Briefing to the NRC Commissioners

Laura S. H. Holgate

National Nuclear Security
Administration
Defense Nuclear Nonproliferation
Office of Fissile Materials Disposition

November 27, 2000

Presentation Outline

- Program objectives
- U.S. off-specification highly enriched uranium disposition
- Update on Bilateral Plutonium Disposition Agreement
- U.S. plutonium disposition

Program Objectives

- Dispose of 174 metric tons of surplus U.S. highly enriched uranium
- Dispose of 50 metric tons of surplus U.S. plutonium
- Work with Russia to dispose of their surplus plutonium

NRC Involvement in Fissile Materials Disposition

- Highly enriched uranium
 - Use of off-specification highly enriched uranium (HEU) in Tennessee Valley Authority (TVA) reactors
- Plutonium
 - MOX fuel fabrication, qualification, utilization, packaging, and transportation

NRC Involvement (cont.)

- International
 - Interagency IAEA collaboration for facilities under international safeguards
 - Participation in Regulatory Working Group established under 1998 Scientific and Technical Cooperation Agreement with Russia

Off-Specification HEU Blend Down

- DOE and TVA are nearing completion of an Interagency Agreement to blend down 34 MT of off-specification HEU to low enriched uranium for use as fuel in TVA reactors
 - -Process some of the material at Savannah River prior to transfer to TVA vendors for fuel fabrication; transfer remainder directly to TVA vendors
 - Requires new solution transportation containers

- United States and Russia to each irreversibly transform 34 metric tons of excess weapons plutonium into forms unusable for weapons
 - Formally announced by President Clinton and President Putin at the June 4, 2000 Moscow Summit
 - Signed by Vice President Gore and Prime Minister Kasyanov -- effective September 1, 2000

Key Provisions

- Each country to dispose of 34 metric tons (MT) of weapon-grade plutonium
 - Irradiation as MOX fuel in reactors
 - Immobilization with high-level radioactive waste

	<u>U.S.</u>	<u>Russia</u>
MOX	25.6 MT	34 MT
Immobilization	8.4 MT	

Key Provisions (cont.)

- U.S.-Russian disposition to proceed in rough parallel
 - -Begin operation of industrial-scale facilities in 2007
 - -Initial disposition rate of 2 MT/year
 - Develop plan to double disposition rate within one year of signing
- Bilateral monitoring and inspection procedures to be developed by December 2002 -- Agreement for international inspection to follow

Key Provisions (cont.)

- Prohibits separation of plutonium in spent MOX fuel until all 34 metric tons have been disposed -- Any subsequent (Russian) reprocessing of irradiated MOX fuel subject to mutually agreed monitoring measures
- Immobilized plutonium may never be separated

Key Provisions (cont.)

- U.S. to provide near-term financial assistance; additional multilateral financial assistance to be developed within one year of signing
- Additional plutonium may be added in the future -- need not be reciprocal

U.S. Plutonium Disposition Strategy

- DOE to implement two technologies (hybrid strategy)
 - Immobilization -- Immobilize surplus plutonium with ceramic material surrounded by vitrified high level radioactive waste
 - MOX/Reactors -- Burn surplus plutonium as mixed oxide (MOX) fuel in existing, domestic, commercial reactors

Spent Fuel Standard

 Both technologies meet the "Spent Fuel Standard" -- Surplus plutonium is made as inaccessible and unattractive for retrieval and weapons use as the residual plutonium in spent fuel from commercial reactors

Key U.S. Plutonium Disposition Facilities

Pit Disassembly & Conversion Facility

Disassemble plutonium "pits" and convert the resulting metal to an oxide powder

MOX Fuel Fabrication Facility

Fabricate plutonium oxide powder into mixed oxide fuel and fresh fuel assemblies

Plutonium Immobilization Facility

Convert "non-pit" plutonium to plutonium oxide, mix with ceramic material, array in canister, surround with molten high level waste

MOX Prime Contract

- Fuel qualification: Qualify MOX fuel for use in PWRs
- Fuel fabrication: Design, license, construct and operate a MOX Fuel Fabrication Facility (MOX FFF)
- Fuel packaging: Package fresh MOX fuel for transport from MOX Fuel Fabrication Facility to reactors
- Fuel irradiation: Irradiate fuel to the spent fuel standard with partial MOX cores

Duke, Cogema, Stone & Webster (DCS), LLC

MAJOR SUBCONTRACTORS

Duke Power; Irradiation services
FCF; Fuel design services
NFS; Security related services
Cogema; European MOX experience

MOX Fuel Fabrication Facility

- Non-reactor nuclear facility -- 320,000 sq. ft. and conventional structures --120,000 sq. ft.
- Hardened space comprising three interconnected areas:
 - Shipping and receiving
 - Aqueous purification (polishing)
 - Fuel fabrication
- Incorporates operational French technologies -- modified to meet NRC licensing requirements
- All plutonium processing in gloveboxes

Lead Assemblies

- Lead assemblies are required by reactor operator for confirmation of MOX fuel design
- Two fabrication alternatives under consideration:
 - Fabrication in Europe using prototypic processes and equipment
 - Fabrication in the MOX Fuel Fabrication Facility

Irradiation Services

Four Duke Energy-operated PWRs will be used to irradiate MOX fuel -- two McGuire plants, two Catawba plants

- Will meet 2 MT/yr goal (bilateral agreement)
- Will disposition 25 MT of plutonium by 2019
- Will irradiate MOX fuel for 2 cycles
- Spent fuel to be stored on-site pending geologic disposal (similar to LEU fuel)

MOX Facility to be NRC Regulated

FY 1999 Defense Authorization Act (Public Law 105-261) -- SEC. 3134.
Licensing of Certain Mixed Oxide Fuel Fabrication and Irradiation Facilities

 Requires any person constructing or operating a new or operating an existing facility to fabricate mixed oxide (MOX) fuel for use in a commercial nuclear reactor to be subject to NRC licensing

Submittals to NRC

Mixed Oxide Fuel Fabrication Facility Environmental Report
--to be submitted by
DCS in Dec for NRC's
EIS development

Construction
Authorization Request
--to be submitted by
DCS in early-CY 01

Facility License Application--to be submitted in mid-CY 02

MOX Facility Schedule

Submittals to NRC

and irradiation

Fuel qualification Topical reports for **MOX** fuel design and performance

> **Application for** reactor license amendments for MOX fuel and, possibly, a separate amendment for inserting lead test assemblies

Fuel packaging & transportation

Request for issuance of a Certificate of Compliance

MOX Issues

- MOX Fuel Fabrication Facility is first facility to be licensed under new 10 CFR 70 rule
- New performance requirement for worker exposure during MOX Fuel Fabrication Facility accidents will require DCS, DOE, and NRC to agree on how performance is demonstrated
- Process for determining fuel qualification needs

NRC/DOE Interfaces

- Conclude a Memorandum of Understanding on security approach
- DOE/NRC need to maintain continuing dialogue to support this National Security Program