Serotonin signaling and neuronal excitability in the inflamed colon: too much of a good thing

Gary M. Mawe, PhD The University of Vermont

Collaborators: Keith Sharkey, Peter Moses, Michael Gershon Postdoctoral & GI Fellows: David Linden, Jodie Sampson, & Jason Chen PhD and MD Students: Matt Coates, Jen O'Hara, Brian Manning

& Julie Simpson Technicians: Christine Mahoney, Matt Salter Student Researchers: Ciara Bannon

Intrinsic reflex circuits exist in the gut

Pressure Gradient

Other intrinsic reflexes in the gut

Mucosal secretion

Longitudinal muscle Myenteric plexus Circular muscle Submucosal plexus Mucosa

Vasodilation

Potential sites of changes in reflex circuitry

Potential sites of changes in reflex circuitry

Serotonin availability is increased in guinea pig and mouse TNBSenteritis

	5-HT content	EC cell counts	5-HT release	5-HT transporter	References
Guinea pig TNBS-colitis				•	Linden et al. (2003) AJP-GI 285:G207-G216
Guinea pig TNBS-ileitis					O'Hara et al., in revision
Mouse TNBS- colitis		?	?		Simpson et al., unpublished
Mouse Trichinella- ileitis	?	1	?	V	Spiller et al., unpublished

SERT-IR is persistently decreased in mice following Trichinella infection

n=6-8 per group; * p < 0.05, $\dagger p < 0.01$, $\Delta p < 0.001$ relative to control

In collaboration with Dr. Robin Spiller

Evaluation of the Key Elements of 5-HT Signaling in IBS and IBD

- Single center evaluation of normal controls (screening colonoscopy) and volunteers with IBS-C, IBS-D, UC. Screened by phone for medical history. Charts were reviewed as needed. Stringent diagnostic criteria were adhered to.
- Tissue obtained endoscopically using large capacity biopsy forceps.
- Measurement of 5-HT content and release, SERT immunoreactivity and mRNA, in the biopsy derived tissue.

5-HT Content is Decreased in UC and IBS

*, different from control †, different from control †† different from one another

Coates et al., In Press, Gastroenterology

5-HT Synthesis is Decreased in UC and IBS

*, different from control no significant difference between severe and non-severe UC

Coates et al., In Press, Gastroenterology

EC cell numbers are decreased in UC

EC cells per mm muscularis mucosa

Human rectal biopsy Chromogranin A Serotonin + Chromagranin A Yoyo, a nucleic acid stain

†, different from control; *††* different from one another

5-HT release is not altered in IBD or IBS

Coates et al., In Press, Gastroenterology

n=12-19 per group

SERT mRNA is decreased in IBD and IBS

n=18-26 per group* p < 0.05, † p < 0.01, $\Delta p < 0.001$ relative to control

Coates et al., In Press, Gastroenterology

SERT-immunoreactivity in Human Rectal Biopsy Samples

Examples from two different individuals per group

Coates et al., In Press, Gastroenterology

Summary of 5-HT properties in inflamed intestines

		5-HT content	EC cell counts	5-HT release	5-HT transporter	References
nimal	TNBS- enteritis					Linden et al. (2003) AJP-GI 285:G207-G216
A	Trichinella- ileitis	?	1	?		Spiller et al., unpublished
ıman	Ulcerative colitis	V	V	No change	¥	Coates et al., in press
Hu	Campylo- bacter	?	1	?	?	Spiller et al., unpublished

Enteritis-induced changes in reflex circuitry

Use of combined technologies to elucidate the roles of various neurons in the ENS

Characteristics of Intrinsic Primary Afferent Neurons (AH neurons) Dogiel Type II morphology

Resting membrane potential \sim -65 mV.

Prolonged afterhyperpolarization.

Rapid accommodation. Shoulder on repolarizing phase of AP. Spontaneous activity is rare.

Slow excitatory synaptic potentials are common, but fast synaptic potentials are rare.

G.pig myenteric plexus Calbindin Neurobiotin

Characteristics of Interneurons and Motor Neurons (S cells)

Dogiel Type I morphology

Resting membrane potential ~ -52 mV.

Brief afterhyperpolarization.

Slow accommodation.

Spontaneous activity is common.

Slow and fast excitatory synaptic potentials are common.

G.pig myenteric plexus **Neurobiotin**

AH neurons in the inflamed guinea pig colon are hyperexcitable

Linden et al., 2003 J. Physiol. 547:589-601

Fast excitatory synaptic input to AH neurons is augmented in TNBS colitis

Linden et al., 2003 J. Physiol. 547:589-601 & Linden et al., unpublished

**P*< 0.01; †*P*<0.05

Summary of TNBS colitis-induced changes in the electrical properties of AH neurons

Linden et al., 2003 J. Physiol. 547:589-601

	Resting Membrane Potential	Input resistance	# of Action Potentials	Spont. Activity	Anodal Break Potentials	AHP
TNBS colitis	_	_	↑	↑	↑	\Rightarrow

Palmer et al., 1998 AJP. 275:G922-G935

T. spiralis	\Rightarrow	↑	↑	↑	↑	\Leftrightarrow
----------------	---------------	---	---	---	---	-------------------

Summary of TNBS colitis-induced changes in S neurons (interneurons & motor neurons)

	Resting Membrane Potential	Input resistance	# of Action Potentials	Spont. Activity	Anodal Break Potentials	Fast EPSP	Slow EPSP
S neurons	_		_		—	←	↑

Linden et al., 2003 J. Physiol. 547:589-601

What are the mechanisms of enhanced excitability in AH neurons of the inflamed colon?

How and Why?

How does the inflammatory response lead to changes in IPAN excitability?

Why are the IPANs hyperexcitable?

Ionic currents in AH Neurons

The Cs⁺-sensitive, hyperpolarization-activated current is enhanced in colitis

Linden et al., 2003 J. Physiol. 547:589-601

Prolonged exposure to PGE₂ leads to changes in AH neurons that are reminiscent of TNBS colitis

Manning, Sharkey & Mawe, Am J Physiol. 2002;283:G1388-97

COX-2 activation contribute to hyperexcitability in AH neurons

Changes relative to control AH neurons

	Resting Membrane Potential	Input resistance	# of Action Potentials	Spont. Activity	Anodal Break Potentials	АНР
TNBS	_	_	↑	↑	↑	\Rightarrow
TNBS + COX-1 blocker		_	↑	↑	↑	\downarrow
TNBS + COX-2 blocker		_	_	_	_	_

Linden et al., In Press, J.Physiol.

Motility is impaired in the inflamed colon

Can increased neuronal excitability lead to decreased propulsive motility? *Attention Deficit Disorder* in the ENS

Linden, Sharkey & Mawe, unpublished

COX-2 blockade attenuates changes in motility that are associated with colitis

Linden, Sharkey & Mawe, unpublished

TNBS colitis-induced changes in reflex circuitry

- Increased excitability without altered RMP or IR
- Augmented I_h
- COX-2 activation is involved in elevated excitability
- Enhanced fast synaptic input

TNBS colitis- induced changes in reflex circuitry

- Increased excitability without altered RMP or IR
- Augmented I_h
- COX-2 activation is involved in elevated excitability
- Enhanced fast synaptic input

Fast excitatory synaptic input to S neurons is augmented in TNBS colitis

**P*< 0.001

Slow excitatory synaptic input to S neurons is augmented in TNBS colitis

*P< 0.05; †P<0.01

Linden, Sharkey & Mawe, unpublished