Occupational Health Guideline for Tetrachloroethylene* ## INTRODUCTION This guideline is intended as a source of information for employees, employers, physicians, industrial hygienists, and other occupational health professionals who may have a need for such information. It does not attempt to present all data; rather, it presents pertinent information and data in summary form. ## SUBSTANCE IDENTIFICATION - Formula: CCl₂ = CCl₂ - Synonyms: Perchloroethylene; perchlorethylene; tetrachlorethylene; perk - Appearance and odor: Colorless liquid with an odor like chloroform or ether. ## PERMISSIBLE EXPOSURE LIMIT (PEL) The current OSHA standard for tetrachloroethylene is 100 parts of tetrachloroethylene per million parts of air (ppm) averaged over an eight-hour work shift, with a ceiling level of 200 ppm and a maximum acceptable peak of 300 ppm for 5 minutes in any three-hour period. NIOSH has recommended that the permissible exposure limit be reduced to 50 ppm (339 mg/m³) averaged over a work shift of up to 10 hours per day, 40 hours per week, with a ceiling level of 100 ppm (678 mg/m³) averaged over a 15-minute period. The NIOSH Criteria Document for Tetrachloroethylene should be consulted for more detailed information. ## **HEALTH HAZARD INFORMATION** ## Routes of exposure Tetrachloroethylene can affect the body if it is inhaled or if it comes in contact with the eyes or skin. It can also affect the body if it is swallowed. - Effects of overexposure - 1. Short-term Exposure: Tetrachloroethylene may cause headache, nausea, drowsiness, dizziness, incoordination, and unconsciousness. It may also cause irritation of the eyes, nose, and throat and flushing of the face and neck. In addition, it might cause liver damage with such findings as yellow jaundice and dark urine. The liver damage may become evident several weeks after the exposure. - 2. Long-term Exposure: Prolonged or repeated overexposure to liquid tetrachloroethylene may cause irritation of the skin. It might also cause damage to the liver and kidneys. - 3. Reporting Signs and Symptoms: A physician should be contacted if anyone develops any signs or symptoms and suspects that they are caused by exposure to tetrachloroethylene. #### Recommended medical surveillance The following medical procedures should be made available to each employee who is exposed to tetrach-loroethylene at potentially hazardous levels: #### 1. Initial Medical Examination: - —A complete history and physical examination: The purpose is to detect pre-existing conditions that might place the exposed employee at increased risk, and to establish a baseline for future health monitoring. Examination of the liver and the cardiovascular and neurological systems should be stressed. The skin should be examined for evidence of chronic disorders. - —Liver function tests: Tetrachloroethylene may cause liver damage. A profile of liver function should be obtained by using a medically acceptable array of biochemical tests. - —Urinalysis: Since kidney damage has also been observed from exposure, a urinalysis should be obtained to include at minimum specific gravity, albumin, glucose, and a microscopic on centrifuged sediment. - 2. Periodic Medical Examination: The aforementioned medical examinations should be repeated on an annual basis. ### Summary of toxicology Tetrachloroethylene vapor is a narcotic. Rats did not survive when exposed for longer than 12-18 minutes to 12,000 ppm; when exposed repeatedly to 470 ppm they showed liver and kidney injury. Cardiac arrhythmias These recommendations reflect good industrial hygiene and medical surveillance practices and their implementation will assist in achieving an effective occupational health program. However, they may not be sufficient to achieve compliance with all requirements of OSHA regulations. #### U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Centers for Disease Control National Institute for Occupational Safety and Health ## U.S. DEPARTMENT OF LABOR Occupational Safety and Health Administration attributed to sensitization of the myocardium to epinephrine have been observed with certain other chlorinated hydrocarbons, but exposure of dogs to concentrations of 5000 and 10,000 ppm tetrachloroethylene did not produce this phenomenon. Four human subjects were unable to tolerate 5000 ppm in a chamber for 6 minutes. They experienced vertigo, nausea, and mental confusion during the 10 minutes following cessation of exposure. In an industrial exposure to an average concentration of 275 ppm for 3 hours, followed by 1100 ppm for 30 minutes, a worker lost consciousness; there was apparent clinical recovery 1 hour after exposure but the monitored concentration of tetrachloroethylene in the patient's expired air diminished slowly over a 2week period. Long-term industrial exposures have been reported to cause various neuropathies, such as numbness, trembling, neuritis, and defects of memory. During the second and third post-exposure weeks, the results of liver function tests became abnormal, suggesting that acute exposure had had a significant effect upon the liver. Other instances of liver injury following industrial exposure have been reported. Other effects on humans of inhalation of various concentrations are as follows: 2000 ppm, mild narcosis within 5 minutes; 600 ppm, sensation of numbness around the mouth, dizziness, and some incoordination after 10 minutes. In human experiments, 7-hour exposures at 100 ppm resulted in mild irritation of the eyes, nose, and throat; flushing of the face and neck; headache; somnolence; and slurred speech. Exposure of the skin to the liquid for 40 minutes resulted in a progressively severe burning sensation beginning within 5 to 10 minutes; the result was marked erythema, which subsided after 1 to 2 hours. The liquid sprayed into rabbits' eyes produced immediate pain and blepharospasm; patches of epithelium were lost, but the eyes recovered completely within ## **CHEMICAL AND PHYSICAL PROPERTIES** #### Physical data - 1. Molecular weight: 165.85 - 2. Boiling point (760 mm Hg): 121.2 C (250 F) - 3. Specific gravity (water = 1): 1.62 - 4. Vapor density (air = 1 at boiling point of tetrach-loroethylene): 5.83 - 5. Melting point: $-22.4 \,\mathrm{C}(-8 \,\mathrm{F})$ - 6. Vapor pressure at 20 C (68 F): 14 mm Hg - 7. Solubility in water, g/100 g water at 20 C (68 F): 0.015 - 8. Evaporation rate (butyl acetate = 1): 2.8 #### Reactivity - 1. Conditions contributing to instability: Heat. - 2. Incompatibilities: Tetrachloroethylene reacts with strong oxidizers and chemically active metals such as barium, lithium, and beryllium. - 3. Hazardous decomposition products: Toxic gases and vapors (such as hydrogen chloride, phosgene, and carbon monoxide) may be released when tetrachlor- oethylene decomposes. 4. Special precautions: Liquid tetrachloroethylene will attack some forms of plastics, rubber, and coatings. #### Flammability 1. Not combustible ## Warning properties - 1. Odor Threshold: Both May and Stern state that 50 ppm is the odor threshold for tetrachloroethylene. - 2. Eye Irritation Level: Grant reports that "exposure to high concentrations of (tetrachloroethylene) vapor causes mild sensation of irritation to the eyes, but serious injury is not likely." The exact concentrations producing irritation are not mentioned by Grant. Spector, however, reports that after a 20- to 30-minute exposure to 206 to 235 ppm, eye irritation occurs in humans. Patty reports "very slight irritation of the eyes" among humans at 106 ppm. - 3. Other Information: Spector reports that a 10-minute exposure to 513 to 690 ppm produces nose and throat irritation. - 4. Evaluation of Warning Properties: Since the odor threshold of tetrachloroethylene is below the permissible exposure limit, and since eye irritation occurs at a concentration only twice the permissible exposure limit, its warning properties are considered to be adequate. # MONITORING AND MEASUREMENT PROCEDURES #### Eight-Hour Exposure Evaluation Measurements to determine employee exposure are best taken so that the average eight-hour exposure is based on a single eight-hour sample or on two four-hour samples. Several short-time interval samples (up to 30 minutes) may also be used to determine the average exposure level. Air samples should be taken in the employee's breathing zone (air that would most nearly represent that inhaled by the employee). #### • Ceiling Evaluation Measurements to determine employee ceiling exposure are best taken during periods of maximum expected airborne concentrations of tetrachloroethylene. Each measurement should consist of a fifteen (15) minute sample or series of consecutive samples totalling fifteen (15) minutes in the employee's breathing zone (air that would most nearly represent that inhaled by the employee). A minimum of three (3) measurements should be taken on one work shift and the highest of all measurements taken is an estimate of the employee's exposure. ## Peak Above Ceiling Evaluation Measurements to determine employee peak exposure should be taken during periods of maximum expected airborne concentration of tetrachloroethylene. Each measurement should consist of a 30-minute sample or a series of consecutive samples totalling 30 minutes in the employee's breathing zone (air that would most nearly represent that inhaled by the employee). A minimum of 2 Tetrachioroethylene September 1978 three measurements should be taken on one work shift and the highest of all measurements taken is an estimate of the employee's exposure. #### Method Sampling and analyses may be performed by collection of vapors using an adsorption tube with subsequent desorption with carbon disulfide and gas chromatographic analysis. Also, detector tubes certified by NIOSH under 42 CFR Part 84 or other direct-reading devices calibrated to measure tetrachloroethylene may be used. An analytical method for tetrachloroethylene is in the NIOSH Manual of Analytical Methods, 2nd Ed., Vol. 3, 1977, available from the Government Printing Office, Washington, D.C. 20402 (GPO No. 017-033-00261-4). ## RESPIRATORS - Good industrial hygiene practices recommend that engineering controls be used to reduce environmental concentrations to the permissible exposure level. However, there are some exceptions where respirators may be used to control exposure. Respirators may be used when engineering and work practice controls are not technically feasible, when such controls are in the process of being installed, or when they fail and need to be supplemented. Respirators may also be used for operations which require entry into tanks or closed vessels, and in emergency situations. If the use of respirators is necessary, the only respirators permitted are those that have been approved by the Mine Safety and Health Administration (formerly Mining Enforcement and Safety Administration) or by the National Institute for Occupational Safety and Health. - In addition to respirator selection, a complete respiratory protection program should be instituted which includes regular training, maintenance, inspection, cleaning, and evaluation. ## PERSONAL PROTECTIVE EQUIPMENT - Employees should be provided with and required to use impervious clothing, gloves, face shields (eight-inch minimum), and other appropriate protective clothing necessary to prevent repeated or prolonged skin contact with liquid tetrachloroethylene. - · Non-impervious clothing which becomes contaminated with liquid tetrachloroethylene should be removed promptly and not reworn until the tetrachloroethylene is removed from the clothing. - Clothing wet with liquid tetrachloroethylene should be placed in closed containers for storage until it can be discarded or until provision is made for the removal of tetrachloroethylene from the clothing. If the clothing is to be laundered or otherwise cleaned to remove the tetrachloroethylene, the person performing the operation should be informed of tetrachloroethylene's hazardous properties. • Employees should be provided with and required to use splash-proof safety goggles where liquid tetrachloroethylene may contact the eyes. ## SANITATION - · Skin that becomes contaminated with liquid tetrachloroethylene should be promptly washed or showered with soap or mild detergent and water to remove any tetrachloroethylene. - Employees who handle liquid tetrachloroethylene should wash their hands thoroughly with soap or mild detergent and water before eating, smoking, or using toilet facilities. ## **COMMON OPERATIONS AND CONTROLS** The following list includes some common operations in which exposure to tetrachloroethylene may occur and control methods which may be effective in each case: | Operation | n | |-----------|---| |-----------|---| Use as dry cleaning solvent; as degreasing and metal cleaning agent; in vapor degreasing of metal parts Use as chemical intermediate in production of fluorocarbons, pesticides, and trichloroacetic acid Use as scouring, sizing, desizing, solvent and greaser remover in processing and finishing of textiles Use as general industrial solvent in rubber, textile, printing. soap, and paint remover industries Use as extraction agent for vegetable and mineral oils and in pharmaceutical industry; as vermifuge; as laundry treatment for presoaking and as drying medium in metal and wood industries ## Controls Local exhaust ventilation; general dilution; personal protective equipment Process enclosure: local exhaust ventilation; general dilution ventilation Local exhaust ventilation; general dilution; personal protective equipment Local exhaust ventilation; general dilution; personal protective equipment Local exhaust ventilation; general dilution ventilation: personal protective equipment September 1978 Tetrachioroethylene 3 ## **EMERGENCY FIRST AID PROCEDURES** In the event of an emergency, institute first aid procedures and send for first aid or medical assistance. ## Eye Exposure If tetrachloroethylene gets into the eyes, wash eyes immediately with large amounts of water, lifting the lower and upper lids occasionally. If irritation is present after washing, get medical attention. Contact lenses should not be worn when working with this chemical. ## Skin Exposure If tetrachloroethylene gets on the skin, promptly wash the contaminated skin using soap or mild detergent and water. If tetrachloroethylene soaks through the clothing, remove the clothing promptly and wash the skin using soap or mild detergent and water. If irritation persists after washing, get medical attention. #### Breathing If a person breathes in large amounts of tetrachloroethylene, move the exposed person to fresh air at once. If breathing has stopped, perform artificial respiration. Keep the affected person warm and at rest. Get medical attention as soon as possible. #### Swallowing When tetrachloroethylene has been swallowed, get medical attention immediately. If medical attention is not immediately available, get the afflicted person to vomit by having him touch the back of his throat with his finger or by giving him syrup of ipecac as directed on the package. This non-prescription drug is available at most drug stores and drug counters and should be kept with emergency medical supplies in the workplace. Do not make an unconscious person vomit. #### • Rescue Move the affected person from the hazardous exposure. If the exposed person has been overcome, notify someone else and put into effect the established emergency rescue procedures. Do not become a casualty. Understand the facility's emergency rescue procedures and know the locations of rescue equipment before the need # SPILL, LEAK, AND DISPOSAL PROCEDURES - Persons not wearing protective equipment and clothing should be restricted from areas of spills or leaks until cleanup has been completed. - If tetrachloroethylene is spilled or leaked, the following steps should be taken: - 1. Ventilate area of spill or leak. - 2. Collect for reclamation or absorb in vermiculite, dry sand, earth, or a similar material. - Waste disposal method: Tetrachloroethylene may be disposed of by absorbing it in vermiculite, dry sand, earth or a similar material and disposing in a secured sanitary landfill. ### REFERENCES - American Conference of Governmental Industrial Hygienists: "Perchloroethylene (Tetrachloroethylene)," Documentation of the Threshold Limit Values for Substances in Workroom Air (3rd ed., 2nd printing), Cincinnati, 1974. - American Industrial Hygiene Association: "Tetrachloroethylene (Perchloroethylene)," Hygienic Guide Series, Detroit, Michigan, 1965. - Browning, E.: Toxicity and Metabolism of Industrial Solvents, Elsevier, New York, 1965. - Gleason, M. N., Gosselin, R. E., Hodge, H. C., and Smith, R. P.: Clinical Toxicology of Commercial Products (3rd ed.), Williams and Wilkins, Baltimore, 1969. - Grant, W. M.: Toxicology of the Eye (2nd ed.), C. C. Thomas, Springfield, Illinois, 1974. - Hygienic Information Guide No. 54 Tetrachloroethylene, Commonwealth of Pennsylvania, Department of Environmental Resources, Bureau of Occupational Health, 1973. - Manufacturing Chemists Association, Inc.: Chemical Safety Data Sheet SD-24, Tetrachloroethylene, Washington, D.C. - May, J.: "Solvent Odor Thresholds for the Evaluation of Solvent Odors in the Atmosphere," *Staub-Reinhalt*, 26:9, 385-389, 1966. - National Institute for Occupational Safety and Health, U.S. Department of Health, Education, and Welfare: Criteria for a Recommended Standard.... Occupational Exposure to Tetrachloroethylene, HEW Publication No. (NIOSH) 76-185, NTIS No. PB266583, U.S. Government Printing Office, Washington, D.C., 1976. - Patty, F. A. (ed.): Toxicology, Vol. II of Industrial Hygiene and Toxicology (2nd ed. rev.), Interscience, New York, 1963. - Reinhardt, C. F., et al.: "Epinephrine-Induced Cardiac Arrhythmia Potential of Some Common Industrial Solvents," *Journal of Occupational Medicine*, 15:953-955, 1973. - Sax, N. I.: Dangerous Properties of Industrial Materials (3rd ed.), Van Nostrand Reinhold, New York, 1968. 4 Tetrachioroethylene September 1976 - Spector, W. S. (Vols. I, II), Negherbon, W. O. (Vol. III), Grebe, R. M. (Vol. IV), and Dittmer, D. S. (Vol. V) (eds.): *Handbook of Toxicology*, Saunders, Philadelphia, 1956-1959. - Stecher, P. G. (ed.): The Merck Index (8th ed.), Merck Co., Inc., Rahway, New Jersey, 1968. - Stern, A. C. (ed.): Air Pollution (2nd ed.), Academic Press, New York, 1968. - Stewart, R. D.: "Acute Tetrachloroethylene Intoxication," *Journal of the American Medical Association*, 208:1490-1492, May 26, 1969. - Stewart, R. D., and Dodd, H. C.: "Absorption of Carbon Tetrachloride, Trichloroethylene, Tetrachloroethylene, Methylene Chloride, and 1,1,1-Trichloroethane through the Human Skin," *Industrial Hygiene Journal*, September October:439, 1964. • von Oettingen, W. F.: The Halogenated Aliphatic, Olefinic, Cyclic, Aromatic, and Aliphatic-Aromatic Hydrocarbons Including the Halogenated Insecticides, Their Toxicity and Potential Dangers, U.S. Public Health Service Publication No. 414, U.S. Government Printing Office, Washington, D.C., 1955. ## * SPECIAL NOTE Tetrachloroethylene appears on the OSHA "Candidate List" of chemicals being considered for further scientific review regarding its carcinogenicity (Federal Register, Vol. 45, No. 157, pp. 5372-5379, 12 August 1980). The International Agency for Research on Cancer (IARC) has evaluated the data on this chemical and has concluded that it causes cancer. See IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Man, Volume 20, 1979. ## RESPIRATORY PROTECTION FOR TETRACHLOROETHYLENE | Condition | Minimum Respiratory Protection* Required Above 100 ppm | |----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Vapor Concentration | | | 500 ppm or less | Any chemical cartridge respirator with a full facepiece and an organic vapor cartridge(s). | | | A gas mask with a chin-style or a front- or back-mounted organic vapor canister. | | | Any supplied-air respirator with a full facepiece, helmet, or hood. | | | Any self-contained breathing apparatus with a full facepiece. | | Greater than 500 ppm or entry and escape from unknown concentrations | Self-contained breathing apparatus with a full facepiece operated in pressure-demand or other positive pressure mode. | | | A combination respirator which includes a Type C supplied-air respirator with a full facepiece operated in pressure-demand or other positive pressure or continuous-flow mode and an auxiliary self-contained breathing apparatus operated in pressure-demand or other positive pressure mode. | | Fire Fighting | Self-contained breathing apparatus with a full facepiece operated in pressure-
demand or other positive pressure mode. | | Escape | Any gas mask providing protection against organic vapors. | | | Any escape self-contained breathing apparatus. | ^{*}Only NIOSH-approved or MSHA-approved equipment should be used.