Return to Human Space Flight home page

Verification/Certification Test

The verification program demonstrates that the RSRM meets all design and performance requirements, and that failure modes and hazards have been eliminated or controlled. The verification program encompasses the following program phases: development, certification, acceptance, preflight checkout, flight and postflight.

Redesigned SRM certification is based on formally documented results of development motor tests; qualification motor tests and other tests and analyses. The certification tests are conducted under strict control of environments, including thermal and structural loads; assembly, inspection and test procedures; and safety, reliability, maintainability and quality assurance surveillance to verify that flight hardware meets the specified performance and design requirements. The "Development and Verification Plan" stipulates the test program, which follows a rigorous sequence wherein successive tests build on the results of previous tests leading to formal certification.

The test activities include laboratory and component tests, subscale tests, full-scale simulation and full-scale motor static test firings. Laboratory and component tests are used to determine component properties and characteristics. Subscale motor firings are used to simulate gas dynamics and thermal conditions for components and subsystem design. Full-scale hardware simulators are used to verify analytical models; determine hardware assembly characteristics; determine joint deflection characteristics; determine joint performance under short-duration hot-gas tests, including joint flaws and flight loads; and determine redesigned hardware structural characteristics.

Fourteen full-scale joint assembly demonstration vertical mate/demate tests, with eight interspersed hydro tests to simulate flight hardware refurbishment procedures, were completed early for the redesigned capture-feature hardware. Assembly loads were as expected, and the case growth was as predicted with no measurable increase after three hydro-proof tests.

Flight-configuration aft and center segments were fabricated, loaded with live propellant, and used for assembly test article stacking demonstration tests at Kennedy Space Center. These tests were pathfinder demonstrations for the assembly of flight hardware using newly developed ground support equipment.

In a long-term stack test, a full-scale casting segment, with live propellant, has been mated vertically with a J-seal insulation segment and is undergoing temperature cycling. This will determine the compression set of the J-seal, aging effects and long-term propellant slumping effects.

The Structural Test Article (STA-3), consisting of flight-type forward and aft motor segments and forward and aft skirts, was subjected to extensive static and dynamic structural testing, including maximum prelaunch, liftoff and flight (maximum dynamic pressure) structural loads.

Redesigned SRM certification includes testing the actual flight configuration over the full range of operating environments and conditions. The joint environment simulator, transient pressure test article, and the nozzle joint environment simulator test programs all utilize full-scale flight design hardware and subject the RSRM design features to the maximum expected operating pressure, maximum pressure rise rate and temperature extremes during ignition tests. Additionally, the Transient Pressure Test Article (TPTA) is subjected to ignition and liftoff loads as well as maximum dynamic pressure structural loads.

Four TPTA tests have been completed to subject the redesigned case field and case-to-nozzle joints to the above-described conditions. The field and case-to-nozzle joints were temperature-conditioned to 75 F. and contained various types of flaws in the joints so that the primary and secondary O-rings could be pressure-actuated, joint rotation and O-ring performance could be evaluated and the redesigned joints could be demonstrated as fail safe.

Six of the seven Joint Environment Simulators (JES) tests have been completed. The JES test program initially used the STS 51-L configuration hardware to evaluate the joint performance with prefabricated blowholes through the putty. The JES-1 test series, which consisted of two tests, established a structural and performance data base for the STS 51-L configuration with and without a replicated joint failure. The JES-2 series, two tests, also used the STS 51-L case metal-part joint but with a bonded labyrinth and U-seal insulation that was an early design variation of the J-seal. Tests were conducted with and without flaws built into the U-seal joint insulation; neither joint showed O-ring erosion or blow-by. The JES-3 series, three tests, uses almost exact flight configuration hardware, case field-joint capture feature with interference fit and J-seal insulation.

Four of five nozzle JES tests have been successfully conducted. The STS 51-L hardware configuration hydro test confirmed predicted case-to-nozzle-joint deflection. The other three tests used the radially bolted RSRM configuration.

Seven full-scale, full-duration motor static tests are being conducted to verify the integrated RSRM performance. These include one engineering test motor used to...

  1. Provide a database for STS 51-L-type field joints
  2. Evaluate new seal material
  3. Evaluate the ply-angle change in the nozzle parts
  4. Evaluate the effectiveness of graphite composite stiffener rings to reduce joint rotation
  5. Evaluate field-joint heaters
  6. There were two development motor tests and three qualification motor tests for final flight configuration and performance certification. There will be one flight Production Verification Motor that contains intentionally induced defects in the joints to demonstrate joint performance under extreme worse case conditions. The QM-7 and QM-8 motors were subjected to liftoff and maximum dynamic pressure structural loads, QM-7 was temperature-conditioned to 90 F., and QM-8 was temperature-conditioned to 40 F.

    An assessment was conducted to determine the full-duration static firing test attitude necessary to certify the design changes completely. The assessment included establishing test objectives, defining and quantifying attitude-sensitive parameters, and evaluating attitude options. Both horizontal and vertical (nozzle up and down) test attitudes were assessed. In all three options, consideration was given to testing with and without externally applied loads. This assessment determined that the conditions influencing the joint and insulation behavior could best be tested to design extremes in the horizontal attitude. In conjunction with the horizontal attitude for the RSRM full-scale testing, it was decided to incorporate externally applied loads. A second horizontal test stand for certification of the RSRM was constructed at Morton Thiokol. This new stand, designated as the T-97 Large Motor Static Test Facility, is being used to simulate environmental stresses, loads and temperatures experienced during an actual Shuttle launch and ascent. The new test stand also provides redundancy for the existing stand.


    Curator: Kim Dismukes | Responsible NASA Official: John Ira Petty | Updated: 04/07/2002
    Web Accessibility and Policy Notices