 10 at, there was not a pre-specified, for example, you
- 11 know, an intra-cranial ultrasound shall be done on
- 12 all infants and shall be done every two to three
- ¹³ days, or things like that.
- So we do know that the physicians managing
- 15 these patients actually manage them clinically as
- 16 they would, and there was not, you know,
- ¹⁷ pre-specified tests that would be ordered at a
- 18 regular interval like this, and that the
- 19 intra-ventricular hemorrhage was a diagnosis by
- ²⁰ ultrasound.
- Your second question, I think, unless you have
- ²² another comment about that, relates to PDAs?

- DR. VISCARDI: Well, I guess this would actually
- ² go towards both of those, in that the incidences are
- ³ then given for the total sample when and what should
- 4 have happened is the incident should have been given
- ⁵ for those who actually had a scan done.
- And I don't know if that was different between
- 7 the two samples.
- 8 So could the difference that you're seeing just
- 9 be because you did more scans in one sample than the
- 10 other?
- Because the other thing I can tell you is in
- 12 most units they're not going to do ultrasounds
- 13 routinely in babies over 32 weeks unless there is
- 14 some clinical reason to suspect an intra-cranial
- 15 problem, like seizures or an enlarged head, or, you
- 16 know, some clinical indication. But they're not
- ¹⁷ going to screen all those children.
- 18 And some units have a very specific criteria
- 19 for which they -- you know, they do one in the first
- 20 week, and a month of age, and prior to discharge,
- ²¹ and may do several in between.
- 22 And the number of scans matter as to whether

- 1 you'll make that diagnosis or not.
- DR. HICKOK: Again, I believe that the study was
- ³ done, and these findings recorded, based on clinical
- ⁴ examination, with the assumption that the most
- ⁵ severe intra cranial hemorrhages, at Grade 3s and
- ⁶ Grade 4s, that the majority of those would
- ⁷ probably be detected because of suspicion from, you
- 8 know, the clinical findings of the baby.
- 9 But we do not have, you know, pure incidence
- 10 rates, as you have pointed out.
- DR. VISCARDI: I guess the other thing to point
- 12 out, was you reported the total incidence of IVH,
- 13 but, in fact, since severity is Graded from 1 to 4
- 14 with 1 and 2 being considered more mild and maybe
- 15 having less impact on the child's later development;
- 16 but, as you point out, Grade 3 and 4 being more
- 17 severe, there was no Grade 3 and 4 in the placebo
- 18 group. The only Grade 3 and 4s were reported in the
- ¹⁹ treatment group.
- DR. HICKOK: Yes. And --
- 21 DR. VISCARDI: And the only reduction in IVH was
- 22 in Grade 1 and 2.

- DR. HICKOK: Yes. And the data that you're
- ² referring to, again, when we broke these -- I'm
- ³ sorry, when we broke these out by Grade 3 versus
- ⁴ Grade 4, there were, you know, two cases in the 17-p
- ⁵ group, Grade 3 or 4 versus none in the placebo
- ⁶ group.
- And other rates of intra-cranial hemorrhage;
- 8 again, 0.3 percent versus, I'm sorry, I can't see,
- ⁹ thank you, versus 1.3 percent.
- But, again, there's a lot of variability in
- 11 these numbers because, as you pointed out, they're
- 12 low-level incidence rates.
- And the study, itself, was looking primarily at
- 14 pre-term birth prevention and prolongation of
- 15 pregnancy.
- These neonatal outcomes are certainly of
- 17 importance, but it would have been a much more
- 18 complicated study had there been a lot of
- 19 pre-specified examinations done on children during
- ²⁰ that time period.
- 21 You also asked me a question about patent
- 22 ductus arteriosus, and I would be pleased to --

- DR. VISCARDI: I guess my question was, was that
- ² diagnosis made if it was a clinically diagnosed PDA,
- ³ or was it on the basis of a cardiac echocardiogram,
- 4 which gets back to the same point that -- with the
- ⁵ IVH; that if it's based on a screening test, then
- ⁶ the denominator should be the number of children who
- ⁷ were screened?
- DR. HICKOK: Yes. I'd like to actually ask Dr.
- 9 Michael O'Shea, a neonatologist, at Wake Forest
- 10 University, and ask him, at Wake Forest, at the time
- 11 that this was done what general diagnostic criteria
- 12 were used, Dr. O'Shea, at that point?
- 13 Again, recall that Wake Forest was one of the
- ¹⁴ 17-p study centers.
- DR. O'SHEA: Mike O' Shea from Wake Forest.
- I think Dr. Viscardi's point is well taken.
- ¹⁷ There probably is an ascertainment bias, in that, at
- ¹⁸ Wake Forest, and I suspect many center, cardiac
- 19 echos are done not on a screening basis but rather
- ²⁰ if symptoms develop, then later dependency.
- I think the same is also true for the
- 22 ascertainment of intra-ventricular hemorrhage.

- 1 However, necrotizing enterocolitis, I would suspect
- ² to be less subject to ascertainment bias, and
- ³ certainly days on the ventilator would be, I think,
- 4 very unlikely to be very affected by ascertainment
- ⁵ bias.
- DR. HICKOK: All right. Thank you.
- And I certainly don't want to ignore Dr.
- ⁸ Davidson and his question about the heart
- ⁹ abnormalities.
- I would be pleased to turn back to that, if you
- 11 would like me to, Dr. Davidson?
- 12 (Pause.)
- DR. HICKOK: In terms of the cardiac findings,
- 14 as we stated before, there is a low rate of cardiac
- 15 abnormalities that were observed at birth, in both
- 16 in the 17-p and the placebo groups.
- And these rates were 0.5 percent in the 17-p
- 18 versus 0.5 percent in the placebo.
- 19 And going back to the previous question, just
- 20 about the incidence of about patent ductus
- ²¹ arteriosus, again, it was slightly higher in the
- ²² placebo group.

- 1 At the time of the follow-up study
- ² examination, as I mentioned before, there were a
- ³ number of infants in the 17-p group that had the
- 4 check box, you know, indicating that there were
- ⁵ areas in the heart examination.
- And, specifically, 4.6 percent of the infants
- ⁷ in the 17-p group had a heart murmur and 0.5 percent
- 8 were recorded as having an irregular rhythm.
- 9 What NICHD did at that time is to go and look
- 10 at other parts of the follow-up examination in terms
- 11 of functional capabilities, and things like that.
- 12 And then, also, to go back to the initial
- 13 birth hospitalization and look for, you know,
- 14 problems that occurred during that period of time.
- And it was determined, again by NICHD, that all
- 16 of these children that had murmurs noted in the
- 17 infant follow-up study did not have any indication
- 18 of ongoing functional disorders, and in one case had
- 19 a cardiac -- one of the cases there was a cardiac
- ²⁰ anomaly noted at birth with no further follow-up.
- One of the cases there was a patent ductus
- ²² arteriosus.

- And, again, I would just like to remind people,
- ² as Dr. Parisi pointed out, that the heart is
- ³ essentially formed by the time 17-p is administered
- ⁴ at this point in pregnancy. Nonetheless, these are
- ⁵ good questions.
- DR. GILLEN: Yes. You noted earlier that, based
- ⁷ upon the results of a formal in-term analysis, that
- 8 DSMC had recommended termination on this study
- ⁹ early.
- I was wondering if you could specify the
- 11 stopping rule that was used in the protocol, and
- 12 also how many previous interim analyses had taken
- 13 place, if any? And what points, in terms of numbers
- ¹⁴ of patients enrolled, those had taken place?
- DR. HICKOK: Yes, thank you.
- And I'd like to invite our bio-statistician,
- 17 Dr. Anita Das, up here to respond to that.
- DR. DAS: Anita Das, representing Adeza.
- 19 The Data Safety and Monitoring Committee
- 20 interim analysis, use a land of mats procedure
- 21 with an O'Brien Fleming (ph) boundary.
- 22 And there were two previous analyses conducted.

- ¹ The first time when 15.2 percent of the patients had
- ² been enrolled, and then the second time when
- ³ approximately 70.2 percent of the patients had
- 4 actually not been enrolled but completed follow up.
- 5 And at the second meeting, the efficacy had
- ⁶ crossed the bounds, and the boundary was 0.015, and
- ⁷ that's when the DSMC stopped the study.
- And, at that time, 463 patients had been
- ⁹ enrolled.
- DR. GILLEN: And the results that we are seeing,
- 11 are they adjusted at all in terms of the point
- 12 estimates or, inference that we're seeing, adjusted
- 13 for the interim analyses that took place?
- 14 DR. DAS: Yes. The primary outcome of pre-term
- ¹⁵ delivery less than 37 weeks is adjusted for the two
- 16 interim analyses.
- The final alpha level is 0.035.
- DR. GILLEN: Okay. Thank you.
- DR. DAVIDSON: Dr. Steers.
- DR. STEERS: Yes.
- While it is recognized that 17-p was
- 22 administered probably after genital development was

- 1 complete, my theoretical concern is, given this drug
- ² has been around since the 1950s, is there any
- ³ available data at the time of puberty or after
- ⁴ puberty, sexual function, fertility and
- ⁵ reproductive function in children, who had been
- 6 exposed in utero to this drug, especially germane
- ⁷ with the congenital hyperplasia concerns that have
- 8 been raised in adulthood and the long-term effects?
- 9 Is there -- they had any either animal data
- 10 with reproductive function or human data that
- ¹¹ anyone's aware of?
- DR. HICKOK: We're not aware of animal data on
- 13 17-hpc and reproductive function.
- 14 There is some information that I will present
- 15 to you here that may be pertinent.
- Dr. Charney, would you like to describe -- or
- ¹⁷ Dr. Singh?
- Dr. Pamela Singh, whose interest is in
- 19 preclinical studies and toxicology, and she will
- 20 describe the findings from this one study that is
- ²¹ pertinent, I believe, to your question.
- DR. SINGH: Pamela Singh, representing Adeza.

- Excuse me, first, I'd like to request a
- ² different slide.
- DR. HENDERSON: I'm sorry?
- DR. SINGH: That's all right. I'll ask A/V to
- ⁵ help me out with a different slide.
- 6 (Pause.)
- DR. SINGH: And, specifically, I'm only going to
- 8 speak to the point of the animal studies, and then,
- ⁹ perhaps, I can pass this question on to Dr. Melissa
- ¹⁰ Parisi.
- Okay. So the question really was, are there
- 12 any animal studies that indicate any issues with
- 13 congenital anomalies.
- And, yes, in fact, there were animal studies;
- ¹⁵ however, these were negative.
- And I'd like to point you to the slide that
- 17 will be up shortly.
- Okay. So in the rodent model for reproductive 18
- 19 toxicity, teratogenicity was evaluated in mice.
- 20 And, as you can see, in the C-57 block, six mice,
- ²¹ there was no teratogenicity or maternal toxicity up
- 22 to 10 times the clinical dose.

- And then, also, in Swiss Webster mice, a
- ² different strain, teratogenicity was tested up to
- ³ approximately 200 times the clinical dose. This, in
- ⁴ fact, by a subcutaneous route.
- 5 However, at that extreme amount of exposure
- ⁶ you would imagine that the systemic exposure was
- ⁷ certainly well beyond the clinical.
- 8 So, again, you see two negative studies in
- ⁹ terms of teratogenicity in mice, with 17-hpc the
- ¹⁰ active.
- Now, I'd like for you to look at the non-human
- 12 primate data.
- You'll notice this slide has shifted upwards.
- 14 I actually -- the title of the slide is "17-hpc
- ¹⁵ Teratogenicity Data in Rhesus and Cynomolgus
- 16 Monkeys."
- 17 So there are actually two different species of
- 18 monkeys here. You just can't see it because it's
- 19 above the line on the screen there.
- But the important part of this slide is just
- 21 that studies were conducted in both Rhesus and
- ²² Cynomolgus monkeys to evaluate teratogenicity in

- ¹ 17-hpc, and no teratogenicity was found.
- And I'll point out that, in this study,
- ³ treatment -- exposure actually occurred earlier than
- ⁴ clinically indicated.
- 5 It was during the first third of gestation when
- ⁶ treatment was initiated; whereas, in the clinic,
- ⁷ exposure is not initiated during the first
- ⁸ trimester. That is one point to consider.
- 9 And then I also want to just point out that
- 10 this is an intramuscular injection just like the
- 11 clinical round of exposure.
- DR. STEERS: My question isn't directed at
- 13 teratogenicity; more as, did they let the primates
- 14 grow through adolescence and adulthood and look at
- 15 reproductive potential or sexual functioning in
- 16 these animals? That's the point I'd like to make.
- DR. SINGH: Okay. So those two sets of studies
- 18 in rodents and non-rodents, did not look at an
- 19 evaluation of sexual functioning, as you say.
- They were just under fairly standard
- ²¹ teratogenic evaluation, which, as animals go through
- ²² the Caesarian -- there is the Caesarian section and

- ¹ then there is an evaluation, of the fetuses at that
- ² point.
- However, there are other studies that I don't
- ⁴ actually have a slide prepared for but that did
- ⁵ evaluate an F-1 generation in mice.
- 6 And there are some data that suggests that
- ⁷ there may be interference with male spermatogenesis.
- ⁸ But, to my knowledge, that is the only interference
- ⁹ that I've seen on a non-clinical.
- DR. HICKOK: Dr. Steers, would it help you if we
- 11 looked more on molecular level to, you know, how 17-
- 12 p is metabolized, and androgenic or estrogenic
- 13 properties? Would that be of assistance to you?
- DR. STEERS: Well, it is not so much the acute
- 15 effects, but, obviously, if this is a chronic
- 16 exposure in uteral to receptor development, et
- 17 cetera, that you might not see expression until
- 18 during puberty or later of things like genital
- 19 growth, things like sexual orientation, things like
- ²⁰ sexual functioning.
- So it would almost be in case reports of
- 22 anything long-term, or even like fertility, on what

- 1 would happen with spermatogenesis in particular, if
- ² these levels are raised, and what would happen long
- 3 term.
- 4 DR. HICKOK: Yes. I would like to remark that
- ⁵ there is, you know, the ADR and AERS database that
- ⁶ are available; again -- you know, going back some 30
- ⁷ years, that can be voluntarily brought up, you know,
- 8 in response to questions about Delalutin because it
- ⁹ was approved in 1955.
- We have reviewed those data and found really no
- 11 consistent patterns of things like that that were
- ¹² noted.
- Of course, there is not good denominator data
- 14 for that, but the AERS/ADR database does provide a
- 15 way at identifying safety concerns.
- DR. STEERS: Do we have access to that database
- 17 from the Delalutin data as long-term?
- DR. HICKOK: I'm sorry, I didn't --
- DR. STEERS: Do we have access to that database
- 20 for safe, long-term follow-up from the Delalutin?
- DR. HICKOK: There is -- there are database --
- 22 the AERS and ADR databases, specifically, for

- 1 Delalutin, yes. And we have reviewed those.
- DR. DAVIDSON: Dr. Carson.
- DR. CARSON: I have several related questions,
- 4 so let me just ask them and then you can discuss
- ⁵ this.
- They all are based on the fact that I noticed
- ⁷ the impressive wide-range of body mass index in your
- ⁸ patients in the study, from a BMI of 15 to 72.
- 9 And it made me wonder how you came up with the
- 10 dose to treat all these patients at the same dose,
- 11 and whether you compared efficacy in groups of
- 12 obese, overweight, et cetera, in groups of body mass
- 13 index?
- And, then, finally, what kind of serum
- ¹⁵ concentrations you had in all of these patients?
- DR. HICKOK: Let me answer your questions
- ¹⁷ separately here if I can.
- 19 dose study. It was to replicate that some of these
- 20 very promising findings that had been identified
- ²¹ before, so there was not consideration given to, you
- ²² know, looking at variable different doses.

- The 250 mgs per week that was administered, you
- ² know, again from 16 through 37 weeks of gestation or
- ³ delivery, was noted to be effective in a number of
- 4 these other studies, so there wasn't any notion at
- ⁵ the time of varying that dose.
- And, in fact, the degree of efficacy was so
- ⁷ great one might even argue that, you know, why try
- 8 it when you've got 34 percent reduction in pre-term
- ⁹ birth, over all, you know, should you look beyond
- 10 that.
- 11 The second part of your question, I believe,
- 12 related to serum studies.
- Serum studies were not part of the evaluation
- 14 of the NICHD study. We do have some PK studies that
- 15 we would -- and serum studies that we would be
- 16 pleased to present to you, if that would be of help?
- DR. CARSON: I would like to see that. Do you
- ¹⁸ have it with you?
- DR. HICKOK: Yes. Yes.
- DR. CARSON: Oh, great.
- DR. HICKOK: I'm going to invite Dr. Martha
- ²² Charney up, who is going to describe about what is

- 1 known about pharmacokinetics.
- DR. CARSON: And this is in pregnant women?
- DR. HICKOK: This is not in pregnant women.
- ⁴ This is in a sample of women, as she'll describe to
- ⁵ you, that were not pregnant at the time.
- DR. CHARNEY: Martha Charney, representing
- ⁷ Adeza.
- There was one published study, which was all we
- ⁹ could find in the literature, on the
- ¹⁰ pharmacokinetics of 17-hpc.
- 11 This shows the single -- the plasma
- 12 concentrations after a single dose of 1,000 mgs
- 13 of 17-hpc to subjects who had endometrial carcinoma.
- Next slide, please, 437.
- 15 From that data -- these are the pharmacokinetic
- 16 parameters, and you can see that the T-Max occurred
- ¹⁷ quite late. That's 4.6 days after injection.
- 18 The C-Max was about 30 nanograms per milliliter
- 19 at this high dose. The half life was 7.8 days.
- 20 And it is my opinion, based on the long T-half
- ²¹ and the long T-Max, that the driving force in the
- ²² pharmacokinetics of 17-hpc is actually the

- 1 release of the drug from the intramuscular depot.
- And, given that, I think that would be
- ³ independent of whether or not it was a pregnant
- 4 woman or a non-pregnant woman.
- 5 There is additional data that came from the
- 6 same source.
- These were, again, patients with endometrial
- 8 carcinoma who received an initial 5 doses, 1 per
- 9 day, followed by either once weekly or twice weekly,
- 10 and continued administration of the 1000 mgs.
- And you can see that it does tend to level out
- 12 and provide a long-term plateau of concentration on
- 13 that.
- DR. CARSON: So, do you -- I'm sorry, I just
- 15 don't know the nanomole conversion to --
- DR. CHARNEY: Oh, yeah. That's a little
- 17 confusing because they reported it in nanomoles --
- 18 or in micro moles -- nanomoles, and the FDA, for its
- 19 submission, we converted it all to nanograms per
- ²⁰ milliliter.
- 21 But on the single dose study, it was --
- ²² C-Max was approximately 60 nanomoles, which

- 1 converted over to about 30 nanograms per milliliter.
- So the other with the multiple dose, which was
- ³ around 200 nanomoles per liter, would -- I think we
- 4 -- that would be about four times.
- We're talking probably 100 nanograms per
- ⁶ milliliter or less.
- DR. CARSON: But you're using a quarter of the
- ⁸ dose.
- DR. CHARNEY: And we're using quarter of a dose.
- 10 So, yes.
- DR. CARSON: So you're probably raising the
- 12 pregnancy concentration by about 3 percent?
- DR. CHARNEY: Oh, if you're talking about --
- DR. CARSON: With, with 200, you have your
- 15 baseline 17-hydroxyprogesterone in pregnancy, and,
- 16 by giving 250 mgs, you're raising the concentration
- 17 by maybe 3 percent? Is that right?
- DR. CHARNEY: Actually, this is the
- 19 hydroxyprogesterone caproate. It does not
- ²⁰ metabolize to either hydroxyprogesterone or
- ²¹ progesterone. It has a totally different metabolic
- 22 pathway, and I think our chemistry expert, if you

- 1 want, can speak to that.
- DR. CARSON: Yes. So you're measuring the hpc
- ³ rather than just the --
- DR. CHARNEY: Yes.
- 5 DR. CARSON: Gotcha.
- DR. DAVIDSON: Okay. I know we have a number
- 7 of other Committee members who have questions. I
- ⁸ have a list of half dozen. We will probably give
- ⁹ you priority later.
- I want to thank Dr. Hickok for giving us
- 11 this bonus question and answer period.
- 12 (Applause.)
- 13 I think we needed it.
- And let's take a 15-minute break and reassemble
- 15 at 10:45.
- 16 (Recess.)
- DR. DAVIDSON: We have a large agenda, and it is
- 18 really important that we stay on schedule.
- We next have the presentation for the Agency,
- 20 and this will be led with Dr. Wesley.
- DR. WESLEY: I'll give you a few minutes to get
- ²² to your seats.

- 1 (Pause.)
- Advisory Committee members, representatives
- ³ from Adeza Biomedical, representatives from the FDA,
- ⁴ and guests, I am Barbara Wesley, and I am the
- ⁵ primary medical reviewer for this new drug
- ⁶ application, or NDA.
- In my presentation, I plan to review, again,
- 8 the clinical program of NDA 21-945, provide you with
- 9 the FDA analyses of the data submitted, and
- 10 summarize the issues for you to consider.
- The proposed indication for 17 alpha
- 12 hydroxyprogesterone caproate, which I will also
- 13 call 17 hydroxyprogesterone, proposed name Gestiva,
- ¹⁴ is a prevention of pre-term birth in pregnant women
- 15 with a history of at least one spontaneous
- ¹⁶ pre-term birth.
- Gestiva is to be administered in the
- 18 intramuscular route at a dose of 250 mgs once a
- 19 week, beginning between 16 weeks, zero days and 20
- 20 weeks, 6-days gestation, until week 37, or birth,
- ²¹ whichever occurs first.
- 22 An overview of the clinical studies will be

- ¹ presented in the next slide.
- This application included data from three
- ³ studies conducted by the National Institute of
- ⁴ Child Health and Development, Maternal Fetal
- ⁵ Medicine Network Units.
- The initial formulation study, 17-pIF, was a
- ⁷ randomized vehicle-controlled study with a target
- 8 enrollment of 500 subjects, but only 150 subjects
- ⁹ were enrolled and treated.
- 10 It was terminated prematurely due to a recall
- ¹¹ of the study drug.
- 12 The principal efficacy and safety study,
- 13 17pCT-002, had the same design as the initial
- ¹⁴ formulation study.
- 15 It also was to enroll 500 subjects; however,
- 16 because the boundary for the test of significance
- ¹⁷ for the efficacy threshold was crossed before
- 18 enrollment was completed, enrollment in the trial
- 19 was stopped prematurely.
- A total of 463 subjects were enrolled in this
- 21 study; 310 in the 17-hydroxyprogesterone arm, and
- 22 150 in the vehicle arm.

- 1 At the request of the FDA, another study, 17-p
- ² follow-up, was conducted.
- 3 Children whose mothers participated in the
- ⁴ principal safety and efficacy were evaluated for
- ⁵ long-term health and developmental milestones.
- 6 278 children, from 30 to 64 months of age, were
- ⁷ enrolled; 194 from the 17-hydroxyprogesterone arm,
- ⁸ and 84 from the vehicle arm.
- ⁹ An overview of the principal study is shown in
- ¹⁰ the next slide.
- The principal study was a double-blind, vehicle
- 12 controlled trial that randomized subjects 2-to-1 to
- 13 17 alpha hydroxyprogesterone caproate or vehicle.
- 14 Inclusion criteria were pregnant women with a
- 15 history of a previous spontaneous, singleton,
- 16 pre-term birth, who were at a gestational age
- 17 between 16 weeks, zero days, and 20 weeks, 6 days at
- ¹⁸ randomization.
- The main inclusion criteria included a known
- ²⁰ major anomaly.
- I want to make sure I said "exclusion
- ²² criteria."

- Included a main -- a known major anomaly, prior
- ² progesterone or heparin treatment in a current
- ³ pregnancy, a history of thrombo embolic disease and
- 4 maternal medical obstetrical complications,
- ⁵ including a current or planned cerclage,
- ⁶ hypertension requiring medication, or a seizure
- ⁷ disorder.
- 8 Studied medications were 17 alpha
- ⁹ hydroxyprogesterone caproate, 250 mgs per
- 10 milliliter, in castor oil, benzyl benzoate, and
- 11 benzyl alcohol, or vehicle, which also consisted of
- 12 castor oil, benzyl benzoate, and benzyl alcohol, but
- 13 without the progesterone.
- The dosing regimen was 250 mgs, weekly
- ¹⁵ injection of 17-hydroxyprogesterone or vehicle
- 16 through week 36, 6 days, or delivery, whichever
- ¹⁷ occurred first.
- The primary efficacy endpoint was percent
- 19 births less than 37 weeks gestation.
- Additional endpoints requested by the FDA
- ²¹ included percent births less than 35 weeks and less
- 22 than 32 weeks gestation, and a composite index of

- ¹ neonatal morbidity.
- The composite was based on the number of
- 3 infants who experienced any one of the following:
- ⁴ death, respiratory distress syndrome, bronchial
- ⁵ pulmonary dysplasia, Grade 3 or 4 intra-ventricular
- ⁶ hemorrhage, proven sepsis, or necrotizing
- ⁷ enterocolitis.
- This study was designed to enroll 500 subjects.
- 9 However, as mentioned previously, because the
- 10 boundary for the test of significance for the
- 11 efficacy threshold was crossed before enrollment was
- 12 completed, only 463 subjects were randomized and
- 13 treated with studied medication; 310 in the 17-
- 14 hydroxyprogesterone arm and 153 in the vehicle arm.
- The disposition of these subjects was as
- 16 follows:
- 279 subjects completed the study in the 17-
- ¹⁸ hydroxyprogesterone arm versus 139 in the vehicle
- 19 arm;
- 27 subjects withdrew from treatment in the 17-
- ²¹ hydroxyprogesterone arm versus 14 in the vehicle
- ²² arm, but remained in the study.

- In the 17-hydroxyprogesterone arm, 6 withdrew
- ² due to an adverse event compared to 3 in the vehicle
- ³ arm; 4 subjects were lost to follow-up, all in the
- ⁴ 17-hydroxyprogesterone arm.
- 5 The primary efficacy endpoint was percent of
- ⁶ pre-term births less than 37 weeks gestation.
- The primary efficacy analysis was based on the
- 8 intent to treat ITT population all subjects who
- ⁹ received studied medication.
- of the 310 subjects treated with 17-
- 11 hydroxyprogesterone, 115 or 37.1 percent, delivered
- 12 prematurely.
- Of the 153 subjects treated with vehicle, 84 or
- 14 54.9 percent delivered prematurely.
- There was a 17.8 percent reduction in pre-term 15
- 16 birth below 37 weeks.
- 17 The 95 percent confidence interval for the
- ¹⁸ reduction in pre-term births ranged from minus 28
- 19 percent to minus 7 percent.
- 20 It is noteworthy that the pre-term birth rate
- ²¹ of 54.9 percent in the vehicle arm was considerably
- ²² greater than the background rate of 36 percent that

- 1 was used to power this study.
- The rate of 54.9 percent pre-term births is
- ³ also considerably higher than that of the control
- ⁴ arm; 36 percent in another Maternal Fetal Medicine
- ⁵ Network study, the Home Activity Uterine Monitoring
- 6 study.
- Finally, I bring to your attention that the
- ⁸ pre-term birth rate of 37.1 percent in the 17-
- ⁹ hydroxyprogesterone arm is no lower than the
- 10 pre-term birthrate of 36 percent in the control arm
- 11 of the Home Activity Uterine Monitoring study.
- We were particularly interested in the pre-term
- 13 birth rate at gestational ages less than 37 weeks
- 14 since births at these lower gestational ages are a
- 15 more accurate predictor of infant mortality or
- ¹⁶ morbidity.
- 17 This slide lists the percentages of pre-term
- ¹⁸ birth at selected gestational ages less than 37
- 19 weeks.
- The analysis present on this slide is slightly
- ²¹ different from that provided in our background
- ²² package.

- In the previous analysis, no data from the four
- ² subjects who were lost to follow-up were included,
- ³ and these subjects were considered as treatment
- ⁴ failures at all time points.
- In the analysis presented in this slide, all
- ⁶ available data from these subjects were included.
- In this analysis requested by the FDA
- 8 statistician, confidence intervals were adjusted for
- 9 the two interim analyses and the final analysis,
- 10 using a "P" value boundary of .035 to preserve the
- 11 overall Type 1 error rate of .05.
- The percentages of pre-term births in the 17-
- 13 hydroxyprogesterone arm, at less than 35 and less
- 14 than 32 weeks were numerically lower than those in
- 15 the vehicle arm.
- The point estimates of the differences were
- 17 negative 9.4 percent and negative 7.7 percent, lower
- 18 than in the vehicle arm at less than 35 and less
- 19 than 32 weeks, respectively.
- However, based on the adjusted 95 percent
- ²¹ confidence intervals, the upper limits suggest that
- 22 17-hydroxyprogesterone may be no better than

- ¹ vehicle.
- In the previous slide, the percent differences
- ³ in pre-term birth at specific gestational ages, were
- 4 shown.
- In this slide, the proportion of subjects
- ⁶ continuing to be pregnant at each week after
- ⁷ enrollment is shown.
- The vertical line marks 37 weeks gestation, the
- ⁹ primary endpoint.
- Not shown on the previous slides is that a
- 11 lesser proportion of subjects in the 17-
- 12 hydroxyprogesterone arm continued to be pregnant
- 13 compared to the vehicle arm, up to 24 to 25 weeks
- ¹⁴ gestation.
- Beginning at about 27 weeks gestation, a
- 16 greater proportion of subjects remain pregnant in
- ¹⁷ the 17-hydroxy-progesterone arm, at each week of
- 18 gestational age.
- The early increase in fetal loss in the 17-
- 20 hydroxyprogesterone arm is of concern. I will
- ²¹ further discuss this finding later in my
- ²² presentation.

- 1 Another way to look at the potential efficacy
- ² of 17-hydroxyprogesterone treatment is to compare
- ³ the mean gestational ages between both arms.
- 4 The mean gestational age in a 17-
- ⁵ hydroxyprogesterone arm was one week greater than
- ⁶ the vehicle arm; 36.2 weeks in the 17-
- ⁷ hydroxy-progesterone arm versus 35.2 weeks in the
- ⁸ vehicle arm.
- 9 Consistent with the finding of a higher
- 10 gestational age in the 17-hydroxyprogesterone arm,
- 11 the mean birth weight was also 178 grams higher in
- 12 this arm. However, this difference was not
- 13 statistically significant.
- Another way to assess the effectiveness of
- 15 treatment is to determine the percentage of birth
- 16 below 2,500 grams and below 1,500 grams, which is
- 17 also consistent with 32 weeks gestation.
- The percentage of infants less than 2,500 grams
- 19 was 13.8 percent lower in the 17-hydroxyprogesterone
- 20 arm.
- For infants less than 1,500 grams, the
- ²² percentage was 5.3 percent lower in the 17-

- 1 hydroxyprogesterone arm.
- However, based on the 95 percent confidence
- ³ interval, the percentage of infants less than 1,500
- ⁴ grams in the 17-hydroxyprogesterone arm was not
- ⁵ statistically significant.
- Reduction of neonatal deaths, without an
- ⁷ increase in fetal wastage, is the ultimate goal in
- ⁸ preventing pre-term birth.
- ⁹ This slide describes all deaths in the
- ¹⁰ principal study.
- 11 There was an observed increase in second
- 12 trimester miscarriages; 5 in the 17-
- 13 hydroxyprogesterone arm versus none in the vehicle
- 14 arm.
- In contrast, there was an observed reduction in
- 16 neonatal deaths in the 17-hydroxyprogesterone arm --
- 17 2.6 percent versus 5.9 percent in the vehicle arm.
- 18 However, the observed reduction in neonatal
- 19 deaths was offset by an increase in second trimester
- 20 miscarriages and stillbirths; thus, when considering
- ²¹ the overall mortality, there was no net survival
- ²² benefit.

- 1 This graph illustrates the proportion of fetal
- ² or neonatal deaths from the onset of treatment.
- On the "X" axis, you see days from the onset of
- ⁴ treatments to fetal or neonatal death.
- On the "Y" axis, you see the proportion of
- ⁶ fetuses or neonates who are surviving.
- 7 The red line represents the 17-
- 8 hydroxyprogesterone arm, the blue line represents
- ⁹ the vehicle arm.
- I want to bring to your attention once again,
- 11 that there is a lower proportion survivors in the
- 12 17-hydroxyprogesterone arm until about 75 days after
- 13 the onset of treatment.
- 14 Thereafter, the proportion of survivors in the
- 15 17-hydroxyprogesterone arm remain slightly above
- ¹⁶ that in the vehicle arm.
- To gain additional insight into the
- ¹⁸ significance of the findings of early fetal losses,
- ¹⁹ we reviewed the literature.
- Data in a 1990 review by Keirce described four
- 21 studies where treatment with 17-alpha-
- ²² hydroxyprogesterone caproate was begun early in

- 1 pregnancy, and data on miscarriages were provided.
- Two of the trials, the Johnson and Yemeni
- ³ trials, showed a numerically greater proportion of
- ⁴ miscarriages in the 17-hydroxyprogesterone arm.
- 5 The other two trials, those by LaVine and
- ⁶ Sherman, did not. The LaVine trial reported more
- ⁷ miscarriages in the vehicle arm.
- In addition to reduction of mortality,
- ⁹ reduction of neonatal morbidity is a goal of therapy
- 10 to prevent pre-term birth.
- Major neonatal morbidities are listed on this
- ¹² slide.
- We have chosen not to provide "P" values for
- 14 the differences for several reasons.
- These comparisons were post-hoc analyses. Event
- ¹⁶ rates were low, and no adjustments were made for the
- ¹⁷ multiple endpoints.
- However, there are some noteworthy
- 19 observations.
- There was a decrease in the percent of
- ²¹ respiratory distress syndrome, broncho-pulmonary
- ²² dysplasia, and necrotizing enterocolitis in the 17-

- 1 hydroxyprogesterone arm.
- 2 However, there was also a small increase in the
- 3 percent of Grade 3 and 4 intra-ventricular
- ⁴ hemorrhage and proven sepsis in the 17-
- ⁵ hydroxyprogesterone arm.
- The individual morbidities listed in this slide
- ⁷ were grouped to form a composite index of morbidity.
- All infants with one or more of the listed
- 9 morbidities were counted in the index.
- 10 A lower percent age of infants in the 17-
- 11 hydroxyprogesterone arm, 11.9 percent, compared to
- 12 the 17.2 percent in the vehicle arm, had one or more
- 13 of the morbidities that comprise the composite
- 14 index.
- 15 However, the difference between the treatment
- ¹⁶ arms was not statistically significant.
- I will now turn your attention to maternal
- ¹⁸ safety findings.
- Adverse event data were not collected in the
- 20 usual manner for data submitted to the FDA.
- 21 Rather than collecting all adverse events,
- 22 subjects were asked if they had any symptoms or

- 1 complaints that they thought were related to the
- ² study medication.
- There were no maternal deaths.
- 4 There were three reports of a serious adverse
- ⁵ event, all in the 17-hydroxyprogesterone arm. None
- ⁶ were thought to be, by the investigators, to be
- ⁷ related to the study drug.
- 8 The serious adverse events were a
- ⁹ pulmonary-embolus eight days after delivery, a case
- 10 of cellulitis at the study medication site, and a
- 11 patient with postpartum hemorrhage, respiratory
- 12 distress, and endometritis.
- 13 Eleven (11) subjects discontinued because of an
- 14 adverse event;
- Seven (7) subjects were in the 17-
- 16 hydroxyprogesterone arm; 3 with urticaria, 2 with
- ¹⁷ injection site pain or swelling, 1 with arthralgia,
- 18 and 1 with weight gain.
- Four (4) subjects were in the vehicle arm,
- 20 two with pruritus, one with urticaria, and with
- ²¹ injection site pain.
- 22 Common adverse events will be described in the

- ¹ next slide.
- The majority of all adverse events were
- ³ related to injection site reactions.
- 4 Injection site pain was the most commonly
- ⁵ reported adverse event affecting a third of
- 6 subjects in each arm.
- 7 Injection site swelling was the next most
- 8 common adverse event, followed by urticaria,
- ⁹ pruritus, and injection site pruritus.
- We identified three out of nine complications
- 11 of pregnancy reported by the applicant where the
- 12 percentage of effected subjects was proportionately
- 13 greater in the 17-hydroxyprogesterone arm.
- The pregnancy complications were: Gestational
- ¹⁵ diabetes, oligohydramnios, and preeclampsia.
- The numbers of subjects with these
- ¹⁷ complications in both the principle study, CT-002,
- 18 and the initial formulation study, IF-001, that was
- 19 terminated prematurely due to a recall of the study
- ²⁰ drug, are listed on this slide.
- There was a small increase in the percentage of
- 22 subjects with gestational diabetes in the 17-

- 1 hydroxyprogesterone arm in the principal study.
- In the initial formulation study, there were
- ³ eight cases of gestational diabetes in the 17-
- 4 hydroxyprogesterone arm compared to no cases in the
- ⁵ vehicle arm.
- This difference approached statistical
- ⁷ significance.
- In terms of oligohydramnios, there was almost a
- ⁹ three-fold increase in the percentage of subjects
- ¹⁰ with oligohydramnios in the 17-hydroxyprogesterone
- ¹¹ arm of the principal study.
- The percentage of subjects with pre-eclampsia
- ¹³ in the 17-hydroxyprogesterone arm in the principal
- 14 study was almost twice that in the vehicle arm.
- The percentage of subjects with pre-eclampsia
- ¹⁶ in the 17-hydroxyprogesterone arm in the initial
- ¹⁷ formulation study was also higher.
- Although the initial formulation study was
- 19 terminated prematurely, I will briefly describe some
- ²⁰ of the findings from this study.
- The design of this study was identical to
- 22 that of the principal efficacy and safety study;

- 1 namely, double-blind, vehicle controlled, and
- ² randomized 2-to-1, 17-alpha- hydroxyprogesterone
- ³ caproate to vehicle.
- 4 This study was terminated prematurely because
- ⁵ of a recall of the study drug.
- 6 150 subjects were randomized prior to the
- ⁷ recall; 104 subjects either completed treatment or
- 8 withdrew for reasons other than recall of the study
- 9 drug.
- 10 Of these 104 subjects, 65 subjects were in the
- 11 17-hydroxyprogesterone arm, and 39 subjects were in
- 12 the vehicle arm.
- 13 Key findings from this study are presented in
- ¹⁴ the next slide.
- The top of this slide shows the proportion of
- 16 subjects who delivered at less than 37 weeks
- 17 gestation, among those subjects not affected by the
- ¹⁸ study drug recall.
- These are the subjects who either completed
- 20 treatment or terminated for reasons unrelated to the
- 21 recall.
- The percentage of pre-term births in the 17-

- 1 hydroxyprogesterone arm was slightly higher than
- ² that in the vehicle arm, 43.1 percent versus 38.5
- ³ percent.
- 4 The lower portion of the slide lists all fetal
- ⁵ and neonatal deaths from all enrolled and treated
- ⁶ subjects.
- 7 The increased miscarriage or stillbirth rate
- 8 that was observed in the principal study was not
- ⁹ seen in this study.
- There was only one case of miscarriage in each
- 11 treatment arm.
- In terms of stillbirths, there were two cases
- 13 in the vehicle arm compared to one case in the 17-
- 14 hydroxyprogesterone arm.
- 15 There were two neonatal deaths in the 17-
- 16 hydroxyprogesterone arm, and none in the vehicle
- 17 arm.
- 19 follow-up study of children born in the principal
- 20 study.
- The objective of this study was to evaluate the
- 22 long-term health and development of children who

- 1 were born in the principal study.
- Only 14 of the original 19 sites were remaining
- ³ in the Maternal Fetal Medicine Network at the time
- ⁴ this follow-up study was conducted; therefore,
- ⁵ approximately 80 percent of the children were
- ⁶ eligible to participate.
- ⁷ Of these eligible children, 278 enrolled, 194
- 8 from the 17-hydroxyprogesterone arm and 84 from the
- ⁹ vehicle arm.
- Some demographic information for the children
- ¹¹ in the follow-up study are listed in this slide.
- The mean gestational age of the children who
- 13 participated in the follow-up of each treatment arm
- 14 was one week greater than that in the principal
- 15 study.
- As such, the follow-up children may represent a
- 17 slightly lower risk subset of the total group of
- 18 children from the principal study.
- The mean age of the children in the follow-up. 19
- 20 study at the time of evaluation was 47.2 months from
- ²¹ the children from the 17-hydroxyprogesterone arm,
- 22 and 48 months in children from the vehicle arm.

- As stated previously, the primary objective
- ² of the follow-up study was to determine if there
- ³ were differences in achievement of developmental
- 4 milestones between children whose mothers received
- ⁵ 17-hydroxyprogesterone, and those whose mothers
- ⁶ received vehicle, in the principal study, as
- ⁷ measured by the Ages and Stages Questionnaire,
- ⁸ otherwise known as the ASQ.
- This primary endpoint of the follow-up study
- 10 measured the proportion of children from each
- 11 treatment arm who fell below a specified cutoff, at
- 12 least one of the five developmental areas listed --
- 13 communications, gross motor, fine motor, problem
- 14 solving, or personal/social.
- 15 A positive screen was defined as a score which
- 16 was two standard deviations below the mean in any of
- ¹⁷ these five areas.
- The secondary objective of the study was to
- 19 determine if differences existed between children
- ²⁰ whose mothers received 17-hydroxyprogesterone and
- ²¹ those whose mothers received vehicle in the
- 22 principal study in any of the following factors:

- 1 activity motor control, vision/hearing,
- ² height/weight, head circumference, gender specific
- ³ play, or diagnosis by a physician.
- 4 These children also received a physical exam.
- 5 The results of the ASQ, the primary endpoint
- ⁶ assessing developmental milestones, will be shown on
- ⁷ the next two slides.
- This slide lists the number of children whose
- 9 ASQ scores were screened positive or two standard
- 10 deviations below the mean.
- 11 The proportion of children below the cutoff in
- 12 each developmental domain was similar for each
- 13 treatment arm.
- The area with the highest percentage of
- 15 children with low scores was fine motor skills with
- 16 approximately one in five children scoring below the
- ¹⁷ cutoff.
- 18 Approximately one in ten children had scores
- 19 below the cutoff in communication or problem
- 20 solving.
- Few children had low scores for gross motor, or
- ²² personal social skills.

- Overall, approximately 28 percent of children
- ² from each treatment arm, shown by the numbers in
- ³ yellow at the bottom of the slide, scored below the
- 4 cutoff in at least one domain.
- 5 The absence of an apparent difference between
- ⁶ the treatment arms should be interpreted with
- ⁷ caution because the number of children in this study
- ⁸ is relatively small.
- A second integrated evaluation concerned
- 10 identification of the true positives among those
- 11 children identified as potentially at risk for
- 12 developmental delay based on their ASQ scores.
- 13 As stated previously, the purpose of the ASQ
- 14 was to identify children who may require further
- ¹⁵ evaluation by a physician.
- Those children with at least one score below
- 17 cutoff and who had a parental report of a diagnosis
- 18 of developmental delay, made independently by a
- 19 physician, were reviewed in more detail.
- 20 13, or 6.7 percent, of the children from the
- ²¹ 17-hydroxyprogesterone arm, and 8, or 9.8 percent,
- 22 of the children from the vehicle arm had an ASQ

- 1 score below cutoff in at least one developmental
- ² area and a reported diagnosis of developmental
- ³ delay.
- 4 Of the 21 children, total, meeting both
- ⁵ criteria, the most common ASQ domains falling below
- ⁶ the cutoff were: Fine motor and communication for
- ⁷ the 17-hydroxyprogesterone exposed children, and
- 8 communication and problem-solving for the vehicle
- ⁹ exposed children.
- The results of the follow-up study revealed no
- 11 substantial difference in the outcome of the
- 12 children exposed to 17-hydroxyprogesterone compared
- ¹³ to vehicle.
- 14 To summarize, the applicant is seeking approval
- 15 for 17- alpha-hydroxyprogesterone caproate based on
- 16 findings from a single clinical trial and a
- 17 surrogate endpoint for infant mortality and
- 18 morbidity, pre-term birth less than 37 weeks
- 19 gestation.
- We are concerned that these findings may not be
- ²¹ applicable to other populations and that the
- ²² pre-term birthrate in the vehicle arm is

- 1 considerably higher than that reported in another
- ² large Maternal Fetal Medicine Network study.
- We are also concerned that there is a potential
- 4 safety signal of increased fetal wastage in the 17-
- ⁵ hydroxyprogesterone arm.
- We are asking the members of the Advisory
- ⁷ Committee to consider these issues during your
- ⁸ deliberations later today.
- ⁹ Thank you.
- 10 (Applause.)
- DR. DAVIDSON: I'm sorry. This will cover both
- 12 the sponsor and the agency presentations.
- I think, in fairness, I should start where we
- 14 left off this morning with our incomplete list of
- ¹⁵ questions.
- Dr. Liu.
- DR. LIU: I wanted to ask about the first study
- 18 that was stopped because of the medication.
- One was, what was the problem with the
- 20 medication in terms of the quality in terms of the
- ²¹ manufacturer.
- And, two, have you had the opportunity to

- 1 combine the results of the completed datasets from
- ² the first and the second study for the outcomes as
- ³ opposed to just the followup?
- DR. HICKOK: Yes. Let me make sure that I
- ⁵ have your questions correct.
- In the response to the recall of the study
- ⁷ drug, as we mentioned before, in the 001 Study,
- 8 there was a Consent Decree cited; "Significant GMP,"
- 9 Good Manufacturing Practice, you know, violations,
- 10 and that information is -- that is the only
- 11 information that we have in the public domain.
- So FDA, at that point, and the manufacture,
- 13 recalled the study drug in the 001 trial.
- 14 And we don't have any other information other
- 15 than that.
- NICHD, as I stated, following that, decided
- 17 that since there had been a recall of the
- 18 manufacturer, and 17-p was no longer available at
- 19 that point, basically, to initiate a new study.=
- 20 And, at that point, they also found a
- ²¹ different manufacturer.
- In terms of your second study about, you know,

- 1 did the sponsor go ahead and give information and
- ² integrate the data, even though the 001 Study was
- ³ not complete, yes, we did go ahead and do that.
- 4 And I might remark, though, that it is
- ⁵ percentage in the 001 Study to look at the
- ⁶ percentage of women who actually went through the
- ⁷ whole study; in other words, had an opportunity for
- ⁸ a full course of drugs, and that was, between the
- ⁹ two groups, only approximately 55 percent.
- So for the purpose of efficacy, we chose to
- 11 present the data from the 002 Study.
- If I can present the results to you, though,
- 13 of, you know, integrating these two studies, which
- ¹⁴ we did for the purpose of efficacy, you will see the
- 15 following findings here.
- For pre-term birth less then 37 weeks of
- 17 gestation in the integrated data, again, 17-p,
- 18 404 versus 209 in the placebo group, we saw the
- 19 following pre-term birth rates: 38.1 percent versus
- ²⁰ 49.8 percent.
- And, again, this "P" value was significant at
- 22 the .0052 level.

- 1 For birth less than 35 weeks, the difference
- ² was 22 percent versus 30.6 percent, again, a "P"
- ³ value of .02. Birth less than 32 weeks, these
- ⁴ differences, with a "P" value of .003067.
- 5 And, again, for the primary outcome of birth
- 6 less than 37 weeks, as we described previously, we
- ⁷ did adjust that by logistic regression for the
- 8 imbalance in the prior pre-term birthrate.
- 9 So I guess I would say, in conclusion -- I'm
- 10 sorry, I'm looking at you over a monitor here.
- In conclusion, now, even though we didn't feel
- 12 that it was completely correct to integrate these
- 13 two studies for the purpose of efficacy because the
- 14 001 Study received less than 60 percent full
- 15 opportunity to get the full trial drug, nonetheless,
- ¹⁶ we see that, integrating these results, we still see
- 17 statistically significant endpoints for the
- 18 primary endpoint of less than 37, but also less than
- 19 35, and less than 32.
- DR. DAVIDSON: Dr. Simhan.
- 21 DR. Simhan: This is a question for Dr. Hickok.
- Your intent or proposal is that the trial

- 1 inclusion and exclusion criteria should apply to
- ² clinical use; specifically, the inclusion criteria
- ³ that I'm speaking of is the history of prior
- ⁴ spontaneous pre-term birth of a singleton pregnancy.
- 5 And the two exclusion criteria in 002 that I'm
- 6 asking about are hypertension requiring treatment,
- 7 and seizure disorder.
- DR. HICKOK: Yes, we do, Dr. Simhan. Thank you.
- We do propose the same labeling indication
- 10 because that is all we have information on, and it
- 11 would be unfair to include people on those labeling
- 12 that were not studied during the NICHD trial.
- Specifically to your question about a single,
- ¹⁴ you know, prior pre-term birth, we do not propose
- 15 that Gestiva be labeled for anything other than that
- ¹⁶ sole indication, because there are not clinical data
- 17 supporting other indications.
- DR. DAVIDSON: Dr. Harris.
- DR. HARRIS: Yes. Thank you.
- 20 Could you address the stillbirths in the study,
- ²¹ please?
- You had, I think, eight in the treatment group

- 1 and only two in the placebo group.
- Percentages weren't statistically significant,
- ³ but it appeared to be a trend towards an increase in
- ⁴ the treatment group. Part of that appeared to be
- ⁵ infection.
- Does that mean that bacterial vaginosis at the
- ⁷ time of entry would be a contraindication, and/or
- ⁸ should we look at stillbirth rates in this
- 9 population a little closer before or as part of the
- 10 Informed Consent for treatment?
- DR. HICKOK: I'm sorry, Dr. Harris. At the very
- 12 end -- if you would clarify the very end of
- 13 your question about Informed?
- DR. HARRIS: The question is, if there is a
- 15 towards -- which appears to be a trend towards
- 16 stillbirths, how do we address that as part of this
- ¹⁷ overall approval process?
- 18 Do we need to look at more patients, or do we
- 19 need to make that part of the drug labeling or
- 20 Informed Consent? What is your --
- DR. HICKOK: I see. Thank you for the -- yes.
- 22 Thank your for the clarification.

- Yes. Let me review the stillbirths with you
- ² from the 001 and 002 Studies.
- And, again, to give you the overall integrated
- ⁴ conclusions from the 17-p and placebo groups, there
- ⁵ were seven stillbirths that occurred in the 17-p
- ⁶ group, for a frequency of 1.7 percent, and four in
- ⁷ the placebo group, for a frequency of 1.9 percent.
- 8 Six of these occurred antepartum, and one
- ⁹ intrapartum in the 17-p group. Two in the placebo
- 10 group antepartum and two intrapartum.
- And, again, remember, when you compare across
- 12 columns for raw numbers here, there is a 2-to-1
- 13 ratio of 17-p versus placebo patients.
- You saw the analysis that I previously
- 15 presented to you about stillbirths, and we
- 16 actually took the -- or about miscarriages. I'm
- ¹⁷ sorry, I misspoke.
- 18 We took the same approach with stillbirths, in
- 19 that we know that stillbirth risk varies across
- 20 populations. There are high-risk and low-risk
- ²¹ groups for stillbirth, as described in a couple of
- ²² very good, large recent surveys.

- So we took the approach, and we looked at other
- ² information from clinical studies, both Network
- ³ studies and from the literature, and have summarized
- ⁴ this information for you on this slide.
- And I want to remark, first, that four of these
- ⁶ studies that I'm describing are actually
- ⁷ randomized trials of 17-p versus placebo.
- 8 And these were the studies by John Hauth that I
- ⁹ described to you previously, that used active
- 10 military duty as a criteria for randomization.
- And then a second study, the Johnson study,
- 12 that we are all aware of from 1975. That's very
- 13 well known.
- Then I've included the 17-p study here with the
- 15 data that I previously have shown to you.
- And then one other study that's received a fair
- 17 amount of attention because it is a recent study,
- 18 and this is a study by Carrodo in Italy, that
- 19 randomized women with 17-hpc versus placebo
- 20 following a mid-trimester amniocentesis.
- So, again, you know, the outcomes for pre-term
- 22 birth are not presented, but, specifically, these

- 1 investigators examined that interval following the
- ² amniocentesis to see if there was any -- you know,
- ³ any risk or any benefit from 17-hpc.
- But going back to other Network, studies,
- ⁵ again, one of the studies that has been performed by
- ⁶ the Network that we feel has extremely valuable
- ⁷ information is the Factor Five Leiden study, which,
- ⁸ again, was an observational study.
- 9 Women were enrolled very early in the Factor
- 10 Five Leiden study, you know, on average of 12 weeks
- 11 or so.
- So they were followed longitudinally
- 13 throughout pregnancy, and there is good opportunity
- 14 of, you know, getting very valid data on
- ¹⁵ stillbirths.
- And, in addition, the Factor Five Leiden study,
- 17 again, as a Network study, is likely to comprise
- ¹⁸ patients who are quite similar to other Network
- 19 studies, like the 17-p study.
- So for that reason, we feel that these numbers
- ²¹ are quite good.
- So when you look across the different columns

- ¹ here, we see the Factor Five Leiden study.
- We see that in the three randomized studies of
- ³ 17-p versus placebo, we have 3.8 percent versus 1.3
- ⁴ percent for stillbirths in the Hauth Study.
- We have 4.5 percent versus zero percent in the
- ⁶ Johnson Study; 1.1 percent versus 0.6 percent in
- ⁷ Corrodo; 1.9 percent versus 1.7 percent.
- And our summary conclusions on these are that
- 9 there is really no apparent association that we can
- 10 determine from all the available data that we have
- 11 collected that we feel are valid comparison groups.
- So there is no association between 17-p
- 13 exposure and the risk of stillbirth based on these
- 14 numbers.
- Did you wish for me to go further into the
- 16 questions about BV and occurrence of bacterial
- ¹⁷ vaginosis during pregnancy?
- DR. HARRIS: Not necessarily. I should clarify.
- The question I had was really about the
- ²⁰ antepartum versus the intrapartum. Presumably,
- ²¹ unless there is a catastrophe, most intrapartum
- ²² stillbirths should be preventable.

- But it is the unmonitored, supposedly low-risk
- ² antepartum stillbirth that I was raising the concern
- 3 about.
- 4 And since you mentioned the thrombophilia area,
- ⁵ which is associated with an increase in stillbirths,
- ⁶ it raises even more questions about selection
- ⁷ criteria for the treatment with progesterone.
- B DR. DAVIDSON: Dr. Merritt.
- 9 DR. MERRITT: I would like to go back to the
- 10 presentation of the studies on animal data and ask
- 11 again about the teratogenic effects in two
- 12 populations.
- In the rodent population, as I read the slide,
- 14 it appeared that the number of animals studied were
- 15 between 8 and 15 in each study.
- When the primate data was presented, I didn't
- 17 see.
- Anc could you please clarify those study
- ¹⁹ numbers for us?
- DR. HICKOK: Dr. Singh, will you review these
- ²¹ studies again for us, please?
- DR. SINGH: I am going to have to tell you that,

- ¹ from my memory, I believe, it was three. An N of 3
- ² for the monkey studies.
- But I will have to -- in fact, at lunch, I can
- ⁴ verify that. I have the actual references and
- ⁵ everything with me.
- But -- so for the two -- for the Cynomolgus
- 7 monkey study -- if you want to bring that slide back
- ⁸ up -- and the Rhesus monkey study, which is actually
- ⁹ one and the same -- we want the next slide, please.
- Okay. So this slide actually represents two
- ¹¹ different studies.
- The Hendricks, et al, paper that was published
- 13 in 1987 is the one that contains the data from both
- 14 the Rhesus monkeys and the Cynomolgus monkeys.
- 15 And that is the study in which I believe there
- 16 was an N of 3.
- And, I'm sorry, I just need to pull that
- 18 reference, and I will confirm that with you later
- 19 on.
- 20 So, and then in the second studies, well, I
- ²¹ have that reference, actually, in the Boardroom,
- ²² and, again, I can make that available to you.

- If there's any follow-up question for now on
- ² content?
- DR. MERRITT: Could you go back to the rodent
- 4 slide, please?
- DR. SINGH: That's one slide back.
- So you're correct. The C-57 Black Six Mice
- 7 study. In that study, the N was 8 per group.
- 8 And in the Swiss Webster Mulhouse study, that
- ⁹ the N was between 11 and 15 per group.
- 10 Again, you will notice that the route of
- 11 exposure is different.
- 12 There are sub-dermal pellets or subcutaneous
- 13 injections, so this is different than the
- 14 intramuscular route. So there is a bit of
- ¹⁵ extrapolation there.
- DR. MERRITT: Thank you for that clarification.
- 17 I have one other question, which is why was
- 18 castor oil included in the vehicle as opposed to
- 19 some other compound?
- DR. HICKOK: Yes. Castor oil has
- ²¹ traditionally been included in a vehicle as a depot
- ²² injection to, again, prolong the duration of action

- 1 at the 17-hpc.
- If given orally, it is rapidly degraded and
- ³ not bio-available.
- DR. DAVIDSON: Dr. Lewis.
- DR. LEWIS: Yes. I also was wondering a little
- ⁶ bit about the castor oil.
- Is Delalutin also in a castor oil? That's one.
- And, secondly, it is bothersome that there is
- ⁹ such a high background rate of pre-term births in
- 10 the 002 Study.
- And I know that if you compare it to the other
- 12 Maternal Fetal Medicine Network Unit study, they had
- 13 a much lower rate.
- Were the same centers involved?
- 15 And what is the speculation on why the
- ¹⁶ difference is so great?
- Were the time periods overlapping at all?
- You know, it's just -- that is bothersome.
- DR. HICKOK: Thank you, Dr. Lewis.
- Let me address each one of your questions
- ²¹ separately, as I can.
- 22 And the first one I'll go to is, you had a

- 1 question about Delalutin and the formulation. And
- ² let me just show you some data on the comparison
- 3 between the two.
- 4 Here, you see the Adeza-proposed product, or
- ⁵ Gestiva. You see the studies 17-p 002, and, here,
- ⁶ Delalutin.
- And you see, again, the quantity of 17-hpc and
- 8 the concentrations of benzyl alcohol, benzyl
- 9 benzoate, and benzyl and castor oil are all
- 10 identical between the three.
- 11 For your second question, I believe you're
- 12 getting at the question of the pre-term birthrate
- 13 and the placebo that Dr. Wesley raised.
- And I'd like to invite Dr. Anita Dos, our
- 15 bio-statistician, to address the issue of the
- ¹⁶ pre-term birthrate in the placebo group.
- DR. DAS: There are a lot of reasons why the
- 18 pre-term delivery rate in HUAM which is the Home
- ¹⁹ Uterine Activity Monitoring study, and the Study 002
- 20 could be different.
- The most quantifiable reason is that Study 002
- ²² enrolled the population at higher than the HUAM

- 1 study.
- And this is evidenced by looking at the number
- ³ of previous pre-term deliveries in the 002 Study.
- In the 002 Study, there was 32 percent that had
- ⁵ greater than one previous pre-term delivery, and in
- ⁶ the HUAM study, there were 22 percent of women.
- The gestational age at the worst previous
- ⁸ pre-term delivery was also slightly lower, at 29.7
- ⁹ weeks versus 30.2 weeks.
- 10 But, also importantly, the gestational age of
- 11 the qualifying delivery in Study 002 was early, at
- 12 30.8 weeks, showing that this is a higher risk
- 13 population.
- There is other non-quantifiable reasons why
- 15 these two studies might differ.
- One would be the temporal reason in that Study
- 17 002 was completed in 2002. The HUAM study was
- 18 completed in 1996.
- 19 And the MFMU Network was slightly different,
- ²⁰ with 19 participating centers in 002, and 11
- ²¹ participating centers in the HUAM study.
- But, also, very important is the study design.

- 1 The HUAM study was not a randomized trial, it was an
- ² observational study.
- Study 002 is a randomized trial with very
- ⁴ intensive intervention. An injection once a week.
- 5 And we know from anecdotes that the women who
- ⁶ participated in this trial were extremely motivated.
- One: Because of their prior pre-term history
- ⁸ and their adverse obstetrical history.
- 9 So, again, one of the non-quantifiable
- 10 differences, truly, is an observational study versus
- ¹¹ a randomized trial.
- 12 I'd also like to have Dr. Savitz come and speak
- ¹³ a bit to this point.
- 14 DR. HICKOK: And Dr. Savitz, I might add, is a
- ¹⁵ reproductive epidemiologist.
- DR. SAVITZ: Thank you.
- David Savitz, Mount Sinai School of Medicine.
- 18 I can just maybe comment and just add to that
- 19 that the -- sort of the art of predicting the
- 20 baseline rates in randomized trials is a
- ²¹ challenging one for those who have engaged in
- 22 trials, and you use the -- of course, the best

- ¹ historical data you have the best estimates.
- But, as Dr. Das explained, the constitution of
- ³ the patient groups will often differ and especially
- ⁴ the willingness to participate, is a more subtle,
- ⁵ but, I think, can be a very important influence on
- ⁶ the baseline risk.
- I don't think there has been so much a question
- ⁸ about maybe whether the placebo group accurately
- ⁹ reflects the baseline risk.
- That is an issue of randomization, I think has
- 11 been well taken care of.
- But I think probably the concern is maybe with
- 13 one of generalize-ability; that is, whether these
- 14 results would apply to the full spectrum of women
- 15 who meet the eligibility criteria of one or more
- 16 prior pre-term births.
- And, there, I think the data are clear in the
- 18 various subgroup analyses, saying that all of the
- 19 groups of varying background risk seem to share the
- ²⁰ same benefit.
- That is, whether the groups are defined by
- 22 number of prior pre-term births or other criteria --

- ¹ bacterial vaginosis, and so on, as Dr. Hickok
- ² presented.
- There's every reason to think that a different
- 4 group with a different mix of those attributes would
- ⁵ probably have a lower risk of pre-term birth. but
- ⁶ there is a consistent pattern that they would be
- ⁷ predicted to show the same benefit.
- DR. DAVIDSON: Dr. Henderson.
- DR. HENDERSON: I, too, am struck by the high
- 10 background rate of pre-term delivery.
- I wonder, from the literature, do you know
- 12 what the background rate was in any of those
- 13 publications, the ones that you used to cite in
- ¹⁴ support of what the Maternal Fetal Network did?
- DR. HICKOK: Yes. You know, it is quite
- 16 remarkable about having spent, it seems like over a
- ¹⁷ week looking, for this type of information.
- 18 You know, you probably go back to, you know,
- 19 the quote from Robert Goldenberg that's widely
- 20 cited, that there's a 20 to 40 percent risk of
- ²¹ recurrent pre-term birth kind of period.
- And we did look, and we can actually, you know,

- 1 show you some data from the 002 Study on the risk of
- ² recurrent pre-term birth, by the number of prior
- ³ pre-term births, which is, you know, certainly a big
- 4 risk.
- 5 And that goes up dramatically with each
- ⁶ consecutive number of prior pre-term births.
- In other words, those women that have one,
- ⁸ versus those that have two, then those that have
- 9 three. And it makes quite a -- it's quite
- 10 remarkably higher as you move up.
- A second variable that's been pointed out by
- 12 the Network studies, and specifically Dr. Brian
- 13 Mercer, has been a lower gestational age at the time
- ¹⁴ of, you know, prior pre-term birth.
- 15 And I think, as Dr. Das pointed out to you
- ¹⁶ in her presentation, that the average gestational
- ¹⁷ age of the prior pre-term birth was about 30.9
- 18 weeks, which really is very low when you consider
- 19 the data that Dr. Nageotte presented, that 75
- 20 percent of pre-term births occur between 34 and 37
- ²¹ weeks of gestation.
- So, obviously, the women that entered into the

- ¹ NICHD clinical study were at high risk. Very high
- ² risk, by virtue of number of prior pre-term births,
- ³ and by the low gestational age at the qualifying
- ⁴ pre-term birth.
- DR. HENDERSON: One thing that strikes me, the
- ⁶ age certainly is getting younger, gestational age.
- But part of that is the multiple gestations,
- ⁸ and that group was excluded from this trial.
- 9 So, in looking at the incidence of pre-term
- 10 delivery is increasing, the age of gestation is
- 11 decreasing, and part of that is the contribution of
- 12 multiple gestations, and so that's not part of what
- 13 we're looking at.
- 14 I'm just still struck by the high incidence of
- 15 pre-term delivery in the placebo group.
- And just other than just saying that the rate
- 17 has increased over the baseline rate, in general, do
- 18 you have any thoughts of how or what may be -- I
- 19 mean, the vehicle or what -- the intervention?
- 20 And you would think that women who are in
- ²¹ randomized clinical trials because of their history,
- 22 as was stated, they are very motivated and they're

- 1 very cooperative, and they show up, and they don't
- ² know that they are getting placebo.
- So it is very likely that they were really,
- 4 really good patients, and they did what they were
- ⁵ supposed to. So you would think that just the
- ⁶ intervention would lower their risk.
- So I just -- I can't get my hands around the
- 8 50-so odd percent of pre-term delivery.
- 9 DR. HICKOK: Yes. The women were certainly
- 10 motivated, and they had, had, you know, a prior --
- 11 at least one prior very bad experience.
- And I might even give you a little, you know,
- 13 flavor for that at the study site by asking Ms.
- 14 Gwendolyn Norman to talk a little bit about her
- 15 relationship with patients. And she -- you know,
- 16 she recruited them, she followed them.
- 17 Ms. Norman, would you step forward and just
- 18 give us a little bit of flavor for the risk status
- 19 of your patients and their motivations and
- ²⁰ compliance and all?
- MS. NORMAN: Certainly. Gwendolyn Norman from
- ²² Wayne State University.

- In the original trial, the 002, we did find
- ² that the women were very willing to participate.
- They had had, as you said, a very high risk of
- ⁴ exposure. They had had a previous loss, were very
- 5 compliant, and participating in coming weekly or, if
- ⁶ they were on bed rest, for us to come out and do
- ⁷ home visits for them.
- DR. HICKOK: And I'd also like Dr. Paul Meis,
- 9 the principal investigator of the study -- we're
- 10 fortunate to have him here today -- to remark on
- ¹¹ this subject.
- DR. MEIS: Paul Meis, Wake Forest University.
- I can only say that, anecdotally, when I would
- 14 recruit patients for this study, that when we
- 15 explained the study to women, that they would
- 16 receive weekly intramuscular injections from 16 to
- 17 20 weeks, all the way up to 36 weeks, and that there
- 18 might be a chance that they're getting the placebo
- 19 for no benefit, the women who had had a prior
- 20 pre-term birth at, say, 35 weeks or so and the
- ²¹ baby had done very well, they were not very
- ²² interested in participating in this study.

- But if the woman had had a pre-term birth at 28
- ² or 29 weeks and the baby had stayed in the hospital
- ³ for a long time and had problems, they were very
- 4 interested in this study.
- 5 So I think there was a self-selection process
- ⁶ involved.
- 7 DR. HICKOK: Thank you, Dr. Meis.
- B DR. DAVIDSON: Dr. Gillen.
- 9 DR. GILLEN: Thank you.
- I hate to beat a dead horse here but, clearly,
- 11 this is a sticking point in terms of the generalize-
- 12 ability of what we're looking at.
- So, it seems like one of the most plausible
- 14 explanations that's been offered is that there's
- 15 co-variate imbalances, effectively, with respect to
- 16 risk factors for pre-term births between the 001
- 17 Study and the 002 Study.
- 18 And, I guess, I'm just wondering if the
- 19 Committee can offer us any sorts of -- so, I mean,
- 20 it begs the question, effectively, to say, which way
- ²¹ are the imbalances going in terms of the general
- 22 population or the target population that you're

- ¹ going to be targeting here?
- And so, is there any sort of literature or
- ³ review that we have evidence for that says, you
- 4 know, the target population currently today is more
- ⁵ like the placebo group that was enrolled, or the
- ⁶ group that was sampled for the 002 Study versus the
- ⁷ 001 study, in order to help us make this distinction
- 8 between the two?
- 9 DR. HICKOK: Yes. The answer off the top of my
- 10 head, is, again, these were very motivated women
- 11 that had had a bad experience.
- 12 And we would expect, you know, going forth, at
- 13 least -- and, again, this is opinion on my side --
- ¹⁴ we would expect women who perceive themselves at
- 15 higher risk to be more likely to engage in a course
- 16 of treatment that involves something like weekly,
- 17 you know, injections of a -- you know, of a drug and
- 18 castor oil then we would people that, as Dr. Meis
- 19 and Ms. Norman described, as those at 35 or 36 weeks
- 20 that had had a child, but perhaps had a longer
- ²¹ neonatal stay.
- In terms of your -- I think you had almost a

- 1 second question about generalize-ability and all,
- ² too, and Dr. Savitz addressed that briefly.
- But the stratified analysis that we presented
- ⁴ to you, we sent to you during the core presentation,
- ⁵ I think a very strong argument about the generalize-
- ⁶ ability of the benefit of 17-p.
- And, again, if we go to the first slide that I
- 8 showed, this gets at the prior question, also, that
- ⁹ was raised about risks by number of prior pre-term
- ¹⁰ deliveries.
- Again, we see in a population, with a lot of
- 12 pre-term deliveries, those baseline risks in the
- 13 placebo group can be very, very high if you
- 14 have a large number of pre-term deliveries.
- But on the issue of generalize-ability,
- 16 whenever you start dividing groups into different
- 17 strata and get consistent effects, it's a very
- 18 strong argument about generalize-ability of the
- ¹⁹ results.
- And what we showed you here, previously, was
- ²¹ the effect by number of prior pre-term births.
- 22 And then, secondly, we divided the population

- 1 into African-American versus non-African-American
- ² and saw the same general pattern as we did with the
- ³ benefit of 17-p over placebo.
- ⁴ A third stratification was by bacterial
- ⁵ vaginosis, which is a known risk factor, as Dr.
- ⁶ Nageotte showed you.
- And we would see the same kind of pattern
- 8 about, you know, an increased risk in people with
- ⁹ bacterial vaginosis in the placebo group, which you
- 10 would expect.
- But, similarly, a decrease that paralleled one
- 12 and another between the "BV" and the no "BV" group.
- So, because of those, you know, four ways that
- ¹⁴ we stratified and all, it is a very strong
- ¹⁵ argument that there is generalize-ability of those
- 16 study results.
- Dr. Savitz, would you have any further comments
- 18 on this regarding our statistician's question here?
- DR. SAVITZ: Very briefly.
- I think that the best guess about what would
- ²¹ happen if you reconstituted a different that had a
- 22 lower risk distribution is to look at the data that

- ¹ Dr. Hickok presented, and imagine a group with fewer
- ² multiple prior pre-term births or a lower rate of
- ³ bacterial vaginosis.
- Or, if you will, an average -- a more favorable
- ⁵ risk factor profile.
- The best evidence from the study says that
- ⁷ group with a lower risk profile would share the same
- 8 benefit as was observed in this population, given
- 9 that the stratum specific results were so
- 10 consistent.
- So if you had a different mix of strata, if you
- 12 will, you would still predict and anticipate the
- 13 same kind of benefit.
- DR. GILLEN: I certainly agree that there is
- 15 consistency; I guess, that they're -- and true in
- 16 terms of the point estimate, all pointing in the
- ¹⁷ correct direction.
- 18 But, I mean, you know, there is variability
- 19 there in terms of pre-gestational or pre-term births
- 20 of less than one. You only have an 11 percent
- 21 difference, going up to, you know, what we see as an
- ²² average of 17 percent differences, and a maximum, I

- ¹ think, 30 percent difference from what I saw on the
- ² previous slide.
- So, you know, when we're weighing sort of
- 4 efficacy versus safety, you know, the magnitude of a
- ⁵ point estimate is very important; and so, therefore,
- ⁶ what constitutes the population later on is going to
- ⁷ be very important in terms of how that point
- 8 estimate is going to fluctuate between, say, a 10
- ⁹ percent improvement and a 30 percent improvement,
- ¹⁰ for example.
- And so, I guess, that's my main point in terms
- 12 of saying, you know, what is the population, or
- 13 target population, truly going to look like.
- 14 And is it what we've seen in the past or what
- ¹⁵ we see now with this 002 trial?
- And I understand that is a very difficult
- ¹⁷ question. I'm just trying to raise it and
- 18 illustrate some of the things.
- DR. SAVITZ: I think that, again, the data
- 20 provide the basis for speculating about a different
- ²¹ mix of the known risk factors.
- But I think, as Dr. Meis mentioned, I think one

- 1 of the biggest -- you know, the issues is the self-
- ² selection into the study.
- And, again, there is no reason to
- ⁴ anticipate that a different mix of women with
- ⁵ different motivation would experience a different
- ⁶ consequence.
- I think there is an issue, though, about the
- 8 challenge of simply -- for this kind of a protocol,
- ⁹ of having in a trial situation where there is that
- 10 placebo arm, obviously, that people are aware of, to
- 11 generate a group that really is fully representative
- 12 of the clinical source population.
- So there is that nature of generalize-ability
- 14 always from randomized trials.
- DR. DAVIDSON: Okay. Dr. Wenstrom.
- DR, WENSTROM: A lot of concern was expressed
- ¹⁷ about the five miscarriages in the 17-p group.
- 18 But a miscarriage was defined as a loss between
- 19 16 and 20 weeks. And I believe we were told
- 20 that the average gestational age at the first dose
- 21 was almost 19 weeks.
- So do we even know that those five women got a

- ¹ dose of 17-p or, if they did, if fetal viability was
- ² confirmed before they got that dose?
- DR. HICKOK: So, Dr. Wenstrom, that has to do
- ⁴ with combining the 001 data with the integrating.
- ⁵ That's a very -- a very good question on your part.
- And we actually did go back and look at,
- ⁷ specifically, the number in Study 001 who completed
- 8 treatment through 20 weeks of gestation.
- 9 In other words, we had a full course of
- 10 treatment through 20 weeks gestation.
- 11 That number was 94.5 percent, so we felt very
- 12 good about combining that with the data from 002,
- 13 you know, and giving a bigger estimate and more
- ¹⁴ stability of the numbers with, you know, again,
- 15 almost 95 percent of the women in that 001 study,
- 16 did complete treatment through 20 weeks.
- DR. WENSTROM: Does this mean they had one dose
- ¹⁸ at 19 weeks? The average -- wasn't that correct?
- DR. HICKOK: It is possible that they had one
- 20 dose.
- But, again, the average gestational age at the
- 22 time of randomization was almost identical between

- 1 the 001 and the 002 Study.
- So there was a balance -- I'm sorry, between
- ³ the 17-p and the placebo groups.
- So there was a balance on, you know, when
- ⁵ people entered the study and the average number of
- ⁶ injections they received by 20 weeks.
- DR. WENSTROM: But it's possible that some of
- 8 those five women hadn't even received a dose;
- 9 correct? They could have been randomized and
- 10 counted as a loss?
- DR. HICKOK: No. They were all randomized and
- 12 given an injection of 17-p at the same day.
- DR. WENSTROM: Okay.
- DR. HICKOK: And that had -- again, that had to
- 15 occur before 20 weeks, 6 days of gestation.
- DR. DAVIDSON: I understand Dr. Kammerman from
- ¹⁷ the FDA may have a question or comment on this.
- 18 DR. KAMMERMAN: Yes. One of the concerns I have
- 19 regarding this discussion of safety, is that we're
- 20 ignoring the time on study drug that you were
- ²¹ getting at.
- 22 And if we looked at the distribution of

- 1 gestational age at randomization, 25 percent of the subjects were enrolled by 18 weeks, 75 percent by 20
- ² weeks, and there were 25 percent that were enrolled during that last week.
- So, right off, there is only 75 percent of the subjects that we're talking about.
- And we need to look at the amount of time that they were actually on study drug.
- For example, there was one subject who was lost follow up, and I think that person was counted as 6 one day in the study.
 - So if we account for the exposure to the study
- 7 drug, the percent of stillbirths -- I'm sorry, miscarriages is actually 3.5 percent. The
- 8 percentage of deaths at 21 weeks is 6 percent versus just about zero for placebo.
- And if the rate of death adds up, fetal death at 24 weeks, is 7 percent for placebo versus 3
- 10 percent -- I'm sorry, 7 percent for 17-p, and 3 percent for placebo, and then that's when you start
- 11 seeing the curves come back together.
 - So if we do look at the amount of time that
- 12 patients were on study drug, the rates become elevated when we use the proper denominator.
- DR. HICKOK: Should I respond to that, Dr. Davidson, or are you going to take another question?
- 14 Does that mean that I can respond?
 - DR. DAVIDSON: I think we will have to cut off
- 15 for one hour for lunch to stay on schedule.
- $\,$ And, as usual, our list is longer than the time 16 we have.
 - So we will pick up this afternoon with the
- 17 discussion in terms of those that did not have an opportunity to raise a question.
- Dr. Watkins may have some logistical comments about lunch.
- 19 DR. WATKINS: Just two housekeeping issues.
 - For the Committee, the hotel's restaurant has
- ²⁰ an area cordoned off so that you can quietly enjoy your lunch.
- If so, if you will proceed to the restaurant, I would appreciate that.
- For those members who have pre-registered to participate in the Open Public Hearing but have not
- 23 yet checked in at the registration desk, please do so.
- Thank you. And we'll see you after lunch. (Whereupon, a luncheon recess was taken.)

- 1 AFTERNOON SESSION
- MS. WATKINS: We'd like to call the first open
- ³ public hearing speaker to the microphone. The first
- ⁴ speaker is Senator Connie Lawson.
- 5 SENATOR LAWSON: Good afternoon. I am Indiana
- ⁶ State Senator Connie Lawson and Vice Chair of Women
- ⁷ in Government, a national 501(c)(3) non-profit
- ⁸ bipartisan organization of women state legislators
- ⁹ providing leadership opportunities, networking,
- 10 expert forums, and educational resources to address
- 11 and resolve complex public policy issues.
- Women in Government leads the nation with a
- 13 bold, courageous, and passionate vision that
- ¹⁴ empowers and mobilizes all women legislators to
- 15 effect sound policy. In the interest of disclosure,
- 16 my trip today was paid for by Women in Government,
- ¹⁷ and Women in Government does receive unrestricted
- 18 educational grants from Adeza Biomedical.
- As you all know, preterm birth is a burden to
- 20 the American health care system. According to the
- ²¹ March of Dimes, every week in the United States,
- ²² nearly 9,600 babies are born preterm. In the course

- ¹ of one year, over 12% of all live births are
- ² preterm.
- Beyond the stress this causes for each family
- ⁴ across our country, preterm birth has a lasting
- ⁵ financial stress on our states and our nation, with
- ⁶ over \$18 billion spent nationally each year in
- ⁷ hospital charges for babies born with low birth
- ⁸ weight or prematurity.
- ⁹ I understand both these stresses on a personal
- 10 level as a grandmother to two premature babies, one
- 11 born at 29 weeks, one born at 32 weeks, and as a
- 12 state legislator for 10 years.
- 13 We now understand the science and have the
- 14 ability to prevent $\,$ preterm $\,$ birth. We $\,$ also $\,$ know
- 15 that women who have previously had a premature baby
- ¹⁶ are more likely to deliver prematurely in a
- ¹⁷ subsequent pregnancy.
- Progesterone treatments, such as 17P, have been
- 19 shown in clinical studies, as we've all heard today,
- 20 to have a positive effect on preventing preterm
- ²¹ delivery. In the study conducted by the National
- ²² Institute of Health, 17P was successful in reducing

- ¹ preterm delivery by 34%.
- Furthermore, the American College of
- ³ Obstetricians and Gynecologists has recommended the
- 4 use of progesterone in certain high-risk
- ⁵ pregnancies, particularly for women who have
- ⁶ previously had premature deliveries.
- With available medicine and screening
- 8 technologies, we can save lives, health care
- ⁹ dollars, and undue stress on families in our nation.
- 10 Women in Government has convened several
- 11 educational forums on the issue of preterm birth,
- 12 and many women state legislators across the
- 13 country are addressing this important topic in
- 14 women's health.
- On behalf of my colleagues across the country,
- ¹⁶ I urge the Advisory Committee to make
- 17 recommendations to the Food and Drug Administration
- ¹⁸ to improve the availability of preventative
- 19 treatments for preterm delivery and to ensure
- 20 access to life-saving technologies, such as 17P, for
- 21 all women.
- I thank you for the opportunity to speak to you

- 1 today, and I look forward to the important decisions
- ² you will make for the women of the United States, my
- ³ family, and the people I represent.
- DR. DAVIDSON: Thank you.
- 5 MS. WATKINS: Our next open public hearing
- ⁶ speaker is Barbara Dehn.
- MS. DEHN: Good morning. I'm Barbara Dehn. I'm
- ⁸ a women's health nurse practitioner, and previously,
- ⁹ I was a pediatric ICU nurse at Stanford University
- 10 Medical Center, so I know first-hand about the
- 11 long-term issues of prematurity. Next slide.
- When children are fortunate enough to survive
- 13 their stay in the NICU, they go home to mom and dad
- 14 and then if they become ill, they go back to peds or
- 15 peds ICU, where I was a nurse. So I saw some of
- 16 the things that they came in for. Next slide.
- One of the things I saw a lot of was broncho-
- ¹⁸ pulmonary dysplasia. This is also known as chronic
- 19 lung disease. Those babies have very fragile lung
- 20 tissue, so when they're mechanically ventilated,
- ²¹ they can have scarring, and they can develop what's
- 22 called chronic lung disease, almost like COPD in an

- 1 elderly person.
- These children have a propensity to asthma, and
- ³ small colds or flus that your child would brush off
- ⁴ and be able to go to school with, these children
- ⁵ can't, so they'd end up in the PICU with me and
- ⁶ sometimes, they'd have to be ventilated. Next
- ⁷ slide.
- 8 Another thing I saw was necrotizing
- 9 enterocolitis. We called it NEC in the ICU. This
- 10 is more common in children who are very low birth
- 11 weight. If they did survive -- next slide -- this,
- 12 because the mortality is very high, they often
- 13 needed surgery, where a small portion of their
- 14 very small intestine was removed.
- So these children had chronic diarrhea and
- 16 malabsorption syndrome. And so it was very
- 17 interesting taking care of them in the PICU with
- 18 chronic diarrhea, especially because they didn't
- 19 grow very well. Next slide.
- The other thing that was particularly difficult
- ²¹ for me as a nurse was to see children who had
- ²² developed intra-ventricular or peri-ventricular

- 1 hemorrhaging, and this is when their cerebral
- ² arteries or cerebral capillaries, excuse me, bleed
- 3 and it would cause almost like a stroke in an older
- 4 person.
- Now, this is much higher risk in people who are
- ⁶ delivered before 32 weeks, and small things that we
- ⁷ did routinely in the ICU could trigger this. Just
- 8 suctioning a child on a ventilator could trigger
- ⁹ IVH. Next slide.
- Now, the long-term consequences, I also saw.
- 11 Children who had grade three or grade four IVH had
- 12 much more serious sequelae and what I saw were
- 13 children who came in for seizure disorders. So they
- 14 seized and seized and seized and we couldn't get
- 15 them under control.
- Or their IVH made them more susceptible to
- 17 hydrocephalus, and that's water on the brain.
- 18 They needed shunting, and often times, they had to
- 19 have shunt re-dos or their shunts became infected.
- 20 And of course, we saw a lot of cerebral palsy, and
- ²¹ those poor kids needed a lot of tendon-lengthening
- 22 surgery. Next slide.

- This is a partial list of risks factors. You
- ² know that. Next slide. You all know about the
- 3 study by Meis, but what you may -- we should talk
- ⁴ about is that using 17P decreases the rates of NEC,
- ⁵ it decreases IVH, and it decreases the need for
- ⁶ supplemental O2, or oxygen. Next slide. Next
- ⁷ slide.
- 8 So what I want to talk about is the difference
- ⁹ one week can make. So one extra week can make a
- 10 huge difference in a child's life for their
- 11 lifetime. Babies really do need to spend a lot of
- 12 time in mommy's tummy. That's really where they
- 13 develop best.
- One extra week can mean the difference between
- ¹⁵ reading at grade level and needing special
- 16 education. It can mean the difference between
- 17 wearing glasses and not wearing glasses. It can
- 18 mean the differences between spitting up once in a
- 19 while and having chronic reflux. It can mean the
- 20 difference between running with your friends and
- ²¹ being able to play soccer or having cerebral palsy,
- ²² having spasticity, and needing tendon-lengthening

- ¹ surgery.
- Now, why don't we use more 17P? I work in the
- ³ San Francisco Bay area. Stanford is nearby, we have
- ⁴ Valley Medical Center. Both of those institutions
- ⁵ have very different protocols for 17P. So it's
- ⁶ difficult for me, as a women's health nurse
- ⁷ practitioner, to initiate this for my patients, and
- 8 that means limited access, and that also means
- ⁹ under-treatment of women at risk. Next slide.
- Because we don't have an FDA-approved
- 11 formulation, it's not on every hospital
- 12 formulary. It's not on my hospital formulary, and I
- 13 work at El Camino Hospital in Mountain View,
- ¹⁴ California in Silicone Valley. It's not covered by
- ¹⁵ a lot of insurances. So for me, it makes it more
- 16 difficult for me to do my job, and my job really is
- 17 to help ensure healthy babies and healthy moms.
- 18 Because it has to be compounded, a lot of us
- 19 are concerned about the quality assurance, and it is
- 20 available through some pharmacies, but we're not
- ²¹ really sure whether or not we should be using that
- 22 for our patients. So I want to strongly -- next

- 1 slide -- I want to strongly encourage you to
- ² consider approving 17P, because I think it would
- ³ help me do a better job of preventing the
- 4 long-term consequences of prematurity.
- I thank you for your time. In the interest of
- ⁶ disclosure, a portion of my travel was paid for by
- ⁷ Adeza Biomedical. Thank you.
- DR. DAVIDSON: Thank you. Let me put this
- 9 statement in the record. Fortunately, the first two
- 10 speakers, I think, have complied with this. Both
- 11 the Food and Drug Administration and the public
- 12 believe in a transparent process for
- 13 information-gathering and decision-making.
- To ensure such transparency at the open public
- ¹⁵ hearing session of the Advisory Committee meeting,
- ¹⁶ FDA believes that it is important to understand the
- ¹⁷ context of an individual's presentation.
- 18 For this reason, FDA encourages you, the open
- 19 public hearing speaker, at the beginning of your
- 20 written or oral statement, to advise the committee
- ²¹ of any financial relationship that you may have with
- 22 the sponsor, its product, and if known, its direct

- 1 competitors. For example, the financial information
- ² may include the sponsor's payment for your travel,
- ³ lodging, or other expenses in connection with your
- 4 attendance at the meeting.
- 5 Likewise, FDA encourages you, at the beginning
- ⁶ of your statement, to advise the committee if you do
- ⁷ not have any such financial relationships. If you
- ⁸ choose not to address this issue of financial
- ⁹ relationships at the beginning of your statement, it
- 10 will not preclude you from speaking.
- MS. WATKINS: Thank you, sir. Our next
- 12 presenter is Dr. Michael Paidas.
- DR. PAIDAS: Dr. Davidson, members of the
- 14 committee, ladies and gentlemen, thanks for the
- 15 opportunity for being here. My name is Michael
- 16 Paidas. I'm Associate Professor and Co-Director
- 17 of the Yale Blood Center for Women and Children. I
- 18 have paid for this on my own to attend here today.
- 19 I've been part of the speakers bureau for the March
- 20 of Dimes and Adeza Biomedical in the past. Next
- 21 slide, please. Thanks.
- So as you've all heard, preterm delivery is a

- 1 distressing problem, continues to have major issues
- ² for us for a number of different areas, and
- ³ you've heard about the use of progesterone as a
- ⁴ preventative strategy. Next slide, please.
- 5 You've heard a lot about the randomized trial
- 6 completed by Dr. Meis and colleagues which showed
- ⁷ that progesterone caproate IM weekly early on in
- 8 pregnancy significantly reduced the risk of preterm
- ⁹ delivery. Next slide. And you've also heard that
- 10 it's improved the number of neonatal morbidities, as
- ¹¹ shown here.
- You've also seen -- next slide. Thank you.
- 13 You've also seen that a number of progestational
- 14 agents have been used in the preterm delivery
- 15 prevention, and in a recent med analysis that's
- 16 shown here, you've seen -- and the conclusion was
- 17 the use of these agents and particularly 17P has
- 18 been shown to reduce the rate of preterm birth and
- 19 low birth weight. Next slide.
- Recently, also, ACOG has issued a committee
- ²¹ opinion, also identifying that progesterone has
- ²² greatly reduced the risk of preterm delivery, and

- 1 also stressed, I might add, that much more research
- ² is needed in these areas for patients with other
- ³ high risk factors. Next slide. Thanks.
- So I just want to highlight a bit about
- ⁵ some of progesterone's actions and show you a little
- ⁶ bit of the work that may have relevance to this
- ⁷ topic. As you can see, progesterone has a number of
- 8 actions. It relaxes the myometrial smooth muscle,
- ⁹ it blocks the action of oxytocin, it inhibits the
- 10 formation of gap junctions.
- 11 It also inhibits uterine prostaglandin
- 12 production. It also inhibits T-lymphocyte mediated
- 13 processes. It also seems to create a barrier to the
- 14 entry of pathogens into the uterus, which is very
- 15 important in terms of prevention of infection.
- More recently, we've identified a number of
- 17 issues of progesterone regarding the regulation of
- ¹⁸ decidual cell homeostasis, those cells that come in
- 19 direct contact with the placenta, and it seems to be
- 20 that one of its effects is to block the effects of
- ²¹ thrombin, which is involved in the clotting cascade.
- ²² Next slide.

- So we know that hemorrhage is one of the
- ² discrete pathogenic mechanisms involved in preterm
- ³ delivery. In this cartoon here, you see the diagram
- ⁴ where hemorrhage has occurred. When that does
- ⁵ occur, there's an extravasation of a number of
- ⁶ clotting factors, and that sets off the cascade to
- ⁷ create thrombin.
- Now, thrombin is one of the most potent uterine
- ⁹ contractile agents that we're aware of. It's also
- 10 involved in clot formation, certainly, but also,
- 11 it's very much involved in the degradation of the
- 12 extracellular matrix through the activation of a
- 13 number of MMPs that you see on the right-hand side
- 14 of the screen, which we think is important for
- 15 involvement in preterm delivery. Next slide.
- Recently now, we understand that thrombin
- ¹⁷ induces decidual interleukin-8 expression, and
- 18 interleukin-8 is very important in terms of
- 19 recruiting neutrophils in the area. The panel on
- 20 the right are two slides demonstrating a number of
- ²¹ neutrophils in cases where you have abruption
- 22 occurring, and in other cases on the top panel,

- 1 preterm delivery unassociated with abruption.
- So now, we have a clear mechanism of
- ³ thrombin being important in extracellular matrix
- 4 degradation, and we've shown at least one compound
- ⁵ of progesterone to reduce the risk of thrombin. So
- ⁶ we have a potential mechanism of its effect. Next
- ⁷ slide.
- So as you know, there are a number of different
- ⁹ candidates in various trials, but what we're talking
- 10 about here today is women with a risk of preterm
- 11 delivery based on a prior history. You've already
- 12 heard already about the candidates for therapy.
- ¹³ Next slide.
- You've heard a lot about safety today, and a
- 15 number of reviews have come out really attesting
- ¹⁶ to the safety of progesterone. Next slide. So the
- 17 main problem that we have right now is that we can't
- 18 get doctors to access this drug, and having an
- 19 entity that might be helpful for physicians
- 20 nationwide to access the drug would be of great
- ²¹ benefit.
- So I would urge the committee to consider

- ¹ seriously approving this drug for the treatment of
- ² -- prevention of preterm delivery. Thank you very
- 3 much.
- DR. DAVIDSON: Thank you.
- MS. WATKINS: Our next presenter is Nancy Green.
- DR. GREEN: Thank you. My name is Nancy Green.
- ⁷ I'm the Medical Director at the March of Dimes, and
- ⁸ I'll be representing the foundation. First, in
- ⁹ terms of the conflict of interest, I have no
- 10 personal conflict to reveal. The March of Dimes has
- 11 accepted donations from Adeza, and I can just say
- 12 we've never discussed the topic of prevention of
- 13 preterm birth or this application or progesterone
- 14 with them.
- So as many of you probably know, the mission of
- 16 the March of Dimes is to prevent birth defects,
- ¹⁷ prematurity, and infant mortality. On behalf of the
- 18 over three million volunteers and 1,300 staff
- 19 members of the March of Dimes nationwide, I will
- 20 provide the foundation's perspective on this
- ²¹ application for 17-alpha-hydroxyprogesterone
- ²² caproate.

- 1 The March of Dimes offers the following
- ² recommendations to the committee based upon the
- ³ promising results, and we've heard about it now
- ⁴ several times already today from the Meis et al
- ⁵ study through the (inaudible). It is our
- ⁶ recommendation that: (1) the FDA approve the
- ⁷ application to license 17- hydroxyprogesterone; (2)
- 8 to direct that the FDA direct the product labeling
- 9 to clearly be for the specific indications during
- 10 pregnancy; i.e, prevention of recurrent preterm
- 11 birth; and (3) that the FDA require a structured
- 12 post-marketing evaluation of 17-hydroxyprogesterone
- 13 by its proposed manufacturer.
- 14 Well, we've heard about the IOM (phonetic)
- 15 report as well, so I won't mention that, but I would
- 16 like to point out that based on the Meis et al
- 17 study, the March of Dimes did an analysis based on
- 18 2002 birth data to estimate the impact of
- 19 hydroxyprogesterone on prevention of recurrent
- ²⁰ preterm birth. This paper is published in
- ²¹ Obstetrics and Gynecology in 2005, and we -- noting
- 22 the historic rate of recurrent preterm birth

- 1 reported by Brian Mercer of 22%.
- We looked at actually retrospective
- 3 longitudinal data from two state health departments,
- ⁴ maternal linkage, data sets that represent the
- ⁵ ethnic distribution of the U.S., and actually, also
- ⁶ found a recurrent preterm birth rate of 22%.
- ⁷ So all of those women who were eligible for
- 8 progesterone as outlined by Meis et al, there would
- 9 be 30,000 -- this is a estimate extrapolating from
- 10 the Meis data -- approximately 30,000 recurrent
- 11 singleton preterm births would occur, for which --
- 12 so those women would be eligible for progesterone.
- 13 And if they had -- if all these women had received
- 14 prenatal treatment with the drug, nearly 10,000
- 15 spontaneous preterm births would have been
- 16 prevented; again, using 2002 data.
- Widespread use of 17-hydroxyprogesterone for
- ¹⁸ pregnant women has already been demonstrated amongst
- 19 perinatal medicine specialists, maternal-fetal
- ²⁰ medicine specialists. A 2005 survey by Dr. Vince
- ²¹ Bergella (phonetic), who's here in the audience,
- 22 demonstrated that of those members surveyed -- or

- 1 responded, actually, to the survey -- that 67% --
- ² that's two-thirds of the respondents already
- ³ prescribed progesterone to their pregnant patients
- ⁴ who are at risk of preterm birth. And that's data
- ⁵ that was published as an abstract in 2005, and
- ⁶ it's currently in press.
- Interestingly, despite a lack of support of
- 8 clinical data, one-third of the respondents -- these
- 9 are maternal-fetal medicine specialists -- one-third
- 10 of those who responded to the survey recommend
- 11 progesterone for indications in addition to
- 12 recurrent preterm birth, such things as effaced
- 13 cervix and even tocolysis and other indications --
- ¹⁴ or other clinical situations.
- 15 Certainly, we've heard today that there's a
- 16 paucity of published data around the safety issues
- 17 on infants and children, although the datas appear
- 18 to be favorable, but the March of Dimes continues to
- 19 be cautious, of course, about the use of this drug,
- 20 given the target population of pregnant women.
- Certainly, the studies were not designed -- the
- ²² clinical studies were not designed to provide

- 1 assurance of the drug's safety. Again, this is
- ² really why we encourage careful monitoring of the
- ³ prescription use of 17-hydroxyprogesterone,
- 4 including long-term data, as well as short-term
- 5 potential manifestations, so we can best inform
- ⁶ women and their prescribing providers around costs
- ⁷ -- risks and benefits of 17P.
- 8 So therefore, given the common and serious
- ⁹ problem of prematurity, as you've heard about, the
- 10 unique property of 17- hydroxyprogesterone for
- 11 reducing risk of preterm birth, the intended target
- 12 user, pregnant women, and the documented widespread
- 13 and broad prescription of the drug amongst perinatal
- ¹⁴ specialists, the March of Dimes recommends that the
- ¹⁵ FDA approve the licensing application for 17-
- 16 hydroxyprogesterone.
- 17 If approved, that would mean that this drug
- ¹⁸ would be available, if medically appropriate, to all
- 19 pregnant women, including women who rely on Medicaid
- ²⁰ for health insurance and are risk of preterm birth.
- ²¹ As you probably know, federal law prohibits Medicaid
- ²² reimbursement unless the pharmaceutical or therapy

- 1 has received FDA approval and the manufacturer
- ² participates in a drug rebate agreement.
- In fact, a number of states have already been
- ⁴ working for Medicaid coverage for 17-
- ⁵ hydroxyprogesterone. For example, the North
- ⁶ Carolina legislature recently passed a bill in May
- ⁷ of this year to provide funds from the Department of
- 8 Health to cover the cost of purchasing the drug for
- 9 low income women until "the medication becomes
- 10 readily available through the Medicaid program."
- MS. WATKINS: Ma'am? Your time is up.
- DR. GREEN: Thank you very much.
- DR. DAVIDSON: Thank you.
- MS. WATKINS: Our next presenter is Joseph
- 15 Hwang.
- DR. HWANG: Good afternoon. My name is Joseph
- 17 Hwang. And thank you for allowing me the
- 18 opportunity to participate in this meeting. My
- ¹⁹ name is Joseph Hwang. I'm a practicing
- 20 maternal-fetal medicine specialist in Des Moines,
- 21 Iowa. As a -- for disclosure, my trip was sponsored
- ²² by Adeza Biomedical.