Environmental Barrier Coating

The object of this program is to develop coatings for hot-section components of advanced, high-efficiency microturbines and industrial turbines that resist degradation (surface recession) in high-temperature, high-pressure water-vapor environments.

Coating Requirements

- Environmentally stable in the presence of O₂ and H₂O
- Low volatility
- Strong, adherent, and durable

- Matching coefficient of thermal expansion
- Thin and controllable to retain aerodynamics
- Low cost

Pack Cementation Coating (Low-Cost Process)

- Complex-shaped components to be coated are embedded in a reactive powder mixture.
- At an elevated temperature, the powder forms a reactive gas that migrates to all surfaces of the complex-shaped part.
- The chemical reaction and diffusion convert the surface of the part into a coating layer.

Some of the conversion coating compounds formed on Si₃N₄ identified by X-ray diffraction analysis.

 $SrAl_2O_{4}$, $Y_2Si_2O_7$, Al_2O_3 , Sr_2SiO_4 , $ZrSiO_4$

Pack Cementation Coating (Variables)

 The coating that is formed during pack cementation depends upon processing time, temperature, atmosphere, composition of the article being coated, and composition of the reactive powder mixture.

Al₂O₃ Forming Coating

 Metallic coatings like TiCrAl are deposited on Si₃N₄ or SiC and diffuse into the substrate during heat treatment. On exposure to air, the coating oxidizes to form a protective Al₂O₃ coating or scale.

Ceramics, Ceramic Composites, and Coatings for Use in Turbine Hot Sections Are Being Evaluated in Simulated Microturbine Environments.

- Temperatures up to1500°C
- Pressures to 30 atm
- Low gas velocity (0.1 m/s)
- Water vapor pressures to 4 atm
- Up to ~60 specimens/run (multiple tubes)

ORNL Low-Flow-Rate, High-Pressure (Keiser) Rig

Office of Distributed Energy and Electricity Reliability

Contact Information: B. L. Armstrong (armstrongbl@ornl.gov) Phone (865) 241-5862
S. D. Nunn (nunnsd@ornl.gov) Phone (865) 576-1668

S. D. Nunn (nunnsd@ornl.gov) *Phone* (865) 576-1668 Oak Ridge National Laboratory, Oak Ridge, TN 37831-6065