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1 Introduction 
 
The cost of developing a new drug is more than $800 million and typically takes 
well over a decade. The clinical trial failure rate in late stage development is 
unacceptably high at around 50% and the public has been surprised by the 
recent number of drugs previously regarded as safe, but which have been found 
to cause unacceptable toxicity once on the market. Of all the new chemical 
entities that enter clinical testing, only 21.5% achieve final clinical success and 
FDA marketing approval[1]. The number of new molecular entities approved by 
the FDA has been declining, down to 25 in 2002 from a high of 53 in 1996, 
mainly due to the decline in the number of new applications submitted to the 
FDA. Thus, improvements in biomedical science have not translated into a better 
success rate for investigational treatments.  
 
The FDA has publicly stated its desire to participate in improving drug 
development productivity and quality in providing safe and effective medicines to 
American patients. It is recognized that while the cost of drug development 
continues to soar, productivity has continued to decrease in terms of a decreased 
number of new, meaningful drugs to patients. The clinical trial failure rate in late 
stage development is unacceptably high at around 50% and the public has been 
surprised by the recent number of drugs previously regarded as safe, but which 
have been found to cause unacceptable toxicity once on the market. Little has 
changed in the style of drug development over the past 30 years even though 
many promising innovations have occurred in biomarkers to measure drug effect 
or disease change, newer trial designs can be more informative earlier in the 
process, and a variety of information technology tools (database, simulation) 
allow scientists to contribute to key development decisions in a quantitative 
manner.  
 
One of the major criticisms against drug development is its negligence to employ 
prior knowledge to drive drug development decisions such as trial design and 
analysis. The value of quantitative thinking in drug development and regulatory 
review is increasingly being appreciated.  Modeling and simulation of data 
pertaining to pharmacokinetic, pharmacodynamic and disease progression is 
often referred to as the pharmacometrics analyses. Forty-two New Drug 
Applications (NDAs) which needed pharmacometrics reviews and submitted 
between 2000-2004 to the Cardio-renal, Oncology and Neuropharmacology drug 
products divisions were surveyed[2]. Similarly 32 NDAs which needed a 
pharmacometrics review and submitted to the FDA between 2005-2006 (all 
therapeutic areas) were also surveyed (manuscript in preparation). Opinions of 
the pharmacometrics, clinical pharmacology and medical teams were polled. 
Pharmacometric reviews with a critical role in the regulatory decision making 
were ranked as pivotal. Decision making here refers to the thought process 
specific to the question and not merely to whether a NDA was approved or not in 
general.  Pharmacometric reviews which were worthwhile in confirming the 
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regulatory decision making were considered as supportive. About 90% of the 74 
NDA reviews were either pivotal or supportive to the drug approval and labeling 
decisions. The impact of pharmacometrics reviews is consistent amongst the 
previous (2000-2004) and the current surveys (2005-2006).  Thus far this is the 
largest survey to measure the value of quantitative clinical pharmacology efforts.  
Greater impact occurred when there was collaboration among the FDA 
pharmacometrics, clinical pharmacology, medical and statistical reviewers and 
the sponsor. Several of these case studies highlight the importance of applying 
pharmacometric techniques to either the design or analysis of   late phase clinical 
trials. Extracting prior knowledge within the FDA on disease change or placebo 
effect was required to solve some of these case problems. Sponsors also valued 
this information that was not proprietary. This led to the idea that developing a 
mechanism to share disease, placebo and dropout models would be a valuable 
service for FDA to offer the scientific community to improve drug and regulatory 
development decisions.  
 
Disease models for the purpose of this discussion are defined as the collection of 
sub-models that describe the distribution of exclusion/inclusion criteria (e.g.: 
baseline disease severity distribution and its relation with other risk factors); 
disease progression and its relationship to relevant biomarkers (e.g.: the 
contribution of changes in HbA1c to the risk of MI over time); drug effects (e.g.: 
concentration-HbA1c relationship) and drop-out model (e.g.: characteristics of 
patients who drop-out). The main objective of this initiative is to advance the 
utility and application of models to account for patient, disease, and drug effects 
on effectiveness and toxicity targeted to facilitate decision by product sponsors 
(e.g., go/no go, trial design), government (approval, labeling, trial design, value) 
and clinicians (drug selections, dosing). 
 
In the current session, an overview of the impact of quantitative thinking on drug 
approval and labeling decisions will be presented which is followed by an 
overview of disease models.  Summary of different sub-parts of the disease 
models for obesity and Parkinson’s disease will be presented to allow discussion 
around the following questions. Other disease models have been employed or 
are under development. (e.g., type 2 diabetes, non-small cell lung cancer, HIV, 
transplant) 
 
A summary of our disease modeling for obesity and Parkinson’s disease are 
presented in the current document.  Our efforts pertaining to Parkinson’s disease 
model are more complete and that work should form the main basis for 
discussing the following questions. 
 

1. Is the overall approach to quantifying various part of the disease models 
reasonable? 

2. Is the approach to select data for modeling reasonable? 
3. Is the approach to qualifying the models reasonable? 
4. How should this information be publicly communicated? 
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2 Disease Models 
 
The following section a brief description of the disease models for obesity and 
Parkinson’s disease are provided.  For each of the disease areas the data used 
and details of the patient population, placebo/disease progression and drop-out 
models are presented. 
 

Obesity 

Data 
Demographic, body weight and drop-out data in about 600 obese patients over 2 
years who received placebo along with diet and exercise control were employed 
to build the disease model for obesity.  

 

Patient Population Model 
 
Table 1 shows the mean and standard deviation of the logarithmic baseline 
bodyweights for Caucasian and African-American males and females. The data 
included 20% African-Americans of the total population, and 25% males. The QQ 
plots on log transformed bodyweight suggested that log-normal distribution is 
appropriate for simulating baseline bodyweights (not shown). 
 
Table 1.  Mean and Standard Deviation of Natural log-transformed Baseline 
Bodyweight. 
 

 Caucasian Black 
 Males Females Males Females 
Mean (kg) ± SD 4.80±0.17 4.60±0.18 4.88±0.20 4.67±0.18 

  
 

Placebo Model 
 
The percentage of bodyweight change from baseline over time is described by 
the equation below: 
 
 
 
By this model, the % of bodyweight change from baseline can increase or 
decrease over the time to reach the maximal placebo effect, WTLossmax. The 
constant k is the first-order rate constant of bodyweight change over time. The 

))Timekexp(1(WTLossgeweightchan% max •−−−=
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between-patient variability for maximal placebo effect (WTLossmax) and the 
residual variability were assumed to be normally distributed, whereas for rate of 
bodyweight changes from baseline (k) a log-normal distribution was assumed. 
Missing data were not imputed using last observation carry forward (LOCF) for 
estimation. The data was modeled by NONMEM V and FOCE method was used. 
The estimated parameters are presented in Table 2.  
 
Table 2. Placebo model parameters to describe the % of bodyweight changes 
from baseline over time. 
 

Population Mean Inter-subject variability  

Estimate Standard 
Error (%) 

CV (%) Standard 
Error (%) 

WT loss rate (k, month-1) 0.11 13.0 119% 14.3 

Maximal weight loss from 
baseline (WTLossmax, %) 

2.06 19.9 392% 9.6 

Residual Error (SD, kg) 1.4 6.7   

* correlation between random effects of k and WTLossmax was estimated to be 
0.24 

 
The model suggested the average maximal % of change from baseline in 
placebo group was about 2% and the time to reach to the maximal effect was 
about 25 weeks.  
 

Drop-out Model 
 
The dropout rate and the mean bodyweight change from baseline in the patients 
who dropped out and those who remained in the study at 3, 6, 9 and 12 months, 
are summarized in Table 3. 
 
Table 3. Mean bodyweight changes in patients who dropped-out and those 
remained in the trial at various time points. 
 

 < 12 
weeks 

12-24 
weeks 

24-36 
weeks 

36-52 
weeks 

% drop-out 24% 13% 9% 4% 
Mean of % body weight change from 
baseline at the time of dropout in the 
subjects who dropped out 

0.01 -0.55 -0.36 -0.38 

Mean of % body weight change from 
baseline in subjects who remained in the 
study 

-2.15 -2.99 -3.19 -2.77 
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As shown in Table 3, patients with less bodyweight changes from baseline are 
more likely to drop out from the study.  
 
Both Cox-proportional hazards and parametric survival analyses, with an 
exponential hazard function, were conducted to explore the effect of percent 
bodyweight change from baseline on drop out. The results showed that the 
dropout pattern is significantly related to the % bodyweight loss, indicating that 
the greater percent weight loss, the less chance a subject would drop out from 
the study, consistent with Table 3. However, this survival analysis is only 
preliminary. The underlying assumption of this analysis is that the percent 
bodyweight change from baseline is associated with the probability of a patient to 
drop out from the study and the extent of the effect is the same across the study 
time.  The final drop-out model parameters are presented in Table 4. 

 
Table 4: Drop-out model parameters obtained using parametric survival analysis 
assuming an exponential distribution. 

 
 Estimate Standard Error p value 

Intercept 6.916 0.308 <0.0001 
Effect of sex 

(male=1,female=2) 
-0.3823 0.163 0.02 

% of bodyweight 
change before dropout 

-0.0621 0.0115 <0.0001 

 

Parkinson’s Disease 
Parkinsonism is a clinical syndrome comprising of motor problems: bradykinesia 
(slowness and decreased amplitude of movement), tremor-at-rest, muscle 
rigidity, loss of postural reflexes, flexed posture, and the freezing phenomenon 
(where the feet are transiently “glued” to the ground)[3].  Not all six of these 
cardinal features need to be present, but at least two should be before diagnosis 
of Parkinsonism is made, with at least one of them being tremor-at-rest or 
bradykinesia.  Parkinson’s disease (PD) is the major cause of Parkinsonism.  PD 
is a slowly progressive parkinsonian syndrome that begins insidiously, gradually 
worsens in severity and usually affects one side of the body before spreading to 
involve the other side.  The management of PD can be divided into three 
categories (a) symptomatic treatment (b) protective/disease modifying treatment 
(c) surgical or restorative treatment.   
 
Several drugs are approved by the FDA for symptomatic treatment (based on 
effects on Total UPDRS scores) such as L-Dopa, dopamine agonists (ropinirole, 
pramipexole), MAO-B inhibitors (Selegiline) etc.  Novel clinical trial designs and 
statistical methods for data analysis are being pursued currently to clearly define 
a disease modifying drug[4].     In terms of novel clinical trial design, there is only 
one published study or rasagiline that has utilized delayed start design to study 
disease modifying benefits[5].  Questions have been raised on the effects of 



FDA Pharmacometrics Page 6 9/22/2006 6

missing data on the final outcome of a rasagiline clinical trial [6].  Model based 
repeated measures analysis could provide more clear evidence of disease 
modifying benefits[7-10].  
We developed a quantitative model describing the patient characteristics, 
disease/placebo effects and drop-out patterns to explore various clinical trial 
designs and endpoints by computer simulation.  
 

Data Sources 
 
Demographic, longitudinal symptom scores (UPDRS) and times of drop-outs for 
each patient enrolled across six the clinical trials were employed for model 
building.  Data from a total of 1400 patients collected over a duration of 0.5 to 3 
years from double-blind, randomized and parallel or titration studies were 
available. 
 

Patient Population Model 
The influence of prognostic factors such as patient’s age and time since 
diagnosis on the baseline UPDRS score was tested.  Both age and time since 
diagnosis of disease were significant factors. 

Disease Progression Model 
 
Disease progression analysis for placebo was performed using linear mixed 
effects (PROC MIXED in SAS Ver 8.2).  Briefly each patient’s progression is 
defined by his/her own slope and intercept.  Owing to the early placebo and 
symptomatic effects, we analyzed the data post 8 weeks.  The model for change 
in total UPDRS score from baseline (cUPDRS) in treatment groups (Placebo, 
Drug) can be described as below: 
 

TreatmentWeekβTreatmentβWeekββcUPDRS 3210 ••+•+•+=  

 
Where β0, β1, β2, β3 refer to intercept, slope in placebo group, symptomatic 
effect and slope differences between the treatment, placebo. 
 
As can be seen in the equation above, if the treatment were to have disease 
modifying benefits, the difference in slope between the treatment groups would 
be statistically significant.  The effects of various covariates (i.e., age, disease 
duration, age at disease onset, individual components of total UPDRS score) 
were also tested for their statistical significance on the slope. The final disease 
progression model parameter estimates are shown in Table 5.  
 
Table 5.  Parkinson’s disease model parameters that were employed for clinical 
trial simulations. The inter-individual variability on all parameters was 
approximately 50%. The half-life to drug effect equilibration was derived from 
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preliminary analyses and from the fact that most studies showed maximal 
decrease in UPDRS by 4-8 weeks. 
 

Placebo model parameter Mean 
Baseline UDPRS 25 
Progression in placebo group (U/Wk) 0.16 
Placebo effect (U) -0.14 
Symptomatic effect in treatment group (U) -2 
Half-life to drug effect equilibration, Wk 1 
Residual Variability (U) 4 

 
The relationship between model predicted vs observed mean total UPDRS score 
is shown in Figure 1. The model reasonably describes the data. 
 

 
 
Figure 1. Observed disease progression, as reflected by the change in UPDRS 
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score, matches that of the model predicted well. 

Drop-out model 
 
Studies that evaluated the effectiveness of various treatments in idiopathic 
Parkinson’s patients were reviewed.  The various studies published in literature 
evaluated the effectiveness of treatments such as L-Dopa, Creatine, Co-
Enzyme10, Rasagiline, Minocycline along with placebo[11-14].  In all the 
published trials, the predominant reason for drop-out is due to worsening of 
symptoms which ranged from 15% to 50% depending on the trial duration and 
drug.  In other words, most of the treatment discontinuations were due to lack of 
effectiveness.  We explored the relationship between time-to-rescue (T) and 
duration adjusted change in UPDRS score using accelerated failure time models 
(PROC LIFEREG; exponential, weibull, gamma, logistic, log-logistic distribution 
for T) in SAS (Ver 8.2).  Figure 2 shows that faster the rate of progression the 
greater the likelihood of discontinuation is. 
 
 

 
Figure 2.  The proportion of patients remaining in the trial whose rate of change 
in UPDRS scores is less than 0.1 units/wk versus greater than 0.1 units/wk. 
 

Model Qualification 
 
To check if the input model for simulations is reasonable, predictive check was 
performed to ensure that the model simulated data are consistent with the 
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observed for: 
1. Distribution of UPDRS scores at baseline 
2. Mean time course of ∆UPDRS scores 
3. Distribution of ∆UPDRS scores at Week 8, 26 and 52 weeks. 
4. Hazard model to predict the probability of drop-out under various trial 

designs and trial duration. 

Clinical Trial Simulations 
The model developed for Parkinson’s disease model (patient population, disease 
progression and drop-out models) was used to simulate data according to a 
delayed start design to explore the influence of drop-out data patterns (drop-out 
is independent vs. dependent of symptoms/toxicity) on the false-positive rate. We 
used both empirical as well as hazard based models for simulating missing data.  
All the simulations presented here assume that the drug effect is purely 
symptomatic and not disease modifying. The key objective of the simulations was 
to assess the false-positive (Type-1) error rate under various drop-out scenarios. 
Simulations to determine the appropriate duration of the trial (pivotal versus 
proof-of-concept) and sample size are underway and are not discussed in the 
current report. 
 

Trial Design 
 
According to the delayed start design, patients are randomized to either drug or 
placebo initially and after say 26 weeks placebo arm is switched to the drug, in a 
blinded manner. In our simulations, we assumed that the drug elicits only 
symptomatic effect i.e., no disease modifying effect.  The design of the simulated 
trial is as shown below in Figure 3. The simulation conditions are shown in Table 
6.   

 
 
Figure 3.  Schematic representation of the delayed start design. The initial 26 
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week period is called the ‘placebo phase’ and the subsequent period is called the 
‘active phase’. 
 
Table 6.  Simulation conditions used for the clinical trial simulations.  
 

Sample Size 500 
Number of Arms 2 
Allocation 1:1 
Trial Duration 72 weeks 
Placebo Phase 0-26 weeks 
Active Phase  26-72 weeks 
UPDRS Measurements 0, 4, 8, 16, 20, 26, 32, 42, 52, 58, 72 weeks 
Cumulative drop-out rate 30-50% (across placebo, active phases) 
Drug effect Only symptomatic 

  

Statistical Analysis 
 
The influence of various drop-out patterns were explored via computer 
simulations.  Missing data were imputed using different techniques.  For patient 
who drops out in the active phase, no imputations are used and the available 
data is used for analysis. 
 
Analyses were conducted using  
1.  MMRM (Mixed Model Repeated Measures) approach for  

(a) ITT datasets (Intention-to-Treat datasets with no drop-outs and datasets 
with imputed values for missing information)  

(b) Non-ITT datasets (Datasets with only patients who completed the placebo 
controlled phase and have at least one post 26 weeks data). 

2.  ANOVA with imputation using LOCF approach 
     (a)  ITT with change from baseline at last observation (72 weeks) 
 
In the LOCF analyses, change from baseline to the last observation was the 
dependent variable and treatment was the only independent (fixed) variable in 
the analysis of variance.  Standard errors were obtained using mean square error 
as the estimate of residual variance. For the MMRM analyses, changes from 
baseline at all post-baseline times were the dependent variables.  Independent 
variables included treatment, time and the treatment-by-time interaction. 
Denominator degrees of freedom were estimated using Satterthwaite’s 
approximation [11: p 38]. Parameters were estimated using Restricted Maximum 
Likelihood with the Newton-Raphson algorithm.  Each data set was analyzed with 
an UN correlation structure.  
 
Several scenarios of drop-outs are being explored to understand their impact on 
Type-I error.  Sample results will be presented at the Advisory Committee 
meeting. 
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