

FINAL REPORT

SAN JUAN RIVER TROUT FISHERY MONITORING PLAN: FISH HEALTH ASSESSMENT

NEW MEXICO COOPERATIVE FISH AND WILDLIFE RESEARCH UNIT

COOPERATORS:

New Mexico Department of Game and Fish
New Mexico State University
U.S. Geological Survey

Wildlife Management Institute
U.S. Fish and Wildlife Service

San Juan River Trout Fishery Monitoring Plan: Fish Health Assessment

Final Report to U.S. Bureau of Reclamation Upper Colorado Region Western Colorado Area Office
Prepared by
Catherine Sykes
New Mexico State University
Department of Fishery and Wildlife Sciences
Box 30003, MSC 4901
Las Cruces, NM 88003-8003
and
Colleen A. Caldwell
U.S. Geological Survey, Biological Resources Division, New Mexico Cooperative Fish and Wildlife Research Unit Box 30003, MSC 4901, Las Cruces, NM 88003-8003
As fulfillment of objectives for Cooperative Agreement 4-FC-40-15970

EXECUTIVE SUMMARY

A Health Condition Profile (HCP) was conducted on rainbow trout (Oncorhynchus mykiss) in the San Juan River below Navajo Dam, northwestern New Mexico. The purpose of the HCP was to provide baseline data from which to assess the effect of the 4 -month low-flow test conducted during the winter of 1996-97. Approximately 30 each of juvenile and adult fish were collected at two sites on each of five sample dates from October 2000 to August 2001. After lengths and weights were recorded, a necropsy-based fish health assessment was conducted. Blood was collected for hematocrit and protein analysis, and dorsal epaxial muscle was collected for lipid analysis. Data from the low-flow test (1996-97) and baseline study (200001) were analyzed to compare the health of fish population between the two sample collections.

Statistical comparisons of the data between the low-flow test and baseline study revealed relatively few significant differences. No relevant differences were observed in condition factor, normality index, severity index, feeding index, and HAI between 1996-97 and 2000-01. Although hematocrit was greater in 1996-97 than in 2000-01, all values were within normal ranges published for rainbow trout. In general, total protein levels were lower in 1996-97 than in 2000-01; however, the lower 1996-97 levels may be unrelated to the test because both sizes and sites were significantly lower in October 1996 (before the low flow began) than in October 2000. Percent muscle lipid showed no trend among size classes or sites within either sample collection. The low mesentery fat reserves and percent muscle lipids observed in adults in October 2000 are unexplained, but may be due to a disruption in the food source.

We conclude the health of the rainbow trout population did not appear to be negatively impacted by the 1996-97 low-flow test. However, potential chronic effects of extended low flows cannot be adequately assessed from the data collected in 1996-97 and in 2000-01. Based on the results presented in this report, a 4-month low-flow test and a one-year baseline study do not provide sufficient data to fully interpret the impact of multiple variables (both inherent and anthropogenic) on fish health. We recommend implementation of a multi-year baseline study in conjunction with monitoring future low flows to further assess seasonal versus low-flow effects on the long-term health of the rainbow trout population in the San Juan River.

TABLE OF CONTENTS

EXECUTIVE SUMMARY ii
LIST OF TABLES iv
LIST OF FIGURES v
LIST OF APPENDICES ix
INTRODUCTION 1
METHODS 2
Sample Sites and Collections 2
Health Condition Profile 2
Physiological Indices 3
Statistical Analysis 3
RESULTS AND DISCUSSION 4
Fish Health Assessment: October to March 2000-01 4
Comparative Fish Health Assessments: October to March 1996-97 and 2000-01 12
Fish Health Assessment: August 2001 30
CONCLUSIONS AND RECOMMENDATIONS 33
LITERATURE CITED 37ATTACHMENTS

LIST OF TABLES

Table Page
Comparisons of 1996-97 and 2000-01 results from the fish health condition profile
on rainbow trout in San Juan River tailwater between Navajo Dam and Texas Hole
(site 1).
2 Comparisons of 1996-97 and 2000-01 results from the fish health condition profile on rainbow trout in San Juan River tailwater between Texas Hole and the end of the special regulation water (site 2).

LIST OF FIGURES

1 Mean 2000-01 condition factor of adult (A) and juvenile (B) rainbow trout collected on four sample dates from site 1 (Navajo Dam to Texas Hole) and site 2 (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a site, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.

2 Mean 2000-01 health assessment index of adult (A) and juvenile (B) rainbow trout collected on four sample dates from site 1 (Navajo Dam to Texas Hole) and site 2 (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a site, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.

3 Mean 2000-01 total plasma protein (g/dL) in adult (A) and juvenile (B) rainbow trout collected on four sample dates from site 1 (Navajo Dam to Texas Hole) and site 2 (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a site, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.

4 Mean 2000-01 percent muscle lipid (wet weight) in adult (A) and juvenile (B) rainbow trout collected on four sample dates from site 1 (Navajo Dam to Texas Hole) and site 2 (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a site, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.

5 Mean 1996-97 condition factor of adult (A) and juvenile (B) rainbow trout collected on four sample dates from site 1 (Navajo Dam to Texas Hole) and site 2 (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a site, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.

Comparison of 1996-97 and 2000-01 mean condition factor of juvenile rainbow trout
collected on four sample dates each collection year from site I (A) (Navajo Dam to
Texas Hole) and site 2 (B) (Texas Hole to the end of the special regulation water) on
the San Juan River. Vertical bars represent standard error of the mean. Within a
month, values having the same letter are not significantly different from each other.
Sample sizes are in parentheses. ...

7 Comparison of 1996-97 and 2000-01 mean condition factor of adult rainbow trout collected on four sample dates each collection year from site 1 (A) (Navajo Dam to Texas Hole) and site 2 (B) (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a month, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.16

8 Mean 1996-97 health assessment index of adult (A) and juvenile (B) rainbow trout collected on four sample dates from site 1 (Navajo Dam to Texas Hole) and site 2 (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a site, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.

9 Comparison of 1996-97 and 2000-01 mean health assessment index of adult rainbow
trout collected on four sample dates each collection year from site 1 (A) (Navajo Dam
to Texas Hole) and site 2 (B) (Texas Hole to the end of the special regulation water)
on the San Juan River. Vertical bars represent standard error of the mean. Within
a month, values having the same letter are not significantly different from each other.
Sample sizes are in parentheses.

10 Comparison of 1996-97 and 2000-01 mean health assessment index of juvenile rainbow trout collected on four sample dates each collection year from site 1 (A) (Navajo Dam to Texas Hole) and site 2 (B) (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a month, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.

11 Comparison of 1996-97 and 2000-01 mean total plasma protein (g/dL) in adult rainbow trout collected on four sample dates each collection year from site 1 (A) (Navajo Dam to Texas Hole) and site 2 (B) (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a month, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.

12 Comparison of 1996-97 and 2000-01 mean total plasma protein (g/dL) in juvenile rainbow trout collected on four sample dates each collection year from site 1 (A) (Navajo Dam to Texas Hole) and site 2 (B) (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a month, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.

13 Mean 1996-97 total plasma protein (g/dL) in adult (A) and juvenile (B) rainbow trout collected on four sample dates from site 1 (Navajo Dam to Texas Hole) and site 2 (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a site, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.

15 Comparison of 1996-97 and 2000-01 mean percent muscle lipid (wet weight) in adult rainbow trout collected on four sample dates each collection year from site 1 (A) (Navajo Dam to Texas Hole) and site 2 (B) (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a month, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.

16 Comparison of 1996-97 and 2000-01 mean percent muscle lipid (wet weight) in juvenile rainbow trout collected on four sample dates each collection year from site 1 (A) (Navajo Dam to Texas Hole) and site 2 (B) (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a month, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.

18 Mean 2000-01 (including August data) health assessment index of adult (A) and juvenile (B) rainbow trout collected on five sample dates from site I (Navajo Dam to Texas Hole) and site 2 (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a site, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.
19 Mean 2000-01 (including August data) total plasma protein (g/dL) in adult (A) and juvenile (B) rainbow trout collected on five sample dates from site 1 (Navajo Dam to Texas Hole) and site 2 (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a site, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.34
20 Mean 2000-01 (including August data) percent muscle lipid (wet weight) in adult (A) and juvenile (B) rainbow trout collected on five sample dates from site 1 (Navajo Dam to Texas Hole) and site 2 (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a site, values having the same letter are not significantly different from each other. Sample sizes are in parentheses. 35

LIST OF APPENDICES

Appendix Page
A Summary of Necropsies and Fish Necropsies Data Sheets 39
B Total Protein Methods 72
Quality Assurance - Quality Control, San Juan River Protein Determination 74
Protein Determination - San Juan River Data Sheets 76
C Percent Muscle Lipid Extraction Procedure (Wet Weight) 89
San Juan River Fish Health Assessment - Percent Muscle Lipid and Moisture Data Sheets 90

INTRODUCTION

The tailwaters of Navajo Dam on the San Juan River in northwest New Mexico contain a world-class rainbow trout (Oncorhynchus mykiss) fishery. In addition, the San Juan River is home to the endangered Colorado pikeminnow (Ptchocheilus lucius) and the razorback sucker (Xyrauchen texamus). A reduction in winter flow releases from Navajo Dam was proposed by the San Juan River Basin Recovery Implementation Program (Holden 1999) to investigate responses of the native fish populations to manipulations of the river's flow regime (USFWS 1996). The altered flow regime was designed to mimic the historic hydrograph for the endangered fishes. Winter releases are also reduced to store sufficient water for high flows in spring, as well as to meet current and future downstream water needs. To determine the effects of long-term reduced release of Navajo Dam, a 4-month winter low-flow test was conducted October 1996 through March 1997, in which the flow was reduced from approximately 600 cfs (cubic feet per second) to about 300 cfs with a minimum release of 250 cfs . The purpose of the $1996-97$ investigation was to evaluate effects of the reduced flow on the trout fishery within the tailwaters of Navajo Dam. Specific objectives of the monitoring plan provided in a report by U.S. Bureau of Reclamation (USBOR 1998) were to determine if the reduced flow resulted in chronic stress as measured by a Health Condition Profile (Goede 1993), and physiological changes in the rainbow trout population. The results of the health condition profile in 1996-97 were inconclusive and indicated the effects of reduced flow on the health of the fish population may have been confounded by seasonal changes in food resources and metabolic demands (Sutton et al. 1999).

As a result, an additional study was conducted from October 2000 through March 2001 in which the health and condition of the fish population was monitored, but without the reduced flow. A sampling date in August was included to complete a full-year study period for the analysis of seasonal effects on the condition of the fish population. Reported are analyses of the results from the 2000-01 fish health condition profile and physiological indices of metabolic responses and a comparison of those results to the 1996-97 data.

METHODS

Sample Sites and Collections

Two sites representative of distinctly different flow regimes and aquatic habitat within the quality trout fishery were selected. The upper site (site 1; approximately 2.1 km long) was between Navajo Dam and Texas Hole, and the lower site (site 2 ; approximately 4.3 km long) was between Texas Hole and the end of the special regulation water. Site 1 was characterized by shallow depth ($1-2 \mathrm{~m}$), narrow river margin ($20-30 \mathrm{~m}$), frequent intermittent riffle areas and few pools. In contrast, site 2 was deeper ($2-6 \mathrm{~m}$) having wider river margins ($30-50 \mathrm{~m}$), infrequent riffle areas and frequent pools. Approximately 30 each of juvenile (155.7-197.2 mm) and adult fish ($414.4-441.1 \mathrm{~mm}$) were collected at each site on each of five sample dates from October 2000 to August 2001.

Fish were collected using an electrofishing boat equipped with a $220-\mathrm{V}$ Smith-Root unit on 24-25 October 2000, 7-8 December 2000, 30-31 January 2001, 12-13 March 2001, and 28-29 August 2001. Immediately upon collection, fish were anesthetized in a buffered solution of Finquel ${ }^{\text {TM }}\left(200 \mathrm{mg} / \mathrm{L} \mathrm{Finquel}^{\mathrm{TM}}: 200 \mathrm{mg} / \mathrm{L} \mathrm{NaCO}_{3}\right)$, and whole blood was collected from the hemal arch at the base of the caudal peduncle using a heparinized 3-ce syringe and a 21-gauge needle. Two hematocrit tubes were filled with whole blood and centrifuged ($1,500 \times \mathrm{g}, 5 \mathrm{~min}$) using a hematocrit centrifuge. The remaining whole blood was immediately placed on ice and centrifuged ($5,000 \times \mathrm{g}, 10 \mathrm{~min}$) within 8 h to obtain plasma for total protein analysis. After centrifugation, the plasma was removed and frozen until analysis for total protein within 2 weeks.

Health Condition Profile

After lengths (mm) and weights (g) were recorded, a necropsy-based fish health assessment was conducted. The method evaluates the whole organ appearance and provides a suite of indices including normality, degree of severity, feeding, and condition factor (Goede 1993; see Appendix A Summary of Necropsies and Fish Necropsies Data Sheets). A modification of this method was performed that substitutes numerical values for abnormal ratings and provides a quantitative health assessment index (HAI) for each fish that can be compared
statistically (Adams et al. 1993). After the necropsy, approximately 2 grams of dorsal epaxial muscle were removed for analysis of percent muscle lipids and placed in a cryovial. The muscle samples were frozen until analysis within 8 weeks.

Physiological Indices

Changes in protein content were analyzed similar to that reported in the 1996-97 winter flow test (USBOR 1998; see Appendix B Total Protein Methods). For every 35 samples analyzed for total protein, a standard curve (serial dilutions of a standard reference- see Methods in Appendix B), a certified reference obtained from Sigma Chemical Co., and pooled fish serum (O. mykiss) were included in each assay. An assay was considered acceptable if all three of the following criteria were observed: (1) the linearity of the standard curve was $\mathrm{r}^{2}=0.97$ or greater; (2) the reference was within the certified range listed by the manufacturer $(5.3-6.7 \mathrm{~g} / \mathrm{dL}$; $\overline{\mathrm{X}}=$ $6.0 \mathrm{~g} / \mathrm{dL}$); and (3) the intra- and inter-assay coefficient of variation (\{standard deviation \div mean) x 100) were $\leq 10 \%$ (see Appendix B Quality Assurance - Quality Control). The interassay coefficient of variation was 2.6% for the certified reference ($n=13$) and the intra-assay coefficient of variation ranged from 0.035 to $7.15 \%(n=12)$.

The procedure to determine total lipid content (percent wet weight) in muscle was determined gravimetrically following extraction and evaporation of methylene chloride (see Appendix C Percent Muscle Lipid Extraction). The method was slightly modified from the version developed for muscle lipid extraction of the 1996-97 Winter Flow Test (USBOR 1998) to include percent moisture.

Statistical Analysis

Statistical analysis was performed using SAS (SAS, 1999) with a probability level of $\alpha=$ 0.05 applied to all analyses. Data from 2000-01 were analyzed initially without the August sampling period for statistical comparison with 1996-97. Differences between months (October, December, January, March) for condition factor, total protein, and percent muscle lipid were analyzed by analysis of variance in adult and juvenile fish at each site (site 1, site 2). Residuals were graphically displayed on a probability plot and tested for normality using the Shapiro-Wilk
test. If assumptions of normality were not met, the data were \log transformed. A multivariate analysis (MANOVA) was then performed with condition factor, total protein, and muscle lipid as the dependent variables and month as the independent variable. Where the MANOVA results indicated a significant difference among means, Bonferroni multiple comparison test was applied. HAI data were rank transformed, analyzed by analysis of variance, and significant differences observed between months were tested with Tukey's Studentized Range Test. The same tests were applied to the 2000-01 data with the August sampling period included for within-year comparisons.

To compare October through March, 1996-97 and October through March, 2000-01 data, differences between given months were analyzed using MANOVA in adult and juvenile fish at site 1 and 2 with condition factor, total protein, and muscle lipid as the dependent variables and year as the independent variable. Where significant differences were indicated, Tukey's Test was performed on each variable. HAI data were subjected to the Wilcoxon rank sum method to determine differences between comparable months of both collection periods. Normality, severity, and feeding indices and hematocrits were compared between collection periods across all months using t-tests. Data are presented as arithmetic means and standard error (nontransformed) for each of the variables.

RESULTS AND DISCUSSION

Fish Health Assessment: October to March 2000-01

Health Condition Profile

Throughout the study, mean lengths of adult rainbow trout in site 1 ranged from 431.8 to 437.5 mm and juvenile fish ranged from 169.7 to 197.2 mm (Table 1). Mean lengths of adults from site 2 ranged from 415.0 to 439.6 mm and juveniles ranged from 166.9 to 182.7 mm (Table 2). The sex ratios were slightly skewed with a greater percentage of adults identified as females from sites 1 and 2 in October ($67 \%, 73 \%$), December ($70 \%, 57 \%$), and January $(80 \%, 57 \%)$. Of these fish, from 46 to 86% were observed gravid or in post-spawning condition.
Although the percentage of adult female fish was lower in March for both sites 1 and $2(47 \%$, 47%), over 50% of the fish were gravid or in post-spawning condition (Appendix A).

Table 1. Comparison of 1996-97 and 2000-01 results from the fish health condition profile on rainbow trout in the San Juan River tailwater between Navajo Dam and Texas Hole (site 1). Means are presented for length, condition factor and hematocrit with minimum and maximum in parenthesis.

	Sample Size	Length (mm)	Condition Factor	Hematocrit (\%)	Normality Index (\%)	Severity Index	Feeding Index
Adult Fish:							
October 1996	24	397.4 (310,460)	$1.17(0.93,1.54)$	$47(35,58)$	85.4	0.0	76.4
October 2000	30	$437.4(385,500)$	$1.07(0.73,1.39)$	$34(10,50)$	76.3	6.3	72.2
December 1996	30	418.4 (350, 470)	1.09 (0.92, 1.36)	-	76.0	3.3	64.4
December 2000	30	$433.7(365,491)$	$1.09(0.95,1.31)$	$41(18,68)$	71.3	12.1	61.1
February 1997	30	410.6 (351, 462)	1.06 (0.73, 1.31)	$46(27,56)$	83.3	7.1	83.3
January 2001	30	$437.5(358,485)$	1.01 (0.77, 1.20)	$38(25,54)$	81.3	5.1	59.5
March 1997	30	$410.0(350,466)$	1.07 (0.65, 1.31)	$46(32,59)$	79.7	12.5	87.8
March 2001	30	$431.8(343,488)$	$1.00(0.69,1.35)$	34 (10.49)	80.3	4.6	86.7
August 2001	30	414.4 (310, 480)	1.16 (0.84, 1.68)	$45(25,68)$	77.0	10.0	60.0
Juvenile Fish:							
October 1996	28	186.1 (156, 248)	1.18 (0.96, 1.55)	$53(38,72)$	92.9	0.0	90.5
October 2000	21	169.7 (138.226)	1.18 (0.95, 1.47)	$48(37,63)$	91.9	7.1	74.6
December 1996	30	178.3 (117, 225)	$1.05(0.72,1.31)$	-	95.3	2.5	70.0
December 2000	30	$170.2(131,220)$	1.15 (0.95, 1.38)	$41(29,51)$	87.7	10.0	67.8
February 1997	30	200.7 (159, 241)	0.99 (0.87, 1.13)	$51(46,57)$	91.7	3.8	70.0
January 2001	30	192.5 (146, 239)	1.09 (0.84, 1.40)	$41(31,54)$	92.3	7.1	73.3
March 1997	30	177.2 (110, 239)	0.98 (0.83, 1.34)	$50(38,66)$	84.3	10.4	70.0
March 2001	17	197.2 (132, 258)	1.06 (0.91, 1.19)	$36(19.47)$	88.2	9.6	82.4
August 2001	30	$155.7(120,205)$	1.21 (0.89, 1.50)	$43(28.55)$	88.3	11.7	90.0

Table 2. Comparisons of 1996-97 and 2000-01 results from the fish health condition profile on rainbow trout in the San Juan River tailwater between Texas Hole and the end of the special regulation water (site 2). Means are presented for length, condition factor, and hematocrit with minimum and maximum in parenthesis.

	Sample Size	Length (mm)	Condition Factor	$\begin{aligned} & \text { Hematocrit } \\ & \text { (\%) } \end{aligned}$	Normality Index (\%)	Severity Index	Feeding Index
Adult Fish:							
October 1996	30	$415.5(309,480)$	1.14 (0.89, 1.44)	$46(32,56)$	80.7	4.6	64.4
October 2000	30	438.6 (389, 475)	1.08 (0.63, 1.36)	$44(7,69)$	77.0	7.1	72.2
December 1996	30	$410.8(358,464)$	$1.09(0.79,1.36)$	$42(22,61)$	81.0	6.3	62.2
December 2000	30	$439.4(378,525)$	1.08 (0.80, 1.28)	$38(24,50)$	78.0	7.9	81.1
February 1997	30	$400.2(347,442)$	1.05 (0.87, 1.34)	$43(33,54)$	83.7	6.3	66.7
January 2001	30	$415.0(359,495)$	1.11 (0.89, 1.30)	$40(28,53)$	86.3	4.7	72.2
March 1997	30	$393.8(343,446)$	1.01 (0.82, 1.17)	$49(38,57)$	74.0	14.6	71.1
March 2001	30	$427.1(375,475)$	1.02 (0.80, 1.23)	$39(15,49)$	76.7	6.3	72.2
August 2001	30	$441.1(400,485)$	$1.09(0.70 .1 .34)$	$41(15,58)$	79.3	4.17	84.4
Juvenile Fish:							
October 1996	15	219.7 (155, 257)	$1.10(0.96,1.26)$	$51(43,65)$	92.0	0.8	77.8
October 2000	23	176.2 (122, 289)	1.17 (0.37, 1.40)	$43(33,60)$	90.4	8.2	71.0
December 1996	30	165.4 (131, 212)	1.07 (0.89, 1.33)	$52(42,68)$	86.7	7.9	66.7
December 2000	26	$166.9(120,243)$	1.16 (0.93, 1.48)	$40(21,61)$	90.4	8.7	84.6
February 1997	30	185.0 (130, 226)	0.91 (0.76, 1.37)	$50(33,61)$	83.0	10.4	71.1
January 2001	30	175.8 (125, 260)	$1.04(0.84,1.18)$	$38(29,52)$	93.3	5.0	73.3
March 1997	30	$181.9(123,224)$	0.93 (0.73, 1.08)	$51(34,66)$	88.3	8.8	60.0
March 2001	28	$182.7(122,228)$	0.99 (0.83, 1.16)	$41(29,53)$	90.7	7.6	77.4
August 2001	30	176.7 (130, 230)	1.21 (0.98, 1.59)	$43(33,54)$	89.0	13.3	98.9

A decline in condition factors from October to March, believed to reflect seasonal effects, was observed for both adult and juvenile fish. The decreases observed in adults (6.5% at site 1 , 5.6% at site 2) were not significant (Figure IA). However, the 10.2% and 15.4% declines in juveniles at sites 1 and 2, respectively, were significant (Figure 1B).

A series of indices (normality, severity, and feeding) have been developed from the Health Condition Profile. The normality index reflects the percent normal ratings assigned to: eyes, gills, pseudobranchs, kidney, thymus, spleen, hindgut, liver, fins, and opercles. In general, the higher the normality index, the healthier the population. Although no general trend was observed in adults or juveniles at either site, average values for the index at sites 1 and 2 were greater in juveniles $(90 \%, 91.2 \%)$ than adults $(77.3 \%, 79.5 \%)$ (Tables 1 and 2). An acceptable range for normality index (with 100% being normal or indicative of a healthy population) is 90 100% (Goede 1993). This criterion indicates that the juvenile fish are within the accepted or normal range while the adult fish are below the acceptable range. The lower normality index for the adults at both sites was influenced by the predominance of abnormal ratings for clubbed and marginate gills, swollen pseudobranchs, and blindness due to cataracts.

The severity index is computed from ratings or level of severity of thymus, hindgut, fin and opercles. The higher the index, the greater the level of severity combined in the four variables. An acceptable range for severity index (with 0% being normal or indicative of a healthy population) is $0-10 \%$ (Goede 1993). The severity index increased sharply (from 6.3% in October to 12.1% in December) in adult fish at site 1 and subsequently decreased to 5.1% in January (Table 1). The main contributing factor to the increase was fin erosion which may be explained by increased spawning activity due to a higher percentage of sexually mature adults observed in December (60% at site 1 and 53% at site 2). Except for the increase in adults in December, severity indices fluctuated but remained at or below 10% in both size classes at both sites throughout the study (Tables 1 and 2).

The feeding index is based on the fullness and color of bile in the gallbladder at the time of necropsy and provides an excellent indicator of time to last feeding. The higher the feeding index, the greater the feeding activity. An acceptable range for feeding index (with 100% being indicative of active feeding) is greater than 67% (Goede 1993). The index varied for both adults

2000-01 Condition Factor

Figure 1. Mean 2000-01condition factor of adult (A) and juvenile (B) rainbow trout collected on four sample dates from site 1 (Navajo Dam to Texas Hole) and site 2 (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a site, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.
and juveniles throughout the study at both sites (Tables 1 and 2). In general, average feeding indices were slightly lower in adults at site $1(69.9 \%)$ and site $2(74.4 \%)$ compared to juveniles at sites $1(74.5 \%)$ and $2(76.6 \%)$. Except for adults at site 1 when the index decreased to 61.1% in December and 59.5% in January, both size classes at both sites were within the acceptable range for a population with adequate resources.

The Health Assessment Index (HAI) is calculated by assigning a numerical rating to the values given in the Health Condition Profile to the pseudobranchs, thymus, eyes, gills, spleen, hindgut, kidney, liver, opercles, and fins (Adams et al. 1993). A rating of 0 is given for normal values, 10 for mild abnormalities, 20 for moderate, and 30 for severe. The ratings are summed for each fish and then the means are calculated for each group. The higher the index, the greater the level of abnormalities within that group. Adult fish exhibited higher HAI indices than juveniles at both sites (Figures 2A and B) due to higher levels of abnormalities in the eyes, gills, pseudobranchs, thymus, kidneys, and fins. No significant difference was detected among the months for adults except in January when a decline in the ratings (or improvement in health) was observed at both sites in the pseudobranchs, kidneys, and fins (site $1 P=0.088$, site $2 P=0.012$). Juveniles also exhibited a decline in January, although not significant, due to an improvement in pseudobranchs and thymus.

Physiological Indices

Hematocrit reflects the percent red blood cells to total blood volume and is evaluated in the Health Condition Profile as a broad indicator of population health. It is assumed that elevated levels of hematocrit may represent a population under stress while low levels indicate the presence of disease (Goede and Barton 1990). There was no general trend in hematocrit for adults at both sites or juveniles at site 2 , and even though juveniles at site 1 experienced a 25% decrease from October to March, both sites and size classes were within normal ranges for rainbow trout (34-57\%, Denton and Yousef 1975; 22-44\%, Miller et al. 1983) (Tables 1 and 2).

Changes in total plasma protein concentrations are considered a measure of sustainable growth (Brett and Groves 1979). Adults and juveniles at site 1 exhibited significant decreases (22.4% and 21.4%, respectively) in protein concentrations from October to March (Figures 3A

2000-01 Health Assessment Index

Figure 2. Mean 2000-01 health assessment index of adult (A) and juvenile (B) rainbow trout collected on four sample dates from site 1 (Navajo Dam to Texas Hole) and site 2 (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a site, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.

2000-01 Total Plasma Protein (g/dL)
A

B

Figure 3. Mean 2000-01 total plasma protein (g/dL) in adult (A) and juvenile (B) rainbow trout collected on four sample dates from site I (Navajo Dam to Texas Hole) and site 2 (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a site, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.
and B). Adults at site 2 also experienced a significant decrease (26.3%), however, juvenile protein concentrations were varied and decreased by only 3.7% (Figures 3 A and B). In both mature and immature salmonids from Canadian streams, Cunjak (1988) observed decreases in plasma protein levels from peak concentrations in summer to the lowest at the end of winter. Thus, decreases in total protein concentrations observed in this study may reflect seasonal changes.

Lipids are an important source of potential chemical energy, and their presence or absence reflects the performance capacity of fish. No general trend in muscle lipids was observed for adults at site 1 or 2 throughout the study (Figure 4A). In contrast, juveniles in October at both sites had twice the lipid levels of adults but experienced a significant decrease from October to December of 51.5% at site 1 and 61.9% at site 2 (Figure 4B). Muscle lipids in both size groups at both sites increased slightly in January possibly reflecting an increase in food resources.

Comparative Fish Health Assessments: October to March 1996-97 and 2000-01

Health Condition Profile

Condition factors decreased significantly from October 1996 to March 1997 in both size classes and at both sites ($P=0.06$ for adults at site 1) (Figures 5A and B). Condition factors also decreased in 2000-01 in both size classes and at both sites; however, only juveniles exhibited a statistically significant decrease (Figures 1A and B). Juveniles had consistently higher condition factors in 2000-01 than 1996-97 with significant differences in all months at both sites except October at both sites and March at site 2 (Figure 6B). In contrast, condition factors in adults in 1996-97 generally were greater than or equal to 2000-01 condition factors (Figures 7A and B); however, only adults at site I in October 1996 had a significantly higher condition factor. The decrease from October to March seen across both sites and size classes in both collection periods appears biologically relevant with respect to changes in seasonal energy requirements. This overwinter loss in condition has been reported in other populations of salmonids, including rainbow trout in the Glen Canyon Dam tailwater (Valdez and Ryel 1995). Also, Cunjak and Power (1987) observed a decline in condition factor in salmonids from late summer through

2000-01 Muscle Lipid (\%)

Figure 4. Mean 2000-0t percent muscle lipid (wet weight) in adult (A) and juvenile (B) rainbow trout collected on four sample dates from site I (Navajo Dam to Texas Hole) and site 2 (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a site, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.

Figure 5. Mean 1996-97condition factor of adult (A) and juvenile (B) rainbow trout collected on four sample dates from site 1 (Navajo Dam to Texas Hole) and site 2 (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a site, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.

Comparison of 1996-97 and 2000-01 Condition Factor of Juveniles

A

B

Figure 6. Comparison of 1996-97 and 2000-01 mean condition factor of juvenile rainbow trout collected on four sample dates each collection year from site 1 (A) (Navajo Dam to Texas Hole) and site 2 (B) (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a month, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.

Comparison of 1996-97 and 2000-01 Condition Factor of Adults

Figure 7. Comparison of 1996-97 and 2000-01 mean condition factor of adult rainbow trout collected on four sample dates each collection year from site 1 (A) (Navajo Dam to Texas Hole) and site 2 (B) (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a month, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.
early winter as a result of metabolic costs being higher than energy intake when food resources were limiting.

Normality indices of adults at site 1 in 2000-01 were lower, although not significantly, in all collection months compared to indices of adults at the same site in 1996-97 (Table 1). Normality indices for juveniles at site 1 and for adults and juveniles at site 2 were varied for both collection periods (Tables 1 and 2) with no significant difference. In 2000-01 adults received higher abnormality ratings for eyes, kidneys, and fins than adults in 1996-97, whereas in 1996-97 the higher abnormality ratings occurred mainly in the thymus. In contrast, the juveniles in 200001 received higher ratings for the thymus, while in 1996-97 the abnormal ratings were highest in gills, liver and opercles.

Overall, severity indices were within the recommended 10% for "normal" or healthy fish populations throughout the 1996-97 and 2000-01 studies. In 1996-97, the exceptions were adults in March at sites 1 (12.5\%) and 2 (14.6\%) and juveniles in March at site 1 (10.4%) and in February at site $2(10.4 \%$) (Tables 1 and 2). The higher indices were due mainly to the degree of hemorrhaging in the thymus and shortening of the opercles. The only exception in the 2000-01 study was in December when the index was 12.1% for adults at site 1 (Tables I and 2). It is important to note that evaluation of the thymus weighs heavily in the severity index; however, the rating of the condition of the thymus has questionable interpretation due to broad and generalized effects of a multitude of stressors in wild populations. In an unpublished stress study, Barton observed a higher incident of thymic hemorrhaging in healthy juvenile brook trout (Salvelinus fontinalis) than in a diseased population (Goede and Barton 1990). Thus, the severity index should be interpreted with caution.

No general trends were observed for feeding indices from October to March for either site or size class within 1996-97 and 2000-01; however, differences were observed between sample collections (Tables 1 and 2). Although not statistically significant, adults at site 1 in 1996-97 had higher feeding indices than adults in 2000-01. In contrast, adults at site 2 had significantly lower feeding indices in 1996-97 than in 2000-01. The average feeding index for juveniles at site 1 was the same for 1996-97 and 2000-01. Although not significantly different, juveniles at site 2 in 1996-97 had a lower average feeding index than in 2000-01. An acceptable range for feeding
index is greater than 67% with indices below the threshold indicating reduced feeding activity. In 1996-97, half of feeding indices were below the acceptable range for adults while 25% of feeding indices were below the acceptable range for juveniles. In contrast, $\mathbf{2 5 \%}$ of feeding indices for adults in 2000-01 were below the acceptable range, while none of the indices were below the acceptable range for juveniles.

A Health Assessment Index (HAI) was calculated in 1996-97 from the necropsy ratings in the Health Condition Profile (USBOR 1998). There were no temporal or spatial trends for HAI for either adults or juveniles; however, adults consistently received more abnormal ratings than juveniles (Figures 8A and B). Likewise, there was no general trend for HAI in 2000-01 (Figures 2A and B). Adults in 2000-01 also exhibited higher HAI indices than juveniles and followed the same fluctuating pattern at each site as adults in 1996-97. The majority of abnormal ratings in 1996-97 were observed in gills, pseudobranchs, and thymus, while the majority of abnormal ratings in 2000-01 were observed in gills, pseudobranchs, and eyes. Only adults at site 1 in October 2000 had a significantly higher HAI index than adults in 1996 (Figure 9A) due to increased abnormalities in fins, opercles, kidney, and the hindgut. Adults at site 1 in December had the greatest level of abnormalities for both collection periods with a subsequent improvement in February 1997 and January 2001. Adults at site 2 had the lowest level of abnormalities in February 1997 and January 2001 (Figure 9B). Juveniles at both sites in 1996-97 had consistently higher HAI indices than juveniles in 2000-01 (except for site 1 in December). However, only site 1 in February 1997 exhibited a statistically higher index (Figures 10A and B).

Little is known about the physiological response of the fish pseudobranch and thymus to environmental stressors. Goede and Barton (1990) suggest the swelling of pseudobranchs may indicate a change in the partial pressure of oxygen and carbon dioxide. Increases in salinity levels may also cause pseudobranchial cell disruption (King et al. 1993). In the thymus, seasonal changes may cause visible physiological alterations. Alvarez et al. (1994) described a decrease in intrathymic erythropoiesis activity during winter, as well as a decrease in thymic size from winter to spring (1998). Further studies of environmental factors that affect these organs need to be conducted before implications of abnormalities observed in wild fish populations can be properly addressed.

1996-97 Health Assessment Index

Figure 8. Mean 1996-97 health assessment index of adult (A) and juvenile (B) rainbow trout collected on four sample dates from site 1 (Navajo Dam to Texas Hole) and site 2 (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a site, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.

Comparison of 1996-97 and 2000-01
Health Assessment Index of Adults

Figure 9. Comparison of 1996-97 and 2000-01 mean health assessment index of adult rainbow trout collected on four sample dates each collection year from site 1 (A) (Navajo Dam to Texas Hole) and site 2 (B) (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a month, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.

Comparison of 1996-97 and 2000-01
Health Assessment Index of Juveniles

Figure 10. Comparison of $1996-97$ and 2000-01 mean health assessment index of juvenile rainbow trout collected on four sample dates each collection year from site 1 (A) (Navajo Dam to Texas Hole) and site 2 (B) (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a month, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.

Physiological Indices

Although there was no general trend from October to March for hematocrit within each collection period, values for both size classes at both sites were significantly lower ($P=0.06$ for adults at site 2) in 2000-01 than in 1996-97 (Tables 1 and 2). Despite the significant difference between collection periods, the range of mean hematocrit for each period ($42-53 \%$ in 1996-97 and $34-48 \%$ in 2000-01) falls within the levels of normality identified for rainbow trout ($34-57 \%$. Denton and Yousef 1975; 22-44\%, Miller et al. 1983). It is important to point out that hematocrit may vary with season (Denton and Yousef 1975), age (Barnhart 1969), and acute stress prior to blood collection (Fletcher 1975); i.e., hematocrit levels could inerease as a result of handling stress. Thus, hematocrit should be interpreted with caution.

Concentrations of total plasma protein in adults at site 1 in 1996-97 and 2000-01 decreased similarly from October to March by 22.7% and 22.4%, respectively (Figure 11A). However, concentrations in October, December, and March 1996-97 were significantly lower in adults at site 1 than the same months in 2000-01 (February 1996 was also lower but not significantly). At site 2 , results varied between collection periods for adults with a slight increase from October to March in 1996-97 (2.4%) while concentrations decreased by 26.3% in 2000-01 (Figure 11B). Total protein concentrations were significantly lower in adults at site 2 in 1996-97 than 2000-01 in October and February/January.

Protein concentrations in juveniles at site 1 decreased from October to March in 1996-97 and $2000-01$ by 15.2% and 21.4%, respectively (Figure 12A). Between collection periods, bowever, protein levels were highly variable with October 1996 and March 1997 levels significantly lower than October 2000 and March 2001; December 1996 and 2000 levels were equal; and February 1997 levels were significantly higher than January 2001. Slight decreases were observed in plasma protein concentrations in juveniles at site 2 for both 1996-97 (6.4\%) and 2000-01 (3.7\%) with concentrations in 1996-97 significantly lower than 2000-01 in October, December, and March (Figure 12B).

The trends in 2000-01 observed for plasma protein concentrations in adults are similar to those observed by Cunjak (1988) in salmonids (which were related to seasonal changes). That trend was not as evident for this study in 1996-97 because of the highly variable pattern exhibited

Comparison of 1996-97 and 2000-01 Total Plasma Protein (g/dL) in Adults

Figure 11. Comparison of 1996-97 and 2000-01 mean total plasma protein (g/dL) in adult rainbow trout collected on four sample dates each collection year from site 1 (A) (Navajo Dam to Texas Hole) and site 2 (B) (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a month, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.

Comparison of 1996-97 and 2000-01
Total Plasma Protein (g / dL) in Juveniles

Figure 12. Comparison of $1996-97$ and $2000-01$ mean total plasma protein (g / dL) in juvenile rainbow trout collected on four sample dates each collection year from site 1 (A) (Navajo Dam to Texas Hole) and site 2 (B) (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a month, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.
by adults and juveniles at both sites (Figures 13A and B). However, both size classes in 1996-97 had significantly lower protein concentrations in October before the low flow test began than their counterparts in 2000-01 (Figures 11A,B and 12A,B). Consequently, inherent sample and physiological variation between collections must also be taken into consideration when comparing results of 1996-97 and 2000-01. Thus, interpretation of low-flow effects should be made with caution.

From October to March of 1996-97, percent muscle lipids in adults exhibited a significant decline of 47.8% at site 1 and 45.8% at site 2 (Figures 14A and B). However, 2000-01 lipid levels in adults declined by only 3.2% and 15.7% at sites 1 and 2 , respectively (Figure 4 A). Between sample collections, lipids in adults at site I were consistently lower in 2000-01 than 1996-97 with significant differences observed in October and December (Figure 15A). At site 2, lipid levels were lower in 2000-01 than in 1996-97 in all months except March, although no significant differences were observed (Figure 15B).

In 1996-97, percent muscle lipids in juveniles at site 1 declined significantly from October to March by 65.2% while a non-significant decrease (32%) was observed at site 2 (Figure 14B). In 2000-01, juveniles at both sites exhibited significant declines in lipid levels from October to March (48.4% at site 1 and 53.5% at site 2) (Figure 4 B). Lipid levels in juveniles between sample collections were varied at site 1 with October and December 1996 slightly higher than 2000, but February and March 1997 significantly lower than 2001 (Figure 16A). At site 2 , juvenile lipids were consistently higher in 2000-01 than in 1996-97 with significant differences between February/January and March (Figure 16B).

Depletion of energy stores through autumn and winter in salmonids has been documented by others (Cunjak and Power 1986; Cunjak 1988). Cunjak and Power (1987) observed fish were unable to effectively assimilate ingested foods in winter, resulting in lower energy intake while metabolic costs remained the same. Adults at site 1 in 1996-97 exhibited a seasonal trend whereas adults in 2000-01 showed little change throughout the collection year. Lipids in juveniles at site 1 in 1996-97 also followed a seasonal pattern while juveniles in 2000-01 had fluctuating levels throughout the collection year. Adults and juveniles at site 2 in both sample collections exhibited varying lipid levels among the four sampling periods with no trends

1996-97 Total Plasma Protein (g/dL)

Figure 13. Mean 1996-97 total plasma protein (g/dL) in adult (A) and juvenile (B) rainbow trout collected on four sample dates from site 1 (Navajo Dam to Texas Hole) and site 2 (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a site, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.

1996-97 Muscle Lipid (\%)

Figure 14. Mean 1996-97 percent muscle lipid (wet weight) in adult (A) and juvenile (B) rainbow trout collected on four sample dates from site I (Navajo Dam to Texas Hole) and site 2 (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a site, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.

Comparison of 1996-97 and 2000-01 Muscle Lipid (\%) in Adults

Figure 15. Comparison of $1996-97$ and 2000-01 mean pereent muscle lipid (wet weight) in adult rainbow trout collected on four sample dates each collection year from site 1 (A) (Navajo Dam to Texas Hole) and site 2 (B) (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a month, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.

Comparison of 1996-97 and 2000-01 Muscle Lipid (\%) in Juveniles

B

Figure 16. Comparison of $1996-97$ and 2000-01 mean pereent muscle lipid (wet weight) in juvenile rainbow trout collected on four sample dates each collection year from site 1 (A) (Navajo Dam to Texas Hole) and site 2 (B) (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represem standard error of the mean. Within a month, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.
observed except for the overall decrease from October to March. The absence of a distinguishable pattern between 1996-97 and 2000-01 precludes an accurate interpretation of seasonal versus low-flow effects.

Fish Health Assessment: August 2001

Health Condition Profile

For the August 2001 collection, mean lengths of adults and juveniles at site 1 were 414.4 mm and 155.7 mm , respectively (Table 1). Mean lengths of adults and juveniles at site 2 were 441.1 mm and 176.7 mm , respectively (Table 2). Sex ratios once again were slightly skewed with 53% of adults identified as females from site 1 and 60% from site 2 . Of the adult females, 56% from site 1 and 72% from site 2 were gravid (Appendix A). Condition factors increased significantly from March to August for adults at site 1 and for juveniles at both sites (Figures 17A and B). The 6.4% increase for adults at site 2 was not statistically significant but may be biologically significant in reflecting a seasonal pattern of increased fitness through the summer months across both sites and sizes (Figure 17A).

Normality indices for both sites and size classes were below the accepted 90% range for the month of August; however, this represented little change from the March indices (Tables 1 and 2). Although severity indices decreased from 6.3% in March to 4.2% in August for adults at site 2, adults at site 1 increased from 4.6% to 10.0%. Juveniles increased at both sites in August to the highest levels of the collection period (11.7% at site 1 and 13.3% at site 2) (Tables 1 and 2). Hemorrhaging in the thymus was again the main contributing factor. Generally, feeding indices increased in August for both sites and sizes to the highest levels of the collection period, except for adults at site 1 which decreased to 60.0% (Tables 1 and 2). No significant difference was detected in the health assessment index for the month of August for either site or size class (Figures 18A and B).

Physiological Indices

Hematocrit levels in August for adults and juveniles at both sites remained in the range observed in the previous 2000-01 sampling periods (Tables 1 and 2). Although the difference

2000-01 Condition Factor (Including August Data)

Figure 17. Mean 2000-01 (including August data) condition factor of adult (A) and juvenile (B) rainbow trout collected on five sample dates from site 1 (Navajo Dam to Texas Hole) and site 2 (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of mean. Within a site, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.

2000-01 Health Assessment Index (Including August Data)

Figure 18. Mean $2000-01$ (including August data) health assessment index of adult (A) and juvenile (B) rainbow trout collected on five sample dates from site I (Navajo Dam to Texas Hole) and site 2 (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a site, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.
was not statistically significant, total plasma protein in adults at site 1 and 2 reflected a seasonal increase from March to August (Figures 19A). Protein levels in juveniles at both sites also increased slightly in August (Figure 19B). A seasonal pattern was observed over the 2000-01 collection year in both adults and juveniles as protein levels decreased from October to January and then began increasing in March and August. With the addition of the August data, muscle lipids in juveniles from both sites also exhibited a seasonal pattern with a significant decrease in lipid levels from October to March and a subsequent significant increase from March to August (Figure 20B). Lipid levels in adults at both sites also increased significantly from March to August; however, no seasonal trend was observed due to the low levels measured in October (Figure 20A).

CONCLUSIONS AND RECOMMENDATIONS

Analysis of the data between the low-flow test (1996-97) and baseline study (2000-01) revealed relatively few significant differences. No relevant differences were observed in condition factor, normality index, severity index, feeding index, and HAI between 1996-97 and 2000-01. Although hematocrit was greater in 1996-97 than in 2000-01, all values were within normal ranges published for rainbow trout. Total plasma protein exhibited a seasonal trend of decreasing concentrations for both age classes at site 1 (Navajo Dam to Texas Hole) while results varied at site 2 (Texas Hole to the end of the special regulation water) in both sample collections. Despite this general similarity, protein levels were generally lower in 1996-97 than in 2000-01. However, total protein in both size classes and sites were statistically lower in October 1996 (before the low flow began) than in October 2000, indicating that the lower 1996-97 levels may be unrelated to the test. Percent muscle lipid levels showed no trend among size classes or sites within either sample collection. The lower mesentery fat reserves and percent muscle lipids observed in adults in October 2000 are unexplained. October was the only month in the 2000-01 sampling period in which lipid levels of adults and juveniles were not similar. When considering the expected seasonal increase in lipid levels (as seen in August 2001 for both size classes), the low levels recorded for adults in October 2000 may be due to a disruption in the food source.

2000-01 Total Plasma Protein (g/dL) (Including August Data)

Figure 19. Mean 2000-01 (including August data) total plasma protein (g / dL) in adult (A) and juvenile (B) rainbow trout collected on five sample dates from site 1 (Navajo Dam to Texas Hole) and site 2 (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a site, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.

2000-01 Muscle Lipid (\%) (Including August Data)

Figure 20. Mean 2000-01 (including August data) pereent muscle lipid (wet weight) in adult (A) and juvenile (B) rainbow trout collected on five sample dates from site I (Navajo Dam to Texas Hole) and site 2 (Texas Hole to the end of the special regulation water) on the San Juan River. Vertical bars represent standard error of the mean. Within a site, values having the same letter are not significantly different from each other. Sample sizes are in parentheses.

The presence of such an anomaly as well as high variability among the health condition parameters confounds the interpretation of baseline data collected from only a one-year study.

Therefore, two important questions arise that cannot be adequately addressed by the lowflow test and baseline study: 1) are data from the 2000-01 collection period an accurate baseline for the San Juan River rainbow trout population, and 2) are the differences observed between the low-flow test and baseline study an artifact of the low-flow or because of inherent variability within the San Juan River system (i.e., attributable to differences in annual rainfall, diurnal and seasonal temperature fluctuations, invertebrate biomass, degrees of fishing pressure). If flow was reduced to 250 cfs when rainbow trout have lower energy reserves (as was observed in October 2000), the effects on the overall health of the population may be different than observed in 1996-97 (when the population began the winter season with higher energy reserves). Also the effect of habitat type and food resources within the San Juan River on adult versus juvenile health warrant further study to provide possible explanations for differences observed between the two size classes and the two sites in the various health condition parameters.

We conclude the health of the rainbow trout population did not appear to be negatively impacted by the 1996-97 low-flow test. However, potential chronic effects of extended low flows cannot be adequately assessed from the data collected in 1996-97 and in 2000-01. Based on results presented in this report, a 4-month low-flow test and a one-year baseline study do not provide sufficient data to fully interpret the impact of multiple variables (both inherent and anthropogenic) on fish health. We recommend implementation of a multi-year baseline study in conjunction with monitoring future low flows to further assess seasonal versus low-flow effects on the long-term health of the rainbow trout population in the San Juan River.

LITERATURE CITED

Adams, S.M., A.M. Brown and R.W. Goede. 1993. A quantitative health assessment index for rapid evaluation of fish condition in the field. Transactions of the American Fisheries Society 122:63-73.

Alvarez, F., E. Flano, A.J. Villena, A. Zapata and B.E. Razquin. 1994. Seasonal intrathymic erythropoietic activity in trout. Developmental and Comparative Immunology 18(5):409-420.

Alvarez, F., B.E. Razquin, A.J. Villena and A.G. Zapata. 1998. Seasonal changes in the lymphoid organs of wild brown trout, Salmo trutto L: A morphometrical study. Veterinary Immunology and Immunopathology 64:267-278.
Barnhart, R.A. 1969. Effects of certain variables on hematological characteristics of rainbow trout. Transactions of the American Fisheries Society 3:411-418.

Brett, J.R. and T.D.D. Groves. 1979. Physiological energetics. Pages 279-352 in W.S. Hoar, D.J. Randall, and J.R. Brett, editors. Fish Physiology, Volume 8, Academic Press, New York.

Cunjak, R.A. 1988. Physiological consequences of overwintering in streams: the cost of acclimatization? Canadian Journal of Fisheries and Aquatic Sciences 45:443-452.

Cunjak, R.A. and G. Power. 1986. Seasonal changes in the physiology of brook trout, Salvelinus fontinalis (Mitchill), in a sub-Arctic river system. Journal of Fish Biology 29:279-288.

Cunjak, R.A. and G. Power. 1987. The feeding and energetics of stream-resident trout in winter. Journal of Fish Biology 31:493-511.
Denton, J.E. and M. K. Yousef. 1975. Seasonal changes in hematology of rainbow trout, Salmo gairdneri. Comparative Biochemistry and Physiology 51A:151-153.

Fletcher, G.L. 1975. The effects of capture, "stress," and storage of whole blood on the red blood cells, plasma proteins, glucose, and electrolytes of the winter flounder (Pseudopleuronectes americanus). Canadian Journal of Zoology 53:197-206.

Goede, R.W. 1993. Fish health/condition assessment procedures. Utah Division of Wildlife Resources, Logan, UT. 31 pp.
and B.A. Barton. 1990. Organismic indices and an autopsy-based assessment as indicators of health and condition of fish. American Fisheries Society Symposium. 8:93-108.

Holden, P.B. (ed.). 1999. Flow recommendation for the San Juan River. The San Juan River Basin Recovery Implementation Program. Bio/West, Inc.

King, J.A.C., P.R. Smith, J.C. Ashcraft and D.R. DiBona. 1993. Ultrastructure of the pseudobranch in the euryhaline cyprinodontid fish, Rivulus marmoratus. Journal of Morphology 218:127-142.

Miller III, W.R., A.C. Hendricks, and J. Cairns Jr. 1983. Normal ranges for diagnostically important hematological and blood chemistry charateristics of rainbow trout (Salmo gairdneri). Canadian Journal of Fisheries and Aquatic Sciences 40:420-425.

SAS, 1999. Version 8.2 Edition. Cary, NC: SAS Institute, Inc.
Sutton, R.J., C.A. Caldwell, and V.S. Blazer. 2000. Observations of health indices used to monitor a tailwater trout fishery. North American Journal of Fisheries Management 20:267-275.
U.S. Bureau of Reclamation (USBOR). 1998. San Juan River winter flow test. Upper Colorado Region Western Colorado Area Office, Southern Division, Summary Report, Durango.
U.S. Fish and Wildlife Service (USFWS). 1996. Technical Assistance Memorandum. Prepared for the U.S. Bureau of Reclamation.

Valdez, R.A. and R.J. Ryel. 1995. Life history and ecology of the humpback chub (Gila cypha) in the Colorado River, Grand Canyon, Arizona. U.S. Bureau of Reclamation, Salt Lake City, UT.

ATTACHMENT A

Summary of Necropsies

General Remarks
\qquad Gonads mary temulet were gavid. DuA notabons were not made
Skin

Summary of Necropsies

Fix. 15y1B

General Remarks

Summary of Necropsies

General Remarks

Fins
Skin one fash wiesion on abdomen

Gonads several fenales were gravid, but notations were not made
Other 8 fish wet damage from anglers

Summary of Necropsies

General Remarks

Summary of Necropsies

Ficezsifis

General Remarks
Fins 2 fah wturga, 1 Soh missing pectoral in Gonads 13 gravid. 5 posi-spamin lemales, 1 male ativing mil
Skin \qquad Other 11 fint weth gamage from angiens

Summary of Necropsies

General Remarks
Fins
Skin one fish wlevion on abdomen Gonads Other one Bah melewctrahock bruse

Surnmary of Necropsies

General Remarks
Fins 2 figh missing 1 pedionalin, 1 delomed pect Gonads lemales - 6 gavid, 10 post-spawned, males - 3 estuding mit Skin one fain wlesion on abdomen Other A Asth weth damage from anglers

Summary of Necropsies

General Remarks
\qquad Gonads

Summary of Necropsies

Genetal Remarks
Fins one deformed pectonal 2 wturgus on fine
Gonads females - 5 gravid, 5 post-Apawn, males -1 evinuaing milt Skin Other 6 fieh wth darnage from angens

Summary of Necropsies

General Remarks

Summary of Necropsies

General Remarks

Fins one finh miasing a pectoral in

Summary of Necropsies

General Remarks

Summary of Necropsies

General Remarks
Fins 2 frss minsing. 2 lins wlungus, intection Skin Bealiod losion on apercie

Gonads temales -3 gravis. 3 post-spam
Other 16 lish wdianage from angleri, one whicoiotis

Summary of Necropsies

Summary of Necropsies

General Pemarks

Fins one caudar ton weth lesion
Skin one with apen wound on side

Gonads females - 4 grawd, 4 posi-spewn Other 14 和h whth damage from angers

Summary of Necropsies

General Remarks

Fins

 Gonads[^0] Other

Summary of Necropsies

General Remarks
Fins one fish wfurgas on cuutal fin Skin teot faht wath entemal lesions

Summary of Necropsies

General Remarks
Fins Gonads
Skin Other \qquad

Summary of Necropsies

General Remarks
Fins one fith misieg win polvic in Skin \qquad Gonads 3 spmened oue, 8 absorting eggs, 2 rpe females Other one wicobigis, 16 wlaw damage from anglers

Summary of Necropsies

General Remarks
Fins one fish missing iet pectoral fin Skin \qquad
\qquad

ATTACHMENT B

Total Protein Determination (Phenol Reagent Method for Biological Fluids) Sigma Procedure No. 690

The procedure is based on the combined methods of the biuret and Lowry for determination of protein in plasma. The two methods were combined to improve stability of the reagents, and provide better sensitivity. Since the method is very sensitive, the plasma or sera sample is diluted so that the final protein concentration is between 15 and $100 \mathrm{mg} / \mathrm{dl}$. The diluted protein is further diluted with the biuret reagent, and later with Folin and Ciocalteu's Phenol reagent. The color formed is read at a wavelength between 700 and 750 nm $(725 \mathrm{~nm})$. Protein concentrations are determined from the calibration curve.

Equipment, Materials, and Supplies

Adjustable pipets and tips ($100-1000 \mathrm{uL} ; 10-100 \mathrm{uL})$, repeater pipettor, laboratory vortex, borosilicate glass tubes (5 and 10 mL) and test tube rack, spectrophotometer and cuvettes, timer. Sufficient pooled fish plasma and or a certified reference to serve as a control for assays (Sigma "Accutrol" Certified Standard Reference Material- prepare according to instructions). The Accutrol solution is stable 10 days at 4 C . Follow instructions for the preparation of the Accutrol Reference. Maintain a log for recording the Accutrol and the pooled fish sera. Sodium Chloride Solution ($0.85 \% ; 8.5 \mathrm{~g} \mathrm{NaCl}$ dissolved in 1 liter of deionized water).

Set-Up Procedure

A. The sample must be diluted to obtain total protein in the range of the standard curve. A range-finding test may be necessary depending upon the level of total protein in the sample. This could vary between species or within species subjected to various environmental factors. The final dilution factor for the following assay is $101(50 \mathrm{uL}$ of the sample was diluted with 5.0 mL of NaCl solution). Treat the unknowns similarly to the Pooled Fish Sample and the Accutrol Reference Sample.

In large test tubes (10 mL), pipet 5.0 mL of NaCl to all test tubes; pipet 50 uL of the sample to its respective tube and vortex.
B. Dilute protein standard $=0.05 \mathrm{~mL}$ standard in 5 mL NaCl .
C. In a second rack of test tubes (5 mL) label the tubes accordingly:

Test tube No.	Tube label	Contents of tube
1	Blank $(0.0 \mathrm{mg} / \mathrm{dL})$	$(0.10 \mathrm{~mL} \mathrm{NaCl})$
2	Standard $25 \mathrm{mg} / \mathrm{dL}$	$(0.025 \mathrm{~mL}$ diluted Protein Standard $+0.075 \mathrm{~mL} \mathrm{NaCl})$
3	Standard $50 \mathrm{mg} / \mathrm{dL}$	$(0.05 \mathrm{~mL}$ diluted Protein Standard $+0.05 \mathrm{~mL} \mathrm{NaCl})$
4	Standard $75 \mathrm{mg} / \mathrm{dL}$	$(0.075 \mathrm{~mL}$ diluted Protein Standard $+0.025 \mathrm{~mL} \mathrm{NaCl})$
5	Standard $100 \mathrm{mg} / \mathrm{dL}$	$(0.10 \mathrm{~mL}$ diluted Protein Standard)

Test tube No.	Tube label	
6	Accutrol Reference	Contents of tube
7	Pooled Fish Sample	$(0.10 \mathrm{~mL}$ diluted Reterence)
8	Unknown Fish Sample	$(0.10 \mathrm{~mL}$ diluted Pooled Fish Sample)
9	And so on...	Repeat step for tube \#8 for each unknown.

Test Procedure

1. The Biuret Reagent is already prepared. There is sufficient amount of the Reagent to run 50 test tubes (including standards, references, and unknowns). Using the repeater pipettor, pipet 1.1 mL of the Reagent to all tubes. Vortex each tube immediately after addition of Reagent, and allow the tubes to incubate at room temperature for the 10 minutes. Begin timing the 10 minute incubation period with the first tube*.
2. After the 10 minutes, use the repeater pipettor to add to each tube 0.05 mL of the Folin and Ciocalteu's Phenol Reagent (this has also been prepared for you by the manufacture. There is sufficient sample to run 50 test tubes). Vortex each tube immediately after addition of Folin, and allow the tubes to incubate at room temperature for 30 minutes. Begin timing the 30 minute incubation period with the first tube*.
3. While the tubes are incubating, turn on the spectrophotometer and allow to warm up. Set the wavelength to 725 nm .
4. Plot the absorbance values (Y axis) versus the total protein concentration (x axis). From the standard curve, read the absorbance for the unknowns to get the diluted protein concentrations in $\mathrm{mg} / \mathrm{dL}(\mathrm{mg} / 100 \mathrm{~mL}$). Multiply the diluted concentration by 101 (dilution factor: $5.05 \div 0.05$) to get the actual protein concentrations in $\mathrm{mg} / \mathrm{dL}$, then divide by 1000 to get g / dL. Total protein in reported as g / dL.

* For reproducibility of results, the timing of the $10-$ minute and $30-$ minute incubation periods as well as reading on the spectrophotometer should be consistent with each tube. When adding the Reagent and Folins from one tube to the next, allow the same amount of time required to read a sample on the spectrophotometer. This keeps the reading of each sample at 40 minutes from the time of the incubation of the Reagent (10 min) and the incubation of the Folins (30 min).

Quality Assurance - Quality Control
San Juan River Protein Determination

Accutrol Inter-assay Controls

Accutrol Control	Diluted Concn mg/dL	Actual Concn g / dL	Mean Concentration
$12 / 4 / 2000$	64.685	6.533	
$12 / 4 / 2000$	64.131	6.477	
$12 / 4 / 2000$	62.406	6.303	6.266
$1 / 22 / 2001$	60.511	6.112	
$1 / 15 / 2001$	64.228	6.487	Standard Deviation
$1 / 17 / 2001$	62.512	6.314	0.30883207
$1 / 17 / 2001$	64.164	6.481	
$2 / 13 / 2001$	52.590	5.312	n=16
$2 / 12 / 2001$	63.642	6.428	
$2 / 12 / 2001$	63.527	6.416	
$4 / 19 / 2001$	60.099	6.070	
$4 / 19 / 2001$	59.863	6.046	
$4 / 19 / 2001$	59.469	6.006	
$10 / 10 / 2001$	63.438	6.407	
$10 / 10 / 2001$	64.164	6.481	
$10 / 10 / 2001$	63.145	6.378	

Rainbow Trout Intra-assay Control
$\left.\begin{array}{|c|r|r|c|c|}\hline \begin{array}{c}\text { RBT } \\ \text { Contro1 }\end{array} & \begin{array}{c}\text { Diluted Concn } \\ \text { mg/dL }\end{array} & \begin{array}{c}\text { Actual Concn } \\ \text { g/dL }\end{array} & \begin{array}{c}\text { Nean } \\ \text { Standard Deviation }\end{array} & \begin{array}{c}r^{2} \text { values } \\ \text { Std. Curves }\end{array} \\ \hline 12 / 4 / 2000 & 45.861 & 4.632 & 4.511 & 1.00 \\ 12 / 4 / 2000 & 43.238 & 4.367 & 0.13395585 & \\ 12 / 4 / 2000 & 44.890 & 4.534 & & \\ \hline \hline & & 4.579 & 4.628 & \\ 12 / 4 / 2000 & 45.333 & 4.309 & & 0.06967019\end{array}\right]$

$\begin{aligned} & 2 / 13 / 2001 \\ & 2 / 13 / 2001 \end{aligned}$	$\begin{aligned} & 35.211 \\ & 34.551 \end{aligned}$	$\begin{aligned} & 3.556 \\ & 3.490 \end{aligned}$	$\begin{gathered} 3.523 \\ 0.04714217 \\ \hline \end{gathered}$	1.00
$\begin{aligned} & 2 / 12 / 2001 \\ & 2 / 12 / 2001 \end{aligned}$	$\begin{aligned} & 45.485 \\ & 47.487 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.594 \\ & 4.796 \\ & \hline \end{aligned}$	$\begin{gathered} 4.695 \\ 0.14299412 \\ \hline \end{gathered}$	1.00
$\begin{aligned} & 2 / 12 / 2001 \\ & 2 / 12 / 2001 \end{aligned}$	$\begin{aligned} & 46.581 \\ & 45.798 \end{aligned}$	$\begin{aligned} & 4.705 \\ & 4.626 \end{aligned}$	$\begin{gathered} 4.665 \\ 0.05595798 \end{gathered}$	1.00
$\begin{aligned} & 4 / 19 / 2001 \\ & 4 / 19 / 2001 \end{aligned}$	$\begin{aligned} & 35.335 \\ & 36.529 \end{aligned}$	$\begin{aligned} & 3.569 \\ & 3.689 \end{aligned}$	$\begin{gathered} 3.629 \\ 0.08525855 \end{gathered}$	1.00
$\begin{aligned} & 4 / 19 / 2001 \\ & 4 / 19 / 2001 \end{aligned}$	$\begin{aligned} & 34.765 \\ & 35.447 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.511 \\ & 3.580 \end{aligned}$	$\begin{gathered} 3.546 \\ 0.04866908 \end{gathered}$	1.00
$\begin{aligned} & 4 / 19 / 2001 \\ & 4 / 19 / 2001 \end{aligned}$	$\begin{aligned} & 35.757 \\ & 35.787 \end{aligned}$	$\begin{aligned} & 3.611 \\ & 3.614 \end{aligned}$	$\begin{gathered} 3.613 \\ 0.00209468 \end{gathered}$	1.00
$\begin{aligned} & 10 / 10 / 2001 \\ & 10 / 10 / 2001 \end{aligned}$	$\begin{aligned} & 67.636 \\ & 69.395 \end{aligned}$	$\begin{aligned} & 6.831 \\ & 7.009 \end{aligned}$	$\begin{gathered} 6.920 \\ 0.12562388 \end{gathered}$	1.00
$\begin{aligned} & 10 / 10 / 2001 \\ & 10 / 10 / 2001 \end{aligned}$	$\begin{aligned} & 67.848 \\ & 71.134 \end{aligned}$	$\begin{aligned} & 6.853 \\ & 7.185 \\ & \hline \end{aligned}$	$\begin{gathered} 7.019 \\ 0.23467884 \end{gathered}$	1.00
$\begin{aligned} & 10 / 10 / 2001 \\ & 10 / 10 / 2001 \end{aligned}$	$\begin{aligned} & 68.699 \\ & 70.854 \end{aligned}$	$\begin{aligned} & 6.939 \\ & 7.156 \end{aligned}$	$\begin{gathered} 7.047 \\ 0.15390533 \\ \hline \end{gathered}$	1.00

Protein Determination - San Juan River

October, 2000

Sample Number	$\begin{gathered} \text { Diluted Conen } \\ \mathrm{mg} / \mathrm{dL} \end{gathered}$	Actual Conen g / dL	Comments	Mean Concn for each size/site group
1 A 01	40.755	4.116		
1 A 02	49.150	4.964		Site 1/Adult Mean
1 A 03	59.441	6.004		5.857
1 A 04	76.790	7.756		
1 A 05	45.749	4.621		Standard Deviation
1 106	46.035	4.650		2.203541435
1 A07	105.005	10.606		
1 108	48.789	4.928		Standard Error
1 A 09	49.478	4.997		0.4023
1 A10	81.264	8.208		
1 A11	42.439	4.286		$n=30$
1 A12	75.424	7.618		
1 A13	39.322	3.972		
1 A 14	42.123	4.254		
1A15	55.183	5.573		
1 A16	13.457	1.359	plasma too clear??	
1 A17	49.464	4.996		
1 A 18	66.166	6.683		
1 A19	64.593	6.524		
1A20	64.431	6.508		
1 A 21	70.726	7.143		
1 A 22	41.024	4.143		
1A23	68.364	6.905		
1 1.24	72.362	7.309		
1 A 25	104.104	10.515		
1 A26	97.088	9.806		
1 127	57.984	5.856		
1 A28	14.182	1.432		
1 A 29	53.042	5.357		
1A30	45.893	4.635		
1801	61.726	6.234		Site 1/Juvnl Mean
1802	48.581	4.907		5.006
1803	47.556	4.803		
1804	53.948	5.449		Standard Deviation
1805	60.965	6.157	light hemolysis	0.719086159
1806	45.274	4.573	1 t . Hemo. - 25 uL	
1807	37.162	3.753	light hemolysis	Standard Error
1808	51.192	5.170	1 Ight hemolysis	0.1569
1809	49.905	5.040	hemolysis - 25 uL	
1810	43.057	4.349	light hemolysis	$\mathrm{n}=21$
1811	46.127	4.659	light hemolysis	

1812	40.613	4.102	light hemolysis	
1813	47.873	4.835	light hemo. - 25 uL	
1814	41.896	4.231		
$1 \mathrm{B15}$	51.617	5.213	light hemolysis	
1816	55.164	5.572		
$1 \mathrm{B17}$	48.870	4.936	dark red - 25 uL	
$1 \mathrm{B18}$	48.769	4.926	light hemolysis	
$1 \mathrm{B19}$	66.382	6.705		
$1 \mathrm{B20}$	49.313	4.981	hemolysis	
$1 \mathrm{B21}$	44.963	4.541		
2 A 01	54.919	5.547		Site 2/Adult Mean
2A02	41.591	4.201		5.965
2A03	48.808	4.930		
2A04	42.865	4.329		Standard Deviation
2A05	87.748	8.863		1.530422645
2A06	99.689	10.069		
2A07	82.949	8.378		Standard Error
2A08	57.797	5.837	hemolys is	0.2794
2A09	60.708	6.132		
2 AlO	39.237	3.963		$\mathrm{n}=30$
2A11	33.508	3.384	Ifght hemolysis	
$2 \mathrm{Al2}$	43.558	4.399		
2A13	66.489	6.715		
2 A 14	51.981	5.250		
2 A 15	51.281	5.179	light hemolysis	
2 Al 6	46.874	4.734		
2 A 17	61.629	6.225		
2A18	65.480	6.613	hemolysis	
$2 \mathrm{A19}$	60.394	6.100		
2A20	83.862	8.470		
2A21	50.758	5.127		
2 A 22	51.506	5.202		
2 A 23	65.943	6.660	light hemolysis	
2 A 24	66.648	6.731		
2A25	57.029	5.760	hemolysis	
2A26	56.515	5.708		
2A27	60.221	6.082	light hemolysis	
2A28	46.543	4.701		
2A29	74.995	7.574		
2A30	60.248	6.085		
2B01	56.246	5.681	light hemolysis	Site 2/Juvnl Mean
$2 \mathrm{B02}$	26.016	2.628	dark red/brwn - 25 uL	4.573
2 BO 3	54.183	5.472	light hemo. - 25 uL	
$2 \mathrm{B04}$	48.157	4.864	light hemolysis	Standard Deviation
2805	40.615	4.102		0.77582677
2806	56.394	5.696		

2 B 07	37.460	3.783		Standard Error
2 B 08	48.542	4.903		0.1618
2809	55.555	5.611	light hemolysis	
2 B 10	48.168	4.865		
2 B 11	45.688	4.614	light hemolysis	
2 B 12	43.624	4.406	light hemolysis	
2 B 13	46.027	4.649		
2 B 14	44.587	4.503		
2 B 15	37.689	3.807		
2 B 16	35.525	3.588	light hemolysis	
2 B 17	40.775	4.118	not enough plasma??	
2 B 18	47.150	4.762		
2 B 19	48.516	4.900		
2 B 20	53.819	5.436		
2 B 21	38.688	3.907		
2 B 22	50.225	5.073		
2 B 23	37.770	3.815	hemolysis	

Protein Determination - San Juan River

 December, 2000| Sample
 Number | Diluted Concn mg/dL | Actual Conen g / dL | Comments | Nean Concn for each size/site group |
| :---: | :---: | :---: | :---: | :---: |
| 1A31 | 94.413 | 9.536 | some hemolysis | |
| 1 A32 | 81.249 | 8.206 | | Site 1/Adult Mean |
| 1833 | 44.462 | 4. 491 | | 5.731 |
| 1 A34 | 44.727 | 4.517 | | |
| 1 A35 | 52.008 | 5.253 | | Standard Deviation |
| 1 A36 | 43.071 | 4.350 | | 1.564774395 |
| 1 A37 | 46.627 | 4.709 | | |
| 1 A38 | 65.538 | 6.619 | | Standard Error |
| 1 A39 | 93.285 | 9.422 | | 0.2857 |
| 1 A 40 | 61.226 | 6.184 | | |
| 1 A 41 | 55.629 | 5.619 | | $n=30$ |
| 1 A 42 | 53.802 | 5.434 | | |
| 1 A 43 | 35.920 | 3.628 | | |
| 1 A 44 | 57.508 | 5.808 | some hemolysis | |
| 1A45 | 52.982 | 5.351 | | |
| 1 146 | 45.369 | 4.582 | | |
| 1847 | 68.662 | 6.935 | | |
| 1 A 48 | 62.330 | 6.295 | | |
| 1 A 49 | 41.887 | 4.231 | | |
| 1 A 50 | 48.724 | 4.921 | | |
| 1 A 51 | 49.774 | 5.027 | hemolysis | |
| 1 A52 | 54.918 | 5.547 | | |
| 1 A53 | $58+108$ | 5.869 | | |
| 1 1.54 | 44.874 | 4.532 | | |
| 1A55 | 73.783 | 7.452 | | |
| 1 1.56 | 33.594 | 3.393 | | |
| 1857 | 62.232 | 6.285 | | |
| 1A58 | 49.294 | 4.979 | | |
| 1A59 | 81.408 | 8.222 | | |
| 1 A 60 | 44.875 | 4.532 | | |
| 1B31 | 43.890 | 4.433 | | Site 1/Juvnl Mean |
| 1832 | 47.170 | 4.764 | | 4.143 |
| 1833 | 52.674 | 5.320 | some hemolysis | |
| 1834 | 40.271 | 4.067 | | Standard Deviation |
| 1835 | 40.842 | 4.125 | | 0.72604381 |
| 1836 | 41.278 | 4.169 | | |
| 1837 | 43.272 | 4.370 | | Standard Error |
| 1B38 | 35.462 | 3.582 | hemolysis | 0.1372 |
| 1839 | 34.141 | 3.448 | | |
| 1840 | 48.484 | 4.897 | | $\mathrm{n}=28$ |
| 1841 | 47.529 | 4.800 | | |

$1 \mathrm{B42}$	36.510	3.688	hemolysis	
$1 \mathrm{B43}$	47.166	4.764		
$1 \mathrm{B44}$	34.846	3.519		
$1 \mathrm{B45}$	32.914	3.324		
1846			not enough plasma	
$1 \mathrm{B47}$	63.549	6.418		
$1 \mathrm{B48}$	46.679	4.715		
$1 \mathrm{B49}$	36.499	3.686		
$1 \mathrm{B50}$	39.141	3.953		
1851	35.021	3.537		
$1 \mathrm{B5} 2$	34.415	3.476		
1853	27.739	2.802	hemolysis	
$1 \mathrm{B54}$	40.826	4.123		
$1 \mathrm{B55}$	39.453	3.985		
1856	44.864	4.531		
1857	39.572	3.997	some hemolysis	
1858	36.834	3.720		
$\begin{aligned} & 1859 \\ & 1860 \\ & \hline \end{aligned}$	37.420	3.779	some hemolysis not enough plasma	
2A31	66.007	6.667		Site 2/Adult Mean
2 2.32	50.724	5.123		5.101
2A33	48.361	4.884		
2A34	54.356	5.490	some hemolysis	Standard Deviation
2A35	45.998	4.646		1.157493072
2 A36	68.495	6.918		
2 A 37	36.857	3.723		Standard Error
2A38	50.355	5.086		0.2113
2 239	40.595	4.100		
2A40	50.811	5.132		$n=30$
2A41	52.568	5.309		
2A42	81.577	8.239		
2A43	56.514	5.708	some hemolysis	
2A44	77.859	7.864		
2A45	55.830	5.639		
2A46	40.046	4.045		
2447	45.306	4.576		
2A48	38.407	3.879		
2A49	44.965	4.542		
2.250	48.889	4.938		
2A51	54.254	5.480		
2A52	39.919	4.032		
2 2A3	56.899	5.747		
2A54	47.418	4.789		
2A55	46.641	4.711		
2A56	42.751	4.318		
2A57	46.577	4.704		

$\begin{aligned} & 2 A 58 \\ & 2 A 59 \\ & 2 A 60 \end{aligned}$	$\begin{aligned} & 56.475 \\ & 30.997 \\ & 38.725 \end{aligned}$	$\begin{aligned} & 5.704 \\ & 3.131 \\ & 3.911 \end{aligned}$		
2831 2832	48.310 54.775	4.879 5.532		Site 2/Juvnl Mean 4.814
2833 2834 2835	49.099 47.776 48.623	4.959 4.825 4.911	hemolysis	$\begin{gathered} \text { Standard Deviation } \\ 0.842600277 \end{gathered}$
2836 2837 $2 B 38$	44.127 52.989 43.913	4.457 5.352 4.435		$\begin{gathered} \text { Standard Error } \\ 0.1652 \end{gathered}$
2B39	52.297	5.282		
2B40	45.349	4.580		$\mathrm{n}=26$
2B41	75.671	7.643		
$2 \mathrm{B42}$	59.266	5.986		
$2 \mathrm{B43}$	40.501	4.091		
2B44	47.230	4.770		
2B45	47.990	4.847		
2846	47.119	4.759	some hemolysis	
2B47	51.866	5.238		
2B48	40.062	4.046	some hemolysis	
2B49	42.033	4.245	some hemolysis	
2850	27.608	2.788	hemolysis - 25 uL	
$2 \mathrm{B51}$	44.217	4.466	hemolysis	
2B52	51.045	5.156	some hemolysis	
2B53	48.729	4.922	some hemolysis	
2B54	44.165	4.461	hemolysis - 25 uL	
2855	46.068	4.653		
2856	38.461	3.885	hemolysis - 25 uL	

Protein Determination - San Juan River January, 2001

Sample Number	Diluted Conen mg/dt	Actual Concn g/dL	Comments	Mean Concn for each size/site group
1 1461	39.494	3.989		
1 1.62	45.519	4. 597		Site 1/Adult Mean
1 1A63	43.123	4.355		4.359
1A64	46.838	4.731		
1 A65	57.221	5.779		Standard Deviation
1 A66	80.750	8.156		1.102
1 1467	26.491	2.676		
1A68	41.609	4.202		Standard Error
1A69	38.007	3.839		0.2013
1 A70	57.717	5.829		
1 A71	48.851	4.934		$n=30$
1 A72	46.799	4.727		
1×73	41.731	4.215		
1×74	13.679	1.382		
1A75	31.199	3.151		
1 1476	47.556	4.803		
1×77	41.698	4.211		
1×78	39.700	4.010		
1 A79	48.704	4.919		
1 A80	41.682	4.210		
1 181	45.878	4.634		
1 A82	44.117	4.456		
1483	49.644	5.014		
1 184	40.941	4.135		
1 185	40.037	4.044		
1 186	39.556	3.995	clear	
1 1887	40.156	4.056		
1 188	40.671	4.108		
1A89	40.279	4.068		
1490	35.063	3.541		
$1 \mathrm{B61}$	32.026	3.235		Site 1/Juvnl Mean
$1 \mathrm{B62}$	40.747	4.115		3.803
$1 \mathrm{B63}$	29.638	2.993		
1B64	41.433	4.185	some hemolysis	Standard Deviation
1B65	47.776	4.825		0.658
$1 \mathrm{B66}$	45.659	4.612		
$1 \mathrm{B67}$	43.978	4.442	some hemolysis	Standard Error
1868	48.694	4.918		0.1202
$1 \mathrm{B69}$	31.500	3.182		
1870	32.604	3.293		$\mathrm{n}=30$
1871	41.423	4.184		

1872	28.856	2.915	some hemolysis	
1873	40.210	4.061		
1B74	31.750	3.207	hemolysis	
1B75	34.141	3.448		
1876	52.992	5.352		
1877	33.299	3.363		
1878	39.154	3.955		
$1 \mathrm{B79}$	37.539	3.791		
1880	45.470	4.592		
$1 \mathrm{B81}$	33.606	3.394		
1882	42.309	4.273		
$1 \mathrm{B83}$	30.692	3.100		
1884	34.933	3.528		
1885	41.572	4.199		
1886	35.218	3.557	some hemolysis	
1887	28.757	2.904	hemolysis	
$1 \mathrm{B88}$	33.526	3.386	some hemolysis	
$1 \mathrm{B89}$	31.022	3.133	hemolysis	
1890	39.083	3.947	some hemolysis	
2A61	55.655	5.621		Site 2/Adult Mean
2A62	44.246	4.469		4.466
2A63	58.257	5.884		
2A64	45.636	4.609		Standard Deviation
2A65	75.279	7.603		1.142
2A66	50.347	5.085		
2A67	70.659	7.137		Standard Error
2A68	43.609	4.405		0.2085
2A69	38.135	3.852		
2A70	37.846	3.822		$n=30$
2A71	35.216	3.557	clear	
2A72	39.003	3.939		
2×73	42.983	4.341		
2A74	40.679	4.109	some hemolysis	
2A75	32.138	3.246		
2A76	19.443	1.964		
2A77	49.868	5.037		
2A78	49.771	5.027		
2A79	44.116	4.456		
2A80	46.073	4.653		
2A81	29.932	3.023		
2 A 82	45.355	4.581	some hemolysis	
$2 \mathrm{AB3}$	43.985	4.442		
2A84	37.563	3.794		
$2 A 85$	44.281	4.472		
2A86	26.153	2.641		
2A87	40.567	4.097		

$\begin{aligned} & 2 A 88 \\ & 2 A 89 \\ & 2 A 90 \end{aligned}$	$\begin{aligned} & 42.047 \\ & 51.562 \\ & 46.082 \end{aligned}$	$\begin{aligned} & 4.247 \\ & 5.208 \\ & 4.654 \end{aligned}$	hemolysis	
2B61	33.116 32.668	3.345 3.299		Site $2 /$ Juvnl Mean 4.047
2B63	41.375 40.661 44.431	4.179 4.107 4.488	hemolysis	Standard Deviation 0.659
2866 2867 $2 B 68$	45.909 42.948 36.772	4.637 4.338 3.714		$\begin{gathered} \text { Standard Error } \\ 0.1224 \end{gathered}$
2869	39.149	3.954		
2870	38.860	3.925	some hemolysis	$n=29$
$2 \mathrm{B71}$			no plasma	
2B72	43.927	4.437	hemolysis	
$2 \mathrm{B73}$	31.958	3.228		
$2 \mathrm{B74}$	28.566	2.885	some hemolysis	
2B75	36.284	3.665	hemolysis	
2876	39.864	4.026	some hemolysis	
2B77	47.440	4.791	hemolysis	
2878	47.647	4.812	hemolysis	
2B79	32.596	3.292	some hemolysis	
2B80	39.197	3.959		
$2 \mathrm{B81}$	43.045	4.348		
2B82	53.565	5.410		
2B83	35.107	3.546	some hemolysis	
2B84	56.930	5.750	some hemolysis	
2B85	34.638	3.498	some hemolysis	
2B86	34.545	3.489	hemolysis	
2887	41.060	4.147	hemolysis	
2888	45.768	4.623	hemolys is	
2B89	35.446	3.580	hemolys is	
2890	38.598	3.898		

Protein Determination - San Juan River March, 2001

Sample Number	Diluted Concn mg/dL	Actual Conen g / dL	Comments	Mean Concn for each size/site group
1 A91	46.602	4.707		
1492	21.751	2.197		
1 A93	37.344	3.772		Site 1/Adult Mean
1 A94	42.174	4.260		4.552
1 1995	46.837	4.731		
1 A96	48.032	4.851		Standard Deviation
1497	59.471	6.007		1.131551754
1 198	65.419	6.607		
1 A99	73.167	7.390		Standard Error
1 A 100	42.994	4.342		0.2066
1 1.101	35.421	3.578		
1 1.102	33.167	3.350		$n=30$
1 A 103	46.627	4.709		
1A104	63.753	6.439		
1 A 105	32.250	3.257		
1 1106	21.305	2.152		
1 A 107	44.514	4.496		
1A108	40.276	4.068		
1 A 109	40.966	4.138		
1A110	44.741	4.519		
$1 \mathrm{Al11}$	50.833	5.134		
1 A 112	44.436	4.488		
1 A113	47.516	4.799		
18114	37.893	3.827		
1 A115	49.302	4.979		
1 1116	40.601	4.101		
1×117	50.135	5.064		
1 A118	42.209	4.263		
1 A119	49.319	4.981		
1 A120	52.955	5.348		
$1 \mathrm{B91}$	33.773	3.411		Site 1/Juvnl Nean
1892	44.936	4.539		3.942
1893	50.529	5.103		
1894	43.154	4.359		Standard Deviation
1895	42.927	4.336		0.637773712
1896	25.777	2.603		
1897	31.488	3.180		Standard Error
1898	40.847	4.126		0.1594
1899	42.467	4.289		
18100	37.870	3.825		$\mathrm{n}=16$
18101	37.276	3.765		

18102	44.855	4.530		
18103	34.205	3.455		
18104	41.990	4.241		
18105			no plasma	
18106	31.886	3.220		
18107	40.479	4.08B		
2891	25.796	2.605		Site 2/Adult Mean
2 292	50.479	5.098		4.401
2A93	27.204	2.748		
2A94	33.692	3.403		Standard Deviation
2A95	48.925	4.941		0.957620946
2896	37.248	3.762		
2 A97	40.454	4.086		Standard Error
2A98	53.001	5.353		0.1748
2A99	48.211	4.869		
2 A 100	27.890	2.817		$\mathrm{n}=30$
2 A 101	35.398	3.575		
2 A 102	48.386	4.887		
2 A103	31.368	3.168		
2A104	52.482	5.301		
2 A 105	56.636	5.720		
2 A 106	43.705	4.414		
2 A 107	47.045	4.752		
2A108	22.914	2.314		
2A109	53.083	5.361		
2A110	44.663	4.511		
2A111	37.919	3.830		
2 A112	47.964	4.844		
2 A 113	46.511	4.698		
2 A 114	42.906	4.334		
$2 . A 115$	48.412	4.890		
2 A116	49.723	5.022		
2 A 117	45.240	4.569		
$2 \mathrm{Al18}$	53.002	5.353		
2 A119	50.918	5.143		
2 A 120	56.074	5.663		
$2 \mathrm{B91}$	46.506	4.697		Site 2/Juvn 1 Mean
$2 \mathrm{B92}$	40.597	4.100		4.403
$2 \mathrm{B93}$	50.747	5.125		
2B94	50.685	5.119		Standard Deviation
$2 \mathrm{B95}$	40.615	4.102		0.658640296
2B96	57.456	5.803		
2897	44.230	4.467		Standard Error
2B98	41.895	4.231		0.1268
$2 \mathrm{B99}$	45.032	4.548		
2B100			no plasma	$\mathrm{n}=27$

Protein Determination - San Juan River August 2001

Sample Number	Diluted Conen mg/dL	Actual Concn g/dL	Comments	Mean Concn for each size/site group
1 12121	62.493	6,312		
1 A122	67.695	$6+837$		Site 1/Adult Mean
1 A123	56.647	5.721		5.643
18124	55.371	5.592		
1A125	66.748	6.742		Standard Deviation
1 A126	40.000	4.040		1.414048508
1 A127	46.832	4.730		
1 A128	49.286	4.978		Standard Error
1A129	55.772	5.633		0.2582
$1 \mathrm{A130}$	55.245	5.580		
1 1231	88.839	8.973		$n=30$
1 1132	43.783	4.422		
1 1.133	67.432	6.811		
1A134	39.171	3.956		
1A135	45.512	4.597	light hemolysis	
18136	46.197	4.666	light hemolysis	
1 1.137	74.081	7.482		
1A138	48.447	4.893		
1A139	45.526	4.598		
$1 \mathrm{A140}$	49.014	4.950		
1 1.141	96.549	9.751		
$1 \mathrm{A142}$	49.532	5.003		
1 1.143	55.167	5.572		
$1 \mathrm{A144}$	56.621	5.719		
1 1a145	38.331	3.871		
1 A 146	41.058	4.147		
1 A 147	51.393	5.191		
1 1248	47.646	4.812		
1 A149	71.034	7.174		
1.A150	64.610	6.526		
18121	50.829	5.134		Site 1/Juvnl Mean
$1 \mathrm{B122}$	46.580	4.705	hemolysis	4.192
18123	43.352	4.379		
18124	47.540	4.802	light hemolysis	Standard Deviation
18125	40.579	4.098	25 uL. Light hemo	0.669230717
18126	34.481	3.483		
18127	40.147	4.055		Standard Error
$1 \mathrm{B1} 28$	43.379	4.381	hemolysis	0.1243
18129	37.812	3.819	25 uL. light hemo	
18130	45.709	4.617		n=29
18131	36.091	$3+645$	25 uL	

18132	44.490	4.493		
18133	39.358	3.975	25 uL, light hemo	
18134	45.705	4.616	25 uL. light hemo	
18135	42.099	4.252		
18136	45.503	4.596	25 uL. light hemo	
1 B137	37.523	3.790		
1 B138	40.565	4.097	25 ut, light hemo	
18139	32.521	3.285	25 uL. light hemo	
$1 \mathrm{B140}$	54.649	5.520		
18141	41.586	4.200	clotted	
18142	55.953	5.651		
1B143			not enough plasma	
18144	25.589	2.584		
18145	45.264	4.572		
$1 \mathrm{B146}$	42.261	4.268		
$1 \mathrm{B147}$	34.004	3.434		
$1 \mathrm{B148}$	41.324	4.174		
18149	36.053	3.641		
$1 \mathrm{B150}$	32.554	3.288		
$2 \mathrm{Al21}$	33.109	3.344		Site 2/Adult Mean
2A122	51.898	5.242		5.417
2A123	56.670	5.724		
$2 \mathrm{Al24}$	39.718	4.012		Standard Deviation
2A125	48.841	4.933		1.544122911
2A126	50.936	5.145		
2A127	60.052	6.065		Standard Error
2A128	48.222	4.870		0.2819
2A129	45.624	4.608	hemolysis	
2A130	81.177	8.199	light hemolysis	$\mathrm{n}=30$
2A131	77.625	7.840		
2A132	60.479	6.108		
2A133	39.486	3.988		
2A134	64.344	6.499		
2 2135	63.153	6.378		
2A136	59.273	5.987		
2A137	66.954	6.762		
2A138	76.948	7.772		
2A139	66.231	6.689		
2A140	38.035	3.842		
2A141	77.853	7.863		
2 A 142	32.545	3.287		
2 A 143	52.496	5.302		
2A144	15.106	1.526		
2 A 145	38.111	3.849		
2 A 146	46.754	4.722		
2A147	46.487	4.695		

$\begin{aligned} & 2 A 148 \\ & 2 A 149 \\ & 2 A 150 \end{aligned}$	46.822 62.099 62.029	4.729 6.272 6.265		
$\begin{aligned} & 2 B 121 \\ & 2 B 122 \end{aligned}$	38.757 41.761	3.914 4.218	25 uL, heavy partic	Site 2/Juvnl Mean 4.612
$\begin{aligned} & 2 \mathrm{~B} 123 \\ & 2 \mathrm{~B} 124 \\ & 2 \mathrm{~B} 125 \end{aligned}$	41.285 46.412 37.983	4.170 4.688 3.836	25 uL, light hemo	$\begin{gathered} \text { Standard Deviation } \\ 0.616095768 \\ \hline \end{gathered}$
$2 B 126$ 2 B127 2 B128	43.053 43.205 43.383	4.348 4.364 4.382	light hemolysis hemolysis 25 uL, light hemo	$\begin{gathered} \text { Standard Error } \\ 0.1125 \\ \hline \end{gathered}$
2B129	44.659	4.511	light hemolysis	
2B130	38.859	3.925	25 uL, light hemo	$\mathrm{n}=30$
2 B131	54.218	5.476	hemolysis	
2 B132	43.664	4.410	25 uL, hemolysis	
2B133	45.071	4.552		
28134	45.645	4.610		
2 B 135	44.602	4.505		
2B136	41.806	4.222		
$2 \mathrm{B137}$	53.049	5.358		
2B138	57.302	5.788		
2B139	40.594	4.100		
2B140	45.462	4.592		
2B141	40.665	4.107		
2B142	35.305	3.566		
2 B143	58.704	5.929		
2B144	44.744	4.519		
2B145	54.299	5.484		
2B146	43.817	4.426	hemolysis	
2B147	57.296	5.787		
2B148	50.954	5.146		
$2 \mathrm{B149}$	49.531	5.003		
2B150	43.833	4.427	hemolysis	

ATTACHMENT C

Percent Muscle Lipid Extraction Procedure (Wet Weight)

Procedure

Epaxial fish muscle is dried and muscle lipids are extracted with methylene chloride and determined gravimetrically.

Materials Needed

50 mL beakers (prelabeled), 50 mL burets and teflon stopcocks, buret stands and clamps, glass wool, heavy duty aluminum foil, pestle, funnel, methylene chloride (approximately 50 mL per sample), sodium sulfate (approximately 2 g per sample), drying oven, fume hood, and scale.

Set-Up

Prior to lipid extraction procedure, take one 50 mL beaker for each sample and heat for 20-30 minutes at $90^{\circ} \mathrm{C}$ then cool in desiccator for 20 minutes. Record the weights for each beaker to the nearest 0.5 mg . Repeat this procedure until the difference between successive weighing is less than 0.5 mg .

1. Thaw the muscle tissue until it is at room temperature. Weigh aluminum foil (doubled with shiny side inside and marked with specimen I.D.). The weight of the clean foil needs to be noted for later calculations. Tare scale, remove tissue from cryovial, place on foil and weigh to nearest 0.5 mg (mass of wet tissue). Care should be taken to eliminate bone, blood, scales and skin. Dry tissue for 12 hours at $60^{\circ} \mathrm{C}$.
2. After drying, cool tissue and weigh dry tissue and foil. Subtract original clean foil weight to determine mass of dry tissue. Fold all four sides of the foil around the tissue and pulverize the tissue with a pestle.
3. Add approximately 2 cm of glass wool at the base of the buret nearest the stopcock, and setup burets on buret stands. Using a funnel, pour approximately 1 cm of sodium sulfate into the buret above the glass wool. This will act as an additional dehydrant to water remaining in the tissue.
4. Add the dry tissue to the buret. Add approximately 1 cm of sodium sulfate above the tissue layer. Then rinse the foil and inside of funnel with approximately 5.0 mL methylene chloride into buret to remove all remaining tissue (do not rinse before placing the sodium sulfate into buret as this causes the tissue to bubble up on top of the sodium sulfate). Place a labeled 50 mL beaker under each buret.
5. Record the beaker number used for each muscle specimen.
6. Open the stopcock carefully to allow the methylene chloride to run through the tissue and sodium sulfate layers and into the glass wool, then close stopcock. Allow the methylene chloride to soak the tissue for 1 hour.
7. After soaking, pour methylene chloride into the buret up to the 45 mL mark. Open stopcock and allow methylene chloride to drip at approximately 1 mL per minute into the 50 mL beaker. The lipids will be collected in the beaker in the solvent phase.
8. Allow the beakers containing the solvent to evaporate in a fume hood ($12-15$ hours).
9. After all solvent has evaporated, place beakers in the drying oven at $90^{\circ} \mathrm{C}$ for 2 hours. Allow beakers to cool in desiccator for 25 minutes, then weigh and record the weights to the nearest 0.5 mg .
10. Repeat step 10 until the difference between successive weighing is less than 0.5 mg . Subtract the clean beaker weight from the lipid beaker weight for lipid mass after extraction.
11. Calculation for percent muscle lipid (wet weight): (Lipid mass after extraction/Mass of wet tissue) $\times 100$.
12. Calculation for percent moisture: (Mass of wet tissue - Mass of dry tissue/Mass of wet tissue) $\times 100$.

Adult - site 1			Adult - site 2			Juvenile - Site 1			Juvenile - Site 2		
$\begin{gathered} \text { Specimen } \\ \text { I.D. } \end{gathered}$	Percent Lipid	Percent Moisture	$\begin{gathered} \text { Specimen } \\ \text { I.D. } \end{gathered}$	Percent Lipid	Percent Moisture	$\begin{gathered} \text { Specimen } \\ \text { I.D. } \end{gathered}$	Percent Lipid	Percent Moisture	$\begin{gathered} \text { Specimen } \\ \text { I.D. } \end{gathered}$	Percent Lipid	Percent Moisture
1A01	0.1257	82.77	2A01	0.5713	76.12	1B01	3.3491	75.62	2B01	4.7012	72.37
1 A02	1.4110	74.48	2A02	0.1511	78.88	1 BO 2	0.8770	75.88	2B02	3.2577	74.41
1A03	0.9385	74.57	2A03	0.1241	78.40	$1 \mathrm{B03}$	0.7211	77.15	$2 \mathrm{B03}$	3.9651	73.65
1 A 04	1.0911	76.77	2 A 04	0.6665	73.37	1804	0.8618	77.46	$2 \mathrm{B04}$	0.4103	78.95
1 A 05	0.1735	78.94	2A05	1.2406	75.58	$1 \mathrm{B05}$	2.0669	76.11	2B05	2.1876	77.13
1 1206	1.9969	74.77	2A06	1.7766	75.38	1806	0.8505	77.35	2B06	0.6999	77.62
1 1.07	0.9352	75.83	2A07	0.5343	75.02	1807	0.7024	78.89	2B07	0.4784	76.69
1×08	0.6307	76.00	2A08	1.0179	77.33	$1 \mathrm{B08}$	1.4670	76.41	2B08	2.6192	75.43
1 109	1.0648	75.88	2A09	0.7443	77.64	$1 \mathrm{B09}$	1.0159	78.36	2B09	3.6846	74.20
1A10	0.4379	75.94	2A10	0.2191	77.33	$1 \mathrm{B10}$	1.4882	76.99	2B10	0.5033	77.23
1 A11	0.1851	77.08	2 A11	0.7261	77.54	$1 \mathrm{B11}$	1.0139	77.11	2B11	0.9723	76.12
1 A12	0.6254	77.32	2 A 12	0.4851	76.62	$1 \mathrm{B12}$	1.4113	77.76	2B12	0.2618	86.63
1813	0.3357	76.15	2A13	0.8211	75.52	$1 \mathrm{B13}$	0.8205	76.80	2B13	0.6550	75.36
1 1.14	0.1266	78.20	2A14	0.1989	78.89	1 B14	1.4125	76.18	2B14	1.1901	77.47
1A15	0.1505	76.80	2A15	0.3907	76.17	$1 \mathrm{B15}$	1.6101	74.98	2B15	0.7214	76.56
1 A16	0.0968	81.21	2A16	0.7978	77.33	1816	2.0243	76.18	2B16	0.4336	78.52
1 147	0.1975	86.05	2A17	0.2163	75.73	1B17	0.9436	78.25	2B17	2.5874	76.01
1A18	0.3276	76.18	2A18	0.9072	76.17	$1 \mathrm{B18}$	1.4413	75.75	2B18	3.2382	73.35
1A19	0.3718	76.46	2A19	0.1681	77.38	$1 \mathrm{B19}$	1.1311	76.27	2B19	2.6456	74.12
1 A 20	0.1691	75.98	2A20	1.1390	75.81	1820	1.0804	75.31	2B20	0.8949	76.22
1 A21	0.6925	75.93	2A21	0.1102	77.53	1B21	0.6441	77.67	2 B 21	0.9151	76.57
1 122	0.1924	76.33	2 A 22	2.6032	73.74				2B22	1.1337	75.16
1 A23	1.3886	74.21	2A23	0.4832	74.70				2B23	0.5822	77.88
1 A 24	1.1245	76.11	2A24	0.1828	78.02						
1 A25	1.7632	74.87	2 A 25	1.4111	75.31						
1 126	0.3340	76.78	2 2. 26	2.0944	75.81						
1 127	0.6138	75.60	2 A27	3.4839	74.34						
1 128	0.0945	83.10	2 A28	0.4336	76.95						
1 A29	0.5581	73.79	2A29	0.8138	74.18						
1 A 30	0.2879	76.71	2A30	2.1556	74.52						
1A Mean	0.6147	77.0267	2A Mean	0.8889	76.2438	18 Mean	1.2825	76.7837	28 Mean	1.6843	76.4199
Std Err	0.0957	0.5112		0.1488	0.2732		0.1363	0.2295		0.2831	0.5841
Sta Dev.	0.52	2.80		0.81	1.50		0.62	1.05		1.36	2.80

Adult - site 1			Adult - site 2			Juvenile - Site 1			Juvenile - sito 2		
$\begin{gathered} \text { Specimen } \\ \text { I.D. } \end{gathered}$	Percent Lipid	Percent Moisture	$\begin{gathered} \text { Specimen } \\ \text { I.D. } \\ \hline \end{gathered}$	Percent Lipid	Percent Moisture	$\begin{gathered} \text { Specimen } \\ \text { I.D. } \\ \hline \end{gathered}$	Percent Lipid	Percent Moisture	$\begin{gathered} \text { Specimen } \\ \text { I.D. } \end{gathered}$	Percent Lipid	Percent Moisture
1A32	1.6054	73.77	2A31	0.7320	75.58	1831	0.2679	77.79	2B31	0.4516	76.20
1A32	0.5482	76.42	2A32	0.6888	76.14	1832	0.6758	77.26	$2 \mathrm{B32}$	0.1697	76.40
1 A33	0.4382	78.35	2A33	0.1323	77.84	1 B 33	2.2290	74.59	2 B 33	0.6640	76.32
1 1.34	0.6038	77.29	2A34	1.2126	76.26	1834	0.4863	78.07	2 B 34	0.3824	76.47
1A35	0.2261	77.47	2 A35	0.4349	76.47	1835	0.2661	78.35	2 B 35	0.6260	76.72
1 A36	0.7430	76.85	2 A 36	0.8611	76.08	1836	0.7522	76.74	2 B 36	0.3872	77.36
1 A37	0.3206	76.43	2 237	0.4141	78.45	1837	0.4175	77.62	2 B 37	1.3876	76.00
1 A38	0.4840	77.33	2A38	0.9860	74.66	1838	0.3763	76.48	2B38	0.4269	76.18
1839	0.7770	75.99	2A39	0.1314	79.96	1839	0.1382	77.34	2 B 39	0.2960	77.97
1A40	0.7472	75.21	2A40	0.1738	78.16	1B40	1.1441	75.77	2B40	0.4351	75.59
1 A 41	0.4936	67.28	2A41	0.4112	78.01	$1 \mathrm{B41}$	0.6490	75.25	2B41	0.2976	76.37
1 A 42	2.7024	75.07	2A42	0.4036	75.91	1842	0.2466	80.77	2B42	0.8445	76.67
1 A43	0.1698	79.37	2A43	1.0705	76.24	1843	1.1179	76.52	2B43	0.5548	76.28
1 A44	0.7165	76.29	2A44	0.3565	75.23	1844	0.4393	77.08	$2 \mathrm{B44}$	0.4861	76.37
1 A 45	0.9817	74.74	2A45	0.6647	75.49	1845	0.2797	78.20	2B45	0.6282	75.94
1846	0.8703	83.80	2A46	1.8604	74.36	1846	0.3112	78.11	$2 \mathrm{B4} 6$	0.7322	77.41
1847	0.8900	75.60	2A47	0.7872	74.99	1847	0.4322	76.58	2B47	0.8444	77.21
1 A48	1.1175	75.00	2A48	0.3037	78.77	$1 \mathrm{B48}$	0.4655	75.98	2B48	0.8894	77.31
1.49	0.8994	75.10	2A49	0.5074	77.10	1849	0.4224	77.46	2B49	0.3610	77,09
$1 \mathrm{A50}$	0.5058	75.26	2A50	0.5408	77.40	1850	0.7911	77.33	2B50	0.2979	77.91
1 1851	0.2909	76.45	2A51	0.5766	75.95	1851	0.4100	77.00	2B51	0.5417	77.19
1452	0.8967	76.81	2A52	0.1211	80.59	1852	0.3944	78.43	2B52	0.3898	77.84
1853	0.8092	75.44	2A53	0.6036	75.30	$1 \mathrm{B5} 3$	0.5894	75.00	2 B 53	0.8798	77.13
1A54	1.2216	75.35	2A54	0.6003	75.70	1B54	0.2452	77.77	2B54	0.6012	77.81
1A55	0.2275	76.45	2A55	1.1307	74.86	1B55	0.6936	77.41	2B55	1.5868	$76+84$
1A56	0.1549	78.21	2A56	1.0715	73.94	1856	1.1556	76.90	2B56	1.3702	76.69
1857	0.4979	75.39	2A57	0.7280	78.38	1B57	0.4702	76.08			
1A58	1.2359	75.49	2A58	0.3667	75.80	1858	0.7745	76.65			
1 A59	0.1005	77.69	2A59	0.1876	84.15	1859	0.9554	77.58			
1A60	0.3236	76.50	2A60	0.6490	77.18	1860	1.1110	77.46			
12 Moan	0.7200	76.21	2A Mean	0.6236	76.83	18 Mean	0.6236	77.12	2B Mean	0.6358	76.82
Std Err	0.0953	0.4551		0.0707	0.3886		0.0771	0.2183		0.0654	0.1209
Std Dev.	0.52	2.49		0.39	2.13		0.42	1.20		0.36	0.66

January 2001

Adult - Site 1			Adult - site 2			Juvenile - Site 1			Juvenile - Site 2		
$\begin{gathered} \text { Specimen } \\ \text { I.D. } \end{gathered}$	Percent Lipid	Percent Moisture	$\begin{gathered} \text { Specimen } \\ \text { I.D. } \end{gathered}$	Percent Lipid	Percent Moisture	$\begin{gathered} \text { Specimen } \\ \text { I.D. } \end{gathered}$	Percent Lipid	Percent Moisture	$\begin{gathered} \text { Specimen } \\ \text { I.D. } \end{gathered}$	Percent Lipid	Percent Moisture
1A61	0.5649	76.98	2A61	0.6536	76.36	1B61	1.0409	75.66	2B61	0.6068	75.70
1A62	1.5294	74.73	2A62	0.8486	75.80	1862	0.3921	76.98	2B62	0.9056	72.28
1 A63	0.8698	75.32	2A63	0.7477	77.43	$1 \mathrm{B6} 3$	0.9135	77.48	$2 \mathrm{B63}$	0.4981	77.55
1 A 64	0.7245	76.07	2A64	0.9655	75.96	$1 \mathrm{B64}$	1.2226	77.09	2B64	0.3700	75.46
1 A65	2.3063	75.34	2A65	0.8812	76.85	1865	0.9283	77.01	2B65	0.8760	76.72
1A66	0.8267	76.99	2A66	2.9729	73.62	$1 \mathrm{B66}$	0.5145	76.66	2B66	0.6853	75.74
1A67	0.1782	79.59	2 2. 67	1.3578	74.83	1867	0.4486	75.82	2B67	0.5785	77.08
1A68	0.3164	77.10	2A68	1.5182	74.54	1868	0.4030	76.58	2B68	1.0728	76.08
1269	0.7676	76.98	2A69	0.3370	77.09	1869	1.1281	75.88	2B69	0.5739	76.96
1 A70	0.9648	76.29	2A70	0.5119	77.05	1870	0.6715	77.13	2B70	0.8053	76.63
1 171	2.4799	73.00	2 A71	0.2775	77.34	1871	0.6979	75.03	2B71	0.7013	76.98
1 A72	0.4230	76.90	2A72	0.2568	76.85	1872	1.2895	76.40	2B72	0.5856	77.51
1 1873	0.2567	77.13	2A73	0.7431	76.20	1873	0.3986	75,22	2B73	0.8951	77.28
1 174	0.2617	87.49	2A74	1.9249	74, 38	1874	0.5720	77.52	2B74	0.8229	77.82
1A75	0.2240	78.16	2A75	0.2938	77.37	1875	0.8943	77.12	2 7 75	0.6359	78.31
1 1.76	0.3638	74.29	2A76	0.2559	79.38	1876	0.5580	73.54	$2 \mathrm{B76}$	0.8898	76.85
1 1.77	2.5652	74.81	2A77	1.0143	75.41	1877	1.0789	76.50	$2 \mathrm{B77}$	1.1372	77.24
1 1278	0.5036	76.45	2A78	0.9196	75.37	1878	2.2369	76.37	2B78	1.0835	75.76
1279	0.6125	75.64	2A79	0.5992	75.23	1879	1.7609	76.49	2B79	0.4908	77.58
1A80	0.3954	76.52	2A80	0.9441	74.36	1880	0.7711	73.00	2B80	1.2099	75.86
1 A81	1.5032	74, 86	2A81	0.5636	76,46	1881	1.0622	76.72	2B81	1.7747	74.16
1×82	0.5295	75.54	2AB2	1.9085	75.46	1882	0.9841	76.11	2B82	0.9820	74.28
$1{ }^{\text {A } 83}$	0.6565	74.56	$2 \mathrm{AB3}$			1883	0.5225	76.91	$2 \mathrm{B83}$		
1 A84	0.2864	77.87	2A84	0.7269	75.32	1884	0.5481	77.32	$2 \mathrm{B84}$	1.3988	75.86
1 A85	0.5068	72.12	2A85	0.4170	74.64	1885	0.9417	75.15	2B85	1.3119	76.92
1 A86	0.6375	75.16	2A86	0.2173	78.50	$1 \mathrm{B86}$	0.8176	77.22	$2 \mathrm{B86}$	0.9372	77.38
1 187	0.9144	79.88	2A87	1.4354	75.08	1887	0.4241	77,86	$2 \mathrm{B87}$	1.9644	76.61
1A88	0.5440	75.24	2A88	1.4694	73.86	1888	0.4469	77.70	2B88	0.6101	74.93
1A89	0.4569	75.66	2A89	1.7995	75.43	1889	0.5760	77.74	$2 \mathrm{B89}$	0.7255	78.37
1 A 90	0.2009	78.70	2A90	0.7037	75.34	1890			2B90	0.9171	75.07
18 Mean	0.7790	76.51	2A Mean	0.9402	75.91	18 Mean	0.8360	76.42	2B Mean	0.8981	76.38
sta Err.	0.1198	0.4915		0.1169	0.2485		0.0776	0.2129		0.0675	0.2465
Std Dev.	0.66	2.69		0.64	1.36		0.43	1.17		0.37	1.35

San Juan River Fish Health Assessment -- Percent Muscle Lipid and Moisture
March 2001

Adult - site 1			Adult - site 2			Juvenile - site 1			Juvenile - site 2		
$\begin{gathered} \text { Specimen } \\ \text { I.D. } \end{gathered}$	Percent Lipid	Percent Moisture	$\begin{gathered} \text { Specimen } \\ \text { I.D. } \end{gathered}$	Percent Lipid	Percent Moisture	$\begin{gathered} \text { Specimen } \\ \text { I.D. } \end{gathered}$	Percent Lipid	Percent Moisture	$\begin{aligned} & \text { Specimen } \\ & \text { I.D. } \end{aligned}$	Percent Lipid	Percent Moisture
1 A091	1.1092	75.02	2A091	0.2127	79.23	1B091	0.4608	76.63	2B091	0.6539	76.90
1A092	0.1994	86.59	2A092	0.7507	75.18	1B092	0.6333	75.52	2B092	0.5988	77.95
1A093	0.5785	76.68	2A093	0.4155	79.71	18093	0.6242	76.86	$2 \mathrm{B093}$	0.8211	78.00
1A094	0.4845	77.96	2A094	0.5455	77.22	$1 \mathrm{B094}$	0.5543	75.31	2B094	0.8819	76.77
1A095	0.3296	75.80	2A095	1.0055	74.95	18095	0.3225	76.61	2B095	0.6273	78.41
1A096	0.7075	76.09	2A096	0.2548	79.58	18096	0.7999	77.78	28096	1.8864	76.81
1A097	0.8342	75.13	2A097	1.0608	76.95	18097			28097	0.5581	76.68
1A098	0.4802	75.00	2A098	2.2899	74.52	1B098	0.3998	76.62	28098	0.6898	76.23
1A099	0.6974	76.71	2 A 099	0.4800	77.32	1B099			2B099	1.1911	75.82
1A100	0.3899	76.07	2A100	0.1852	79.18	$1 \mathrm{B100}$	0.5066	76.83	2B100	1.2051	77.42
1A101	0.3275	76.57	2A101	0.2668	78.19	$1 \mathrm{B101}$	0.4928	77.80	$2 \mathrm{B1} 01$	0.4169	77.59
1A102	0.9719	76.64	2A102	0.5595	76.14	$1 \mathrm{B102}$	0.8102	74.65	$2 \mathrm{B1} 02$	0.8285	75.81
1A103	0.4336	74.73	2 A 103	0.0563	78.65	$1 \mathrm{B103}$	1.6494	75.60	$2 \mathrm{B103}$	0.8780	75.61
1A104	0.7902	75.13	2A104	1.0711	74.85	1B104	1.1287	77.52	$2 \mathrm{B1} 04$	0.6801	76.73
1A105	0.3384	74.88	2A105	1.3025	74.58	$1 \mathrm{B1} 05$	0.4303	78.68	2B105	0.5546	78.12
1 1.106	0.2226	80.62	2A106	0.6335	77.75	18106	0.2462	77.91	2 B 106	0.9904	78.18
1 A107	0.6010	75.91	2A107	0.4676	75.49	18107	1.2798	75.73	$2 \mathrm{B107}$	0.4585	77.61
1 A 108	0.7279	77.87	2 A 108	0.1993	81.03				$2 \mathrm{B108}$	0.5503	77.13
14.09	0.3923	75.30	2 A109	0.6189	75.53				28109	0.3245	78.28
1A110	0.6292	75.93	2A110	0.9023	76.79				$2 \mathrm{B110}$	0.5795	77.30
1 12111	0.8629	75.42	2 A111	0.8007	77.39				2B111	0.7256	78.29
1 1.112	0.7898	75.24	2 A 112	0.6070	74.89				$2 \mathrm{B112}$	0.4624	78.43
1 A113	0.3988	77.65	2A113	0.7835	73.91				$2 \mathrm{B113}$	0.6009	77.65
1 1214	0.2136	78.63	2A114	1.5746	73.63				2B114	0.4407	77.12
1 A115	1.0077	75.08	2 A 115	0.9320	75.40				2B115	0.8285	78.11
1 A116	0.3277	76.78	$2 \mathrm{Al16}$	0.5152	75.32				$2 \mathrm{B116}$	1.4833	76.59
1 A117	1.3850	74.48	$2 \mathrm{A117}$	0.5041	75.70				$2 \mathrm{B117}$	1.2147	77.07
1 A118	0.5767	78.43	2 A 118	0.6883	74.50				2B118	0.6967	77.78
1 1.119	0.8877	75.68	2 A 119	0.5161	75.87						
1A120	0.1619	77.49	2A120	2.3787	74.11						
1a Mean	0.5952	76.65	2A Mean	0.7526	76.45	18 Mean	0.6893	76.67	2B Mean	0.7796	77.30
std. Err	0.0548	0.4278		0.1004	0.3616		0.0973	0.2844		0.0662	0.1562
Std Dev.	0.30	2.34		0.55	1.98		0.39	1.14		0.35	0.83

August 2001

Adult - site 1			Adult - Site 2			Juvenile - site 1			Juvenile - Site 2		
$\begin{gathered} \text { Specimen } \\ \text { I.D. } \end{gathered}$	Percent Lipid	Percent Noisture	$\begin{gathered} \text { Specimen } \\ \text { I.D. } \end{gathered}$	Percent Lipid	Percent Moisture	$\begin{gathered} \text { Specimen } \\ \text { I.D. } \end{gathered}$	Percent Lipid	Percent Moisture	Specimen I.D.	Percent Lipid	Percent Moisture
1A121	2.7859	73.61	2A121	0.2636	85.59	18121	0.8480	76.17	2B121	1.0642	78.46
18122	1.6934	76.58	2 A122	1.1938	75.77	$1 \mathrm{B122}$	0.5228	85.36	2B122	1.8884	75.26
1 12123	1.7629	74.48	2A123	1.8000	75.70	18123			2B123	2.9277	77.69
1 A124	1.1967	74.11	2 A 124	0.9368	75.87	18124	1.6524	78.19	2B124	0.9450	83.92
1A125	2.3948	73.99	2A125	2.1534	82.91	18125	0.8188	75.86	$2 \mathrm{B125}$	0.9617	78.97
1 12126	0.3761	77.70	2A126	1.3598	74.13	1B126	1.1528	78.33	2B126	2.7510	77.37
1 A 127	1.8422	74.24	2A127	1.4906	76.17	18127	1.0560	77.41	28127	1.0656	76.52
1 A 128	1.7199	74.26	2A128	2.4916	73.80	18128	0.9908	79.33	2B128	1.2861	78.99
1 A129	1.1692	75.09	2A129	1.0649	76.51	18129	0.8151	83.25	2B129	1.8902	77.85
18130	0.8472	76.16	2A130	0.9164	74.51	$1 \mathrm{B130}$	1.2706	76.65	2B130	1.5013	78.35
1 1.131	1.3115	73.96	2A131	0.7688	75.76	1B131	0.9040	78.38	2B131	1.0676	78.12
1 1432	1.3544	75.53	2A132	1.2923	84.79	1B132	1.0372	77.37	2B132	0.9640	86.03
1 12133	1.2640	73.84	2A133	1.2760	76.20	18133	1.3674	78.28	2 E 133	1.4513	77.48
1A134	0.4427	77.25	2A134	1.0680	77.76	18134	1.9854	77.99	2B134	2.3414	77.96
1 A135	2.5571	73.71	2A135	2.0057	77.43	18135	0.9460	77.71	2B135	1.8138	77.17
1 A136	2.4311	70.43	2A136	1.3980	77.09	$1 \mathrm{B136}$	1.5208	78.06	2B136	0.6729	78.69
1 A 137	2.2333	74.98	2A137	0.9878	87.87	18137	2.2546	76.25	2B137	1.7683	76.73
1 A138	0.9050	76.40	2A138	0.6359	78.16	18138	0.5547	78.93	2B138	1.7235	76.65
1 A139	4.4047	72.96	2A139	1.7415	75.32	18139	1.1163	78.18	2B139	0.8965	86.08
18140	0.8600	77.15	2A140	1.0483	75.77	1B140	1.5461	76.49	2B140	0.9933	85.67
1 A 141	3.1205	74.11	2A141	2.4633	75.84	$1 \mathrm{B141}$	1.5072	77.34	2B141	1.1825	77.21
1 A142	0.4294	73.68	2A142	0.2839	82.20	18142	1.1463	76.36	$2 \mathrm{B142}$	0.5365	78.31
1 A143	1.1581	75.96	2 A143	3.3142	74.52	18143	2.3791	77.20	$2 \mathrm{B143}$	1.5328	76.01
1 1414	1.3665	74.36	2A144	0.3546	83.63	1B144	1.3067	79.33	2B144	1.4046	76.12
1A145	0.6790	77.51	2A145	1.3879	75.56	13145	1.5936	77.35	2B145	0.6879	84.37
1A146	0.2223	78.66	2A146	0.6343	76.70	18146	1.2992	78.32	$2 \mathrm{B146}$	2.2521	75.94
1 A 147	0.6166	73.72	2A147	2.6902	76.21	$1 \mathrm{B147}$	1.9943	76.26	2B147	2.3970	75.23
$1 \mathrm{A148}$	0.5326	83.87	2A148	0.3720	79.27	18148	1.5010	77.06	23148	1.1697	75.91
1 A 149	1.4805	75.60	2A149	1.1662	76.55	1B149	1.1956	78.45	$2 \mathrm{B149}$	2.6667	75.25
1A150	1.3761	67.29	2A150	2.5753	74.79	18150	0.9796	78.51	2B150	1.3678	78.90
12 Mean	1.4845	75.04	2N Mean	1.3712	77.75	18 Mean	1.2849	78.08	2B Mean	1.5057	78.57
Std Err	0.1712	0.5039		0.1421	0.6793		0.0857	0.3697		0.1184	0.5916
Std Dev.	0.94	2.76		0.78	3.72		0.46	1.99		0.65	3.24

[^0]: Skin 4 fist with lesions

