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Abstract: Many rivers in the Western U.S. suffer from high salinity content due to both natural and human-induced causes.
simulation models are often used to estimate future salinity levels and identify mitigation needs. To date, estimation of future n
loading has utilized linear relationships between natural flow and natural salt. We develop a nonparametric regression techni
functional relationship between natural flow and natural salt. The main advantages of the nonparametric technique are:(1) No prior
assumptions have to be made as to the underlying form of the relationship and(2) any arbitrary relationship(linear or nonlinear) can be
modeled. In addition, we develop a resampling scheme to provide confidence intervals of the natural salt estimates from the non
model. We apply this model to data from a stream gauge at Glenwood Springs, Colo., on the Colorado River. We show tha
natural salt model reduces the average overprediction of salt mass shown in the existing natural salt model for the period 194
approximately 15%s78,000 metric tonsd.
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Introduction

In arid and semiarid river basins with significant irrigation ne
salinity tends to be high due to both natural causes, such as
springs, and human-induced causes, such as return flows
agricultural use. Locations such as the Brazos River bas
Texas and the Colorado River basin in the western United S
are afflicted with salinity problems. In the Colorado River ba
salinity levels in the river must be maintained to meet fixed
meric criteria at several points in the Lower Basin. Minute
242 of the International Boundary and Water Commission, Un
States and Mexico stipulated that water delivered to Mexico
an average flow-weighted salinity of no more th
115 mg/L±30 mg/Labove the average annual salinity at Im
rial Dam(U.S. Department of the Interior 2001). Although similar
standards have not been set in the Brazos River basin, high
ity levels impact the management of reservoirs and the usa
of water for irrigation (Wurbs and Karama 1995; Wurbs et
1995).

To ensure that future requirements are met, computer sim
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tion models have been used to determine salinity control nee
these basins. Such models require several inputs, includin
assumed future hydrologic inflows, the salt loading assoc
with those inflows, the future projections of developm
throughout the basin, and the additional salt loading assoc
with that development. Future hydrologic inflows and the as
ated salt loading can be estimated from “historic natural fl
The term historic natural flow refers to the flow that would h
occurred in the absence of any human development, i.e., n
stream reservoir regulation or upstream depletion[Bureau of Rec
lamation (BOR) 1987]. Historic measured flows are altered
human development that has varied through time. To rem
these variations, the variability of human development from m
sured flows, natural flows are derived from historic stream
measurements. In some cases, upstream depletions may be
gible or, at least, invariant with respect to time, so that on
correction for upstream reservoir regulation is warranted. T
flows are commonly referred to as “unregulated flows”(Saleh
1993; Wurbs et al. 1995). In either case, the salt loading t
would be associated with the inflows, herein referred to as “n
ral salt” loading, must be estimated. In this way, we can sep
the natural and human-induced variability for flows and as
ated salt loading entering the river. Thus, estimating natural s
an issue important for the development of data essential to d
simulation model. Unfortunately, estimating natural salt is no
easy as determining natural flow. For example, estimating
consumptive use can be readily calculated from measured
However, the salts returning with irrigation return flows are
easily measured. Indirect methods of estimating natural salt
must be developed.

A literature search revealed that little has been publishe
garding natural salt estimation. Most references found focu
the socioeconomic impacts of salinity(Huizenga 1980; Olso
1980; Brown 1984; Lee et al. 1993). However, modeling effor
in the Brazos and Colorado River basins published their sa
timation techniques and we briefly review those efforts

Wurbs et al.(1995) calculated natural salt in the Brazos Ri

basin by adding the salt load associated with reservoir storage and
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diversions, and removing the salt load associated with rese
releases and return flows from the measured historic salt
Similarly, natural flow was found from measured historic fl
minus the effects of reservoir regulation and evaporation. A li
regression was used to develop a relationship between natur
and natural flow. To estimate the uncertainty in the relation
the residuals from the regression were first fit to a normal d
bution and a value generated from that residual distribution
then added to values generated using the regression.

In the Colorado River basin, Malone et al.(1979) calculated
natural salt by removing the estimated agricultural salt loa
and measured point source salt loading from the measure
toric salt loading. The agricultural salt loading was estimate
two techniques. The first technique developed a relationshi
agricultural salt loading dependent upon a base leaching f
and diversion efficiency. The base leaching factor related
information to the amount of salinity added for a given re
flow. The second technique computed the base leaching
dependent upon the change in historic flow and salt over time
diverted flow, and the evapotranspiration from agricultural la
These techniques computed different estimates for agricu
salt loading. Malone incorporated the difference between the
techniques as an error term on the agricultural salt loading. T
fore, the natural salt loading included natural salt loading,
known diffuse source salt loading, and any measurement
The natural flow was calculated by removing human develop
(including reservoir regulation and consumptive use) from the
historic flow.

Mueller and Osen(1988) proposed a different technique th
avoids the need to first estimate the human-induced salt loa
They developed a multiple linear regression to fit historic
dependent on historic flow and several development varia
including reservoir regulation, consumptive use, exports, an
rigated acres. The development values were then set to zer
the natural flow was substituted for the historic flow, arriving
relationship between natural salt and natural flow. The na
flow was calculated by removing flows resulting from hum
development, including reservoir regulation, consumptive
and exports. This technique was applied to 20 gauges in
Upper Colorado River Basin and is the technique currently
by the BOR to estimate natural salt from natural flow. The t
nique does not include the information available from the res
als of the regression. Rather, the residuals are equalized a
sumed random normal noise.

Recent modeling studies of the Colorado River system
exhibited systematic overprediction of salinity that is likely(pos-
sibly) caused by overprediction of natural salt. This paper
sents a new natural salt model developed using nonparam
techniques to capture both the observed linear and nonline
lationships between natural flow and natural salt. The additio
a residual resampling technique incorporates the inform
available from the residuals of the regression, adding the var
around the regression into the new salt model’s results. Unlik
technique used by Wurbs et al., our residual resampling tech
does not need to assume a distribution for the residuals. W
lowed the approach of Malone and determined an estima
human-induced salt loading. The estimate of human-induce
loading was used to estimate natural salt loading.

We first provide background information about the importa
of modeling salinity in the Colorado River basin and prese
description of the salinity sources and remediation methods.
we further discuss the existing modeling efforts for estima

natural salt loadings. We then develop the statistical nonparamet-
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ric model for estimating natural salt and demonstrate its app
tion to data from the stream gauge at Glenwood Springs, C
on the Colorado River. We also compare this new salt mod
the model proposed by Mueller and Osen and show that the
eled overprediction is reduced by a significant amount(approxi-
mately 14%). We conclude with a brief discussion and reco
mendations for future work.

Background on Salinity in the Colorado River Basin

The salinity of the Colorado River became an important i
when the Mexican government strongly objected to the quali
the water Mexico was receiving in 1962. The average an
salinity of water delivered to Mexico in that year w
1,500 mg/L (Nathanson 1978). Such high salt concentrati
made the water unsuitable for irrigation, municipal, and indus
water uses.

In response to Mexico’s concerns and after years of neg
tions, Minute No. 242 of the International Boundary and W
Commission dated August 30, 1973, was signed. Minute No
stipulates that water delivered to Mexico must have an ave
flow-weighted salinity of no more than 115 mg/L±30 mg/L
above the average annual salinity at Imperial Dam. Subsequ
the Colorado River Basin Salinity Control Act of 1974 was
acted to ensure that the United States could meet its obligat
Mexico under Minute No. 242.

Minute No. 242 sets a variable salinity standard for
Mexico delivery, but does not set numerical water quality cr
at any fixed points in the basin. Numerical criteria resulted f
separate U.S. legislation that set policy regarding water qu
The Federal Water Pollution Control Act Amendments of 1
required the development of fixed point numerical critera fo
linity in the Colorado River Basin. The fixed point numeric crit
were set in 1975: 723 mg/L below Hoover Dam; 747 m
below Parker Dam; and 879 mg/L at Imperial Dam.

These numeric salinity criteria were developed from the 1
average annual salinity concentrations at each location an
currently unchanged(Lee 1989; U.S. Department of the Inter
2001). To predict these flow-weighted average total dissolved
ids concentrations at all locations a computer simulation mod
utilized that models the impacts of further human developme
total dissolved solids concentration. An important step towar
informative computer simulation model includes understan
the sources of salinity and incorporating the sources in the s
lation model.

Salinity Sources

Natural and human-induced salinity results from point and
point sources. Natural point sources that have been identifie
clude seeps and saline springs. Some springs originate from
geological formations containing brackish water. Natural n
point sources of salinity generally originate from the weathe
and dissolution of underlying rocks or soils overlaying the ro

Human-induced salinity predominantly results from irriga
agriculture. Agriculture increases salinity concentration thro
two processes:(1) Salt concentration and(2) salt loading. The sa
concentration process is a result of evapotranspiration from c
which consume water but leave salts behind in the soil. R
flows to the river from the diversion typically contain the sa

salt mass present in the diversion water but with less water,
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hence, higher concentration of salt. Additionally, reservoirs
centrate salt by evaporation, when water is lost from the rese
but salt is conserved.

Salt loading occurs when water transported through
leaches salts present in the soil and transports them to the
The water can be introduced into the soil from human-indu
sources, such as irrigation practices, or from natural sources
as precipitation. Irrigation practices increase the flow thro
soils, which increases the total salt loading from previous na
salt loading levels.

Limited data are available describing agricultural salt load
termedsalinity pickup, throughout the Colorado River basin. O
extensive study(BOR 1983) explains how salinity pickup wa
calculated in the Grand Valley using a mass balance of salt
ages over 1952 to 1980. The report states that the human-in
salinity pickup for the Grand Valley averag
526,000 metric tons per year±82 metric tons with 95% co
dence. The report suggests that variations in salinity pickup
not be due to changes in irrigation practices because variatio
practices could not account for the magnitude of annual varia
the data showed. This report indicated that measuring a
variations in salinity pickup from agriculture is extremely di
cult. Therefore, for lack of a better assumption, we assume
agricultural salinity pickup is a constant mass for long-term m
eling. This assumption is consistent with agricultural consump
use, which has generally been constant since 1941 in the
Colorado River above Glenwood Springs, Colo..

In addition to agricultural salt loading, we need estimate
natural salt loading. Natural salt loading contributes an estim
47% of the total salinity in the Colorado River basin(U.S. De-
partment of the Interior 2001). Natural flow is calculated by re
moving the human-induced effects on flow from observed his
flow. Human-induced effects include agricultural consump
use, exports, and reservoir regulation, all of which are mea
or can be estimated. Natural salt can be calculated by rem
the human-induced effects on salt from observed historic sa

Description of Existing Methods for Estimating
Natural Salt Loading

As stated in the Introduction, the United States Geological Su
(USGS) developed the technique currently used by the BOR
the Colorado River to estimate natural salt entering the river u
historic (observed) flow and salt data from 1941 to 1983(Mueller
and Osen 1988). Fig. 1 shows a typical sequence for the exis
simulation model. Natural flow data is input into the model an
regression-based natural salt model provides estimates of n
salt. The historical salt is estimated by adding the salinity pic
up by agriculture and subtracting the salt that leaves with w
exported from the basin. When applying this model for genera
future scenarios, the natural flows have to be generated fr
stochastic model(the BOR uses the index sequential method
this purpose) and estimates of salinity from agriculture pick
must be provided. Recently, Prairie(2002) developed a stochas
nonparametric natural salt model in an effort to improve upon
current approach.

The existing simulation model, as described above, whe
plied to data from the stream gauge 09072500(Colorado Rive
near Glenwood Springs, Colo.), overpredicts the annual historic
salt mass 1941 to 1995, by an average 2,502 kilograms/s

(Fig. 2). The overprediction could result from salinity pickup of

132 / JOURNAL OF ENVIRONMENTAL ENGINEERING © ASCE / JANUARY
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agriculture being too high, and/or natural salt loading being
high.

From 1941 to 1995, the historic salt mass in the river pas
gauge 09072500 averaged 13,800 kg/s. The relationship
posed by the USGS estimates an average annual natural
16,300 kg/s. For the simulation model to simulate the his
salt mass, the human-induced salinity pickup sources would
to removesalt from the river. Current estimates, as reflected in
simulation model, are that human-induced sources contr
4,000 kg/s from agricultural salinity pickup and exports rem
an average 1,300 kg/s. The estimate for salinity pickup by
culture is developed from an extensive study that quantified
mates of natural and human-induced salt(Iorns et al. 1965). The
report estimates that, in 1957, natural sources contrib
15,060 kg/s, and human-induced sources contributed 4,051
from agricultural salinity pickup and removed 463 kg/s by
ports above Glenwood Springs. These values were adjuste
current basin conditions then input in the simulation model.

Using these numbers, if human-induced sources contrib
no salt above gauge 09072500, the existing simulation m
would still overpredict salt mass. Iorns et al.(1965) indicate tha
the human-induced sources of salinity are not removing sal

Fig. 1. Flowchart depicting interconnection of existing simula
model

Fig. 2. Observed historical salt and estimates from the United S
Geological Survey(USGS) relationship
2005
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are adding significant amounts. These findings point to an
estimation of natural salt by the USGS model. Further rese
intends to extend this analysis to additional stream ga
throughout the Upper Colorado River basin. In this study, we
setting up the analysis framework that will be extended.

Vaill (1999) performed trend analysis throughout the Up
Colorado River basin including gauge 09072500. The re
found significant downward trends for flow-adjusted dissolv
solids concentrations and salt load for the period 1986–1993
ler (1996) also performed a trend analysis on select gauges i
Upper Colorado River basin. This second report found decre
salinity for a given flow at gauge 09095500: Colorado Rive
Cameo, Colo. This is the next major gauge downstream
09072500. The USGS regressions were developed with flow
salinity values from 1941 to 1983; they no longer reflect cur
trends in the relationship. The recent trend analysis studies
port the need to update or replace the USGS regressions to
current trends in the flow and salinity relationship.

To refine the USGS model would require a reanalysis o
detailed data on which the regressions were based. Unfortun
these data are not available. To improve upon the USGS m
we propose a statistical nonparametric model that will relate
ral streamflow to natural salt. We also present a techniqu
provide uncertainty estimates.

Nonparametric Model for Estimating Natural Salt
Loading

Nonparametric methods estimate functions locally, in that th
timate of the function at any point is based on a small numb
neighboring points(this point will become clear in the followin
section when we describe the proposed model). As a result, out
liers do not exert undue influence on the overall fit, unlike p
metric methods(e.g., linear regression or fitting probability de
sity functions). This provides the ability to capture any arbitr
underlying functional form and local features present in the

Nonparametric(i.e., local) methods are more computationa
intensive than their parametric counterparts. However, with
creasing computational power readily available, nonparam
techniques provide an attractive alternative. Kernel-based
parametric techniques have been successfully applied to a v
of hydrologic problems—rainfall modeling(Lall et al. 1996);
flood frequency(Lall et al. l993, Moon and Lall 1994); stream
flow simulation (Sharma et al. 1997; Tarboton et al. 199);
groundwater applications(Adamoski and Feluch 1991), and
streamflow forecasting (Smith 1991). More recently
K-nearest-neighbor methods have been developed to im
upon the kernel-based techniques and have been applie
streamflow simulation(Lall and Sharma 1996; Prairie 2002); and
daily weather generation(Rajagopalan and Lall 1999; Yates et
2003). The reader is referred to Lall(1995) for an overview o
nonparametric techniques methods and their hydrologic ap
tions.

Here, we use the nonparametric regression based on
polynomials to model natural salt from natural flows. AK-neares
neighborsK-NNd bootstrap technique is developed to provide
certainty estimates. These are described below.

Local Polynomials

Functional fitting problems, such as the one in this case(i.e.,

natural streamflow and natural salt) involve recovering the under-

JOURNAL O
t

lying relationship between a dependent variablesyd and a set o
independent variablessxd. In reality, the dependent variable tha
observed has noise(or error) in it, which makes the functio
estimation more challenging. The problem reduces to estim
the function,f, in the model below

y = fsxdb + et s1d

where,et=error term;b=vector of model parameters.
Typically, b is estimated as the minimizer of the least-squ

function over all the data points

min
b

syi − XbdTsy − Xbd s2d

Furthermore, parametric techniques fit an equation(linear or non
linear for f) for the entire data, which restricts the ability to c
ture non-linearity in the data, as will be seen below. In addi
hypothesis testing(e.g., testing the goodness of fit of the mo
the parameters, etc.) requires a Gaussian assumption of the e
term and consequently, the data, which further restrict the m
(Helsel and Hirsch 1992). If the fitted modelsfd does not pass th
hypotheses tests, then a different model is assumed and the
process[Eq. (2), above] repeated. As can be seen, the mo
complexity is limited by the sample size, thereby restricting
capability to capture nonlinear features in small samples.

Nonparametric methods, on the other hand, fit the functif
locally and make no prior assumption about the functional f
i.e., linear, quadratic. Thereby, providing the capability to cap
any arbitrary relationship. Several nonparametric methods
Kernel based, splines, and local polynomials. For a detaile
scription of these methods and comparisons, see Owosina(1992)
and references therein. We adopted a local polynomial sc
that has been shown to be easy to implement and effective(Ra-
jagopalan and Lall 1998; Loader 1999). The method and the a
gorithm are described through the following example(see Fig. 3).
We generated a synthetic dataset from a sine wave function
noise added(the noise is normally distributed with mean 0 a
variance of 0.1) to it. Traditional linear regression and quadr
fits, as can be seen from Fig. 3, are unable to capture the
underlying sinusoidal function. A very high-order polynomial(as
sine function is a higher-order polynomial) will capture the un
derlying function, but given the small sample size a higher-o
fit is not feasible. In the nonparametric approach, the under
function is evaluated “locally” in that the estimate at any poin

Fig. 3. Several data fitting techniques for data generated from a
function with noise. The local linear polynomials had an alpha of
The data is generated viayt=sinsxtd−0.2xt+et with et being the nois
from a normal distribution with mean 0 and variance 0.2.
obtained by fitting a polynomial to a small number of its neigh-

F ENVIRONMENTAL ENGINEERING © ASCE / JANUARY 2005 / 133
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bors. The main parameters then are the order of the polyn
and the size of the neighborhood. Estimation of these param
is described in the algorithm below. The local polynomial fi
the sine wave data(with a neighborhood size of 20 data poi
and local linear polynomials) is show in Fig. 3 as the solid line—
and it can be seen that this captures the true underlying fun
very well. One obvious benefit is that outliers or extreme va
do not influence the overall fit, as they do in a parametric
proach. Furthermore, the local fitting provides the capabilit
capture any arbitrary features that might be present. The
polynomial algorithm is presented, with reference to Fig. 3
follows:
1. Let us assume that we want to estimate the function atxt.
2. A neighborhood is defined aroundxt. The size of the neigh

borhood issK=a3nd, where a is a smoothing paramet
between 0 and 1. Biggera indicates more smoothing. F
example, fora=1 and a local linear fit; it is the same as
parametric linear regression.n is the sample size.

3. The neighbors are weighted as per their distance toxt—in
that the nearest neighbor gets the highest weight an
farthest neighbor gets the least weight. The weights ca
obtained in many different ways(e.g., using the inverse di
tance with a smoothing function). The weights form the ele
ments of the diagonal matrixW.

4. For the neighbors captured in the neighborhood(shown in
the dashed rectangles), a regression of orderp is fit. Typi-
cally, a linear fit works very well(shown as the heavy so
line within the neighborhood).

5. The regression is fit using a weighted least squares
minbsy−XbdTWsy−Xbd, over all theK-nearest neighbors.

6. The fitted regression is then used to estimate atxt.
7. This is repeated at all points where we need the estima

As mentioned before, the “local fitting” of the regressions p
vides a great flexibility in modeling any structure that might
present in the data(linear and nonlinear). The neighborhood siz
sad provides the amount of smoothing and hence, the flexib
When the neighborhood size is the same as the number o
points and the fit is linear, we reproduce the traditional lin
regression. For a nonlinear function, we would expect a sm
neighborhood size.

The model parameters(i.e., a and p) can be estimated b
minimizing an objective function such as the cross-valida
(CV) function:

CVsa,pd =
1

no
i=1

n

sYi − y−id2 s3d

wherey−i =estimate atxi by droppingxi, yi from the fit. The CV
function above is computed for several choices ofa and p. The
choice that minimizes this function is selected. When a data
small, Loader(1999) recommends using CV; therefore, we u
this technique to finda andp in our applications here.

The generalized CV(GCV) function, on the other hand, is
good estimate of the predictive capability of the model when
dataset is larger(Craven and Whaba 1979). Furthermore, it obvi
ates the need for dropping an observation as in the case o

thereby, saving computation time. The GCV function is given as

134 / JOURNAL OF ENVIRONMENTAL ENGINEERING © ASCE / JANUARY
GCVsa,rd = n

o
i=1

n

sYi − yid2

S1 −o
i−1

n

hiiD2 s4d

where n=sample size,Yi −yi is the residual; andhii =diagona
terms of the hat matrixH.

The diagonal of hat matrix, termed the influence matrix,
plains the weight of a data point on the estimate at that point
hat matrix is found in matrix algebra asXsX8Xd−1X8 (Eubank
1999). In the GCV function above, the numerator represents
mean-square error(MSE) while the denominator represents
penalty term that penalizes for increasing the model compl
(i.e., model parameters which depend upon the order of the
nomial, p).

Quantifying Uncertainty

It is important to quantify the uncertainty(i.e., confidence inte
vals) of the estimates from the nonparametric salt model. In
case of linear regression the uncertainty estimates are obtain
assuming the errors to be normally distributed(Helsel and Hirsc
1992). Here, we developed aK-NN residual resampling techniq
to quantify the uncertainty of the estimates from the local reg
sion method. In this method, we resample(or bootstrap) residuals
within a neighborhood of the point of estimate and add the
the mean estimate from the local regression. This is desc
with the help of Fig. 4. Let us suppose that the natural flowxt.
We find the corresponding mean natural salt mass estimayt

from the local polynomial regression. Next, we findK-neares
neighbors(within the dashed rectangle box) to xt shown as
circle around a data point. We resample one of the residuals
a weight function that gives larger weight to the nearest neig
and smallest weight to the farthest neighbor. Let us say tha
pickedet. This is added to the mean estimateyt to get a simulate
valueyt

* =yt+et. We repeat this process several times to obta
ensemble of natural salt estimates atxt. The 5th percentile of th
ensemble provides the 5% confidence interval and so on. Th
point here is that, by resampling residuals locally, non-Gau
features that might be present in the data can be captured b
of asymmetric confidence intervals, unlike traditional meth
that provide only symmetric intervals assuming Gaussian d

Fig. 4. Scatterplot of natural salt and natural flow for the mont
April, along with the linear regression fit and the local polynom
(locfit) fit
bution.
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Application of Model

We applied the nonparametric model to natural streamflow
natural salt data from the gauge at Glenwood Springs, C
Natural salt mass is “backcalculated” from the observed his
salt mass and salt load data from the simulation model as

natural salt = observed historic salt

+ salt with water exported out of the basin

− salinity pickup from agriculture

svalues based on simulation modeld.

The salt removed by exports and the salt added by agricu
for the period 1941 to 1995 were taken from the data use
drive the simulation model. In the simulation model, agricul
annually adds 124,000 metric tons of salt above gauge 0907
As stated previously, a constant salinity pickup is a fair assu
tion, because agricultural consumptive use was basically con
1941 to 1995. To determine the monthly salt added by agricu
the annual tons were distributed to monthly values as a fun
of each month’s percent of annual return flow. For exampl
June 1943 generated 86% of the annual return flow in water
1943, then in June 1943 the monthly salt added from agricu
would be 124,000 metric tons times 86% or 106,640 metric
The exports remove a constant concentration of 100 mg/L.
tons removed by exports vary with flow, according to the relat
ship between flow and salt mass. The natural flows are th
served historic flows minus the total human-induced consum
use.

Local regressions were developed separately for each m
just like the existing USGS model. We applied the residual r
mpling technique to obtain the 5 and 95% confidence levels

Evaluation Criteria

We first compared the performance of the local polyno
method and the traditional linear regression on a synthetic
set. We then compared results from the nonparametric mod
those from the USGS model for the years 1941 to 1995.
evaluated each model’s performance on a monthly and a
time scale. The annual time series of flow and salt are obtain
summing the water year months, October through Septembe
also, performed a blind forecast of annual salt for the last 5 y

First, we compared the regressions developed from the
models. Second, we used both models to estimate the natur
for the natural flows during 1941 to 1995 and compared
performance. We also calculated the estimated historic salt
the estimated natural salt mass obtained from the models
compared them against the observed historical salt mass. T
timated historic salt mass is obtained as

estimated historic salt = estimated natural salt − salt from exp

+ salt from agricultural salinity pickup

In addition to visual comparisons, we also provided quan
tive estimates such as standardized RMSE(RMSE)—both fitting
and cross-validated. The fitting RMSE is computed from
model residuals with respect to the true function(in the case o
the synthetic data set) and the natural salt value(for the real data).
For the cross-validated case, a point is dropped from the dat
the remaining points are used to fit to the model, which is

used to predict the value at the dropped point and consequently,
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t
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the cross-validated residuals and RMSE. The cross-vali
RMSE provides a measure of the predictive capability of
model.

Results

We discuss results from synthetic data first, followed by the
sults from the real application.

Synthetic Data

The first synthetic data set is the sine wave data that wa
scribed in the earlier section. As can be seen from that figure(Fig.
3) the local polynomial captures the underlying function very
and it is practically indistinguishable from the true function. F
thermore, the cross-validated RMSE with respect to the true
of the function from the local polynomial is 0.033, which is s
nificantly lower than the parametric alternatives.

We then generated a synthetic data set with mild nonline
at the extremes buried in noise(Fig. 5). The generated data a
shown as dots in the figure. The linear regression fits the
quite well and is statistically significant(with a p value of close to
0 on the F test). However, the linear regression is unable to c
ture the mild nonlinearity at the ends. On the other hand, the
polynomial captures the true function very well. The fitt
RMSE with respect to the true function is 0.047 and 0.129
spectively, for the local polynomial and linear regression.
cross-validated RMSE with respect to the true value of the f
tion is 0.049 and 0.130, respectively, for the local polynomial
linear regression.

Owosina(1992) and Loader(1999) compared nonparamet
regression methods in general, and local polynomials in pa
lar, to a wide range of synthetic data sets on a variety of mea
(RMSE, bias, etc.) and they find that the nonparametric
proaches perform extremely well.

Data from Glenwood Springs, Colorado

Table 1 shows the fitting and cross-validated RMSE of the
polynomial method and linear regression for the monthly and
annual regressions. It can be seen that the two methods e
comparable RMSE suggestive of a linear relationship for the

Fig. 5. Scatterplot of synthetic data set with mild nonlinea
along with local polynomial and United States Geological Su
regression fits
part, with local polynomial providing a lower fitting RMSE. In all
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months the alpha(i.e., the size of the neighborhood) was betwee
0.9 and 1 further indication, that the relationships are gene
linear.

Fig. 6 shows the local polynomial fit and the existing US
salt model fit for April and June—the circles show the data po
It can be seen that the local polynomial fit does a better jo
capturing the relationship indicated by the scatter in the da
can also be seen that the USGS relationship underestimat
salt in April and overestimates the salt in June. Furthermore
wider scatter of the data points indicates there is significant
ability around the relationship. The USGS relationship prov
no estimate of the variability i.e., error estimates of the rela
ship.

We applied these two models to natural flow data from 194
1995 and estimated the natural salt. Fig. 7(upper graph) shows
the estimated natural salt from these two models. The estim
natural salts were generated at a monthly time step(using the

Table 1. Fitting and Cross-Validated Root-Mean-Square Error(RMSE)

Fitting RMSE X-val RMSE

LOCFIT LSFIT LOCFIT LSFIT

Jan 0.792 0.794 0.847 0.8

Feb 0.733 0.739 0.784 0.7

Mar 0.754 0.756 0.784 0.77

Apr 0.698 0.700 0.737 0.72

May 0.601 0.609 0.640 0.63

Jun 0.582 0.588 0.622 0.6

Jul 0.421 0.461 0.500 0.51

Aug 0.630 0.635 0.670 0.66

Sep 0.571 0.571 0.600 0.5

Oct 0.586 0.588 0.616 0.60

Nov 0.757 0.762 0.802 0.79

Dec 0.720 0.723 0.791 0.7

Annual 0.401 0.411 0.430 0.4

Note: X-val5cross validated; LOCFIT5local polynomial method; an
LSFIT5least square linear regression method.

Fig. 6. Same as Fig. 4 along with the fit from the United Sta
Geological Survey(USGS) salt model
136 / JOURNAL OF ENVIRONMENTAL ENGINEERING © ASCE / JANUARY
monthly relationships) and then summed to obtain the annual
ues. The estimates from the USGS model are higher than
from the nonparametric model. The lower graph replaces the
parametric salt model line with the annual natural salt. The an
natural salt is captured between the 5 and 95% confidence
USGS model, as expected overestimates the salt mass by 1
78,000 metric tons, greater than the annual average observe
toric salt mass. Meanwhile, the nonparametric salt model red
the difference between the annual average observed histor
mass and the estimated historic salt mass to 0.8%
3,600 metric tons.

We computed the confidence levels of the estimates from
nonparametric model, using the residual resampling techn
The 5 and 95% confidence levels were computed as des
earlier and are plotted along with the estimates from the non
metric model and the USGS model. This demonstrates tha
estimates from the USGS model fall outside the 95% confid
levels of the nonparametric model suggesting that the estim
from these two models are significantly different. Furtherm
the confidence intervals are asymmetric, unlike the confid
intervals one would obtain from parametric models; this sug
that the assumption of normal distribution of the errors is
quite valid.

Finally, we performed blind forecast of salt for the last 5 ye
using data prior to 1991. The RMSE values are 0.56 and

Fig. 7. The upper graph shows the natural salt estimates
the United States Geological Survey(USGS) relationship and th
nonparametric regression. The lower graph shows the annual n
salt and the corresponding estimates from the USGS relationshi
confidence intervals are obtained from theK-NN residual resamplin
technique.
respectively, for local polynomial and linear regression methods.
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Here too, the local polynomial and linear regression show sim
performance with the nonparametric method showing a slig
lower RMSE.

Summary and Conclusions

We outlined a technique to calculate the natural salt based o
observed historic salt mass. We then developed a nonpara
regression method using local polynomials to obtain relations
between natural salt and natural flow. Further, we incorpora
residual resampling technique in the nonparametric model t
able the quantification of uncertainty in the estimates. We sho
that this approach can generate realistic ensembles of salini
also seems to improve upon the USGS salt model.

It is evident that some of the variability captured with
residual resampling technique could be attributed to data u
tainty and not natural variability. To allow the development of
regression framework presented, we used the “best” ava
data for a single stream gauge. An advantage of the regre
framework presented in this paper is that as data uncertai
addressed the revised data can easily be applied to develo
dated regressions; this was not an option with the USGS
model. As with all regressions, the writers recognize regres
relationships are only as good as the underlying data, ther
information interpolated from the regressions should be vie
accordingly.

Data uncertainty is an important issue with this work bec
natural flow and salinity are not directly measured. Current ef
to address this issue include improving methods to compute
ral flow and recomputing natural flow with the improved me
ods. Further, new research intends to improve modeling the
load attributed to agriculture. This is an extremely difficult va
to estimate as shown by the study measuring salt loading i
Grand Valley(BOR 1983). The new research intends to deve
better methods to model agricultural salt loading in order to
duce the uncertainty of this value.

Nonparametric models, like parametric methods, are not
out drawbacks. Short and poor quality datasets can make th
timation of the neighborhood size(i.e., alpha) in the local poly-
nomial method difficult and also increase the variance of
estimates. Often times, the GCV function might not provid
clear minimum(especially in short data sets) and, in such case
the alpha is chosen subjectively by looking at the estimate
Extrapolating values too far out from the data set can resu
large variance.

The flexibility of the nonparametric approach allows it to
portable across various sites. This is a very useful featur
agencies such as BOR that like to prescribe a uniform me
across sites without having to worry about model fitting, par
eter estimation, and hypothesis estimation issues. We inte
extend the nonparametric natural salt model framework to
remaining twenty streamflow gauges throughout the Upper C
rado River basin. Preliminary results from this effort are enc
aging and corroborate the findings reported in this paper. A
tional work includes exmaining the salt mass as a functio
natural flow relationship for different time periods.
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Notation

The following symbols are used in this paper:
et 5 error term at timet;
H 5 hat matrix;
hii 5 diagonal terms of the hat matrix;
hij 5 any individual term of the hat matrix;

i 5 index term;
j 5 index term;

K 5 number of neighbors;
n 5 sample size;
p 5 order of the polynomial;
t 5 time index;

W 5 weight function;
X 5 matrix of the independent variablex;
x 5 independent variable;
y 5 dependent variable;

y* 5 dependent variable plus an error term;
a 5 smoothing parameter;
b 5 vector of model parameters; and
m̂ 5 estimate of the mean.
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