Appendix G Brinderson Corporation and Emtec Corporation Letters

In Reply

Refer to: 836

Engineering and Research Center Denver Federal Center Bldg. 67 Denver, Colorado 80225

November 13, 1987 BRINDERSON CORPORATION

YUMA DESALTING PLANT Project Office P.O. Box 6509

Yuma, Arizona 85364 (602) 782-4701

Attention: Fritz Sattler

Subject:

Specs. 4-SI-30-02520/DC-7610/ -- Yuma Desalting Plant, Pretreatment Completion and Desalting

Building, Desalting Complex Unit, Arizona, Title I Division, Colorado River Basin Salinity Control

Project

Reference: Aluminum Bronze Pipe

Gentlemen:

Reference is made to our previous conversations concerning the subject of acceptance criteria for the welded aluminum bronze pipe we have installed on the above project.

As we have discussed, the only acceptance criteria for the field welded aluminum bronze pipe set forth in the specifications is the requirement for hydrostatic testing in paragraph 14.4.1 (c) of Division 14.

Of course the aluminum bronze pipe has also been visually inspected and approved for shipment by your inspectors at the fabricators as well as in the field for structural soundness.

We are now in the process of hydrostatic testing the east section of the clearwell manifold per our understanding. OIAL FILE COPY - YPO We will continue to work towards meeting your structural/VED visual and hydrostatic testing acceptance criteria. NOV 1 9 '87

Very Truly Yours BRINDERSON CORPORATION

Ron Smith Contract Manager

RS/sc

Enclosures

cc: 0-1

John Barry (jobsite) Tom O'Brian (Corp)

178-8

National Constructors

neilia ction Taken Date

EMTEC CORPORATION

2050 South Oneida Street, Suite 116 Denver, Colorado 80224 (303) 692-0660

Rocky Mountain Engineering and Materials Technology, Inc.

April 21, 1988

Harry Uyeda, D-1521 Bureau of Reclamation P. O. Box 25007 Bldg. 56, Room 2340 Denver, CO 80225

TEST REPORT

File Number 802106

Rocky Mountain EMTEC was asked by Harry Uyeda to provide consulting services on welding procedures and quality of aluminum-bronze weld joints used in the USBR desalination plant at Yuma, Arizona.

An on-site inspection trip to the plant site was made on March 2 and 3, 1988. Fred Schwartzberg, of EMTEC, was accompanied on this trip by Harry Uyeda and John Walp, of USBR.

We inspected the 30 and 72 inch diameter piping from the interior. The visual quality of the longitudinal factory welds varied from poor to good. Some welds appeared to have incomplete penetration. The circumferential welds also varied from poor to good. Some areas had been rewelded where incomplete penetration had been found after initial proof testing. The flow of the weld metal in the repairs was of poor quality, as seen in Figure 1.

The welds in the 72-inch diameter pipe have a rust colored corrosion deposit. Samples of the deposits were removed for subsequent laboratory testing. No evidence of surface recession was found.

A circumferential weld in an 18-inch diameter pipe had broken through a weld close to its intersection with a 30-inch diameter section. The beveled section of the 18-inch joint revealed incomplete fusion near the inside of the pipe.

Short sections of pipe removed from the facility are stored in a "boneyard" for future use. Some of the longitudinal welds in these pipes showed incomplete penetration. A circumferential weld showed about 50 percent penetration, as seen in Figure 2.

Samples of two diameters of weld wire were taken for chemical analysis to confirm adherence to the specified composition.

Several sections of pipe from the "boneyard" were marked for sectioning and laboratory analysis. However, it was later learned that the contractor refused to release any of these samples for laboratory testing.

Several small samples of weldments previously obtained by Mr. Uyeda were provided to Rocky Mountain EMTEC for metallographic examination. No information was provided to permit identification of location of these samples in the system. One sample contained a longitudinal weld. The other sample was one half of a circumferential weld.

The longitudinal weld was cross-sectioned and macroetched. As seen in Figure 3, the weld appears to have incomplete penetration.

A metallographic section taken close to the macroetched area shows that the defect seen adjacent to the inside of the pipe is actually a lack of fusion defect, rather than an incomplete penetration, Figures 4 and 5.

Another piece of the same weld was broken open. The weld defect in this area is 0.10-inch deep, or 40 percent of the 1/4-inch wall thickness. Figure 6 is a photograph in which the depth of the defect can be seen.

The circumferential weld was found to have a combination of porosity, incomplete penetration and lack of fusion. Grinding marks present on a beveled surface, Figure 7, are indicative of lack of fusion and low depth of penetration. Figures 8 and 9 are additional photographs in which the weld defects can be seen.

Metallographic sections were made through two areas of the circumferential weld. Both show lack of fusion to the bevel surface. Figures 10 and 11 are views of one section at different magnifications. Figures 12 and 13 are similar photographs of the other section.

Chemical analysis of the welding wire confirmed that both samples satisfied the nominal composition of the specified RCuAl-A2 grade.

	Composition, wt percent					
Element	Large Diameter	Small Diameter	Specification			
Iron	1.09	1.10	1.5 max			
Aluminum	9.44	9.33	9.0-11.0			

The corrosion deposit contains 2.23 weight percent iron. This level of iron is consistent with the expected weld metal resulting from dilution of the 3.5 percent iron base metal by the 1 percent iron weld metal.

Rocky Mountain EMTEC concludes that some of the factory produced longitudinal welds and some of the circumferential field welds have grossly inadequate penetration and/or fusion. It is impossible to determine the severity of the potential problem without additional inspection and laboratory analysis.

The rust colored appearance of the corrosion depsoits found at the welded joints are indicative of the presence of iron in the aluminum-bronze alloy. No evidence of surface recession was found beneath the deposits. The corrosion process produces deposits which are orders of magnitude greater than the depth of the corrosive attack. Therefore, no decrease in the life expectation of the system is predicted.

The best technique for determining where the bad welds are located is to proof test the system well above operating pressures. This technique should be used to qualify all sections of pipe, even those intended for low pressure service.

Reported by:

Fred R. Schwartzberg Rocky Mountain EMTEC

Figure 1 Surface Appearance of Repaired Circumferential Weld

Figure 2 Lack of Penetration in Circumferential Weld

Figure 3 Apparent Lack of Penetration in Longitudinal Weld

Figure 4 Incomplete Penetration in Longitudinal Weld

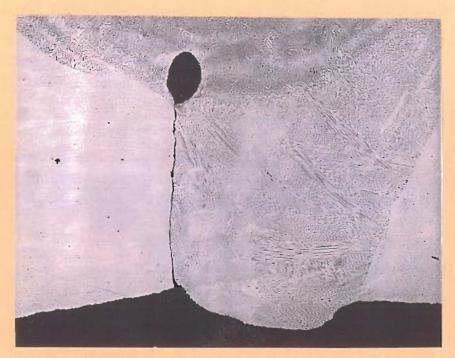


Figure 5 Close-up View of Incomplete Penetration, 25X

Figure 6 Depth of Defect in Longitudinal Weld, Arrows

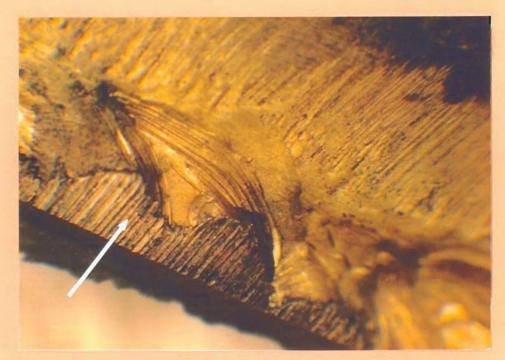


Figure 7 Grinding Marks Remaining on Bevel Surface of Circumferential Weld

Figure 8 Close-up of Defects in Circumferential Weld

Figure 9 Another View of Incomplete Fusion in Circumferential Weld

Figure 10 Cross Sectional View of Incomplete Penetration in Circumferential Weld

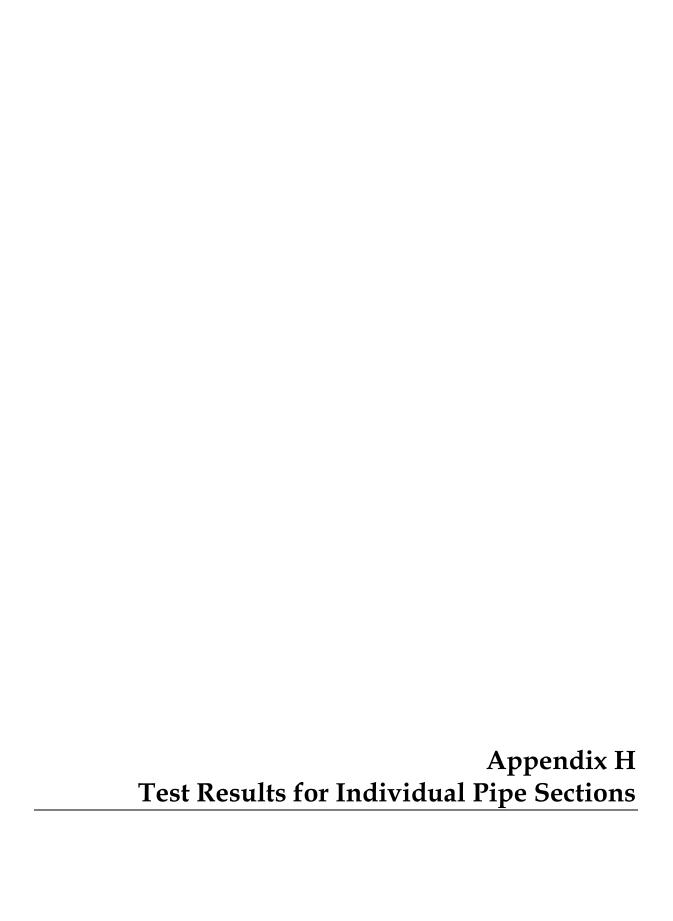

Figure 11 Close-up View of Previous Defect, 25X

Figure 12 Another Cross Sectional View of Incomplete Penetration in Circumferential Weld

Figure 13 Close-up View of Previous Defect, 25X

Appendix H

Test Results for Individual Pipe Sections

CH-01

CH-01 is a 30" diameter pipe and is part of the Hydranautics feed from the Pump Manifold to the De-Salting Building (DSB). It is located outside, above ground, just east of the DSB. It is specified to have a 3/8" wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria.

Two circumferential and one longitudinal radiographs were taken. One of the circumferential radiographs failed due to lack of fusion. The other two radiographs met the quality requirements.

CH-02

CH-02 is an 18" diameter pipe and is part of the Fluid Systems feed between pump number 14 and the Pump Manifold. It is located outside, above ground, just east of the DSB. It is specified to have a 7/16" wall thickness.

The ultrasonic thickness testing revealed that all but two point met the specified thickness criteria. The two points that failed were not consecutive and failed by less than 0.001".

One longitudinal radiograph was taken. It failed due to incomplete penetration and porosity.

CH-03

CH-03 is a 24" diameter pipe and is part of the Fluid Systems feed between pump number 4 and the Pump Manifold. It is located outside, above ground, just east of the DSB. It is specified to have a 3/8" wall thickness.

The ultrasonic thickness testing revealed that no points met the specified thickness criteria. The measured thickness, on average, was about 0.04" less than acceptable.

One longitudinal radiograph was taken. It failed due to lack of fusion and porosity.

CH-04

CH-04 is a 48" diameter pipe and is part of the Fluid Systems feed between the Pump Manifold and the DSB. It is located, outside, above ground, just east of the DSB. It is specified to have a 3/4" wall thickness.

The ultrasonic thickness testing revealed that all points tested met the specified thickness criteria.

Two circumferential and one longitudinal radiographs were taken. The two circumferential radiographs failed due to porosity. The longitudinal radiograph met the quality requirements.

APPENDIX G PAGE 1 OF 14

CH-05 is a 12" diameter cast pipe and is part of both the Fluid Systems and Hydranautics feed between pump number 4 and the Pump Manifold. It is located outside, above ground, just east of the DSB. It is specified to have a 5/16" wall thickness.

The ultrasonic thickness testing revealed that all points are thicker than specified by about 0.06". Based on this, it is assumed that a pipe was used with a thicker wall than specified.

One circumferential radiograph was taken. It failed due to lack of fusion and porosity.

CH-06

CH-06 is an 18" diameter pipe that is part of the Hydranautics feed between pump number 2 and the Pump Manifold. It is located outside, above ground, just east of the DSB. It is specified to have a 7/16" wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria.

One circumferential and one longitudinal radiographs were taken. The circumferential radiograph failed due to incomplete penetration and porosity. The longitudinal radiograph failed due to porosity.

CH-07

CH-07 is an 18" diameter pipe that is part of the Hydranautics feed between pump number 15 and the Pump Manifold. It is located outside, above ground, just east of the DSB. It is specified to have a 7/16" wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria. The testing done on one band was thicker than specified by about 0.14". Based on this it is assumed that pipe was used that was thicker than specified.

Two circumferential and one longitudinal radiographs were taken. One circumferential and one longitudinal radiograph failed due to incomplete penetration and porosity. The other circumferential radiograph failed due to incomplete penetration and lack of fusion.

CH-08

CH-08 is an 18" diameter pipe that is part of the Fluid Systems feed between pump number 9 and the Pump Manifold. It is located outside, above ground, just east of the DSB. It is specified to have a 7/16" wall thickness.

The ultrasonic thickness testing revealed that all points on one band met the specified thickness criteria while all points on the other band failed by about 0.025". Both bands are on the same segment of pipe.

One longitudinal radiograph was taken. It failed due to lack of fusion.

CH-09

CH-09 is an 18" diameter pipe that is part of the Hydranautics 1st stage reject, 2nd stage feed in the Hydranautics trench. It is located inside the DSB. It is specified to have a 5/16" wall thickness.

APPENDIX G PAGE 2 OF 14

The ultrasonic thickness testing revealed that all but three points met the specified thickness criteria. The three points that failed were about 0.005" less than acceptable.

One circumferential and one longitudinal radiographs were taken. Both failed due to incomplete penetration.

CH-10

CH-10 is a 30" diameter pipe that is part of the Fluid Systems 1st stage reject, 2nd stage feed in Fluid Systems trench 1. It is located inside the DSB. It is specified to have a 7/16" wall thickness.

No ultrasonic thickness testing was performed on this section of pipe.

Two circumferential and one longitudinal radiographs were taken. One circumferential radiograph failed due to incomplete penetration. The other circumferential radiograph failed due to incomplete penetration and porosity. The longitudinal radiograph failed due to porosity.

CH-11

CH-11 is a 30" diameter pipe that is part of the Fluid Systems interstage to energy recovery in the collection trench between Fluid Systems trench 1 and 2. It is located inside the DSB. It is specified to have a 7/16" wall thickness.

The ultrasonic thickness testing revealed that no points met the specified thickness criteria. The measured thickness, on average, was about 0.005" less than acceptable.

Two circumferential and one longitudinal radiographs were taken. Both circumferential radiographs failed due to incomplete penetration and porosity. The longitudinal radiograph failed due to lack of fusion and porosity.

CH-12

CH-12 is a 16" diameter pipe that is part of the Fluid Systems low pressure reject in the collection trench between Fluid Systems trench 1 and 2. It is located inside the DSB. It is specified to have a 1/4" wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria.

One circumferential and one longitudinal radiographs were taken. The circumferential radiograph failed due to incomplete penetration and porosity. The longitudinal radiograph failed due to lack of fusion, incomplete penetration and porosity.

CH-14

CH-14 is a 30" diameter pipe that is part of the Fluid Systems 1st stage feed, 2nd stage reject in Fluid Systems trench 1. It is located inside the DSB. It is specified to have a 7/16" wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria.

No radiographs were taken for this pipe segment.

APPENDIX G PAGE 3 OF 14

CH-15 is a 30" diameter pipe that is part of the Fluid Systems 1st stage feed, 2nd stage reject in Fluid Systems trench 2. It is located inside the DSB. It is specified to have a 7/16" wall thickness.

The ultrasonic thickness testing revealed that all but one point met the specified thickness criteria. The one point that failed was about 0.0015" less than acceptable.

One circumferential radiograph was taken. It failed due to incomplete penetration and porosity.

CH-16

CH-16 is a 30" diameter pipe that is part of the Hydranautics feed in the Pump Manifold between pump numbers 9 and 10. It is located outside, above ground, just east of the DSB. It is specified to have a 7/16" wall thickness.

The ultrasonic thickness testing revealed that all but four points failed the specified thickness criteria. The measured thickness, on average, was about 0.005" less than acceptable.

No radiographs were taken for this pipe segment.

CH-17

CH-17 is a 30" diameter pipe that is part of the Hydranautics feed manifold. It is located inside the DSB. It is specified to have a 7/16" wall thickness.

The ultrasonic thickness testing revealed that no points met the specified thickness requirement. The measured thickness, on average, was about 0.02" less than acceptable.

Two circumferential radiographs were taken. Both failed due to lack of fusion and porosity.

CH-18

CH-18 is a 30" diameter pipe that is part of the Hydranautics feed manifold. It is located inside the DSB. It is specified to have a 7/16" wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness requirement. The measured thickness for one band was, on average, about 0.17" greater than specified. Based on this, it is assumed that a pipe was used that was thicker than specified.

Six circumferential and one longitudinal radiographs were taken. All failed due to porosity. One circumferential radiograph also failed due to a crack and incomplete penetration and the four other circumferential radiographs also failed due to lack of fusion.

CH-19

CH-19 is a 30" diameter pipe that is part of the Hydranautics feed manifold in the Hydranautics trench. It is located inside the DSB. It is specified to have a 7/16" wall thickness.

APPENDIX G PAGE 4 OF 14

The ultrasonic thickness testing revealed that no points met the specified thickness requirement. The measured thickness was, on average, about 0.01" less than acceptable.

Two circumferential and one longitudinal radiographs were taken. One circumferential radiograph failed due to lack of fusion, incomplete penetration, and porosity. The other failed due to lack of fusion. The longitudinal radiograph failed due to lack of fusion and porosity.

The interior of the pipeline was inspected after two flexible couplings were removed and the pipe was temporarily displaced. It appeared to have stood partially filled with water for some time, because a water line was evident on the sides of the pipe. Blue-green mounds of corrosion products were present, below the water line, on the circumferential welds and the longitudinal welds. The pipe wall had a few pits at the water line, and the deepest was 30 mils. When the corrosion products were removed from the welds, pits and reddish coloration indicative of dealloying were observed. These pits were 40 to 60 mils in depth.

A repair weld was discovered on the bottom of the pipe, directly above one of the pipe stands, on the longitudinal weld. A mass of aluminum bronze from the repair weld was evident inside the pipe. The mass was covered with blue-green corrosion products. When the corrosion products were removed, the mass had a reddish color but was so irregular that we could not determine if pitting was present.

CH-20

CH-20 is a 16" diameter pipe that is part of the Hydranautics 1st stage feed, 2nd stage reject in the Hydranautics trench. It is located inside the DSB. It is specified to have a 1/4" wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria.

One circumferential and one longitudinal radiograph were taken. The circumferential radiograph failed due to incomplete penetration. The longitudinal radiograph failed due to incomplete penetration and porosity.

CH-21

CH-21 is a 24" diameter pipe that is part of the Fluid Systems 1st stage feed, 2nd stage reject in the Fluid Systems trench 1. It is located inside the DSB. It is specified to have a 3/8" wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria.

No radiographs were taken for this pipe segment.

CH-22

CH-22 is a 24" diameter pipe that is part of the Fluid Systems 1st stage feed, 2nd stage reject in the Fluid Systems trench 2. It is located inside the DSB. It is specified to have a 3/8" wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria.

APPENDIX G PAGE 5 OF 14

Two circumferential and one longitudinal radiographs were taken. All three failed due to incomplete penetration and porosity.

CH-23

CH-23 is a 36" diameter pipe that is part of the Fluid Systems feed manifold between Fluid Systems trenches 1 and 2. It is located inside the DSB. It is specified to have a 9/16" wall thickness.

The ultrasonic thickness testing revealed that all but one point met the specified thickness criteria. The one point that failed was about 0.0005" less than acceptable.

Two circumferential and one longitudinal radiographs were taken. One circumferential radiograph failed due to lack of fusion, incomplete penetration, and porosity. The other failed due to lack of fusion. The longitudinal radiograph failed due to a linear indication on the base metal surface.

CH-24

CH-24 is a 36" diameter pipe that is part of the Fluid Systems 1st stage feed, 2nd stage reject in the Fluid Systems trench 1. It is located inside the DSB. It is specified to have a 9/16" wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria.

Two circumferential and one longitudinal radiographs were taken. The two circumferential radiographs failed due to incomplete penetration and porosity. The longitudinal radiograph failed due to porosity.

CH-25

CH-25 is a 36'' diameter pipe that is part of the Fluid Systems 1^{st} stage feed, 2^{nd} stage reject in the Fluid Systems trench 2. It is located inside the DSB. It is specified to have a 9/16'' wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria.

One circumferential radiograph was taken. It failed due to incomplete penetration and porosity.

CH-26

CH-26 is a 48" diameter pipe that is part of the Fluid Systems feed in the Pump Manifold between pump numbers 9 and 10. It is located outside, above ground, just east of the DSB. It is specified to have a 3/4" wall thickness.

The ultrasonic thickness testing revealed that no points met the specified thickness criteria. The measured thickness, on average, was about 0.0375" less than acceptable on one side of the expansion joint and 0.01" less than acceptable on the other.

No radiographs were taken for this pipe segment.

APPENDIX G PAGE 6 OF 14

CH-27 is a 48'' diameter pipe that is part of the Fluid Systems feed manifold between the Hydranautics trench and Fluid Systems trench 1. It is located inside the DSB. It is specified to have a 3/4'' wall thickness.

The ultrasonic thickness testing revealed that all but four points met the specified thickness criteria. The four points were about 0.006" less than acceptable.

Two circumferential and one longitudinal radiographs were taken. One circumferential radiograph failed due to incomplete penetration, porosity, and had an inclusion. The other failed due to incomplete penetration and porosity. The longitudinal radiograph met the quality requirements.

CH-28

CH-28 is an 18" diameter pipe and a 24" to 18" diameter reducer that is part of the Fluid Systems 1^{st} stage feed, 2^{nd} stage reject in the Fluid Systems trench 1. It is located inside the DSB. The 18" diameter pipe is specified to have a 5/16" wall thickness while the reducer is specified to have a 3/8" wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria.

Four circumferential and three longitudinal radiographs were taken. Two circumferential radiographs failed due to lack of fusion, incomplete penetration, and porosity. The other two failed due to lack of fusion and porosity. The three longitudinal radiographs failed due to incomplete penetration and porosity.

CH-29

CH-29 is a 12" diameter cast pipe that is part of the Hydranautics 1st stage reject, 2nd stage feed in the Hydranautics trench. It is located inside the DSB. It is specified to have a 1/4" wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria. The measured thickness was, on average, about 0.15" greater than specified. Based on this, it is assumed that a pipe was used that was thicker than specified.

One circumferential radiograph was taken. It failed due to porosity.

CH-31

CH-31 is a 30" diameter pipe that is part of the Fluid Systems reject to energy recovery just west of the clearwells. It is located outside, above ground, just east of the DSB. It is specified to have a 3/8" wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria. The measured thickness was, on average, about 0.025" greater than specified. Based on this, it is assumed that a pipe was used that was thicker than specified.

Two circumferential and one longitudinal radiographs were taken. One circumferential radiograph met the quality requirements and the other failed due to incomplete penetration. The longitudinal radiograph failed due to lack of fusion and porosity.

APPENDIX G PAGE 7 OF 14

CH-32 is a 30'' diameter pipe that is part of the Fluid Systems reject to energy recovery just west of the clearwells. It is located outside, below ground, just east of the DSB. It is specified to have a 3/8'' wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria. Ten of the twenty four test points were thicker than specified by about 0.003". The reason for the greater thickness is unknown.

Two circumferential and two longitudinal radiographs were taken. One circumferential radiograph met the quality requirements, the other failed due to lack of fusion. One longitudinal radiograph failed due to incomplete penetration, the other failed due to incomplete penetration and porosity.

CH-33

CH-33 is a 16" diameter pipe that is part of the Hydranautics reject to energy recovery just west of the clearwells. It is located outside, below ground, just east of the DSB. It is specified to have a 1/4" wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria.

One circumferential and one longitudinal radiographs were taken. The circumferential radiograph failed due to porosity and the longitudinal radiograph failed due to incomplete penetration.

CH-33B

CH-33B is a 16" diameter pipe that is part of the Hydranautics reject to energy recovery just west of the clearwells. It is located outside, above ground, just east of the DSB. It is specified to have a 1/4" wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria.

One circumferential and one longitudinal radiographs were taken. The circumferential radiograph failed due to lack of fusion, incomplete penetration, and porosity and the longitudinal radiograph failed due to lack of fusion.

CH-37

CH-42 is a 72" diameter header pipe at the Intake Pumping Plant and is buried and encased in concrete. The pipe and dished head were specified to have 5/16" minimum wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria. The thickness of the pipe was, on average, about 0.016'' greater than specified minimum which suggests that 3/8'' (0.375'') plate was used. The dished head had an average thickness of 0.400'' which also exceeded the minimum required thickness.

All circumferential welds in this pipeline had cracks visible to the unaided eye, and therefore failed the quality requirement. The longitudinal welds had some areas of light

APPENDIX G PAGE 8 OF 14

corrosion but no visible evidence of weld flaws. Radiography was not feasible because the pipe is buried and encased in concrete.

CH-38

CH-38 is a 42" diameter pipe that is part of the product line in between Fluid System trenches 1 and 2. It is located inside the DSB. It is specified to have a 1/4" wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria. All but three points were thicker than specified by about 0.006".

Two circumferential and one longitudinal radiographs were taken. The circumferential radiographs both failed due to incomplete penetration and porosity. The longitudinal radiograph failed due to lack of fusion.

CH-39A

CH-39A is a 54" diameter pipe inside of Solids Contact Reactor (SCR) valve drop box 3 located just south of SCR 3. It is specified to have 1/4" wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria.

Four longitudinal radiographs were taken. Two met the quality requirements. One failed due to lack of fusion and the last one failed due to incomplete penetration and porosity.

CH-39B

CH-39B is a 54'' diameter pipe inside the filter building that is connected to CH-39A. It consists of a mitered 90-degree upward bend and is partially encased in concrete where it passes through the wall of the filter building and the floor of the inlet channel above it. The pipe is specified to have 1/4'' wall thickness.

Ultrasonic thickness testing was not performed for this section of pipe except to confirm that it was 1/4" wall. The other end of the pipeline was CH-39A which was tested and met the specified thickness criteria.

Four circumferential radiographs were taken. All four failed due to cracks, lack of fusion, incomplete penetration, and porosity. Visual examination showed that prior repairs had been made on the welded mitered joints of this pipe. Some joints had Wek-o-Seals, others had interior overlays of 1/4" by 4" aluminum bronze plate fillet-welded to the base metal.

CH-40

CH-40 is a 3.5'' diameter cast pipe that is part of the Fluid Systems low pressure reject between Fluid Systems control block 37 and 38 in the Fluid Systems trench 1. It is specified to have 1/4'' wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria. The measured thickness was, on average, about 0.125" greater than specified. Based on this it is assumed that plate was used that was thicker than specified.

Two circumferential radiographs were taken. One met the quality requirements. The other failed due to porosity.

APPENDIX G PAGE 9 OF 14

CH-41 is a 3.5'' diameter cast pipe that is part of the Fluid Systems low pressure reject connected to Fluid Systems control block 69 in the Fluid Systems trench 2. It is specified to have a 1/4'' wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria. The measured thickness was, on average, about 0.14" greater than specified. Based on this it is assumed that pipe was used that was thicker than specified.

One circumferential radiograph was taken. It failed due to lack of fusion.

CH-42

CH-42 is a 30" diameter pipe connected to pump 4 in the Intake Pumping Plant. It is located above ground, northeast of the DSB. It is specified to have a 1/4" wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria. One of the bands was, on average, about 0.016" greater than specified. Based on this it is assumed that, for this band, pipe was used that was thicker than specified.

Four circumferential and two longitudinal radiographs were taken. One of the circumferential and one of the longitudinal radiographs met the quality requirements. Two circumferential radiographs failed due to incomplete penetration and porosity. The other circumferential radiograph failed due to a crack and incomplete penetration. The other longitudinal radiograph failed due to incomplete penetration.

CH-43

CH-43 is a 30" diameter pipe in the vault just north of SCR 3. It is specified to have a 1/4" wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria.

One longitudinal radiograph was taken. It failed due to incomplete penetration and porosity.

CH-44

CH-44 is a 24" diameter pipe that is part of the Fluid Systems product line in the Fluid Systems trench 2. It is located inside the DSB. It is specified to have a 1/4" wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria.

Two longitudinal radiographs were taken. Both failed due to lack of fusion.

CH-45

CH-45 is a 14" diameter wrought pipe, a 14" to 10" diameter wrought reducer, and a 10" diameter cast pipe that is part of the Hydranautics product line in the Hydranautics trench. It is located in the DSB. All portions are specified to have a 1/4" wall thickness.

The ultrasonic thickness testing was done only on the 14" diameter section and revealed that all points met the specified thickness criteria.

APPENDIX G PAGE 10 OF 14

Three circumferential radiographs were taken on the cast portion. One failed due to a crack. One failed due to lack of fusion and the last one failed due to incomplete penetration.

The interior of the 14" pipe was examined at the point where a 10" vertical tee was present. The 10" pipe had a blind cover held in place with a Victaulic coupling. The blind was temporarily removed for access. Inspection showed that corrosion was minor, although corrosion products were relatively thick on some parts of the circumferential welds.

The interior of the horizontal 10" pipe was examined after removal of the valve at the end of the pipe. Inspection showed that the pipe was crusted with deposits, and corrosion products were evident at the circumferential welds.

CH-46A

CH-46A is an 8'' diameter cast pipe that is part of the Hydranautics product line in the Hydranautics trench. It is located inside the DSB. It is specified to have a 1/4'' wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria. The measured thickness was, on average, about 0.15" greater than specified. Based on this it is assumed that pipe was used that was thicker than specified.

One circumferential radiograph was taken. It failed due to incomplete penetration.

CH-46B

CH-46B is a 10" diameter tee that is part of the Hydranautics product line in the Hydranautics trench. It is located inside the DSB. It is specified to have a 5/16" wall thickness.

The ultrasonic thickness testing revealed that no points met the specified thickness criteria. The measured thickness was, on average, about 0.027" less than acceptable.

Two radiographs were taken. They both failed due to porosity.

CH-47

CH-47 is a 30" to 24" diameter reducer and 24" diameter pipe that is part of the Fluid Systems product line in Fluid Systems trench 1. It is located inside the DSB. It is specified to have a 1/4" wall thickness.

The ultrasonic thickness testing was done on the 24" diameter pipe and revealed that all points met the specified thickness criteria. All but three points were thicker than specified. It is not obvious that a thicker than specified pipe was used.

Three circumferential and two longitudinal radiographs were taken of the reducer. All three circumferential radiographs failed due to lack of fusion, incomplete penetration, and porosity. Two of them also had cracks. Both longitudinal radiographs failed due to incomplete penetration. One also failed due to porosity.

CH-48

CH-48 is an 18" to 14" diameter reducer, and short sections of pipe on either side, that is part of the Hydranautics 1st stage reject, 2nd stage feed in the Hydranautics trench. It is

APPENDIX G PAGE 11 OF 14

located inside the DSB. The 18'' diameter pipe and the reducer are specified to have a 5/16'' wall thickness. The 14'' diameter pipe is specified to have a 1/4'' wall thickness.

The ultrasonic thickness testing revealed that all points on the 14'' diameter pipe met the specified thickness criteria while no points on the 18'' diameter pipe met the specified thickness criteria. It is unknown which data points are for which pipe diameter, but all points are thicker than 1/4'' and less than 5/16''.

Two circumferential and one longitudinal radiographs were taken of the reducer. All failed due to incomplete penetration. The longitudinal radiograph also failed due to porosity. One circumferential radiograph also failed due to porosity and lack of fill.

CH-49

CH-49 is a 30" diameter pipe that is part of the Hydranautics product line in the Hydranautics trench. It is located inside the DSB. It is specified to have a 1/4" wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria.

Two circumferential and two longitudinal radiographs were taken. One circumferential and one longitudinal radiograph failed due to incomplete penetration. The other circumferential radiograph failed due to lack of fusion. The other longitudinal radiograph met the quality requirements.

CH-50

CH-50 is a 16" diameter pipe that is part of the Hydranautics low pressure reject in the Hydranautics trench. It is located inside the DSB. It is specified to have 1/4" wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria.

One circumferential and one longitudinal radiographs were taken. Both failed due to incomplete penetration and porosity.

This pipe section was temporarily removed for inspection of the interior. Inspection showed very shallow corrosion pitting at and below the water line, which was near the centerline of the pipe. No pitting or defects were observed on the weld, which had a slight reddish tint. An adjacent 3" cast pipe was also observed on the interior and had no evidence of corrosion on the metal surface; the casting marks were still visible on the surface of the metal.

CH-51

CH-51 is a 54" diameter pipe that is part of the product line in the collection trench near Fluid Systems trench 2. It is located inside the DSB. It is specified to have a 1/4" wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria. Both bands were on the same piece of pipe yet one band had greater thickness values than the other.

APPENDIX G PAGE 12 OF 14

Two circumferential and one longitudinal radiographs were taken. The longitudinal and one circumferential radiographs failed due to lack of fusion. The other circumferential radiograph failed due to incomplete penetration and porosity.

It was planned to enter and examine this section of pipeline by entering it from the air break just outside the DSB. However, the air break piping was found full of silt and the pipe was inaccessible. This section of pipeline will be entered and examined after the silt has been removed.

CH-52

CH-52 is a 36" diameter pipe that is part of Fluid Systems product line in the Fluid Systems trench 2. It is located inside the DSB. It is specified to have a 1/4" wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria. The measured thickness was, on average, about 0.017" greater than specified. Based on this it is assumed that pipe was used that was thicker than specified.

Two circumferential and one longitudinal radiographs were taken. One circumferential radiograph met the quality requirements. The other failed due to a crack and lack of fusion. The longitudinal radiograph failed due to lack of fusion.

CH-53

CH-53 is a 20" diameter pipe and a 24" to 20" reducer that is part of the Fluid Systems 1st stage reject, 2^{nd} stage feed in the Fluid Systems trench 2. It is located inside the DSB. The 20" diameter pipe is specified to have a 5/16" wall thickness.

The ultrasonic thickness testing was done on the 20" diameter pipe and revealed that all points met the specified thickness criteria.

One circumferential and one longitudinal radiographs were taken. The circumferential radiograph failed due to lack of fusion and incomplete penetration. The longitudinal radiograph failed due to incomplete penetration and porosity.

CH-54

CH-54 is a 30" diameter pipe that is part of the Hydranautics product line in the collection trench. It is located inside the DSB. It is specified to have a 1/4" wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria.

Two circumferential and one longitudinal radiographs were taken. All failed due to lack of fusion, incomplete penetration, and porosity.

CH-55

CH-55 is a 30" diameter pipe that is part of the Fluid Systems reject to energy recovery in the collection trench. It is located inside the DSB. It is specified to have a 7/16" wall thickness.

The ultrasonic thickness testing revealed that all but two points met the specified thickness criteria. The two points were about 0.004" less than acceptable.

APPENDIX G PAGE 13 OF 14

Two circumferential and one longitudinal radiographs were taken. All failed due to incomplete penetration and porosity.

CH-56

CH-56 is a 16" diameter pipe that is part of the Fluid Systems low pressure reject in the collection trench. It is located inside the DSB. It is specified to have a 1/4" wall thickness.

The ultrasonic thickness testing revealed that all points met the specified thickness criteria.

One circumferential and one longitudinal radiographs were taken. Both failed due to lack of fusion, incomplete penetration, and porosity.

CH-57

CH-57 is a 30" diameter pipe connected to pump 2 in the Intake Pumping Plant. It is located above ground, northeast of the DSB. It is specified to have a 1/4" wall thickness.

No ultrasonic thickness testing was performed for this section of pipe, because the thickness of a parallel pipe was measured (see CH-42).

Two circumferential and one longitudinal radiographs were taken. Both circumferential radiographs failed due to incomplete penetration and porosity. The longitudinal radiograph met the quality requirements.

APPENDIX G PAGE 14 OF 14

Appendix I Table 341.3.2 Acceptance Criteria for Welds and Examination Methods for Evaluating Weld Imperfections

Table 341.3.2 Acceptance Criteria for Welds and Examination Methods for Evaluating Weld Imperfections

Criteria (A to M) for Types of Welds and for Service Conditions [Note (1)]							Exa	minatio	n Meth	ods				
	nd Categor Service vpe of Weld			Cyclic Con		(Category D	Fluid Servic						
Girth, Miter Groove & Branch Connection [Note (4)]	Longitudinal Groove [Note (2)]	Fillet [Note (3)]	Girth, Miter Groove & Branch Connection [Note (4)]	Longitudinal Groove [Note (2)]	Fillet [Note (3)]	Girth and Miter Groove	Longitudinal Groove [Note (2)]	Fillet [Note (3)]	Branch Connection [Note (4)]	Weld Imperfection	Visual	Radiography	Magnetic Particle	Liquid Penetrant
A	Α	Α	Α	Α	Α	Α	Α	Α	Α	Crack	/	1	1	1
Α	Α	Α	Α	Α	Α	С	A	N/A	Α	Lack of fusion	1	1		
В	Α	N/A	Α	Α	N/A	С	A	N/A	В	Incomplete penetration	1	1		
E	E	N/A	D	D	N/A	N/A	N/A	N/A	N/A	Internal porosity		1		
G	G	N/A	F	F	N/A	N/A	N/A	N/A	N/A	Internal slag inclusion, tungsten inclusion, or elongated indication		/		
Н	Α	н	Α	Α	Α	1	Α	н	н	Undercutting		/		
Α	A	A	A	A	A	A	A	A	A	Surface porosity or exposed slag inclusion [Note (5)]	/			
N/A	N/A	N/A	J	J	J	N/A	N/A	N/A	N/A	Surface finish	1			
K	К	N/A	K	K	N/A	К	К	N/A	к	Concave root surface (suck up)	1	/		
L	L	L	L	L	L	м	м	м	м	Weld reinforcement or internal protrusion	/			

GENERAL NOTES:

⁽a) Weld imperfections are evaluated by one or more of the types of examination methods given, as specified in paras. 341.4.1, 341.4.2, 341.4.3, and M341.4, or by the engineering design.

⁽b) "N/A" indicates the Code does not establish acceptance criteria or does not require evaluation of this kind of imperfection for this type of weld.

⁽c) Check (/) indicates examination method generally used for evaluating this kind of weld imperfection.

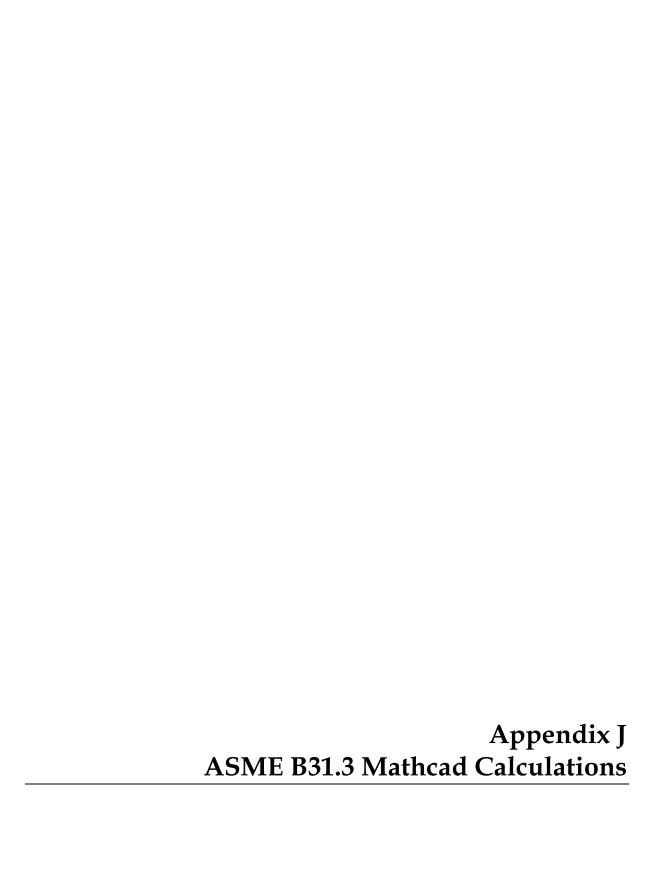
⁽d) Ellipsis (...) indicates examination method not generally used for evaluating this kind of weld imperfection.

Criterion Value Notes for Table 341.3.2

	Criterion		
Symbol	Measure	Acceptable Value Limits [Note (6)]	
Α	Extent of imperfection	Zero (no evident imperfection)	
В	Depth of incomplete penetration Cumulative length of incomplete penetration	\leq 1 mm ($^1/_{32}$ in.) and \leq 0.2 $\overline{T}_{\rm w}$ \leq 38 mm (1.5 in.) in any 150 mm (6 in.) weld length	
С	Depth of lack of fusion and incomplete penetration Cumulative length of lack of fusion and incomplete penetration [Note (7)]	$\leq 0.2 \overline{T}_{w}$ ≤ 38 mm (1.5 in.) in any 150 mm (6 in.) weld length	
D	Size and distribution of internal porosity	See BPV Code, Section VIII, Division 1, Appendix 4	
E	Size and distribution of internal porosity	For $\overline{T}_w \le 6$ mm ($^1/_4$ in.), limit is same as D For $\overline{T}_w > 6$ mm ($^1/_4$ in.), limit is 1.5 \times D	
F	Slag inclusion, tungsten inclusion, or elongated indication Individual length Individual width Cumulative length	$\leq \overline{T}_w/3$ $\leq 2.5 \text{ mm } (\sqrt[3]{32} \text{ in.}) \text{ and } \leq \overline{T}_w/3$ $\leq \overline{T}_w \text{ in any } 12\overline{T}_w \text{ weld length}$	
G	Slag inclusion, tungsten inclusion, or elongated indication Individual length Individual width Cumulative length	$\leq 2\overline{T}_w$ $\leq 3 \text{ mm } (\frac{1}{8} \text{ in.}) \text{ and } \leq \overline{T}_w/2$ $\leq 4\overline{T}_w \text{ in any 150 mm (6 in.) weld length}$	
Н	Depth of undercut	\leq 1 mm ($\frac{1}{32}$ in.) and $\leq \overline{T}_w/4$	
1	Depth of undercut	$\leq 1.5 \text{ mm } (\frac{1}{16} \text{ in.}) \text{ and } \leq [\overline{T}_w/4 \text{ or } 1 \text{ mm } (\frac{1}{32} \text{ in.})]$	
J	Surface roughness	≤ 500 min. <i>Ra</i> per ASME B46.1	
K	Depth of root surface concavity	Total joint thickness, incl. weld reinf., $\geq \overline{T}_{w}$	
L	Height of reinforcement or internal protrusion [Note (8)] in	For \overline{T}_{w} , mm (in.)	Height, mm (in.)
	any plane through the weld shall be within limits of the applicable height value in the tabulation at right, except as provided in Note (9). Weld metal shall merge smoothly into the component surfaces.	$\leq 6 \ (^{1}/_{4})$ > $6 \ (^{1}/_{4})$, $\leq 13 \ (^{1}/_{2})$ > $13 \ (^{1}/_{2})$, $\leq 25 \ (1)$ > $25 \ (1)$	$\leq 1.5 (^{1}/_{16})$ $\leq 3 (^{1}/_{8})$ $\leq 4 (^{5}/_{32})$ $\leq 5 (^{3}/_{16})$
М	Height of reinforcement or internal protrusion [Note (8)] as described in L. Note (9) does not apply.	Limit is twice the value applicable for L above	

Notes follow on next page

Table 341.3.2 Acceptance Criteria for Welds and Examination Methods for Evaluating Weld Imperfections (Cont'd)


NOTES:

- Criteria given are for required examination. More stringent criteria may be specified in the engineering design. See also paras. 341.5 and 341.5.3.
- (2) Longitudinal groove weld includes straight and spiral seam. Criteria are not intended to apply to welds made in accordance with a standard listed in Table A-1 or Table 326.1. Alternative Leak Test requires examination of these welds; see para. 345.9.
- (3) Fillet weld includes socket and seal welds, and attachment welds for slip-on flanges, branch reinforcement, and supports.
- (4) Branch connection weld includes pressure containing welds in branches and fabricated laps.
- (5) These imperfections are evaluated only for welds ≤ 5 mm ($\frac{3}{16}$ in.) in nominal thickness.
- (6) Where two limiting values are separated by "and," the lesser of the values determines acceptance. Where two sets of values are separated by "or," the larger value is acceptable. \overline{T}_w is the nominal wall thickness of the thinner of two components joined by a butt weld.
- (7) Tightly butted unfused root faces are unacceptable.
- (8) For groove welds, height is the lesser of the measurements made from the surfaces of the adjacent components; both reinforcement and internal protrusion are permitted in a weld. For fillet welds, height is measured from the theoretical throat, Fig. 328.5.2A; internal protrusion does not apply.

3

- (9) For welds in aluminum alloy only, internal protrusion shall not exceed the following values:
 - (a) for thickness $\leq 2 \text{ mm } (\frac{5}{64} \text{ in.})$: 1.5 mm $(\frac{1}{16} \text{ in.})$;
 - (b) for thickness > 2 mm and \leq 6 mm ($\frac{1}{4}$ in.): 2.5 mm ($\frac{3}{32}$ in.).

For external reinforcement and for greater thicknesses, see the tabulation for Symbol L.

C. Sundberg 10/9/2006 9:02 AM Yuma2.xmcd

Description Yuma Desalting Plant Straight Pipe, Tees and Mitered Bends

Define Units

References

Input Table is same as Excel Table attached to Rod's 9/26/05 E-mail...17 columns & 33 rows

	1	2	3	4	5
1	0	0	0	0	0
2	"Nominal Diameter"	"Specified Diameter"	"Indicated OD"	"Indicated Wall"	"Decimal Wall"
3	0	0	0	0	0
4	2	"2-7/8 OD"	2.875	0.188	0.188
5	3	"3-1/2 OD"	3.5	0.25	0.25
6	4	"4-1/2 OD"	4.5	0.188	0.188
7	6	"6-5/8 OD"	6.625	0.25	0.25
8	8	"8-5/8 OD"	8.625	0.25	0.25
9	10	"10-3/4 OD"	10.75	0.25	0.25
10	12	"12-3/4 OD"	12.75	0.25	0.25
11	12	"12-3/4 OD"	12.75	0.313	0.313
12	14	"14 OD"	14	0.25	0.25
13	16	"16 OD"	16	0.25	0.25
14	18	"18 OD"	18	0.25	0.25
15	18	"18 OD"	18	0.313	0.313
16	18	"18 OD"	18	0.438	0.438
17	20	"20 OD"	20	0.25	0.25

Derivations

Straight Pipe Stress Derivation

General Input

Y := .4 Table 304.1.1 Values of Coefficients Y for $t < \frac{D}{6}$other ductile $\frac{W}{W} = 1.0$ reduction factor for

Weld joint strength elevated temperatures

metals
c = varies corrosion allowance

E = varies

Pipe Quality

Factor per Table A-1A or A-1B

References

Straight Pipe Calculations

Undertolerance Published Wall Overtolerance

n = 1.00

No Corrosion Allowance 1/16" Corrosion Allowance 1/8" Corrosion Allowance

$$nn = 1.00 \qquad c := \begin{pmatrix} 0 \\ \frac{1}{16} \\ \frac{1}{8} \end{pmatrix}_{nn} \quad in \quad c = 0.00 \text{ in}$$

► ASME B31.3 Prgm-

▼ Straight Pipe StressTables

Straight Pipe Stress Summary per ASME B31.3; P := 450 psi and E := .60 and c = 0.00 in

Design Pressure, psi	Pipe OD, in	Pipe ID, in	Pipe wall Thk., in	Calculated Hoop Stress, psi	B31.3 Equation	Allow. Stress, ksi	% of Allow Stress	Is This Pipe in Plant?	Is Allow. Stress per B31.3?	ASTM B608 Tolerance, in
450	6.625	6.125	0.240	10052	Eq. 3a	16.3	62	yes	OK	0.0100
450	6.625	6.125	0.240	10020	Eq. 3b	16.3	61	yes	ок	0.0100
450	8.625	8.125	0.240	13 177	Eq. 3a	16.3	81	yes	ок	0.0100
450	8.625	8.125	0.240	13 14 5	Eq. 3b	16.3	81	yes	ок	0.0100
450	10.750	10.250	0.240	16497	Eq. 3a	16.3	10 1	yes	exceeds B31.3	0.0100
450	10.750	10.250	0.240	16466	Eq. 3b	16.3	10 1	yes	exceeds B31.3	0.0100
450	12.750	12.250	0.240	19622	Eq. 3a	16.3	12 0	yes	exceeds B31.3	0.0100
450	12.750	12.250	0.240	19 59 1	Eq. 3b	16.3	12 0	yes	exceeds B31.3	0.0100
450	12.750	12.125	0.303	15506	Eq. 3a	16.3	95	yes	ок	0.0100
450	12.750	12.125	0.303	15481	Eq. 3b	16.3	95	yes	ок	0.0100
450	16.000	15.500	0.234	25341	Eq. 3a	20	127	yes	exceeds B31.3	0.0160
450	16.000	15.500	0.234	25290	Eq. 3b	20	12 6	yes	exceeds B31.3	0.0160
450	18.000	17.375	0.290	23016	Eq. 3a	20	115	yes	exceeds B31.3	0.0230
450	18.000	17.375	0.290	22956	Eq. 3b	20	115	yes	exceeds B31.3	0.0230
450	18.000	17.125	0.415	15985	Eq. 3a	20	80	yes	ок	0.0230
450	18.000	17.125	0.415	15943	Eq. 3b	20	80	yes	ок	0.0230
450	24.000	23.250	0.352	25268	Eq. 3a	20	126	yes	exceeds B31.3	0.0230
450	24.000	23.250	0.352	2 5 2 1 9	Eq. 3b	20	126	yes	exceeds B31.3	0.0230
450	30.750	30.000	0.352	32459	Eq. 3a	20	16 2	yes	exceeds B31.3	0.0230
450	30.750	30.000	0.352	32410	Eq. 3b	20	16 2	yes	exceeds B31.3	0.0230
450	30.875	30.000	0 . 4 15	27633	Eq. 3a	20	13 8	yes	exceeds B31.3	0.0230
450	30.875	30.000	0 . 4 15	27591	Eq. 3b	20	13 8	yes	exceeds B31.3	0.0230
4 5 0	37.125	36.000	0.534	25795	Eq. 3a	20	129	yes	exceeds B31.3	0.0290
4 5 0	37.125	36.000	0.534	25755	Eq. 3b	20	129	yes	exceeds B31.3	0.0290
4 5 0	49.500	48.000	0.721	25445	Eq. 3a	20	12 7	yes	exceeds B31.3	0.0290
450	49.500	48.000	0.721	2 5 4 1 5	Eq. 3b	20	127	yes	exceeds B31.3	0.0290

Straight Pipe Stress Summary per ASME B31.3; P.:= 425 psi and E:= .60 and c = 0.00 in

Design Pressure, psi	Pipe OD, in	Pipe ID, in	Pipe wall Thk., in	Calculated Hoop Stress, psi	B31.3 Equation	Allow. Stress, ksi	% of Allow Stress	Is This Pipe in Plant?	Is Allow. Stress per B31.3?	ASTM B608 Tolerance, in
425	6.625	6.125	0.240	9493	Eq. 3a	16.3	58	yes	OK	0.0100
425	6.625	6.125	0.240	9464	Eq. 3b	16.3	58	yes	ок	0.0100
425	8.625	8.125	0.240	12 4 4 5	Eq. 3a	16.3	76	yes	ок	0.0100
425	8.625	8.125	0.240	12 4 15	Eq. 3b	16.3	76	yes	ок	0.0100
425	10.750	10.250	0.240	15580	Eq. 3a	16.3	96	yes	ок	0.0100
425	10.750	10.250	0.240	15551	Eq. 3b	16.3	95	yes	ок	0.0100
425	12.750	12.250	0.240	18 5 3 2	Eq. 3a	16.3	114	yes	exceeds B31.3	0.0100
425	12.750	12.250	0.240	18 5 0 2	Eq. 3b	16.3	114	yes	exceeds B31.3	0.0100
425	14.000	13.500	0.234	20906	Eq. 3a	20	105	yes	exceeds B31.3	0.0160
425	14.000	13.500	0.234	20858	Eq. 3b	20	10 4	yes	exceeds B31.3	0.0160
425	16.000	15.500	0.234	23933	Eq. 3a	20	12 0	yes	exceeds B31.3	0.0160
425	16.000	15.500	0.234	23885	Eq. 3b	20	119	yes	exceeds B31.3	0.0160
425	18.000	17.500	0.234	26960	Eq. 3a	20	13 5	yes	exceeds B31.3	0.0160
425	18.000	17.500	0.234	26912	Eq. 3b	20	13 5	yes	exceeds B31.3	0.0160
425	18.000	17.375	0.290	21737	Eq. 3a	20	109	yes	exceeds B31.3	0.0230
425	18.000	17.375	0.290	21681	Eq. 3b	20	108	yes	exceeds B31.3	0.0230
425	18.000	17.125	0.415	15097	Eq. 3a	20	75	yes	ок	0.0230
425	18.000	17.125	0.415	150 57	Eq. 3b	20	75	yes	ок	0.0230
425	20.000	19.375	0.290	2 4 18 4	Eq. 3a	20	12 1	yes	exceeds B31.3	0.0230
425	20.000	19.375	0.290	24128	Eq. 3b	20	121	yes	exceeds B31.3	0.0230
425	24.000	23.250	0.352	23864	Eq. 3a	20	119	yes	exceeds B31.3	0.0230
425	24.000	23.250	0.352	23818	Eq. 3b	20	119	yes	exceeds B31.3	0.0230
425	30.750	30.000	0.352	30656	Eq. 3a	20	153	yes	exceeds B31.3	0.0230
425	30.750	30.000	0.352	30610	Eq. 3b	20	153	yes	exceeds B31.3	0.0230
425	30.875	30.000	0.415	26098	Eq. 3a	20	13 0	yes	exceeds B31.3	0.0230
425	30.875	30.000	0.415	26058	Eq. 3b	20	13 0	yes	exceeds B31.3	0.0230

Straight Pipe Stress Summary per ASME B31.3; P:= 150 psi and E:= .60 and c = 0.00 in

Design Pressure, psi	Pipe OD, in	Pipe ID, in	Pipe wall Thk., in	Calculated Hoop Stress, psi	B31.3 Equation	Allow. Stress, ksi	% of Allow Stress	Is This Pipe in Plant?	Is Allow. Stress per B31.3?	ASTM B608 Tolerance, in
150	2.875	2.500	0.178	1925	Eq. 3a	16.3	12	yes	OK	0.0100
150	2.875	2.500	0.178	19 11	Eq. 3b	16.3	12	yes	ок	0.0100
150	3.500	3.000	0.240	1723	Eq. 3a	16.3	11	yes	OK	0.0100
150	3.500	3.000	0.240	1713	Eq. 3b	16.3	11	yes	ок	0.0100
150	4.500	4.125	0.178	3069	Eq. 3a	16.3	19	yes	ок	0.0100
150	4.500	4.125	0.178	3055	Eq. 3b	16.3	19	yes	ок	0.0100
150	6.625	6.125	0.240	3351	Eq. 3a	16.3	21	yes	ок	0.0100
150	6.625	6.125	0.240	3340	Eq. 3b	16.3	20	yes	ок	0.0100
150	8.625	8.125	0.240	4392	Eq. 3a	16.3	27	yes	ок	0.0100
150	8.625	8.125	0.240	4382	Eq. 3b	16.3	27	yes	ок	0.0100
150	10.750	10.250	0.240	5499	Eq. 3a	16.3	34	yes	ок	0.0100
150	10.750	10.250	0.240	5489	Eq. 3b	16.3	34	yes	ок	0.0100
150	16.000	15.500	0.234	8447	Eq. 3a	20	42	yes	ок	0.0160
150	16.000	15.500	0.234	8430	Eq. 3b	20	42	yes	ок	0.0160
150	24.000	23.500	0.234	12721	Eq. 3a	20	64	yes	ок	0.0160
150	24.000	23.500	0.234	12703	Eq. 3b	20	64	yes	ок	0.0160
150	42.500	42.000	0.234	22603	Eq. 3a	20	113	yes	exceeds B31.3	0.0160
150	42.500	42.000	0.234	22586	Eq. 3b	20	113	yes	exceeds B31.3	0.0160
150	60.500	60.000	0.234	3 2 2 18	Eq. 3a	20	16 1	yes	exceeds B31.3	0.0160
150	60.500	60.000	0.234	32201	Eq. 3b	20	16 1	yes	exceeds B31.3	0.0160

Straight Pipe Stress Summary per ASME B31.3; P:= 25 psi and E:= .60 and c = 0.00 in

Design Pressure, psi	Pipe OD, in	Pipe ID, in	Pipe wall Thk., in	Calculated Hoop Stress, psi	B31.3 Equation	Allow. Stress, ksi	% of Allow Stress	Is This Pipe in Plant?	Is Allow. Stress per B31.3?	ASTM B608 Tolerance, in
25	6.625	6.125	0.240	558	Eq. 3a	16.3	3	yes	OK	0.0100
25	6.625	6.125	0.240	557	Eq. 3b	16.3	3	yes	oĸ	0.0100
25	8.625	8.125	0.240	732	Eq. 3a	16.3	4	yes	oĸ	0.0100
25	8.625	8.125	0.240	730	Eq. 3b	16.3	4	yes	ok	0.0100
25	10.750	10.250	0.240	9 16	Eq. 3a	16.3	6	yes	oĸ	0.0100
25	10.750	10.250	0.240	9 15	Eq. 3b	16.3	6	yes	oĸ	0.0100
25	14.000	13.500	0.234	1230	Eq. 3a	20	6	yes	oĸ	0.0160
25	14.000	13.500	0.234	1227	Eq. 3b	20	6	yes	oĸ	0.0160
25	16.000	15.500	0.234	1408	Eq. 3a	20	7	yes	oĸ	0.0160
25	16.000	15.500	0.234	1405	Eq. 3b	20	7	yes	ok	0.0160
2.5	18.000	17.500	0.234	1586	Eq. 3a	20	8	yes	oĸ	0.0160
25	18.000	17.500	0.234	1583	Eq. 3b	20	8	yes	oĸ	0.0160
25	20.000	19.500	0.234	1764	Eq. 3a	20	9	yes	oĸ	0.0160
25	20.000	19.500	0.234	1761	Eq. 3b	20	9	yes	oĸ	0.0160
25	24.000	23.500	0.234	2 12 0	Eq. 3a	20	11	yes	oĸ	0.0160
25	24.000	23.500	0.234	2 117	Eq. 3b	20	11	yes	oĸ	0.0160
25	30.500	30.000	0.234	2699	Eq. 3a	20	13	yes	oĸ	0.0160
25	30.500	30.000	0.234	2696	Eq. 3b	20	13	yes	oĸ	0.0160
25	30.750	30.000	0.352	1803	Eq. 3a	20	9	yes	oĸ	0.0230
25	30.750	30.000	0.352	18 0 1	Eq. 3b	20	9	yes	oĸ	0.0230
25	36.500	36.000	0.234	3233	Eq. 3a	20	16	yes	oĸ	0.0160
25	36.500	36.000	0.234	3230	Eq. 3b	20	16	yes	ок	0.0160
25	42.500	42.000	0.234	3767	Eq. 3a	20	19	yes	ок	0.0160
25	42.500	42.000	0.234	3764	Eq. 3b	20	19	yes	ок	0.0160
25	48.500	48.000	0.234	4301	Eq. 3a	20	22	yes	ок	0.0160
25	48.500	48.000	0.234	4299	Eq. 3b	20	21	yes	ок	0.0160

▲ Straight Pipe StressTables

Straight Pipe Permissible Pressure Summary Table 1, E=.60

		Pipe Wall	Pipe Wall,	Permissab	le Design Pre	ssure, psi		Plant Service	Piping Status	
Line Number	Pipe OD, in	Nominal Thk., in	Adjusted for Tolerance, in	Wel	ld Quality Fac	tor	Weld Quality Factor, E=.60			
		Tilk., III	Toterance, in	0.60	0.80	1.00	450	425	150	25
1	2.875	0.1875	0.1775	1270	1694	2 117	0	0	OK	0
2	3.5	0.25	0.24	14 19	1892	2365	0	0	OK	0
3	4.5	0.1875	0.1775	797	1062	1328	0	0	OK	0
4	6.625	0.25	0.24	730	973	12 16	ок	OK	OK	ОК
5	8.625	0.25	0.24	557	742	928	ок	OK	OK	OK
6	10.75	0.25	0.24	445	593	741	NG	OK	OK	OK
7	12.75	0.25	0.24	374	498	623	NG	NG	0	0
8	12.75	0.3125	0.3025	473	631	788	ок	0	0	0
9	14	0.25	0.234	407	542	678	0	NG	0	OK
10	16	0.25	0.234	355	474	592	NG	NG	OK	ОК
11	18	0.25	0.234	3 15	420	525	0	NG	0	ОК
12	18	0.3125	0.2895	391	521	652	NG	NG	0	0
13	18	0.4375	0.4145	563	751	938	ок	OK	0	0
14	20	0.25	0.234	283	378	472	0	0	0	ОК
15	20	0.3125	0.2895	351	469	586	0	NG	0	0
16	24	0.25	0.234	236	3 14	393	0	0	OK	ок
17	24	0.375	0.352	3 5 6	475	594	NG	NG	0	0
18	30.5	0.25	0.234	18 5	247	309	0	0	0	ок
19	30.75	0.375	0.352	277	370	462	NG	NG	0	ок
20	30.875	0.4375	0.4145	326	434	543	NG	NG	0	0
21	36.5	0.25	0.234	155	206	258	0	0	0	ок
22	37.125	0.5625	0.5335	349	465	581	NG	0	0	0
23	42.5	0.25	0.234	13 3	177	221	0	0	NG	ок
24	48.5	0.25	0.234	116	155	19 4	0	0	0	ок
25	48.625	0.3125	0.2895	14 4	191	239	0	0	0	ОК
26	49.5	0.75	0.721	354	472	589	NG	0	0	0
27	54.5	0.25	0.234	103	13 8	172	0	0	0	ОК
28	60.5	0.25	0.234	93	12 4	155	0	0	NG	0
29	72.625	0.3125	0.2895	96	128	16 0	0	0	0	ок
30	78.625	0.3125	0.2895	89	118	14 8	0	0	0	OK

Straight Pipe Permissible Pressure Summary Table 1, E=.80

		Pipe Wall	Pipe Wall,	Permissab	le Design Pres	sure, psi	Plant Service Piping Status Weld Quality Factor, E=.80				
Line Number	Pipe OD, in	N o minal	Adjusted for	Wel	d Quality Fact	or					
		Thk., in	Tolerance, in	0.60	0.80	1.00	450	425	150	25	
1	2.875	0.1875	0.1775	1270	1694	2 117	0	0	OK	0	
2	3.5	0.25	0.24	14 19	1892	2365	0	0	ок	0	
3	4.5	0.1875	0.1775	797	1062	1328	0	0	OK	0	
4	6.625	0.25	0.24	730	973	12 16	ок	OK	ОК	ок	
5	8.625	0.25	0.24	557	742	928	ок	ок	OK	ок	
6	10.75	0.25	0.24	445	593	741	ок	ок	OK	ок	
7	12.75	0.25	0.24	374	498	623	ок	ок	0	0	
8	12.75	0.3125	0.3025	473	631	788	ок	0	0	0	
9	14	0.25	0.234	407	542	678	0	OK	0	ок	
10	16	0.25	0.234	355	474	592	ок	ок	OK	ок	
11	18	0.25	0.234	3 15	420	525	0	NG	0	ок	
12	18	0.3125	0.2895	391	521	652	ок	OK	0	0	
13	18	0.4375	0.4145	563	751	938	ок	ок	0	0	
14	20	0.25	0.234	283	378	472	0	0	0	ок	
15	20	0.3125	0.2895	351	469	586	0	ок	0	0	
16	24	0.25	0.234	236	3 14	393	0	0	oĸ	ОК	
17	24	0.375	0.352	356	475	594	ок	ок	0	0	
18	30.5	0.25	0.234	18.5	247	309	0	0	0	ок	
19	30.75	0.375	0.352	277	370	462	NG	NG	0	OK	
20	30.875	0.4375	0.4145	326	434	543	NG	ок	0	0	
21	36.5	0.25	0.234	155	206	258	0	0	0	ОК	
22	37.125	0.5625	0.5335	349	465	581	ок	0	0	0	
23	42.5	0.25	0.234	13 3	177	221	0	0	ОК	ОК	
24	48.5	0.25	0.234	116	155	19 4	0	0	0	OK	
2.5	48.625	0.3125	0.2895	14 4	191	239	0	0	0	ОК	
26	49.5	0.75	0.721	354	472	589	ок	0	0	0	
27	54.5	0.25	0.234	103	13 8	172	0	0	0	ок	
28	60.5	0.25	0.234	93	12 4	155	0	0	NG	0	
29	72.625	0.3125	0.2895	96	12 8	16 0	0	0	0	ок	
30	78.625	0.3125	0.2895	89	118	14 8	0	0	0	OK	

Straight Pipe Permissible Pressure Summary Table 1, E=1.0

		Pipe Wall Nominal	Adjusted for	Permissab	le Design Pres	sure, psi		Plant Service	Piping Status	
Line Number	Pipe OD, in			Wel	d Quality Fact	or		Weld Quality Factor, E=1.0		
		Thk., in	Tolerance, in	0.60	0.80	1.00	450	425	150	25
1	2.875	0.1875	0.1775	1270	1694	2 117	0	0	ОК	0
2	3.5	0.25	0.24	14 19	1892	2365	0	0	ок	0
3	4.5	0.1875	0.1775	797	1062	1328	0	0	ок	0
4	6.625	0.25	0.24	730	973	12 16	ок	ок	ок	ок
5	8.625	0.25	0.24	557	742	928	ок	ок	OK	ок
6	10.75	0.25	0.24	445	593	741	ок	ок	ок	ок
7	12.75	0.25	0.24	374	498	623	ок	ок	0	0
8	12.75	0.3125	0.3025	473	631	788	ок	0	0	0
9	14	0.25	0.234	407	542	678	0	ок	0	ОК
10	16	0.25	0.234	3 5 5	474	592	ок	ок	ОК	ок
11	18	0.25	0.234	3 15	420	525	0	ок	0	ок
12	18	0.3125	0.2895	391	521	652	ок	ок	0	0
13	18	0.4375	0.4145	563	751	938	ок	ок	0	0
14	20	0.25	0.234	283	378	472	0	0	0	ок
15	20	0.3125	0.2895	3 5 1	469	586	0	ок	0	0
16	24	0.25	0.234	236	3 14	393	0	0	ок	ок
17	24	0.375	0.352	3 5 6	475	594	ок	ок	0	0
18	30.5	0.25	0.234	185	247	309	0	0	0	ок
19	30.75	0.375	0.352	277	370	462	ок	ок	0	ок
20	30.875	0.4375	0.4145	326	434	543	ок	ок	0	0
21	36.5	0.25	0.234	155	206	258	0	0	0	ок
22	37.125	0.5625	0.5335	349	465	581	ок	0	0	0
23	42.5	0.25	0.234	13 3	177	221	0	0	ОК	ок
24	48.5	0.25	0.234	116	155	19 4	0	0	0	ок
25	48.625	0.3125	0.2895	14 4	19 1	239	0	0	0	ок
26	49.5	0.75	0.721	3 5 4	472	589	ок	0	0	0
27	54.5	0.25	0.234	103	13 8	172	0	0	0	ок
28	60.5	0.25	0.234	93	12 4	155	0	0	ок	0
29	72.625	0.3125	0.2895	96	128	16 0	0	0	0	ок
30	78.625	0.3125	0.2895	89	118	14 8	0	0	0	ок

Tee Calculations

B31.3 Excerpts

Design of 30"x 12" Hydranautics Tee; D-1543

$$D_b := 12.75 \cdot \text{in} \quad \text{branch OD} \quad T_b := \frac{1}{4} \cdot \text{in} \quad d_b := D_b - 2 \cdot \left(T_b\right) \quad d_b = 12.25 \text{ in} \quad \text{branch ID}$$

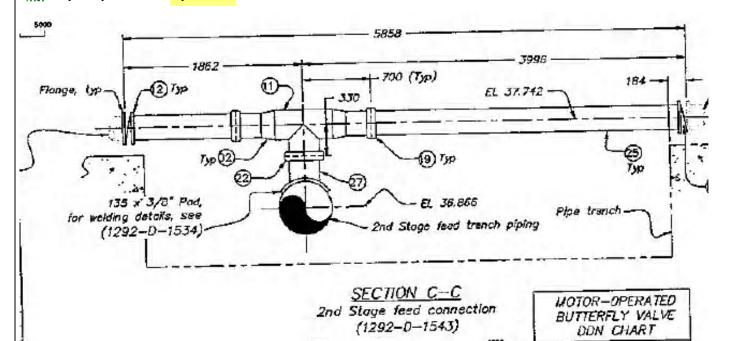
c = 0.00 in
$$V = 0.40$$
 $W = 1.0$ $\beta := 90 \cdot deg$ $T_r := \frac{3}{8} \cdot in$ pad thickness $S_h := 20 \cdot ksi$ allow. stress in run (fab. pipe)

$$D_r := 2 \cdot 135 \cdot mm + D_b$$
 $D_r = 23.38 in$ OD of pad

S_b :=
$$16.3 \cdot ksi$$
 allow. stress in branch (casting pipe) E = 0.60 assumed longitudinal weld joint quality factor per Table A-1B, for copper pipe & tube alloys & Table 302.3.4

$$S_r := 20 \cdot ksi$$
 allow. stress in run (fab. pipe) $tol_h := .023in$ $tol_b := .016 \cdot in$ $tol_r := .023 \cdot in$ under tolerances per B608

C. Sundberg 10/9/2006 9:02 AM Yuma2.xmcd


 $T_h = T_h - tol_h$ $T_h = 0.41 in$

 $T_b = \frac{1}{4} \cdot \text{in} - \text{tol}_b$ $T_b = 0.23 \text{ in}$

Note: assumed B608 under-tolerance for cast pipe

 $T_r = T_r - \text{tol}_r$ $T_r = 0.35 \text{ in}$

note: undertolerance assumed pad was cut from B608 fab. pipe

$$D_h = 30.88\,\mathrm{in} \quad T_h = 0.41\,\mathrm{in} \quad Y = 0.40 \qquad E = 0.60 \qquad c = 0.00\,\mathrm{in} \qquad S_h = 20.00\,\mathrm{ksi} \qquad \text{run pressure capacity}$$

$$\begin{bmatrix} 2 \cdot T_{\mathbf{h}} \cdot S_{\mathbf{h}} \cdot \frac{E}{(-2) \cdot T_{\mathbf{h}} \cdot Y + D_{\mathbf{h}}} \\ (-2) \cdot T_{\mathbf{h}} \cdot S_{\mathbf{h}} \cdot E \cdot \frac{W}{(-2) \cdot T_{\mathbf{h}} + 2 \cdot T_{\mathbf{h}} \cdot Y - d - 2 \cdot c} \end{bmatrix} = \begin{pmatrix} 325.70 \\ 326.19 \end{pmatrix} \text{psi} \quad \min \begin{bmatrix} 2 \cdot T_{\mathbf{h}} \cdot S_{\mathbf{h}} \cdot \frac{E}{(-2) \cdot T_{\mathbf{h}} \cdot Y + D_{\mathbf{h}}} \\ (-2) \cdot T_{\mathbf{h}} \cdot S_{\mathbf{h}} \cdot E \cdot \frac{W}{(-2) \cdot T_{\mathbf{h}} + 2 \cdot T_{\mathbf{h}} \cdot Y - d - 2 \cdot c} \end{bmatrix} = 325.70 \text{ psi}$$

$$\mathbf{t}_h \coloneqq \frac{P \cdot D_h}{2 \cdot \left(\mathbf{S}_h \cdot \mathbf{E} + P \cdot \mathbf{Y} \right)} \qquad \mathbf{t}_h = 0.57 \, \mathrm{in} \qquad \text{req'd run thickness}$$

$$t_b := \frac{P \cdot D_b}{2 \cdot \left(S_b \cdot E + P \cdot Y\right)}$$
 $t_b = 0.29 \, in$ req'd branch thickness

$$\begin{bmatrix} 2.5 \cdot (T_h - c) \\ 2.5 \cdot (T_b - c) + T_r \end{bmatrix} = \begin{pmatrix} 1.04 \\ 0.94 \end{pmatrix} \text{in}$$

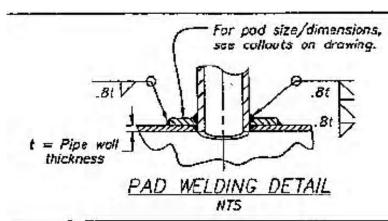
$$L_4 := \min \begin{bmatrix} 2.5 \cdot \left(T_h - c \right) \\ 2.5 \cdot \left(T_b - c \right) + T_r \end{bmatrix} \qquad L_4 = 0.94 \text{ in} \qquad \begin{array}{c} \text{height of reinforcement} \\ \text{zone outside of run} \end{array}$$

$$L_4 = 0.94 \text{ in}$$

$$d_1 := \left\lceil \frac{D_b - 2 \cdot \left(T_b - c\right)}{\sin(\beta)} \right\rceil \qquad d_1 = 12.28 \text{ in} \qquad \text{effective length removed from branch}$$

$$d_1 = 12.28 \text{ in}$$

C. Sundberg 10/9/2006 9:02 AM Yuma2.xmcd


$$\begin{bmatrix} d_1 \\ (T_b-c)+(T_h-c)+\frac{d_1}{2} \end{bmatrix} = \begin{pmatrix} 12.28 \\ 6.79 \end{pmatrix} \text{in} \quad d_2 := \max \begin{bmatrix} d_1 \\ (T_b-c)+(T_h-c)+\frac{d_1}{2} \end{bmatrix} \quad d_2 = 12.28 \text{ in} \quad \text{half width of reinforcement zone}$$

$$d_{1} = \min \begin{pmatrix} \max(d_1, d_2) \\ D_h \end{pmatrix} \qquad d_1 = 12.28 \text{ in}$$

$$A_1 \coloneqq t_h \cdot d_1 \cdot \left(2 - \sin(\beta)\right) \qquad \qquad A_1 = 7.01 \, \text{in}^2 \qquad \qquad \text{total reinforced area required}$$

$$\begin{bmatrix} 0 \\ \left(2 \cdot d_2 - d_1\right) \cdot \left(T_h - t_h - c\right) \end{bmatrix} = \begin{pmatrix} 0.00 \\ -1.91 \end{pmatrix} \text{in}^2 \qquad A_2 := \max \begin{bmatrix} 0 \\ \left(2 \cdot d_2 - d_1\right) \cdot \left(T_h - t_h - c\right) \end{bmatrix} \\ A_2 = 0.00 \text{ in}^2 \qquad \text{excess thickness in run}$$

$$\left[\frac{0}{2 \cdot L_4 \cdot \left(T_b - t_b - c \right)} \right] = \begin{pmatrix} 0.00 \\ -0.10 \end{pmatrix} \text{in}^2 \qquad \qquad A_3 := \max \left[\frac{0}{2 \cdot L_4 \cdot \left(T_b - t_b - c \right)} \right] \qquad \qquad A_3 = 0.00 \text{ in}^2 \qquad \text{area resulting from excess thickness in branch}$$

$$\frac{D_b}{\sin(\beta)} + 2.135 \cdot mm = 23.38 \text{ in}$$

$$2 \cdot d_2 = 24.56 \text{ in}$$
 max. lgth.

$$\mathsf{t} \coloneqq \mathsf{T}_h \qquad \qquad \mathsf{pipe} \; \mathsf{wall} \; \mathsf{thk}.$$

$$L := .8 \cdot t$$
 $L = 0.33 \text{ in}$ fillet weld size

$$4 \cdot \frac{L^2}{2} = 0.22 \, \text{in}^2$$
 area resulting from weld metal $(D_r - D_b) \cdot (T_r) = 3.74 \, \text{in}^2$

area resulting from pad

$$A_4 := 4 \cdot \frac{L^2}{2} + \left(D_r - D_b\right) \cdot \left(T_r\right)$$

$$A_4 = 3.96 \text{ in}^2 \quad \text{total reinforcement area resulting from weld metal + pad}$$

$$A_4 = 3.96 \text{ in}^2 \quad \text{total reinforcement area resulting from weld metal + pad}$$

$$A_4 = 3.96 \text{ in}^2 \quad \text{is not less than area provided } A_2 + A_3 + A_4 = 3.96 \text{ in}^2$$

req'd area
$$A_1 = 7.01 \text{ in}^2$$
 is not less than area provided $A_2 + A_3 + A_4 = 3.96 \text{ in}^2$

"
$$OK$$
" if $A_1 < A_2 + A_3 + A_4 = "NG-Redesign Req'd"$
" NG -Redesign Req'd" otherwise

<u>Conclusion</u>: 30"x12" tee is not adequate for design pressure

program to analyze a range of weld quality factors and tee pressure capacities;

$$\begin{split} & \text{for } i \in I..9 \\ & \text{E} \leftarrow .60 + (i-I) \cdot .05 \\ & \text{P} \leftarrow I \cdot \text{psi} \\ & \text{t}_h \leftarrow \frac{P \cdot D_h}{2 \cdot (S_h \cdot E + P \cdot Y)} \\ & \text{t}_b \leftarrow \frac{P \cdot D_b}{2 \cdot (S_b \cdot E + P \cdot Y)} \\ & \text{A}_1 \leftarrow t_h \cdot d_1 \cdot (2 - \sin(\beta)) \\ & \text{A}_2 \leftarrow \max \Bigg[\underbrace{0 \\ (2 \cdot d_2 - d_1) \cdot (T_h - t_h - c)} \Bigg] \\ & \text{while } A_1 < (A_2 + A_3 + A_4) \\ & \text{t}_h \leftarrow \frac{P \cdot D_h}{2 \cdot (S_h \cdot E + P \cdot Y)} \\ & \text{A}_1 \leftarrow t_h \cdot d_1 \cdot (2 - \sin(\beta)) \\ & \text{A}_2 \leftarrow \max \Bigg[\underbrace{0 \\ 2 \cdot (S_b \cdot E + P \cdot Y)} \\ & \text{A}_1 \leftarrow t_h \cdot d_1 \cdot (2 - \sin(\beta)) \\ & \text{A}_2 \leftarrow \max \Bigg[\underbrace{0 \\ (2 \cdot d_2 - d_1) \cdot (T_h - t_h - c)} \Bigg] \Bigg] \\ & \text{P} \leftarrow P + I \cdot \text{psi} \\ & \text{v}_{i, 1} \leftarrow E \\ & \text{v}_{i, 2} \leftarrow \frac{P}{\text{psi}} \end{aligned}$$

Summary for 30" x12" Tee; P = 450.00 psi

ASME B31.3	Allow.
Weld Quality	Pressure of
Factor	Tee, psi
0.60	294
0.65	318
0.70	342
0.75	367
0.80	391
0.85	415
0.90	440
0.95	464
1.00	488

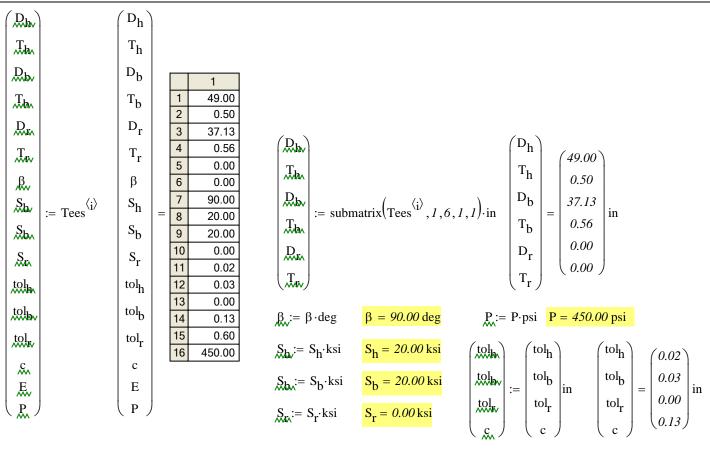
Appendix H Example Calcs, 1-4 —

<u>Desalting Building Tees, D-1533, D-1534, D-1536, D-1537</u>

Input Table, Part 1

	1	2	3	4	5	6	7	8
1	"OD of Run"	"Run Wall"	"OD Branch"	"Branch Wall"	"OD Pad"	"Pad Wall"	"Angle"	"Run Stress"
2	49	0.5	37.125	0.563	0	0	90	20
3	12.75	0.375	12.75	0.375	0	0	90	16.3
4	10.75	0.313	10.75	0.313	0	0	90	16.3
5	37.125	0.563	12.75	0.25	21.8	0.75	90	20
6	30.875	0.438	12.75	0.25	22.2	0.563	90	20
7	24	0.375	12.75	0.25	21.8	0.5	90	20
8	18	0.313	12.75	0.25	21.4	0.438	90	20
9	30.875	0.438	10.75	0.25	18.6	0.563	90	20
10	24	0.375	10.75	0.25	18.2	0.5	90	20
11	18	0.313	10.75	0.25	17.84	0.438	90	20
12	30.875	0.438	12.75	0.25	22.2	0.563	90	20
13	24	0.375	12.75	0.25	21.8	0.5	90	20
14	20	0.313	12.75	0.25	21.4	0.438	90	20
15	30.875	0.438	10.75	0.25	18.6	0.563	90	20
16	24	0.375	10.75	0.25	18.2	0.5	90	20
17	20	0.313	10.75	0.25	17.84	0.438	90	20

Input Table, Part 2 (note this is a continuation of Part 1 above)


		1	2	3	4	5	6	7
	1	"OD of Run"	"Run Wall"	"OD Branch"	"Branch Wall"	"OD Pad"	"Pad Wall"	"Angle"
	2	49.00	0.50	37.13	0.56	0.00	0.00	90.00
	3	12.75	0.38	12.75	0.38	0.00	0.00	90.00
	4	10.75	0.31	10.75	0.31	0.00	0.00	90.00
	5	37.13	0.56	12.75	0.25	21.80	0.75	90.00
	6	30.88	0.44	12.75	0.25	22.20	0.56	90.00
	7	24.00	0.38	12.75	0.25	21.80	0.50	90.00
Tee =	8	18.00	0.31	12.75	0.25	21.40	0.44	90.00
100	9	30.88	0.44	10.75	0.25	18.60	0.56	90.00
	10	24.00	0.38	10.75	0.25	18.20	0.50	90.00
	11	18.00	0.31	10.75	0.25	17.84	0.44	90.00
	12	30.88	0.44	12.75	0.25	22.20	0.56	90.00
	13	24.00	0.38	12.75	0.25	21.80	0.50	90.00
	14	20.00	0.31	12.75	0.25	21.40	0.44	90.00
	15	30.88	0.44	10.75	0.25	18.60	0.56	90.00
	16	24.00	0.38	10.75	0.25	18.20	0.50	90.00
	17	20.00	0.31	10.75	0.25	17.84	0.44	90.00

Tees := $\left(\text{submatrix}(\text{Tee}, 2, \text{rows}(\text{Tee}), 1, \text{cols}(\text{Tee}))^{\text{T}}\right)$

i:= 1

48"x36" tee

 $Tees_{17,i} = "48x36-D1533"$

$$T_h = T_h - tol_h$$

$$T_1 = 0.48 \text{ in}$$

$$T_h = 0.48 \text{ in} \qquad T_b = 0.53 \text{ in}$$

$$T_{h} = 0.53 \text{ ir}$$

run & branch undertolerance thicknesses

$$T_r = 0.00 \text{ in}$$

$$T_{-} = 0.00 \text{ in}$$

$$\begin{array}{c|c} L_{\text{MA}} := & \min \left[\begin{array}{c} 2.5 \cdot \left(T_h - c \right) \\ 2.5 \cdot \left(T_b - c \right) + T_r \end{array} \right] \end{array} \qquad L_4 = 0.88 \, \text{in} \qquad \begin{array}{c} \text{height of reinforcement} \\ \text{zone outside of run} \end{array}$$

$$L_{\Delta} = 0.88 \, \text{in}$$

$$t_{h} = \frac{P \cdot D_{h}}{2 \cdot \left(S_{h} \cdot E + P \cdot Y\right)} \qquad \qquad t_{h} = 0.91 \ \text{in} \qquad \text{req'd run thickness}$$

$$t_{h} = 0.91 \text{ in}$$

$$t_{b} := \frac{P \cdot D_{b}}{2 \cdot \left(S_{b} \cdot E + P \cdot Y\right)}$$

$$t_{b} = 0.69 \text{ in} \qquad \text{req'd branch thickness}$$

$$t_b = 0.69 \, \text{in}$$

C. Sundberg 10/9/2006 9:02 AM Yuma2.xmcd

$$\begin{array}{c|c} \begin{pmatrix} L_{\text{MAN}} \\ L_{\text{D}} \end{pmatrix} := & \left| \begin{array}{c} t \leftarrow \left(\text{Tees}^{\left\langle i \right\rangle} \right)_{2} \cdot \text{in} \\ L_{1} \leftarrow & \left| \begin{array}{c} 0 \text{ if } D_{r} = 0 \\ .8 \cdot t \text{ otherwise} \\ L_{2} \leftarrow .8 \cdot t \\ \begin{pmatrix} L_{1} \\ L_{2} \\ \end{pmatrix} = \begin{pmatrix} 0.00 \\ 0.40 \\ \end{pmatrix} \text{in} & \text{branch/pad fillet weld leg size} \\ \text{run/pad fillet weld leg size} \\ \end{array} \right|$$

$$d_{lw} = \left[\frac{D_b - 2 \cdot (T_b - c)}{\sin(\beta)} \right]$$

$$d_1 = 36.31 \text{ in}$$
 effective length removed from branch

$$\begin{bmatrix} d_1 \\ (T_b-c)+(T_h-c)+\frac{d_1}{2} \end{bmatrix} = \begin{pmatrix} 36.31 \\ 18.91 \end{pmatrix} \text{in} \qquad d_2 = \max \begin{bmatrix} d_1 \\ (T_b-c)+(T_h-c)+\frac{d_1}{2} \end{bmatrix} \qquad d_2 = 36.31 \text{ in} \qquad \text{half width of reinforcement zone}$$

$$d_{\text{MW}} = \min \begin{pmatrix} \max(d_1, d_2) \\ D_h \end{pmatrix} \qquad d_1 = 36.31 \text{ in}$$

$$A_1 = 32.87 \, \mathrm{in}^2 \qquad \text{total reinforced area required}$$

$$\begin{bmatrix} 0 \\ \left(2 \cdot d_2 - d_1\right) \cdot \left(T_h - t_h - c\right) \end{bmatrix} = \begin{pmatrix} 0.00 \\ -20.08 \end{pmatrix} \text{in}^2 \qquad \text{Az:} = \max \begin{bmatrix} 0 \\ \left(2 \cdot d_2 - d_1\right) \cdot \left(T_h - t_h - c\right) \end{bmatrix} \\ \text{A}_2 = 0.00 \, \text{in}^2 \quad \text{area resulting from excess thickness in excess thickness thic$$

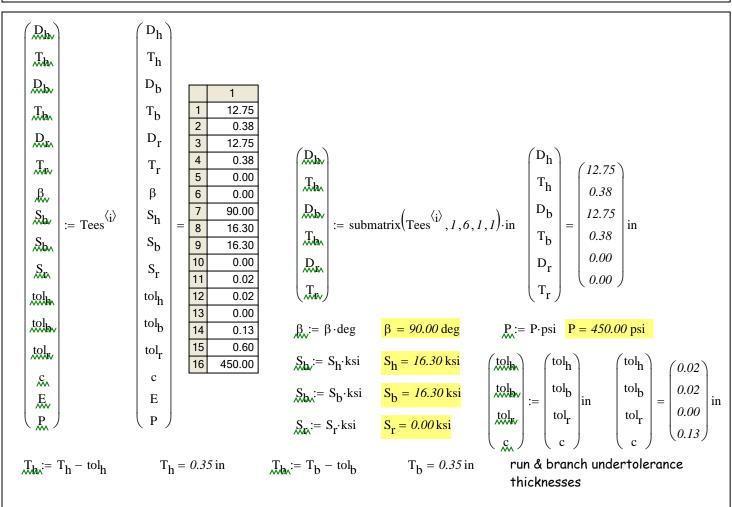
$$\left[\frac{0}{2 \cdot L_4 \cdot \left(T_b - t_b - c \right)} \right] = \begin{pmatrix} 0.00 \\ -0.49 \end{pmatrix} \text{in}^2 \qquad \text{Alix} = \max \left[\frac{0}{2 \cdot L_4 \cdot \left(T_b - t_b - c \right)} \right] \\ \frac{2 \cdot L_4 \cdot \left(T_b - t_b - c \right)}{\sin(\beta)} \right] \qquad \text{A}_3 = 0.00 \text{ in}^2 \quad \text{area resulting from excess thickness in branch}$$

$$A_{4} = 2 \cdot \frac{L_{1}^{2}}{2} + 2 \cdot \frac{L_{2}^{2}}{2} + \left(D_{r} - D_{b}\right) \cdot \left(T_{r}\right) \cdot \frac{S_{r}}{S_{h}}$$

$$A_{4} = 0.16 \text{ in}^{2}$$

req'd area $A_1 = 32.87 \, \text{in}^2$ is less than area provided $A_2 + A_3 + A_4 = 0.16 \text{ in}^2$

"
$$OK$$
" if $A_1 < A_2 + A_3 + A_4 = "NG-Redesign Req'd"$
" NG -Redesign Req'd" otherwise


program to analyze a range of weld quality factors and tee pressure capacities;

Summary Tees $_{17.1} = "48x36-D1533"$ Tee; P = 450.00 psi

ASME B31.3	Allow.
Weld Quality	Pressure of
Factor	Tee, psi
0.60	92
0.65	100
0.70	107
0.75	115
0.80	122
0.85	130
0.90	138
0.95	145
1.00	153

f

 $12" \times 12"$ tee i = 2 Tees $_{17,i} = "12x12-D1536"$

$$T_r = 0.00 \text{ in}$$

$$\underbrace{L_{4} = \min \left[\begin{array}{c} 2.5 \cdot \left(T_{h} - c \right) \\ 2.5 \cdot \left(T_{b} - c \right) + T_{r} \end{array} \right] }_{ 2.5 \cdot \left(T_{b} - c \right) + T_{r} } \qquad \underbrace{L_{4} = 0.57 \, \text{in}}_{ \text{zone outside of run}}$$

$$t_h := \frac{P \cdot D_h}{2 \cdot \left(S_h \cdot E + P \cdot Y \right)} \qquad \qquad t_h = 0.29 \, \text{in} \qquad \text{req'd run thickness}$$

$$t_{b} := \frac{P \cdot D_{b}}{2 \cdot (S_{b} \cdot E + P \cdot Y)}$$
 $t_{b} = 0.29 \text{ in}$ req'd branch thickness

C. Sundberg 10/9/2006 9:02 AM Yuma2.xmcd

$$\begin{pmatrix} L_{\text{MAN}} \\ L_{\text{MAN}} \end{pmatrix} := \begin{cases} t \leftarrow \left(\text{Tees}^{\langle i \rangle} \right)_2 \cdot \text{in} \\ L_1 \leftarrow \begin{bmatrix} 0 & \text{if } D_r = 0 \\ .8 \cdot t & \text{otherwise} \end{cases} \\ L_2 \leftarrow .8 \cdot t \end{cases}$$

$$\begin{pmatrix} L_1 \\ L_2 \end{pmatrix} = \begin{pmatrix} 0.00 \\ 0.30 \end{pmatrix} \text{in}$$
 branch/pad fillet weld leg size run/pad fillet weld leg size

$$\frac{d_{\text{NN}}}{\sin(\beta)} = \left[\frac{D_b - 2 \cdot \left(T_b - c \right)}{\sin(\beta)} \right] \qquad d_1 = 12.30 \text{ in} \qquad \text{effective length removed from branch}$$

$$\begin{bmatrix} d_1 \\ \left(T_b - c\right) + \left(T_h - c\right) + \frac{d_1}{2} \end{bmatrix} = \begin{pmatrix} 12.30 \\ 6.60 \end{pmatrix} \text{in} \qquad \text{day:= max} \begin{bmatrix} d_1 \\ \left(T_b - c\right) + \left(T_h - c\right) + \frac{d_1}{2} \end{bmatrix} \qquad d_2 = 12.30 \text{ in} \qquad \begin{array}{c} \text{half width of reinforcement zone} \\ \text{some} \end{bmatrix}$$

$$d_{\text{MW}} = \min \begin{pmatrix} \max(d_1, d_2) \\ D_h \end{pmatrix} \qquad d_1 = 12.30 \text{ in}$$

$$A_{h} = t_{h} \cdot d_{1} \cdot (2 - \sin(\beta))$$
 $A_{1} = 3.54 \text{ in}^{2}$ total reinforced area required

$$\begin{bmatrix} 0 \\ \left(2 \cdot d_2 - d_1\right) \cdot \left(T_h - t_h - c\right) \end{bmatrix} = \begin{pmatrix} 0.00 \\ -0.75 \end{pmatrix} \text{in}^2 \quad \text{Az:} = \max \begin{bmatrix} 0 \\ \left(2 \cdot d_2 - d_1\right) \cdot \left(T_h - t_h - c\right) \end{bmatrix} \\ \text{A2} = 0.00 \, \text{in}^2 \quad \text{area resulting from excess thickness in run}$$

$$\begin{bmatrix} 0 \\ \frac{2 \cdot L_4 \cdot \left(T_b - t_b - c \right)}{\sin(\beta)} \end{bmatrix} = \begin{pmatrix} 0.00 \\ -0.07 \end{pmatrix} \text{in}^2 \qquad \text{Azi} = \max \\ \begin{bmatrix} 0 \\ \frac{2 \cdot L_4 \cdot \left(T_b - t_b - c \right)}{\sin(\beta)} \end{bmatrix} \end{bmatrix} \quad \text{A}_3 = 0.00 \text{ in}^2 \quad \text{area resulting from excess thickness in branch}$$

$$A_{4} = 2 \cdot \frac{L_{1}^{2}}{2} + 2 \cdot \frac{L_{2}^{2}}{2} + \left(D_{r} - D_{b}\right) \cdot \left(T_{r}\right) \cdot \frac{S_{r}}{S_{b}}$$

$$A_{4} = 0.09 \text{ in}^{2}$$

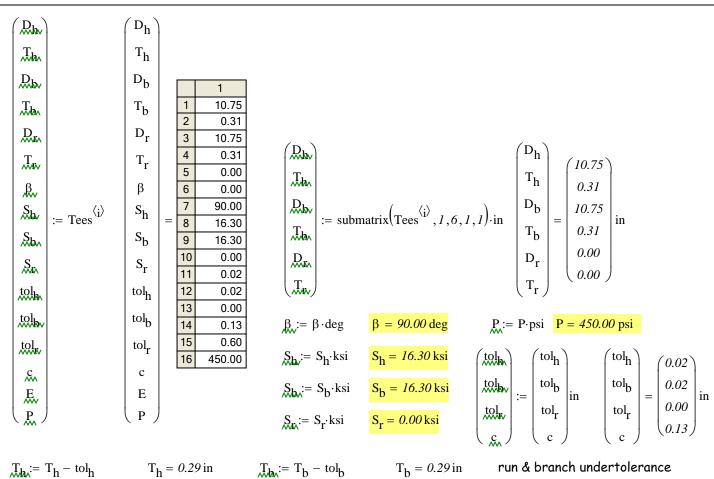
req'd area $A_1 = 3.54 \, \text{in}^2$ is less than area provided $A_2 + A_3 + A_4 = 0.09 \, \text{in}^2$

$$"OK"$$
 if $A_1 < A_2 + A_3 + A_4 = "NG-Redesign Req'd"$
 $"NG-Redesign Req'd"$ otherwise

program to analyze a range of weld quality factors and tee pressure capacities;

$$\begin{split} f &\coloneqq \begin{bmatrix} \text{for } i \in \mathit{I} ...9 \\ E \leftarrow .60 + (i-\mathit{I}) \cdot .05 \\ P \leftarrow \mathit{I} \cdot \text{psi} \\ t_h \leftarrow \frac{P \cdot D_h}{2 \cdot \left(S_h \cdot E + P \cdot Y \right)} \\ t_b \leftarrow \frac{P \cdot D_b}{2 \cdot \left(S_b \cdot E + P \cdot Y \right)} \\ A_1 \leftarrow t_h \cdot d_1 \cdot \left(2 - \sin(\beta) \right) \\ A_2 \leftarrow \max \begin{bmatrix} 0 \\ \left(2 \cdot d_2 - d_1 \right) \cdot \left(T_h - t_h - c \right) \end{bmatrix} \end{bmatrix} \\ \text{while } A_1 \leftarrow \left(A_2 + A_3 + A_4 \right) \\ t_h \leftarrow \frac{P \cdot D_h}{2 \cdot \left(S_h \cdot E + P \cdot Y \right)} \\ t_b \leftarrow \frac{P \cdot D_b}{2 \cdot \left(S_b \cdot E + P \cdot Y \right)} \\ A_1 \leftarrow t_h \cdot d_1 \cdot \left(2 - \sin(\beta) \right) \\ A_2 \leftarrow \max \begin{bmatrix} 0 \\ \left(2 \cdot d_2 - d_1 \right) \cdot \left(T_h - t_h - c \right) \end{bmatrix} \\ A_3 \leftarrow \max \begin{bmatrix} 0 \\ 2 \cdot L_4 \cdot \left(T_b - t_b - c \right) \\ \sin(\beta) \end{bmatrix} \end{split}$$

Summary $\frac{\text{Tees}_{17.1}}{\text{Tee}_{17.1}} = "12x12-D1536"$ $\frac{\text{Tee}_{17.1}}{\text{Tee}_{17.1}} = 450.00 \text{ psi}$


ASME B31.3	Allow.
Weld Quality	Pressure of
Factor	Tee, psi
0.60	190
0.65	206
0.70	222
0.75	237
0.80	253
0.85	269
0.90	284
0.95	300
1.00	316

f

10" × 10" tee;

i = 3

Tees_{17, i} = "10x10-D1536"

$$T_r = 0.00 \text{ in}$$

$$h = 0.29 \, \text{m}$$

$$T_b = T_b - tol$$

$$T_b = 0.29 ir$$

thicknesses

$$T_r = T_r - tol_r$$

$$T_{rr} = 0.00 \text{ in}$$

$$\begin{array}{ll} L_{\text{A}} \coloneqq \min \begin{bmatrix} 2.5 \cdot \left(T_h - c \right) \\ 2.5 \cdot \left(T_b - c \right) + T_r \end{bmatrix} & L_4 = 0.41 \, \mathrm{in} & \text{height of reinforcement zone outside of run} \\ t_{\text{A}} \coloneqq \frac{P \cdot D_h}{2 \cdot \left(S_h \cdot E + P \cdot Y \right)} & t_h = 0.24 \, \mathrm{in} & \text{req'd run thickness} \end{array}$$

$$t_{h} := \frac{P \cdot D_{h}}{2 \cdot (S_{h} \cdot E + P \cdot Y)}$$

$$t_{h} = 0.24 \text{ in}$$

$$t_{b} := \frac{P \cdot D_{b}}{2 \cdot \left(S_{b} \cdot E + P \cdot Y\right)}$$

$$t_{b} = 0.24 \text{ in} \qquad \text{req'd branch thickness}$$

$$t_b = 0.24 \text{ in}$$

$$\begin{pmatrix} L_{\text{MM}} \\ L_{\text{D}} \end{pmatrix} := \begin{bmatrix} t \leftarrow \left(\text{Tees}^{\langle i \rangle} \right)_2 \cdot \text{in} \\ L_1 \leftarrow \begin{bmatrix} 0 & \text{if } D_r = 0 \\ .8 \cdot t & \text{otherwise} \end{bmatrix} \\ L_2 \leftarrow .8 \cdot t \\ \begin{pmatrix} L_1 \\ L_2 \end{pmatrix} = \begin{pmatrix} 0.00 \\ 0.25 \end{pmatrix} \text{in} \\ \text{run/pad fillet weld leg size}$$

$$\begin{bmatrix} d_1 \\ (T_b-c)+(T_h-c)+\frac{d_1}{2} \end{bmatrix} = \begin{pmatrix} 10.42 \\ 5.54 \end{pmatrix} \text{in} \qquad \text{day:= max} \begin{bmatrix} d_1 \\ (T_b-c)+(T_h-c)+\frac{d_1}{2} \end{bmatrix} \qquad d_2 = 10.42 \text{ in} \qquad \begin{array}{c} \text{half width of reinforcement zone} \\ \text{to some} \end{bmatrix}$$

$$d_{1} = \min \begin{pmatrix} \max(d_{1}, d_{2}) \\ D_{h} \end{pmatrix} \qquad d_{1} = 10.42 \text{ in}$$

$$A_1 = t_h \cdot d_1 \cdot \left(2 - \sin(\beta)\right)$$

$$A_1 = 2.53 \text{ in}^2$$
 total reinforced area required

$$\begin{bmatrix} 0 \\ (2 \cdot d_2 - d_1) \cdot (T_h - t_h - c) \end{bmatrix} = \begin{pmatrix} 0.00 \\ -0.82 \end{pmatrix} \text{in}^2 \qquad \text{And } \begin{bmatrix} 0 \\ (2 \cdot d_2 - d_1) \cdot (T_h - t_h - c) \end{bmatrix} \qquad \text{Appendix } A_2 = 0.00 \text{ in}^2 \qquad \text{area resulting from excess thickness in run}$$

$$\left[\frac{0}{2 \cdot L_4 \cdot \left(T_b - t_b - c \right)} \right] = \begin{pmatrix} 0.00 \\ -0.06 \end{pmatrix} \text{in}^2 \qquad \qquad \underbrace{A_3 := \max}_{\text{sin}(\beta)} \left[\frac{0}{2 \cdot L_4 \cdot \left(T_b - t_b - c \right)} \right] \\ \frac{2 \cdot L_4 \cdot \left(T_b - t_b - c \right)}{\sin(\beta)} \right] \qquad \qquad A_3 = 0.00 \text{ in}^2 \qquad \text{area resulting from excess thickness in branch}$$

$$A_{4} = 2 \cdot \frac{L_{1}^{2}}{2} + 2 \cdot \frac{L_{2}^{2}}{2} + (D_{r} - D_{b}) \cdot (T_{r}) \cdot \frac{S_{r}}{S_{b}}$$

$$A_{4} = 0.06 \text{ in}^{2}$$

req'd area $A_1 = 2.53 \, \mathrm{in}^2$ is less than area provided $A_2 + A_3 + A_4 = 0.06 \, \mathrm{in}^2$

$$\begin{tabular}{lll} "OK" & if & $A_1 < A_2 + A_3 + A_4$ & = "NG-Redesign Req'd" \\ "NG-Redesign Req'd" & otherwise \\ \end{tabular}$$

program to analyze a range of weld quality factors and tee pressure capacities;

$$f := \begin{cases} \text{for } i \in I..9 \\ E \leftarrow .60 + (i-I) \cdot .05 \\ P \leftarrow I \cdot \text{psi} \end{cases}$$

$$t_h \leftarrow \frac{P \cdot D_h}{2 \cdot (S_h \cdot E + P \cdot Y)}$$

$$t_b \leftarrow \frac{P \cdot D_b}{2 \cdot (S_b \cdot E + P \cdot Y)}$$

$$A_1 \leftarrow t_h \cdot d_1 \cdot (2 - \sin(\beta))$$

$$A_2 \leftarrow \max \left[\begin{cases} 0 \\ (2 \cdot d_2 - d_1) \cdot (T_h - t_h - c) \end{cases} \right]$$

$$while A_1 < (A_2 + A_3 + A_4)$$

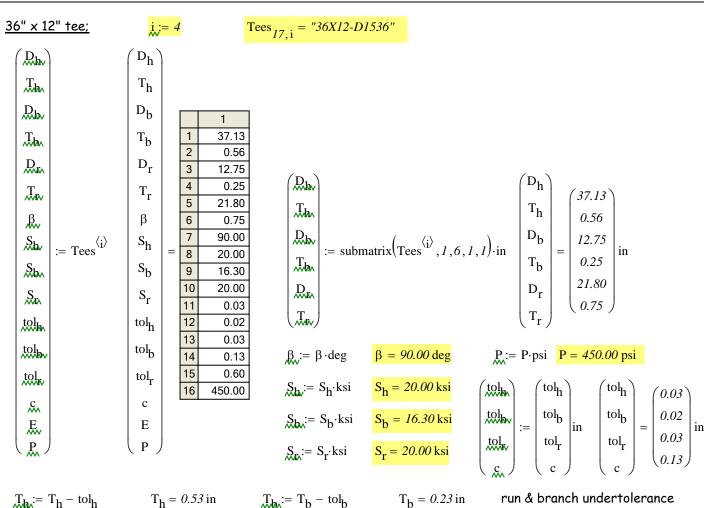
$$t_h \leftarrow \frac{P \cdot D_h}{2 \cdot (S_h \cdot E + P \cdot Y)}$$

$$t_b \leftarrow \frac{P \cdot D_b}{2 \cdot (S_b \cdot E + P \cdot Y)}$$

$$A_1 \leftarrow t_h \cdot d_1 \cdot (2 - \sin(\beta))$$

$$A_2 \leftarrow \max \left[\begin{cases} 0 \\ (2 \cdot d_2 - d_1) \cdot (T_h - t_h - c) \end{cases} \right]$$

$$A_3 \leftarrow \max \left[\begin{cases} 0 \\ 2 \cdot L_4 \cdot (T_b - t_b - c) \\ \sin(\beta) \end{cases} \right]$$


$$P \leftarrow P + I \cdot psi$$

$$v_{i, I} \leftarrow E$$

Summary Tees $_{17, i} = "10x10-D1536"$ Tee; P = 450.00 psi

ASME B31.3	Allow.
Weld Quality	Pressure of
Factor	Tee, psi
0.60	163
0.65	177
0.70	190
0.75	204
0.80	217
0.85	231
0.90	244
0.95	257
1.00	271

f

$$T_r = T_r - tol_r$$

$$I_h = 0.33 \text{ ir}$$

$$T_b = T_b - tol_b$$

$$T_b = 0.23 \text{ in}$$

run & branch undertolerance thicknesses

$$T_r = T_r - tol_r$$

$$T_{r} = 0.72 \text{ in}$$

$$\underbrace{L_{4} = \min}_{2.5 \cdot \left(T_{b} - c\right) + T_{r}} \begin{bmatrix} 2.5 \cdot \left(T_{h} - c\right) \\ 2.5 \cdot \left(T_{b} - c\right) + T_{r} \end{bmatrix} \qquad L_{4} = 0.99 \, \mathrm{in} \qquad \begin{array}{c} \text{height of reinforcement} \\ \text{zone outside of run} \end{array}$$

$$\label{eq:theorem} t_h \! \coloneqq \frac{P \cdot D_h}{2 \cdot \! \left(S_h \! \cdot \! E + P \cdot Y \right)} \qquad \qquad t_h = \textit{0.69} \, \text{in} \qquad \text{req'd run thickness}$$

$$t_{b} := \frac{P \cdot D_{b}}{2 \cdot \left(S_{b} \cdot E + P \cdot Y\right)}$$

$$t_{b} = 0.29 \text{ in} \qquad \text{req'd branch thickness}$$

$$\begin{pmatrix} L_{\text{MMM}} \\ L_{\text{MMM}} \end{pmatrix} \coloneqq \begin{bmatrix} t \leftarrow \left(\text{Tees}^{\langle i \rangle} \right)_2 \cdot \text{in} \\ L_1 \leftarrow \begin{bmatrix} 0 & \text{if } D_r = 0 \\ .8 \cdot t & \text{otherwise} \end{bmatrix} \\ L_2 \leftarrow .8 \cdot t \\ \begin{pmatrix} L_1 \\ L_2 \end{pmatrix} = \begin{pmatrix} 0.45 \\ 0.45 \end{pmatrix} \text{in} \\ \begin{bmatrix} L_1 \\ L_2 \end{pmatrix} \text{ branch/pad fillet weld leg size} \\ \text{run/pad fillet weld leg size}$$

$$d_{1} = \left[\frac{D_{b} - 2 \cdot (T_{b} - c)}{\sin(\beta)}\right]$$

$$d_{1} = 12.53 \text{ in}$$
effective length removed from branch

$$\begin{bmatrix} d_1 \\ (T_b - c) + (T_h - c) + \frac{d_1}{2} \end{bmatrix} = \begin{pmatrix} 12.53 \\ 6.78 \end{pmatrix} \text{in } d_2 = \max \begin{bmatrix} d_1 \\ (T_b - c) + (T_h - c) + \frac{d_1}{2} \end{bmatrix}$$

$$d_2 = 12.53 \text{ in reinforcement zone}$$

$$d_{1} = \min \begin{pmatrix} \max(d_{1}, d_{2}) \\ D_{h} \end{pmatrix} \qquad d_{1} = 12.53 \text{ in}$$

$$A_h = t_h \cdot d_1 \cdot (2 - \sin(\beta))$$
 $A_1 = 8.59 \text{ in}^2$ total reinforced area required

$$\begin{bmatrix} 0 \\ (2 \cdot d_2 - d_1) \cdot (T_h - t_h - c) \end{bmatrix} = \begin{pmatrix} 0.00 \\ -3.48 \end{pmatrix} \text{in}^2 \qquad \text{Azim} = \max \begin{bmatrix} 0 \\ (2 \cdot d_2 - d_1) \cdot (T_h - t_h - c) \end{bmatrix} \qquad \text{A}_2 = 0.00 \text{ in}^2 \qquad \text{area resulting from excess thickness in run}$$

$$\begin{bmatrix} 0 \\ 2 \cdot L_4 \cdot (T_h - t_h - c) \end{bmatrix} = \begin{pmatrix} 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} \text{ in}^2 \qquad \text{A}_2 := \max \begin{bmatrix} 0 \\ 2 \cdot L_4 \cdot (T_h - t_h - c) \\ 0 \\ 0 \end{bmatrix} \qquad \text{2 area resulting from excess thickness}$$

$$\left[\frac{0}{2 \cdot L_4 \cdot \left(T_b - t_b - c \right)} \right] = \begin{pmatrix} 0.00 \\ -0.36 \end{pmatrix} \text{in}^2$$

$$A_{3} = \max \left[\frac{0}{2 \cdot L_4 \cdot \left(T_b - t_b - c \right)} \right]$$

$$A_{3} = 0.00 \text{ in}^2$$

$$A_{3} = 0.00 \text{ in}^2$$

$$\text{area resulting from excess thickness in branch}$$

$$A_{4} = 2 \cdot \frac{L_{1}^{2}}{2} + 2 \cdot \frac{L_{2}^{2}}{2} + \left(D_{r} - D_{b}\right) \cdot \left(T_{r}\right) \cdot \frac{S_{r}}{S_{b}}$$

$$A_{4} = 6.93 \text{ in}^{2}$$

req'd area
$$A_1 = 8.59 \text{ in}^2$$
 is less than area provided $A_2 + A_3 + A_4 = 6.93 \text{ in}^2$

"
$$OK$$
" if $A_1 < A_2 + A_3 + A_4 = "NG-Redesign Req'd"$
" NG -Redesign Req'd" otherwise

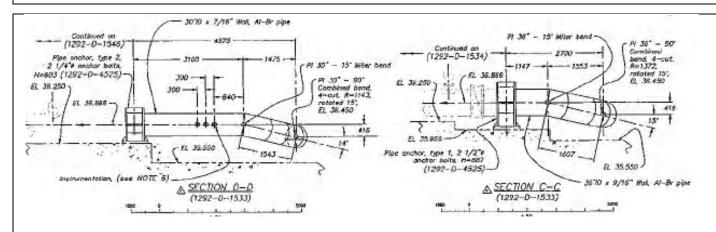
program to analyze a range of weld quality factors and tee pressure capacities;

Summary $\frac{\text{Tees}_{17.1}}{\text{Tee}} = "36X12-D1536"$ $\frac{\text{Tee}}{\text{P}} = 450.00 \text{ psi}$

ASME B31.3	Allow.
Weld Quality	Pressure of
Factor	Tee, psi
0.60	363
0.65	393
0.70	424
0.75	454
0.80	484
0.85	514
0.90	544
0.95	574
1.00	604

f

Tee Summary Prgm


Tee Designation/Sheet No.	Permissible Design Pressure, psi		Tee Design Stataus at 450 psi			
	Weld Quality Factor, E			Weld Quality Factor, E		
0	0.60	0.80	1.00	0.60	0.80	1.00
48×36-D1533	92	122	153	NG	NG	NG
12×12-D1536	190	253	316	NG	NG	NG
10×10-D1536	163	217	271	NG	NG	NG
36X12-D1536	363	484	604	NG	OK	OK
30×12-D1536	333	444	554	NG	NG	OK
24×12-D1536	365	486	607	NG	OK	OK
18×12-D1536	402	535	668	NG	OK	OK
30×10-D1536	332	443	553	NG	NG	OK
24×10-D1536	360	480	599	NG	OK	OK
18×10-D1536	394	525	656	NG	OK	OK
30×12-D1537	333	444	554	NG	NG	OK
24×12-D1537	365	486	607	NG	OK	OK
20×12-D1537	361	481	601	NG	OK	OK
30×10-D1537	332	443	553	NG	NG	OK
24×10-D1537	360	480	599	NG	OK	OK
20×10-D1537	355	472	590	NG	OK	OK

<u>Conclusion</u>: The first three Tees in the list are not adequate for 450 psi design pressure regardless of what Weld Quality Factor is assumed.

Mitered Bend Calculations Mitered Bends per ASM

▶ References		
FINCICIONOS		

C. Sundberg 10/9/2006 9:02 AM Yuma2.xmcd

36"x 90 Bend, Sheet D-1534, Section C-C

D :=
$$37.125 \cdot \text{in}$$
 T := $\frac{9}{16} \cdot \text{in} - .029 \cdot \text{in}$ T = $0.53 \cdot \text{in}$ r₂ := $\frac{D - T}{2}$ r₂ = $18.30 \cdot \text{in}$

$$S_{\text{K}} = 20 \cdot \text{ksi}$$
 $E = 0.60$ $W = 1.00$ $c = 0.13 \text{ in}$

$$R_1 := 1372 \cdot mm$$
 $R_1 = 54.02 \text{ in}$ $\frac{R_1}{D} = 1.45$ $\frac{R_1}{R_1} = 4$ number of cuts

$$\theta := \frac{90 \cdot \deg}{2.n}$$

$$\theta = 11.25 \deg$$

maximum allowable pressure is lesser of Eq. 4a or Eq. 4b

$$\begin{bmatrix} \frac{S \cdot E \cdot W \cdot (T-c)}{r_2} \cdot \left[\frac{T-c}{(T-c) + .643 \cdot \tan(\theta) \cdot \sqrt{r_2 \cdot (T-c)}} \right] \\ \frac{S \cdot E \cdot W \cdot (T-c)}{r_2} \cdot \left(\frac{R_1 - r_2}{R_1 - .5 \cdot r_2} \right) \end{bmatrix} = \begin{pmatrix} 144.36 \\ 213.30 \end{pmatrix} psi$$

$$P_{\text{M}} := \min \left[\begin{array}{c} \frac{S \cdot E \cdot W \cdot (T-c)}{r_2} \cdot \left[\frac{T-c}{(T-c) + .643 \cdot tan(\theta) \cdot \sqrt{r_2 \cdot (T-c)}} \right] \\ \frac{S \cdot E \cdot W \cdot (T-c)}{r_2} \cdot \left(\frac{R_1 - r_2}{R_1 - .5 \cdot r_2} \right) \end{array} \right]$$

30"x 90 Bend, Sheet D-1534, Section D-D

D:= 30.875·in T:=
$$\frac{7}{16}$$
·in - .023·in T = 0.41 in $r_2 := \frac{D-T}{2}$ $r_2 = 15.23$ in

S:=
$$20 \cdot \text{ksi}$$
 E = 0.60 W = 1.00 c = 0.13 in

P = 144.36 psi

$$R_{1} := 1143 \cdot mn$$

$$R_1 = 45.00 \text{ in}$$

R₁:= 1143·mm
$$R_1 = 45.00 \text{ in}$$
 $\frac{R_1}{D} = 1.46$ $\frac{R_1}{R_1} = 45.00 \text{ in}$

number of cuts

$$\theta := \frac{90 \cdot \deg}{2 \cdot n}$$

$$\theta = 11.25 \deg$$

$$\theta = 11.25 \deg$$

maximum allowable pressure is lesser of Eq. 4a or Eq. 4b

$$\begin{bmatrix} \frac{S \cdot E \cdot W \cdot (T-c)}{r_2} \cdot \left[\frac{T-c}{(T-c) + .643 \cdot \tan(\theta) \cdot \sqrt{r_2 \cdot (T-c)}} \right] \\ \frac{S \cdot E \cdot W \cdot (T-c)}{r_2} \cdot \left(\frac{R_1 - r_2}{R_1 - .5 \cdot r_2} \right) \end{bmatrix} = \begin{pmatrix} 118.33 \\ 181.64 \end{pmatrix} psi$$

$$P_{\text{M}} := \min \left[\begin{array}{c} \frac{S \cdot E \cdot W \cdot (T-c)}{r_2} \cdot \left[\frac{T-c}{(T-c) + .643 \cdot \tan(\theta) \cdot \sqrt{r_2 \cdot (T-c)}} \right] \\ \frac{S \cdot E \cdot W \cdot (T-c)}{r_2} \cdot \left(\frac{R_1 - r_2}{R_1 - .5 \cdot r_2} \right) \end{array} \right] \right] \qquad P = 118.33 \text{ psi}$$

Weld Quality Factor E	Permissible Design Pressure, psi	
0.60	118	
0.80	158	
1.00	197	

Conclusion: Mitered Bends on D-1534 fail to meet 450 design pressure regardless of assumption of weld quality factor, E

Appendix K Galvanic Corrosion Considerations for the Partial Replacement of Aluminum Bronze Piping

Galvanic Corrosion Considerations

for the

Partial Replacement of Aluminum Bronze Piping

at the

Yuma Desalting Plant

Prepared by James F. Jenkins. P.E.

for CH2MHill

30 July, 2007

Introduction

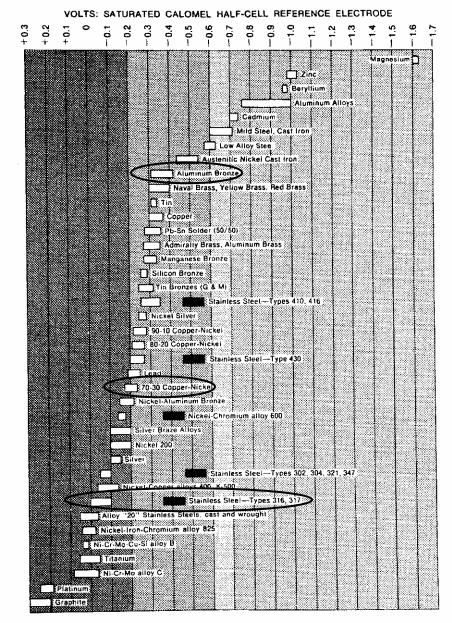
Due to weld flaws in the high pressure aluminum bronze piping at the Yuma Desalting Plant (YDP) replacement of portions of the high pressure aluminum bronze piping with alternative materials is being considered. Type 316L stainless steel is currently being considered as a material for the replacement piping. The use of other stainless steels with improved corrosion resistance compared to Type 316 stainless steel for replacement piping is also possible.

Galvanic corrosion between existing aluminum bronze piping and the replacement piping is one consideration for the development of a design for partial piping replacement at the YDP. Galvanic corrosion on the interior of the piping while the pipes are full or partially full of liquid is of concern. If the replacement piping is to be buried, galvanic corrosion between the replacement piping and other buried metals is also of concern. The variability of internal galvanic corrosion with the different chemical conditions and velocities inside the piping system is another important consideration.

Galvanic Corrosion Basics

Galvanic corrosion can occur when different metals are in electrical contact and exposed to an electrolyte such as soil or water. If only two metals are involved one metal acts as an anode and its corrosion rate is increased over its uncoupled corrosion rate and the other metal acts as a cathode and its corrosion rate is usually reduced. This activity is reflected in the Galvanic Series shown in Figure 1. More active (anodic) metals are listed above the less active (noble) metals.

The acceleration of the corrosion of the more anodic material is dependent on many factors such as the potential difference between the metals involved, the electrochemical characteristics of the metals involved, the relative areas of the anode and the cathode and characteristics of the environment, particularly environmental resistivity.


Most of the quantitative data on the galvanic corrosion of materials has been developed for high salinity waters such as seawater. While this data is useful in making qualitative predictions of the galvanic interactions between aluminum bronze and stainless steels in the relatively low salinity water at the YDP, particularly where chemical additions have modified the water in terms of pH, salinity and other chemical additions, quantitative predictions of performance may require in-plant or pilot plant testing.

Galvanic Corrosion Between Aluminum Bronze and Type 316 Stainless Steel Piping

When aluminum bronze and Type 316 are electrically coupled and exposed to an electrolyte, the aluminum bronze will act as an anode with respect to the stainless steel if the stainless steel remains passive. However, if the stainless steel becomes active, the active areas on the stainless steel may be anodic with respect to the aluminum bronze. This is shown in Figure 1 (Reference 1).

The potential ranges for active Type 316 stainless steel and the aluminum bronze overlap. Thus, any active sites on the Type 316 stainless steel may or may not be anodic with respect to the aluminum bronze.

This may be significant at the YDP if any sites on the stainless steel become active as would be the case if microbiological corrosion of the stainless steel is initiated. The potential difference between the anodic sites on the stainless steel and the adjoining passive stainless steel would be greater than the potential difference between the active sites on the stainless steel and the aluminum bronze, but corrosion between the active sites and the aluminum bronze might be significant because the surface of the passive stainless steel is not a very effective cathode (as will be described later) but the aluminum bronze is a very effective cathode.

Alloys are listed in the order of the potential they exhibit in flowing sea water. Certain alloys indicated by the symbol: The in low-velocity or poorly aerated water, and at shielded areas, may become active and exhibit a potential near -0.5 volts.

Figure 6-1. Galvanic series in seawater.

Figure 1. Galvanic Series in Seawater

This leads to the possibility that the coupling of the stainless steel to the aluminum bronze could be detrimental to both the aluminum bronze and the stainless steel. The corrosion of the aluminum bronze would be accelerated while the stainless steel remains passive, but the corrosion of the stainless steel might be accelerated if corrosion on the stainless steel initiates at active sites.

If the assumption is made that the stainless steel will remain passive, the electrochemical characteristics of the stainless steel make the couple between the aluminum bronze and stainless steel relatively innocuous (but possibly still be significant) compared to coupling of the aluminum bronze to a more cathodic material with different electrochemical characteristics such as 70-30 copper-nickel. In the YDP, it is likely that the stainless steel, if properly cleaned and passivated, will remain passive under conditions of continuous flow. However, primarily due to the effect of oxygen depletion and micro-biological effects, the stainless steel may become locally active during periods of low flow or stagnation.

A potential of around -400 mV for couples between Type 316 stainless and aluminum bronze, where the area ratio between the aluminum bronze and stainless steel is effectively about 1 to 1 as would be expected in a piping system, can be expected as the passive nature of the Type 316 stainless steel results in the couple taking a potential close to the non-passive material.

Effect of Chlorination

Biofilms increase the efficiency of stainless steel acting as a cathode in a galvanic couple. If the formation of biofilms is inhibited, as in the case of chlorinated waters, the efficiency of stainless steels acting as a cathode, and the resultant galvanic corrosion of the anodic material is reduced. This is shown in Figure 2 (Reference 2).

Without chlorine, the electrode efficiency is about 30 μ A/cm^2 at a potential of -400 mV(the anticipated potential of the aluminum bronze/Type 316 stainless steel couple with a 1 to 1 area ratio). With chorination at a level of 0.5 mg/L (and indeed with no biofilm at all) the electrode efficiency is about 0.30 μ A/cm^2, a 100 fold decrease in electode efficiency and, all else being equal, a 100 fold decrease in corrosion of the anodic material.

Thus aholieving and maintaining sufficient chlorination to inhibit biofilm formation inside the piping where stainless steel and aluminum bronze are connected will be very valuable. Of course, this chlorination level must be maintained, or the system should be drained and dried.

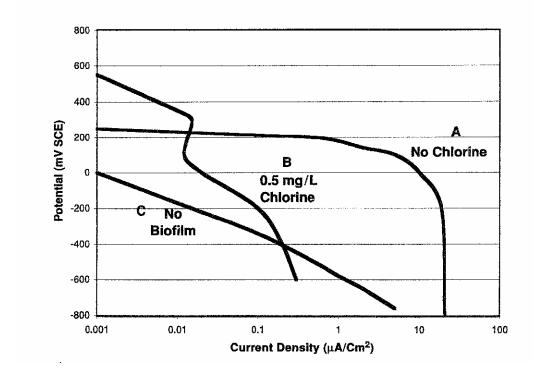


Figure 2. Effect of chlorination on cathodic efficiency of a stainless steel in seawater.

Factors Affecting the Intensity of Galvanic Attack

The intensity of galvanic attack on the anode in a galvanic couple is a function of the current density on the anode in terms of Amperes per unit area.

Stainless steels are relatively poor cathodes in terms of the current density that can be supported on their surfaces. This is due to the presence of an oxide film that serves as an electrical insulator between the surface of the stainless steel metallic structure and the electrolyte. As described above, biofilm formation also has a large effect on the efficiency of stainless steels as a cathode.

Effect of Area Ratio

In piping systems, the range of current flow is limited and galvanic corrosion is limited to a zone a few pipe diameters from the junction. Thus the effective area ratio inside pipes is about 1 to 1. The range of galvanic corrosion inside piping is limited as shown in Figure 3 (Reference 3).

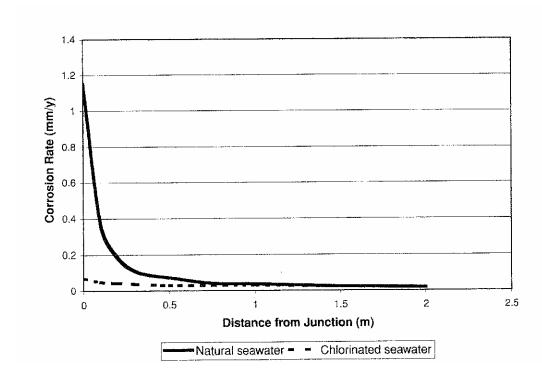


Figure 3. Range of galvanic corrosion - 90/10 Copper-Nickel and stainless steel pipe couples.

One method of mitigating galvanic corrosion on the inside of piping is to insert a short "spool piece" of well coated stainless steel, or (preferred) a non-metallic metarial between the aluminum bronze and stainelss steel piping. A spool piece that is five times as long as the pipe diameter is commonly used.

The effect of area ratio on a couple similar to the aluminum bronze/316 SS couple being considered is shown in Figure 4 (Reference 4) which is for aluminum bronze (solid line) and a 6% Molybdenum stainless steel.

Galvanic Corrosion Considerations Partial Piping Replacement at the Yuma Desalting Plant

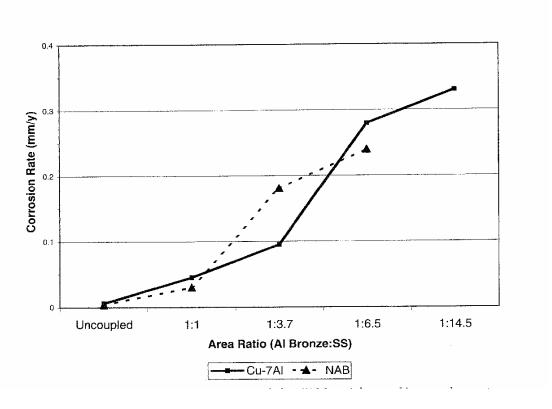


Figure 4. Galvanic corrosion between aluminum bronze (solid line) and 6% Mo stainless steel in natural seawater as a function of area ratio.

However, the primary consideration of area ratio is for pipe exteriors if both the aluminum bronze and stainless steel are buried. In this case, the total exposed area of the aluminum bronze and stainless steel exposed to the soil must be considered. The worst condition occurs when the effective exposed area of the anodic material is small with respect to the cathodic material. In addition, under burial conditions, the beneficial effect of chlorination is absent. This can be seen in Figure 4 which shows a dramatic increase in the corrosion rate of the aluminum bronze with increasing area ratio. Thus, galvanic corrosion may be more of a problem for the exterior of buried piping than for the interior of the piping.

Fortunately, the galvanic corrosion on external surfaces can be mitigated by coating or wrapping the cathodic material, or by cathodic protection. However, in the case of Type 316 stainless steel, coating may be difficult to apply, and wrapping (such as a loose polyethylene wrap) may create oxygen depletion next to the stainless steel which could result in localized attack on the stainless steel. Cathodic protection is probably the best solution to galvanic corrosion between buried aluminum bronze and

Galvanic Corrosion Considerations Partial Piping Replacement at the Yuma Desalting Plant

stainless steel piping at the YDP if the stainless steel replacement piping is buried. Placing below grade stainless steel piping in lined vaults should also be considered.

Environmental Factors / Need for Testing

Quantitative data on galvanic corrosion is widely available for natural and chlorinated seawater, but not for waters that reflect the conditions at the YDP. At the YDP there are various conditions in various locations in the plant with respect to salinity, pH, chlorination levels and other chemical additions. In order to determine the actual levels of galvanic corrosion that are likely to occur if portions of the aluminum bronze piping at the YDP is replaced with stainless steel, it is recommended that validation testing be performed before piping replacement is planned. Testing of aluminum bronze/Type 316 stainless steel couples in the various anticipated environments using tests such as ASTM D2688 should be considered in order to generate quantitative measures of the galvanic corrosion that can be anticipated in various locations in the plant. In ASTM B2688, Method B, cylindrical pipe sections are exposed to a flow of the environment being In order to evaluate galvanic corrosion of aluminum bronze/stainless steel couples, sections of stainless steel and aluminum bronze tubes would be electrically coupled and exposed to the environment being considered. The specimens would be evaluated by weight loss (aluminum bronze) and pit depth measurements (stainless steel) after exposure.

References

- 1. Marine Corrosion- Causes and Prevention, by F.L LaQue, John Wiley & Sons, 1975, page 179.
- 2. Galvanic Corrosion: A Practical Guide for Engineers, by Roger Francis, NACE International, 2001, page 14.
- 3. Galvanic Corrosion: A Practical Guide for Engineers, by Roger Francis, NACE International, 2001, page 69.
- 4. Galvanic Corrosion: A Practical Guide for Engineers, by Roger Francis, NACE International, 2001, page 50.

Appendix L Cost Estimate

Summary of Items or Facilities	Lump Sum Cost	Total (R	Range)
- Pipes 22 & 27 (Inspect & Repair or Inspect & CIPP)		\$158,900 -	\$661,040
+ Allowance for inspection and planning	\$130,900		
+ Alt 1 - Butt Welded Plates	\$40,000		
+ Alt 2 - Weko-Seals	\$28,000		
+ Alt 3 - Cured-In-Place Pipe	\$530,140		
- Pipes 28 & 33 (Pressure Test & Repair or Pressure Test & Replace)		\$78,200 -	\$981,438
+ Allowance for testing and planning	\$50,200		
+ Alt 1 - Butt Welded Plates	\$40,000		
+ Alt 2 - Weko-Seals	\$28,000		
+ Alt 3 - Replace with 316 Stainless Steel (From Estimate Page 47 - B Rehabilitation, Col D.; 07 Pretreatm	\$931,238 ent: D Exterior)		
- Pipe 29 (Pressure Test & Repair)		\$49,400 -	\$57,400
+ Allowance for testing and planning	\$37,400		
+ Alt 1 - Butt Welded Plates	\$20,000		
+ Alt 2 - Weko-Seals	\$12,000		
- Pipes 30, 31, 32, 34 (Inspect & Repair)		\$99,700 -	\$113,700
+ Allowance for inspection and planning	\$78,700		
+ Alt 1 - Butt Welded Plates	\$35,000		
+ Alt 2 - Weko-Seals	\$21,000		
- Pipe 35 & 36 (Pressure Test & Replace or Inspect & CIPP)		\$163,825 -	\$192,673
+ Allowance for testing, inspection, and planning	\$44,200		
+ Alt 1 - Replace with 316 Stainless Steel	\$119,625		
(From Estimate Page 49 - B Rehabilitation, Col D.; 08 Other; D1	' '		
+ Alt 2 - Cured-In-Place Pipe	\$148,473		
- Mobilization (4.5% of Total Cost)		\$24,751.13 -	\$90,281.30
Total Cost for Rehabilitation		\$574,776 -	\$2,096,532

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

DESCRIPTION	QTY UNIT	MATERIALS	CRE\ RATE	<u>W</u> MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
01 Rehabilitation, Col. B Mobilization GENERAL CONDITIONS									
Mobilization & Demobilization (Approx. 7.5% Total)	Unit Costs> 1.00 LS						625000.00 \$625,000	625000.00 \$625,000	\$625,000
TOTAL 01000 GENERAL CONDITIONS 1.00 LS 1.00 LS							\$625,000	\$625,000	\$625,000 \$625,000.00

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

PROJECT NO.: 345334.AA.T5

DESCRIPTION	QTY UNIT	MATERIALS	CRE RATE	<u>W</u> MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
A 1st St. Feed/2nd St. Reject Fluid Systems CONCRETE									
Fluid Systems	Unit Costs> 1.00 Unit Costs>	0.01 0.01						0.01 0.01	
Line 1 - High Pressure Pump Discharge 030551100070A Selective concrete demolition, break into small	1.00 Unit Costs> 275.00 C.Y.		B9 21.86	10.000 2,750	218.56 \$60,105	50.28 \$13,827		268.84 \$73,932	470.34 \$129,342
pieces, maximum reinforcing 022203505000 Rubbish handling, Iding & trucking, haul, per MI, up to 8 c.y truck	Unit Costs> 2,750.00 C.Y.		B34B 24.62	0.010 28	0.25 \$677	0.73 \$2,004		0.97 \$2,681	1.71 \$4,691
031104552000 C.I.P. concrete forms, wall, job built, plywood, below grade, to 8' high, 1 use,	Unit Costs> 1,820.00 SFCA	2.49 \$4,804	C2 29.48	0.160 291	4.72 \$8,586			7.36 \$13,390	12.87 \$23,425
032106001050 Reinforcing, A615 Gr 60, typical in place, average, 10 - 60 tons, #3 to #7	Unit Costs> 30.94 Ton	1099.91 \$36,073	RODM 39.27	15.237 471	598.27 \$18,511			1764.18 \$54,584	3086.40 \$95,493
032106002000 Reinforcing in place, unloading & sorting, add to above	Unit Costs> 30.94 Ton		C5 37.54	0.560 17	21.02 \$650	8.13 \$252		29.15 \$902	51.00 \$1,578
032106002210 Reinforcing in place, crane cost for handling, add to above, average	Unit Costs> 30.94 Ton	400.00	C5 37.54	0.609 19	22.86 \$707	8.85 \$274		31.70 \$981	55.47 \$1,716
033102200300 Concrete, ready mix, regular weight, 4000 psi	Unit Costs> 275.00 C.Y.	120.00 \$34,980						127.20 \$34,980	222.53 \$61,197

CH2M HILL, Inc.

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

PROJECT NO.: 345334.AA.T5

DESCRIPTION	QTY UNIT	MATERIALS	CRE RATE	<u>W</u> MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
A 1st St. Feed/2nd St. Reject Fluid Systems CONCRETE									
033107002950 Placing conc, incl vib, foundation mats, over 20 CY, pumped	Unit Costs> 275.00 C.Y.		C20 24.55	0.350 96	8.59 \$2,363	4.78 \$1,314		13.37 \$3,677	23.39 \$6,432
Subtotal Markups using CH-MK		\$75,857 \$56,853			\$91,599 \$68,652			\$185,126	\$138,748
TOTAL 03000 CONCRETE 1.00 LS 1.00 LS		\$132,710		3,673	\$160,251	\$30,914	_	\$185,126	\$323,874 \$323,874.30

A 1st St. Feed/2nd St. Reject Fluid Systems MECHANICAL								
	Unit Costs>	0.01					0.01	
Fluid Systems	1.00							
	Unit Costs>	0.01					0.01	
Line 1 - High Pressure Pump Discharge	1.00							
152101301140A	Unit Costs>	120.51	PIPE04S	1.500	61.53	3.90	193.17	337.95
12" SST 316-L, pipe assembly, shop fabricated	50.00 LF	\$6,387	41.02	75	\$3,077	\$195	\$9,659	\$16,898
152101901170A	Unit Costs>	198.29	PIPE04S	1.700	69.74	4.42	284.34	497.45
18" SST 316-L, pipe assembly, shop fabricated	158.00 LF	\$33,210	41.02	269	\$11,018	\$698	\$44,926	\$78,597
152102301170A	Unit Costs>	334.83	PIPE04S	1.800	73.84	4.68	433.44	758.29
24" SST 316-L, pipe assembly, shop fabricated	9.00 LF	\$3,194	41.02	16	\$665	\$42	\$3,901	\$6,825
152103101170A	Unit Costs>	1064.70	PIPE04S	3.100	127.17	8.06	1263.81	2211.00
48" SST 316-L, pipe assembly, shop fabricated	254.00 LF	\$286,660	41.02	787	\$32,300	\$2,047	\$321,007	\$561,595
	Unit Costs>	0.01					0.01	
Line 1 - Fittings & Work Req'd, Ref Dwg4489, -4499, & 4500	1.00							
152101401130A	Unit Costs>	470.00	PIPE04S	9.600	393.80	24.96	916.96	
12" Stainless Steel Tee	1.00 EA	\$498	41.02	10	\$394	\$25	\$917	\$1,604

CH2M HILL, Inc.

12/20/2007 13:52:04

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004

Page No. 3

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: **Piping Rehabilitation for YDP**

CLIENT: **United States Bereau of Reclamation DESIGN STAGE:** Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

> YDP_AB to SST Piping 2007.PWS FILE NAME:

PROJECT NO.: 345334.AA.T5

			CRE	W				TOTAL	TOTAL
DESCRIPTION	QTY UNIT	MATERIALS	RATE	МН	LABOR	EQUIPMENT	INSTL S/C	DIRECT	W/MRKUPS
A 1st St. Feed/2nd St. Reject Fluid Systems MECHANICAL									
152101443140B 12" Stainless Steel, Weld on Cone Saddle	Unit Costs>	824.00 \$2,620	PIPE04S 41.02	6.000 18	246.13 \$738	15.60 \$47		1135.17 \$3,406	1985.95 \$5,958
152101401210A 12" Stainless Steel, Slip-On Flange	Unit Costs>	659.00 \$2,096	PIPE04S 41.02	9.836 30	403.48 \$1,210	25.57 \$77		1127.60 \$3,383	1972.71 \$5,918
152102041110A	Unit Costs>	2066.00	PIPE04S	14.754	605.23	38.36		2833.55	4957.23
18" Stainless Steel, Slip-On Flange 152102044140A	17.00 EA Unit Costs>	\$37,229 1240.00	41.02 PIPE04S	251 16.000	\$10,289 656.34	\$652 41.60		\$48,170 2012.34	\$84,273 3520.54
18" Stainless Steel, Weld on Cone Saddle 152102441110	10.00 EA Unit Costs>	\$13,144 3583.00	41.02 PIPE04S	160 19.762	\$6,563 810.66	\$416 51.38		\$20,123 4660.02	\$35,205
24" Stainless Steel, Slip-On Flange 152103201140A	1.00 EA Unit Costs>	\$3,798 3014.00	41.02 PIPE04S	20 30.900	\$811 1267.56	\$51 80.33		\$4,660 4542.73	\$8,153
48" x 24" Stainless Steel Reducer	1.00 EA Unit Costs>	\$3,195 0.01	41.02	31	\$1,268	\$80		\$4,543 0.01	\$7,947
Line 2 - From Pump Manifold to DSB	1.00 Unit Costs>		DIDEGAG	0.400	407.47	0.00			2044.00
152103101170A 48" SST 316-L, pipe assembly, shop fabricated	43.00 LF Unit Costs>	1064.70 \$48,529 0.01	PIPE04S 41.02	3.100 133	127.17 \$5,468	8.06 \$347		1263.81 \$54,344 0.01	2211.00 \$95,073
Line 2 - Fittings & Work Req'd, Ref Dwg4501	1.00								
152103201110A 48" Stainless Steel Elbow, 15 degree (1 Miter Elbow)	Unit Costs> 2.00 EA Unit Costs>	3280.00 \$6,954 0.01	PIPE04S 41.02	30.900 62	1267.56 \$2,535	80.33 \$161		4824.69 \$9,649 0.01	8440.69 \$16,881
Line 3 - DSB Supply Trench Upstream of Valves	1.00								
152102701170A 36" SST 316-L, pipe assembly, shop fabricated	Unit Costs> 143.00 LF	772.09 \$117,033	PIPE04S 41.02	2.600 372	106.66 \$15,252	6.76 \$967		931.83 \$133,252	1630.22 \$233,121
152103101170A 48" SST 316-L, pipe assembly, shop fabricated	Unit Costs> 214.00 LF Unit Costs>	1064.70 \$241,517 0.01	PIPE04S 41.02	3.100 663	127.17 \$27,213	8.06 \$1,725		1263.81 \$270,455 0.01	2211.00 \$473,155
Line 3 - Fittings & Work Req'd, Ref Dwg1533 & 1534	1.00								
152102801110A 36" Stainless Steel Elbow, 15 degree (1 Miter Elbow)	Unit Costs> 2.00 EA	2089.00 \$4,429	PIPE04S 41.02	23.400 47	959.89 \$1,920	60.84 \$122		3235.07 \$6,470	5659.69 \$11,319
152102801110A 36" Stainless Steel Elbow, 90 degree (4 Miter Elbow)	Unit Costs> 1.00 EA	9170.00 \$9,720	PIPE04S 41.02	23.400 23	959.90 \$960	60.84 \$61		10740.94 \$10,741	\$18,791
152103201140A 48" x 36" Stainless Steel Reducer	Unit Costs> 1.00 EA	3014.00 \$3,195	PIPE04S 41.02	30.900 31	1267.56 \$1,268	80.33 \$80		4542.73 \$4,543	\$7,947
CH2M HILL, Inc.	·	•	•			<u>'</u>		12/2	20/2007 13:52:04

12/20/2007 13:52:04 Page No. 4

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004

CPEW

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

TOTAL

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

TOTAL

PROJECT NO.: 345334.AA.T5

DESCRIPTION	QTY UNIT	MATERIALS	CRE RATE	<u>:W</u> MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
A 1st St. Feed/2nd St. Reject Fluid Systems MECHANICAL									
152103201130A	Unit Costs>	11259.00	PIPE04S	41.200	1690.07	107.11		13731.72	
48" x 36" Stainless Steel Reducer Tee	1.00 EA	\$11,935	41.02	41	\$1,690	\$107		\$13,732	\$24,023
151076605632A	Unit Costs>	17.50	Q15	0.727	32.38	3.07		54.00	94.48
Nozzle, stainless steel, T-O-L, weld-on, 1/2" pipe	3.00 Ea.	\$56	44.54	2	\$97	\$9		\$162	\$283
3" Stainless Steel Nozzle, Pe x Pe, Weld to Main Line	Unit Costs> 1.00 EA	50.00 \$53	PIPE04S 41.02	2.000	82.04 \$82	5.20 \$5		140.24 \$140	\$245
	Unit Costs>	0.01						0.01	
Line 4 - DSB Control Block Trench No. 1 (East)	1.00	45.40	DIDECTO	4.400	45.40	0.00		00.40	400.00
152100701110A 6" SST 316-L, pipe assembly, shop fabricated	Unit Costs> 75.00 LF	45.48 \$3,616	PIPE04S 41.02	1.100 83	45.12 \$3,384	2.86 \$214		96.19 \$7,214	168.29 \$12,621
152100901110A	Unit Costs>	69.97	PIPE04S	1.300	53.33	3.38		130.88	228.96
8" SST 316-L, pipe assembly, shop fabricated	273.00 LF	\$20,248	41.02	355	\$14,558	\$923		\$35,729	\$62,507
152101101110A	Unit Costs>	97.62	PIPE04S	1.300	53.33	3.38		160.18	280.24
10" SST 316-L, pipe assembly, shop fabricated	66.00 LF	\$6,829	41.02	86	\$3,520	\$223		\$10,572	\$18,496
152101301140A	Unit Costs>		PIPE04S	1.500	61.53	3.90		193.17	337.95
12" SST 316-L, pipe assembly, shop fabricated	61.00 LF	\$7,792	41.02	92	\$3,753	\$238		\$11,783	\$20,615
152101901170A	Unit Costs>	198.29	PIPE04S	1.700	69.74	4.42		284.34	497.45
18" SST 316-L, pipe assembly, shop fabricated	139.00 LF	\$29,216	41.02	236	\$9,693	\$614		\$39,524	\$69,146
152102301170A	Unit Costs>	334.83	PIPE04S	1.800	73.84	4.68		433.44	758.29
24" SST 316-L, pipe assembly, shop fabricated	89.00 LF	\$31,588	41.02	160	\$6,572	\$416		\$38,576	\$67,488
152102501170A	Unit Costs>	646.21	PIPE04S	2.400	98.45	6.24		789.67	1381.52
30" SST 316-L, pipe assembly, shop fabricated	60.00 LF	\$41,099	41.02	144	\$5,907	\$374		\$47,380	\$82,891
152102701170A	Unit Costs>	772.09	PIPE04S	2.600	106.66	6.76		931.83	1630.22
36" SST 316-L, pipe assembly, shop fabricated	68.00 LF	\$55,652	41.02	177	\$7,253	\$460		\$63,364	\$110,855
11 - 4 Fillian 0 Woll Boll Boll Boll Boll Boll Boll Boll	Unit Costs>	0.01						0.01	
Line 4 - Fittings & Work Req'd, Ref Dwg1536	1.00 Unit Costs>	470.00	DIDECAC	4.000	470.04	44.04		074.04	040.40
152100841110 6" Stainless Steel, Slip-On Flange	11.00 EA	176.00 \$2,052	PIPE04S 41.02	4.233 47	173.64 \$1,910	11.01 \$121		371.21 \$4,083	649.42 \$7,144
152100842320A	Unit Costs>	360.00	PIPE04S	0.750	30.77	1.95		414.32	724.84
6" Grooved Coupling	11.00 EA	\$4,198	41.02	0.750	\$338	1.95 \$21		\$4,557	\$7,973
152101001140A	Unit Costs>	78.00	PIPE04S	3.600	147.68	9.36		239.72	419.38
8" x 6" Stainless Steel Reducer	11.00 EA	\$909	41.02	40	\$1,624	\$103		\$2,637	\$4,613
152101041110	Unit Costs>	290.00	PIPE04S	6.557	268.98	17.05		593.42	1038.18
8" Stainless Steel, Slip-On Flange	46.00 EA	\$14,140	41.02	302	\$12,373	\$784		\$27,297	\$47,756
		1	•					10/0	20/0007 40 50 04

12/20/2007 13:52:04

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004

CH2M HILL, Inc.

Page No. 5

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

PROJECT NO.: 345334.AA.T5

			CRE	W				TOTAL	TOTAL
DESCRIPTION	QTY UNIT	MATERIALS	RATE	MH	LABOR	EQUIPMENT	INSTL S/C	DIRECT	W/MRKUPS
A 1st St. Feed/2nd St. Reject									
Fluid Systems									
MÉCHANICAL									
52101042320A	Unit Costs>	735.00	PIPE04S	1.713	70.27	4.45		853.82	1493.74
8" Grooved Coupling	22.00 EA	\$17.140	41.02	38	\$1,546	\$98		\$18,784	\$32,862
52101243110A	Unit Costs>		PIPE04S	4.400	180.49	11.44		662.57	1159.16
10" Stainless Steel, Weld on Saddle	6.00 EA	\$2,824	41.02	26	\$1,083	\$69		\$3,975	\$6,955
52101201140A	Unit Costs>	115.00	PIPE04S	6.600	270.74	17.16		409.80	716.93
10" x 8" Stainless Steel Reducer	12.00 EA	\$1,463	41.02	79	\$3,249	\$206		\$4,918	\$8,603
52101201130A	Unit Costs>	. ,	PIPE04S	8.800	360.99	22.88		731.54	1279.82
10" Stainless Steel Tee	6.00 EA	\$2,086	41.02	53	\$2,166	\$137		\$4,389	\$7,679
52101242320A	Unit Costs>	875.00	PIPE04S	2.058	84.42	5.35		1017.27	1779.70
10" Grooved Coupling	6.00 EA	\$5,565	41.02	12	\$507	\$32		\$6,104	\$10,678
52101401140A	Unit Costs>	182.00	PIPE04S	7.200	295.35	18.72		506.99	886.97
12" x 8" Stainless Steel Reducer	22.00 EA	\$4,244	41.02	158	\$6,498	\$412		\$11,154	\$19,513
52101401130A	Unit Costs>	470.00	PIPE04S	9.600	393.80	24.96		916.96	1604.21
12" Stainless Steel Tee	11.00 EA	\$5,480	41.02	106	\$4,332	\$275		\$10,087	\$17,646
52101443140A	Unit Costs>	659.00	PIPE04S	4.800	196.90	12.48		907.92	1588.39
12" Stainless Steel, Weld on Saddle	12.00 EA	\$8,382	41.02	58	\$2,363	\$150		\$10,895	\$19,061
52101442320A	Unit Costs>	1225.00	PIPE04S	2.250	92.30	5.85		1396.65	2443.40
12" Grooved Coupling	12.00 EA	\$15,582	41.02	27	\$1,108	\$70		\$16,760	\$29,321
52101442120A	Unit Costs>	146.00	PIPE04S	2.400	98.45	6.24		259.45	
12" Stainless Steel Grooved End Cap	1.00 EA	\$155	41.02	2	\$98	\$6		\$259	\$454
52102041110A	Unit Costs>	2066.00	PIPE04S	14.754	605.23	38.36		2833.55	4957.23
18" Stainless Steel, Slip-On Flange	2.00 EA	\$4,380	41.02	30	\$1,210	\$77		\$5,667	\$9,914
52102401140A	Unit Costs>	997.00	PIPE04S	19.800	812.22	51.48		1920.52	3359.90
24" x 18" Stainless Steel Reducer	2.00 EA	\$2,114	41.02	40	\$1,624	\$103		\$3,841	\$6,720
52102401120A	Unit Costs>	3925.00	PIPE04S	19.800	812.22	51.48		5024.19	8789.72
24" Stainless Steel Elbow, 90 degree (4 Miter Elbow)	2.00 EA	\$8,321	41.02	40	\$1,624	\$103		\$10,048	\$17,579
52102441110	Unit Costs>	3583.00	PIPE04S	19.762	810.66	51.38		4660.02	8152.60
24" Stainless Steel, Slip-On Flange	2.00 EA	\$7,596	41.02	40	\$1,621	\$103		\$9,320	\$16,305
52102601140A	Unit Costs>	1994.00	PIPE04S	21.000	861.45	54.60		3029.69	
30" x 24" Stainless Steel Reducer	1.00 EA	\$2,114	41.02	21	\$861	\$55		\$3,030	\$5,300
52102801140A	Unit Costs>		PIPE04S	23.400	959.90	60.84		3822.32	
86" x 30" Stainless Steel Reducer	1.00 EA	\$2,802	41.02	23	\$960	\$61		\$3,822	\$6,687
52102841110	Unit Costs>		PIPE04S	29.508	1210.45	76.72		14530.81	25421.34
36" Stainless Steel, Slip-On Flange	2.00 EA	\$26,487	41.02	59	\$2,421	\$153		\$29,062	\$50,843

CH2M HILL, Inc.

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

PROJECT NO.: 345334.AA.T5

			CRE	W				TOTAL	TOTAL
DESCRIPTION	QTY UNIT	MATERIALS	RATE	МН	LABOR	EQUIPMENT	INSTL S/C	DIRECT	W/MRKUPS
A 1st St. Feed/2nd St. Reject Fluid Systems MECHANICAL									
151076605632A Nozzle, stainless steel, T-O-L, weld-on, 1/2" pipe	Unit Costs> 3.00 Ea. Unit Costs>	17.50 \$56 0.01	Q15 44.54	0.727 2	32.38 \$97	3.07 \$9		54.00 \$162 0.01	94.48 \$283
Line 5 - DSB Control Block Trench No. 2 (West) 152100701110A 6" SST 316-L, pipe assembly, shop fabricated	1.00 Unit Costs> 65.00 LF	45.48 \$3,134	PIPE04S 41.02	1.100	45.12 \$2,933	2.86 \$186		96.19 \$6,252	168.29 \$10,939
152100901110A 8" SST 316-L, pipe assembly, shop fabricated 152101101110A 10" SST 316-L, pipe assembly, shop fabricated	Unit Costs> 110.00 LF Unit Costs> 40.00 LF	69.97 \$8,159 97.62 \$4,139	PIPE04S 41.02 PIPE04S 41.02	1.300 143 1.300 52	53.33 \$5,866 53.33 \$2,133	3.38 \$372 3.38 \$135		130.88 \$14,396 160.18 \$6,407	228.96 \$25,186 280.24 \$11,210
152101301140A 12" SST 316-L, pipe assembly, shop fabricated 152101901170A	Unit Costs> 20.00 LF Unit Costs>	120.51 \$2,555 198.29	PIPE04S 41.02 PIPE04S	1.500 30 1.700	61.53 \$1,231 69.74	3.90 \$78 4.42		193.17 \$3,863 284.34	337.95 \$6,759 497.45
18" SST 316-L, pipe assembly, shop fabricated 152102301170A 24" SST 316-L, pipe assembly, shop fabricated	139.00 LF Unit Costs> 89.00 LF	\$29,216 334.83 \$31,588	41.02 PIPE04S 41.02	236 1.800 160	\$9,693 73.84 \$6,572	\$614 4.68 \$416		\$39,524 433.44 \$38,576	\$ 69,146 758.29 \$67,488
152102501170A 30" SST 316-L, pipe assembly, shop fabricated 152102701170A	Unit Costs> 60.00 LF Unit Costs>	646.21 \$41,099 772.09	PIPE04S 41.02 PIPE04S	2.400 144 2.600	98.45 \$5,907 106.66	6.24 \$374 6.76		789.67 \$47,380 931.83	1381.52 \$82,891 1630.22
36" SST 316-L, pipe assembly, shop fabricated Line 5 - Fittings & Work Req'd, Ref Dwg1536	68.00 LF Unit Costs> 1.00	\$55,652 0.01	41.02	177	\$7,253	\$460		\$63,364 0.01	\$110,855
152100841110 6" Stainless Steel, Slip-On Flange 152101043110A 8" Stainless Steel, Weld on Saddle	Unit Costs> 4.00 EA Unit Costs> 18.00 EA	176.00 \$746 400.00 \$7,632	PIPE04S 41.02 PIPE04S 41.02	4.233 17 4.000 72	173.64 \$695 164.09 \$2,954	11.01 \$44 10.40 \$187		371.21 \$1,485 598.48 \$10,773	649.42 \$2,598 1047.04 \$18,847
8" x 6" Stainless Steel, Weld on Saddle 152101001140A 8" x 6" Stainless Steel Reducer 152101001110A	Unit Costs> 4.00 EA Unit Costs>	78.00 \$331 300.00	PIPE04S 41.02 PIPE04S	3.600 14 3.600	147.68 \$591 147.68	9.36 \$37 9.36		239.72 \$959 475.04	419.38 \$1,678 831.06
8" Stainless Steel, Fab'd 90 Elbow 152101041110 8" Stainless Steel, Slip-On Flange	12.00 EA Unit Costs> 16.00 EA	\$3,816 290.00 \$4,918	41.02 PIPE04S 41.02	43 6.557 105	\$1,772 268.98 \$4,304	\$1.12 17.05 \$273		\$5,700 593.42 \$9,495	\$9,973 1038.18 \$16,611
152101042320A 8" Grooved Coupling	Unit Costs> 18.00 EA	735.00 \$14,024	PIPE04S 41.02	1.713	70.27 \$1,265	4.45 \$80		853.82 \$15,369	1493.74 \$26,887

CH2M HILL, Inc.

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

DESCRIPTION	QTY UNIT	MATERIALS	CRE RATE	<u>W</u> MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
DESCRIPTION	QIT UNII	WATERIALS	KAIE	IVI	LABUR	EQUIPMENT	INSTES/C	DIRECT	W/WRKUPS
A 1st St. Feed/2nd St. Reject Fluid Systems MECHANICAL									
152101042320A 8" Stainless Steel Grooved End Plug 152102041110A	Unit Costs> 6.00 EA Unit Costs>	78.00 \$496 2066.00	PIPE04S 41.02 PIPE04S	1.200 7 14.754	49.23 \$295 605.23	3.12 \$19 38.36		135.03 \$810 2833.55	236.22 \$1,417 4957.23
18" Stainless Steel, Slip-On Flange 152102401140A 24" x 18" Stainless Steel Reducer 152102401120A	2.00 EA Unit Costs> 2.00 EA Unit Costs>	\$4,380 997.00 \$2,114 3925.00	41.02 PIPE04S 41.02 PIPE04S	30 19.800 40 19.800	\$1,210 812.22 \$1,624 812.22	\$77 51.48 \$103 51.48		\$5,667 1920.52 \$3,841 5024.19	\$9,914 3359.90 \$6,720 8789.72
24" Stainless Steel Elbow, 90 degree (4 Miter Elbow) 152102441110 24" Stainless Steel, Slip-On Flange	2.00 EA Unit Costs> 2.00 EA	\$8,321 3583.00 \$7,596	41.02 PIPE04S 41.02	40 19.762 40	\$1,624 810.66 \$1,621	\$1.46 \$103 51.38 \$103		\$10,048 4660.02 \$9,320	\$17,579 8152.60 \$16,305
152102601140A 30" x 24" Stainless Steel Reducer 152102801140A	Unit Costs> 1.00 EA Unit Costs>	1994.00 \$2,114 2643.00	PIPE04S 41.02 PIPE04S	21.000 21 23.400	861.45 \$861 959.90	54.60 \$55 60.84		3029.69 \$3,030 3822.32	\$5,300
36" x 30" Stainless Steel Reducer 152102841110 36" Stainless Steel, Slip-On Flange	1.00 EA Unit Costs> 2.00 EA	\$2,802 12494.00 \$26,487	41.02 PIPE04S 41.02	23 29.508 59	\$960 1210.45 \$2,421	\$61 76.72 \$153		\$3,822 14530.81 \$29,062	\$6,687 25421.34 \$50,843
151076605632A Nozzle, stainless steel, T-O-L, weld-on, 1/2" pipe	Unit Costs> 3.00 Ea. Unit Costs>	17.50 \$56 25000.00	Q15 44.54 PIPE04S	0.727 2 600.000	32.38 \$97 24612.73	3.07 \$9 1559.88		54.00 \$162 52672.61	94.48 \$283
Allowance for Re-Use of Exist Supports & Brackets, Plus Additional	1.00 L.S.	\$26,500	41.02	600	\$24,613	\$1,560		\$52,673	\$92,150
Subtotal Markups using CH-MK		\$1,457,454 \$1,092,330			\$317,567 \$238,010			\$1,795,157	\$1,345,431
TOTAL 15000 MECHANICAL 1.00 LS		\$2,549,784		7,741	\$555,577	\$35,227		\$1,795,157	\$3,140,588
1.00 LS									\$3,140,588.20

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

PROJECT NO.: 345334.AA.T5

DESCRIPTION	QTY UNIT	MATERIALS	CRE RATE	<u>W</u> MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
A 1st St. Feed/2nd St. Reject Fluid Systems ELECTRICAL									
Fluid Systems	Unit Costs>	0.01						0.01	
Line 1 - High Pressure Pump Discharge	Unit Costs>	0.01						0.01	
161367007050A Disconnect/Reconnect Valves & Flow meters	Unit Costs> 15.00 Ea.	50.00 \$795	ELEC 32.27	5.000 75	161.36 \$2,420			214.36 \$3,215	375.02 \$5,625
Subtotal Markups using CH-MK		\$795 \$596			\$2,420 \$1,814			\$3,215	\$2,410
TOTAL 16000 ELECTRICAL		\$1,391		75	\$4,234			\$3,215	\$5,625
1.00 LS 1.00 LS									\$5,625.30

B 1st St. Feed/2nd St. Reject Hydranautics CONCRETE								
Hydranautics	Unit Costs>	0.01					0.01	
- Tydianaanoo	Unit Costs>	0.01					0.01	
Line 6 - High Pressure Pump Discharge	1.00							
030551100070A	Unit Costs>		B9	10.000	218.56	50.28	268.84	470.34
Selective concrete demolition, break into small pieces, maximum reinforcing	275.00 C.Y.		21.86	2,750	\$60,105	\$13,827	\$73,932	\$129,342
022203505000	Unit Costs>		B34B	0.010	0.25	0.73	0.97	1.71
Rubbish handling, Iding & trucking, haul, per MI, up to 8 c.y truck	2,750.00 C.Y.		24.62	28	\$677	\$2,004	\$2,681	\$4,691
031104552000	Unit Costs>	2.49	C2	0.160	4.72		7.36	12.87
C.I.P. concrete forms, wall, job built, plywood, below grade, to 8' high, 1 use,	1,820.00 SFCA	\$4,804	29.48	291	\$8,586		\$13,390	\$23,425

CH2M HILL, Inc.

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

PROJECT NO.: 345334.AA.T5

DESCRIPTION	QTY UNIT	MATERIALS	CRI RATE	E <u>W</u> MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
B 1st St. Feed/2nd St. Reject Hydranautics CONCRETE									
032106001050 Reinforcing, A615 Gr 60, typical in place, average, 10 - 60 tons, #3 to #7	Unit Costs> 30.94 Ton	1099.91 \$36,073	RODM 39.27	15.237 471	598.27 \$18,511			1764.18 \$54,584	3086.40 \$95,493
032106002000 Reinforcing in place, unloading & sorting, add to above	Unit Costs> 30.94 Ton		C5 37.54	0.560 17	21.02 \$650	8.13 \$252		29.15 \$902	51.00 \$1,578
032106002210 Reinforcing in place, crane cost for handling, add to above, average	Unit Costs> 30.94 Ton		C5 37.54	0.609 19	22.86 \$707	8.85 \$274		31.70 \$981	55.47 \$1,716
033102200300 Concrete, ready mix, regular weight, 4000 psi 033107002950	Unit Costs> 275.00 C.Y. Unit Costs>	120.00 \$34,980	C20	0.350	8.59	4.78		127.20 \$34,980 13.37	222.53 \$61,197 23.39
Placing conc, incl vib, foundation mats, over 20 CY, pumped	275.00 C.Y.		24.55	96	\$2,363	-		\$3,677	\$6,432
Subtotal Markups using CH-MK		\$75,857 \$56,853			\$91,599 \$68,652			\$185,126	\$138,748
TOTAL 03000 CONCRETE 1.00 LS		\$132,710		3,673	\$160,251	\$30,914		\$185,126	\$323,874
1.00 LS									\$323,874.30

B 1st St. Feed/2nd St. Reject Hydranautics MECHANICAL								
Hydranautics	Unit Costs> 1.00	0.01					0.01	
•	Unit Costs>	0.01					0.01	
Line 6 - High Pressure Pump Discharge	1.00	100.51	DIDE010	4.500	04.50	0.00	400.47	007.05
152101301140A 12" SST 316-L, pipe assembly, shop fabricated	Unit Costs> 72.00 LF	120.51 \$9,197	PIPE04S 41.02	1.500 108	61.53 \$4,430	3.90 \$281	193.17 \$13,908	337.95 \$24,332

CH2M HILL, Inc.

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

PROJECT NO.: 345334.AA.T5

			CRE	W				TOTAL	TOTAL
DESCRIPTION	QTY UNIT	MATERIALS	RATE	MH	LABOR	EQUIPMENT	INSTL S/C	DIRECT	W/MRKUPS
B 1st St. Feed/2nd St. Reject Hydranautics MECHANICAL									
152101901170A 18" SST 316-L, pipe assembly, shop fabricated 152102301170A 24" SST 316-L, pipe assembly, shop fabricated 152102501170A 30" SST 316-L, pipe assembly, shop fabricated Line 6 - Fittings & Work Req'd, Ref Dwg4489, -4499, & 4500	Unit Costs> 78.00 LF Unit Costs> 8.00 LF Unit Costs> 313.00 LF Unit Costs> 1.00	198.29 \$16,395 334.83 \$2,839 646.21 \$214,400 0.01	PIPE04S 41.02 PIPE04S 41.02 PIPE04S 41.02	1.700 133 1.800 14 2.400 751	69.74 \$5,439 73.84 \$591 98.45 \$30,815	4.42 \$345 4.68 \$37 6.24 \$1,953		284.34 \$22,179 433.44 \$3,468 789.67 \$247,168 0.01	497.45 \$38,801 758.29 \$6,066 1381.52 \$432,415
152101401130A 12" Stainless Steel Tee 152101443140B 12" Stainless Steel, Weld on Cone Saddle	Unit Costs> 1.00 EA Unit Costs> 2.00 EA	470.00 \$498 824.00 \$1,747	PIPE04S 41.02 PIPE04S 41.02	9.600 10 6.000 12	393.80 \$394 246.13 \$492	24.96 \$25 15.60 \$31		916.96 \$917 1135.17 \$2,270	\$1,604 1985.95 \$3,972
152101401210A 12" Stainless Steel, Slip-On Flange 152102041110A 18" Stainless Steel, Slip-On Flange	Unit Costs> 4.00 EA Unit Costs> 4.00 EA	659.00 \$2,794 2066.00 \$8,760	PIPE04S 41.02 PIPE04S 41.02	9.836 39 14.754 59	403.49 \$1,614 605.23 \$2,421	25.57 \$102 38.36 \$153		1127.60 \$4,510 2833.55 \$11,334	1972.71 \$7,891 4957.23 \$19,829
152102044140A 18" Stainless Steel, Weld on Cone Saddle 152102001120A 18" Stainless Steel Elbow, 90 degree (4 Miter Elbow)	Unit Costs> 1.00 EA Unit Costs> 2.00 EA	1240.00 \$1,314 1468.00 \$3,112	PIPE04S 41.02 PIPE04S 41.02	16.000 16 14.700 29	656.34 \$656 603.01 \$1,206	41.60 \$42 38.22 \$76		2012.34 \$2,012 2197.30 \$4,395	\$3,521 3844.14 \$7,688
152102401140A 24" x 18" Stainless Steel Reducer 152102401130A 24" Stainless Steel Tee	Unit Costs> 1.00 EA Unit Costs> 1.00 EA	997.00 \$1,057 2444.00 \$2,591	PIPE04S 41.02 PIPE04S 41.02	19.800 20 26.400 26	812.22 \$812 1082.96 \$1,083	51.48 \$51 68.63 \$69		1920.52 \$1,921 3742.23 \$3,742	\$3,360 \$6,547
152102601140A 30" x 18" Stainless Steel Reducer 152102601140A 30" x 24" Stainless Steel Reducer	Unit Costs> 1.00 EA Unit Costs> 1.00 EA	1994.00 \$2,114 1994.00 \$2,114	PIPE04S 41.02 PIPE04S 41.02	21.000 21 21.000 21	861.45 \$861 861.45 \$861	54.60 \$55 54.60 \$55		3029.69 \$3,030 3029.69 \$3,030	\$5,300 \$5,300
152102601130A 30" Stainless Steel Tee	Unit Costs> 1.00 EA Unit Costs>	4484.00 \$4,753 0.01	PIPE04S 41.02	28.000 28	1148.59 \$1,149	72.79 \$73		5974.42 \$5,974 0.01	\$10,452
Line 7 - From Pump Manifold to DSB 152102501170A 30" SST 316-L, pipe assembly, shop fabricated CH2M HILL, Inc.	1.00 Unit Costs> 43.00 LF	646.21 \$29,454	PIPE04S 41.02	2.400 103	98.45 \$4,233	6.24 \$268		789.67 \$33,956 12/2	1381.52 \$59,405 20/2007 13:52:04

12/20/2007 13:52:04 Page No. 11

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

PROJECT NO.: 345334.AA.T5

			CRE					TOTAL	TOTAL
DESCRIPTION	QTY UNIT	MATERIALS	RATE	MH	LABOR	EQUIPMENT	INSTL S/C	DIRECT	W/MRKUPS
B 1st St. Feed/2nd St. Reject Hydranautics MECHANICAL									
Line 7 - Fittings & Work Req'd, Ref Dwg4501 152102601120A	Unit Costs> 1.00 Unit Costs>	0.01 1342.00	PIPE04S	21.000	861.45	54.59		0.01 2338.56	4091.26
30" Stainless Steel Elbow, 15 degree (1 Miter Elbow)	2.00 EA Unit Costs>	\$2,845 0.01	41.02	42	\$1,723	\$109		\$4,677 0.01	\$8,183
Line 8 - DSB Supply Trench Upstream of Valves 152102501170A 30" SST 316-L, pipe assembly, shop fabricated Line 8 - Fittings & Work Req'd, Ref Dwg1533 &	1.00 Unit Costs> 12.00 LF Unit Costs> 1.00	646.21 \$8,220 0.01	PIPE04S 41.02	2.400 29	98.45 \$1,181	6.24 \$75		789.67 \$9,476 0.01	1381.52 \$16,578
-1534 152102641110 30" Stainless Steel, Slip-On Flange 3" Stainless Steel Nozzle, Pe x Pe, Weld to Main	Unit Costs> 1.00 EA Unit Costs> 1.00 EA	8261.00 \$8,757 50.00 \$53	PIPE04S 41.02 PIPE04S 41.02	24.590 25 2.000 2	1008.71 \$1,009 82.04 \$82	63.93 \$64 5.20 \$5		9829.30 \$9,829 140.24 \$140	\$17,196 \$245
Line 9 - DSB Supply Trench Downstream of Valve to 90 Elbow	Unit Costs> 1.00	0.01						0.01	
152102501170A 30" SST 316-L, pipe assembly, shop fabricated	Unit Costs> 80.00 LF Unit Costs>	646.21 \$54,799 0.01	PIPE04S 41.02	2.400 192	98.45 \$7,876	6.24 \$499		789.67 \$63,174 0.01	1381.52 \$110,521
Line 9 - Fittings & Work Req'd, Ref Dwg1533 & -1534 152102601120A	1.00 Unit Costs>	1342.00	PIPE04S	21.000	861.45	54.60		2338.57	
30" Stainless Steel Elbow, 15 degree (1 Miter Elbow) 152102601120A	1.00 EA Unit Costs>	\$1,423 5882.00	41.02 PIPE04S	21.000 21 21.000	\$861 861.45	\$55 54.60		\$2,339 7150.97	\$4,091
30" Stainless Steel Elbow, 90 degree (4 Miter Elbow) 152102641110	1.00 EA Unit Costs>	\$6,235 8261.00	41.02 PIPE04S	21 24.590	\$861 1008.71	\$55 63.93		\$7,151 9829.30	\$12,510
30" Stainless Steel, Slip-On Flange 151076605632A Nozzle, stainless steel, T-O-L, weld-on, 1/2" pipe	1.00 EA Unit Costs> 7.00 Ea. Unit Costs>	\$8,757 17.50 \$130 0.01	41.02 Q15 44.55	25 0.727 5	\$1,009 32.38 \$227	\$64 3.07 \$22		\$9,829 54.01 \$378 0.01	\$17,196 94.48 \$661
Line 10 - DSB Control Block Trench	1.00	0.01						0.01	

CH2M HILL, Inc.

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

PROJECT NO.: 345334.AA.T5

			CRE					TOTAL	TOTAL
DESCRIPTION	QTY UNIT	MATERIALS	RATE	MH	LABOR	EQUIPMENT	INSTL S/C	DIRECT	W/MRKUPS
B 1st St. Feed/2nd St. Reject									
Hydranautics									
MECHANICAL									
152100901110A	Unit Costs>	69.97	PIPE04S	1.300	53.33	3.38		130.88	228.96
8" SST 316-L, pipe assembly, shop fabricated	61.00 LF	\$4,524	41.02	79	\$3,253	\$206		\$7,983	\$13,967
152101101110A	Unit Costs>		PIPE04S	1.300	53.33	3.38		160.18	280.24
10" SST 316-L, pipe assembly, shop fabricated	118.00 LF	\$12,210	41.02	153	\$6,293	\$399		\$18,902	\$33,068
152101301140A	Unit Costs>		PIPE04S	1.500	61.53	3.90		193.17	337.95
12" SST 316-L, pipe assembly, shop fabricated	33.00 LF	\$4,215	41.02	50	\$2,031	\$129		\$6,375	\$11,152
152101701170A	Unit Costs>		PIPE04S	1.600	65.63	4.16		252.70	442.09
16" SST 316-L, pipe assembly, shop fabricated	171.00 LF	\$31,276	41.02	274	\$11,223	\$711		\$43,211	\$75,597
152102301170A	Unit Costs>	334.83	PIPE04S	1.800	73.84	4.68		433.44	758.29
24" SST 316-L, pipe assembly, shop fabricated	110.00 LF	\$39,041	41.02	198	\$8,122	\$515		\$47,678	\$83,412
152102501170A	Unit Costs>		PIPE04S	2.400	98.45	6.24		789.67	1381.52
30" SST 316-L, pipe assembly, shop fabricated	65.00 LF	\$44,524	41.02	156	\$6,399	\$406		\$51,329	\$89,799
Line 40 Fittings 9 Work Books Dot Durg 4545 9	Unit Costs> 1.00	0.01						0.01	
Line 10 - Fittings & Work Req'd, Ref Dwg1545 & -1546	1.00								
152101041110	Unit Costs>	290.00	PIPE04S	6.557	268.98	17.05		593.42	1038.18
8" Stainless Steel, Slip-On Flange	30.00 EA	\$9,222	41.02	197	\$8,069	\$511		\$17,803	\$31,145
152101042320A	Unit Costs>		PIPE04S	1.713	70.27	4.45		853.82	1493.74
8" Grooved Coupling	20.00 EA	\$15,582	41.02	34	\$1,405	\$89		\$17,076	\$29,875
152101201140A	Unit Costs>	115.00	PIPE04S	6.600	270.74	17.16		409.80	716.93
10" x 8" Stainless Steel Reducer	10.00 EA	\$1,219	41.02	66	\$2,707	\$172		\$4,098	\$7,169
152101201130A	Unit Costs>		PIPE04S	8.800	360.99	22.88		731.54	1279.82
10" Stainless Steel Tee	5.00 EA	\$1,738	41.02	44	\$1,805	\$114		\$3,658	\$6,399
152101242320A	Unit Costs>	875.00	PIPE04S	2.058	84.42	5.35		1017.27	1779.70
10" Grooved Coupling	13.00 EA	\$12,058	41.02	27	\$1,097	\$70		\$13,225	\$23,136
152101241110A	Unit Costs>	444.00	PIPE04S	8.197	336.25	21.31		828.20	1448.92
10" Stainless Steel, Slip-On Flange	6.00 EA	\$2,824	41.02	49	\$2,018	\$128		\$4,969	\$8,694
152101243110A	Unit Costs>	444.00	PIPE04S	4.400	180.49	11.44		662.57	1159.16
10" Stainless Steel, Weld on Saddle	7.00 EA	\$3,294	41.02	31	\$1,263	\$80		\$4,638	\$8,114
152101401140A	Unit Costs>	151.00	PIPE04S	7.200	295.35	18.72		474.13	829.48
12" x 10" Stainless Steel Reducer	6.00 EA	\$960	41.02	43	\$1,772	\$112		\$2,845	\$4,977
152101401130A	Unit Costs>	470.00	PIPE04S	9.600	393.80	24.96		916.96	1604.20
12" Stainless Steel Tee	3.00 EA	\$1,495	41.02	29	\$1,181	\$75		\$2,751	\$4,813
152101443140A	Unit Costs>	659.00	PIPE04S	4.800	196.90	12.48		907.92	1588.39
12" Stainless Steel, Weld on Saddle	4.00 EA	\$2,794	41.02	19	\$788	\$50		\$3,632	\$6,354
		•	-			-	- '		0/0007 40 50 04

12/20/2007 13:52:04

Page No. 13

CH2M HILL, Inc.

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

DESCRIPTION	QTY UNIT	MATERIALS	CRE RATE	<u>W</u> MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
B 1st St. Feed/2nd St. Reject Hydranautics MECHANICAL									
152101442320A	Unit Costs>	1225.00	PIPE04S	2.250	92.30	5.85		1396.65	2443.40
12" Grooved Coupling	4.00 EA	\$5,194	41.02	9	\$369	\$23		\$5,587	\$9,774
152101801120A	Unit Costs>	975.00	PIPE04S	12.300	504.56	31.98		1570.04	2746.75
16" Stainless Steel Elbow, 45 degree (3 Miter Elbow)	2.00 EA	\$2,067	41.02	25	\$1,009	\$64		\$3,140	\$5,494
15120030010016	Unit Costs>	248.78	PIPE06	5.500	275.89	29.52		569.11	995.65
Pipe Specialties, Flexible Couplings - Dresser #38, 16" Dia	4.00 EA	\$1,055	50.16	22	\$1,104	\$118		\$2,276	\$3,983
152101841110A	Unit Costs>	1716.00	PIPE04S	13.115	538.00	34.09		2391.05	4183.09
16" Stainless Steel, Slip-On Flange	2.00 EA	\$3,638	41.02	26	\$1,076	\$68		\$4,782	\$8,366
152102401140A	Unit Costs>	997.00	PIPE04S	19.800	812.22	51.48		1920.52	
24" x 16" Stainless Steel Reducer	1.00 EA	\$1,057	41.02	20	\$812	\$51		\$1,921	\$3,360
15120030010024	Unit Costs>	590.00	PIPE06	8.300	416.34	44.54		1086.28	1900.42
Pipe Specialties, Flexible Couplings - Dresser #38, 24" Dia	4.00 EA	\$2,502	50.16	33	\$1,665	\$178		\$4,345	\$7,602
152102601140A	Unit Costs>	1994.00	PIPE04S	21.000	861.45	54.60		3029.69	
30" x 24" Stainless Steel Reducer	1.00 EA	\$2,114	41.02	21	\$861	\$55		\$3,030	\$5,300
152102601120A	Unit Costs>	1342.00	PIPE04S	21.000	861.45	54.60		2338.57	
30" Stainless Steel Elbow, 15 degree (1 Miter Elbow)	1.00 EA	\$1,423	41.02	21	\$861	\$55		\$2,339	\$4,091
15120030010030	Unit Costs>	439.72	PIPE07	11.500	574.93	113.85		1154.89	2020.45
Pipe Specialties, Flexible Couplings - Dresser #38, 30" Dia	2.00 EA	\$932	49.99	23	\$1,150	\$228		\$2,310	\$4,041
	Unit Costs>	15000.00	PIPE04S	300.000	12306.36	779.94		28986.30	
Allowance for Re-Use of Exist Supports & Brackets, Plus Additional	1.00 L.S.	\$15,900	41.02	300	\$12,306	\$780		\$28,986	\$50,711
Subtotal Markups using CH-MK		\$617,214 \$462,589			\$152,531 \$114,318	\$9,950 \$7,457		\$779,694	\$584,364
TOTAL 15000 MECHANICAL		\$1,079,803		3,701	\$266,849	\$17,407		\$779,694	\$1,364,058
1.00 LS 1.00 LS									\$1,364,058.30

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

DESCRIPTION	QTY UNIT	MATERIALS	CRE RATE	<u>W</u> MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
B 1st St. Feed/2nd St. Reject Hydranautics ELECTRICAL									
Hydranautics	Unit Costs>	0.01						0.01	
iyuranautus Line 6 - High Pressure Pump Discharge	Unit Costs>	0.01						0.01	
61367007050A Disconnect/Reconnect Valves & Flow meters	Unit Costs> 15.00 Ea.	50.00 \$795	ELEC 32.27	5.000 75	161.36 \$2,420			214.36 \$3,215	375.02 \$5,625
Subtotal Markups using CH-MK		\$795 \$596			\$2,420 \$1,814			\$3,215	\$2,410
TOTAL 16000 ELECTRICAL 1.00 LS		\$1,391		75	\$4,234			\$3,215	\$5,625
1.00 LS 1.00 LS									\$5,625.30

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

PROJECT NO.: 345334.AA.T5

			CRE	W				TOTAL	TOTAL
DESCRIPTION	QTY UNIT	MATERIALS	RATE	MH	LABOR	EQUIPMENT	INSTL S/C	DIRECT	W/MRKUPS
A 1st St. Reject/2nd St. Feed									
Fluid Systems									
MÉCHANICAL									
	Unit Costs>	0.01						0.01	
Fluid Systems	1.00								
	Unit Costs>	0.01						0.01	
Line 11 - DSB Control Block Trench No. 1 (East)	1.00								
152100701110A	Unit Costs>	45.48	PIPE04S	1.100	45.12	2.86		96.19	168.29
6" SST 316-L, pipe assembly, shop fabricated	157.00 LF	\$7,569	41.02	173	\$7,084	\$449		\$15,102	\$26,421
152100901110A	Unit Costs>	69.97	PIPE04S	1.300	53.33	3.38		130.88	228.96
8" SST 316-L, pipe assembly, shop fabricated	169.00 LF	\$12,534	41.02	220	\$9,012	\$571		\$22,118	\$38,695
152101101110A	Unit Costs> 120.00 LF	97.62	PIPE04S	1.300 156	53.33 \$6,399	3.38		160.19	280.24
10" SST 316-L, pipe assembly, shop fabricated		\$12,417	41.02		. ,	\$406		\$19,222	\$33,629
152101301140A 12" SST 316-L, pipe assembly, shop fabricated	Unit Costs> 33.00 LF	120.51 \$4,215	PIPE04S 41.02	1.500 50	61.53 \$2,031	3.90 \$129		193.17 \$6,375	337.95 \$11,152
***	Unit Costs>		PIPE04S						
152102101170A 20" SST 316-L, pipe assembly, shop fabricated	37.00 LF	251.20 \$9,852	41.02	1.700 63	69.74 \$2,580	4.42 \$164		340.43 \$12,596	595.57 \$22,036
152102301170A	Unit Costs>	334.83	PIPE04S	1.800	73.84	4.68		433.44	758.29
24" SST 316-L, pipe assembly, shop fabricated	114.00 LF	\$40,461	41.02	205	\$8,418	\$533		\$49,412	\$86,445
152102501170A	Unit Costs>	646.21	PIPE04S	2.400	98.45	6.24		789.67	1381.52
30" SST 316-L, pipe assembly, shop fabricated	85.00 LF	\$58,224	41.02	2.400	\$8,368	\$530		\$67,122	\$117,429
oo oo oo c, pipe assembly, shop labilicated	Unit Costs>	0.01	41.02	204	ψ0,000	φοσο		0.01	Ψ117,423
Line 11 - Fittings & Work Reg'd, Ref Dwg1537	1.00	0.01						0.01	
152100841110	Unit Costs>	176.00	PIPE04S	4.233	173.64	11.01		371.21	649.42
6" Stainless Steel, Slip-On Flange	12.00 EA	\$2,239	41.02	51	\$2,084	\$132		\$4,454	\$7,793
152101001140A	Unit Costs>	78.00	PIPE04S	3.600	147.68	9.36		239.72	419.38
8" x 6" Stainless Steel Reducer	8.00 EA	\$661	41.02	29	\$1,181	\$75		\$1,918	\$3,355
152101042320A	Unit Costs>	735.00	PIPE04S	1.713	70.27	4.45		853.82	1493.74
8" Grooved Coupling	8.00 EA	\$6,233	41.02	14	\$562	\$36		\$6,831	\$11,950
152101201110A	Unit Costs>	356.00	PIPE04S	6.600	270.74	17.16		665.26	
10" Stainless Steel, Fab'd 90 Elbow	1.00 EA	\$377	41.02	7	\$271	\$17		\$665	\$1,164
152101243110A	Unit Costs>	444.00	PIPE04S	4.400	180.49	11.44		662.57	1159.16
10" Stainless Steel, Weld on Saddle	9.00 EA	\$4,236	41.02	40	\$1,624	\$103		\$5,963	\$10,432
152101201110A	Unit Costs>	356.00	PIPE04S	6.600	270.74	17.16		665.26	1163.85
10" Stainless Steel, Fab'd 90 Elbow	4.00 EA	\$1,509	41.02	26	\$1,083	\$69		\$2,661	\$4,655
152101201140A	Unit Costs>	115.00	PIPE04S	6.600	270.74	17.16		409.80	716.93
10" x 6" Stainless Steel Reducer	4.00 EA	\$488	41.02	26	\$1,083	\$69		\$1,639	\$2,868

CH2M HILL, Inc.

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

PROJECT NO.: 345334.AA.T5

			CRE	W				TOTAL	TOTAL
DESCRIPTION	QTY UNIT	MATERIALS	RATE	MH	LABOR	EQUIPMENT	INSTL S/C	DIRECT	W/MRKUPS
A 1st St. Reject/2nd St. Feed									
Fluid Systems									
MECHANICAL									
52101242320A	Unit Costs>	875.00	PIPE04S	2.058	84.42	5.35		1017.27	1779.69
0" Grooved Coupling	9.00 EA	\$8,348	41.02	19	\$760	\$48		\$9,155	\$16,017
52101242320A	Unit Costs>	110.00	PIPE04S	2.200	90.25	5.72		212.57	371.88
0" Stainless Steel Grooved End Plug	6.00 EA	\$700	41.02	13	\$541	\$34		\$1,275	\$2,231
52101401140A	Unit Costs>	182.00	PIPE04S	7.200	295.35	18.72		506.99	886.97
2" x 8" Stainless Steel Reducer	8.00 EA	\$1,543	41.02	58	\$2,363	\$150		\$4,056	\$7,096
52101401120A	Unit Costs>	394.00	PIPE04S	7.200	295.35	18.72		731.71	1280.11
2" Stainless Steel, Fab'd 90 Elbow	8.00 EA	\$3,341	41.02	58	\$2,363	\$150		\$5,854	\$10,241
52101443140A	Unit Costs>	659.00	PIPE04S	4.800	196.90	12.48		907.92	1588.39
2" Stainless Steel, Weld on Saddle	8.00 EA	\$5,588	41.02	38	\$1,575	\$100		\$7,263	\$12,707
52101442320A	Unit Costs>	1225.00	PIPE04S	2.250	92.30	5.85		1396.65	2443.40
2" Grooved Coupling	8.00 EA	\$10,388	41.02	18	\$738	\$47		\$11,173	\$19,547
52102201140A	Unit Costs>	791.00	PIPE04S	18.600	762.99	48.36		1649.81	
20" x 10" Stainless Steel Reducer	1.00 EA	\$838	41.02	19	\$763	\$48		\$1,650	\$2,886
52102201120A	Unit Costs>	3047.00	PIPE04S	18.600	763.00	48.35		4041.17	7069.94
20" Stainless Steel Elbow, 90 degree (4 Miter Elbow)	2.00 EA	\$6,460	41.02	37	\$1,526	\$97		\$8,082	\$14,140
52102241110A	Unit Costs>	2661.00	PIPE04S	16.393	672.46	42.62		3535.74	6185.70
20" Stainless Steel, Slip-On Flange	2.00 EA	\$5,641	41.02	33	\$1,345	\$85		\$7,071	\$12,371
52102401140A	Unit Costs>	997.00	PIPE04S	19.800	812.22	51.48		1920.52	3359.90
24" x 20" Stainless Steel Reducer	2.00 EA	\$2,114	41.02	40	\$1,624	\$103		\$3,841	\$6,720
52102601140A	Unit Costs>	1994.00	PIPE04S	21.000	861.45	54.59		3029.68	5300.36
30" x 24" Stainless Steel Reducer	2.00 EA	\$4,227	41.02	42	\$1,723	\$109		\$6,059	\$10,601
	Unit Costs>	0.01						0.01	
ine 12 - DSB Control Block Trench No. 2 (West)	1.00								
52100701110A	Unit Costs>	45.48	PIPE04S	1.100	45.12	2.86		96.19	168.29
" SST 316-L, pipe assembly, shop fabricated	22.00 LF	\$1,061	41.02	24	\$993	\$63		\$2,116	\$3,702
52100901110A	Unit Costs>	69.97	PIPE04S	1.300	53.33	3.38		130.88	228.96
" SST 316-L, pipe assembly, shop fabricated	40.00 LF	\$2,967	41.02	52	\$2,133	\$135		\$5,235	\$9,159
52101101110A	Unit Costs>	97.62	PIPE04S	1.300	53.33	3.38		160.19	280.24
0" SST 316-L, pipe assembly, shop fabricated	53.00 LF	\$5,484	41.02	69	\$2,826	\$179		\$8,490	\$14,853
52101301140A	Unit Costs>	120.51	PIPE04S	1.500	61.53	3.90		193.17	337.95
2" SST 316-L, pipe assembly, shop fabricated	14.00 LF	\$1,788	41.02	21	\$861	\$55		\$2,704	\$4,731
52102101170A	Unit Costs>	251.20	PIPE04S	1.700	69.74	4.42		340.43	595.57
20" SST 316-L, pipe assembly, shop fabricated	37.00 LF	\$9,852	41.02	63	\$2,580	\$164		\$12,596	\$22,036

CH2M HILL, Inc.

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD
REVIEWED BY: Robert Lawson/RDD

EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

PROJECT NO.: 345334.AA.T5

			CRE	W				TOTAL	TOTAL
DESCRIPTION	QTY UNIT	MATERIALS	RATE	МН	LABOR	EQUIPMENT	INSTL S/C	DIRECT	W/MRKUPS
A 1st St. Reject/2nd St. Feed									
Fluid Systems									
MECHANICAL									
52102301170A	Unit Costs>	334.83	PIPE04S	1.800	73.84	4.68		433.44	758.29
24" SST 316-L, pipe assembly, shop fabricated	114.00 LF	\$40,461	41.02	205	\$8,418	\$533		\$49,412	\$86,445
52102501170A	Unit Costs>	646.21	PIPE04S	2.400	98.45	6.24		789.67	1381.52
30" SST 316-L, pipe assembly, shop fabricated	85.00 LF	\$58,224	41.02	204	\$8,368	\$530		\$67,122	\$117,429
	Unit Costs>	0.01						0.01	
Line 12 - Fittings & Work Req'd, Ref Dwg1537	1.00								
52100841110	Unit Costs>	176.00	PIPE04S	4.233	173.64	11.01		371.21	649.42
6" Stainless Steel, Slip-On Flange	22.00 EA	\$4,104	41.02	93	\$3,820	\$242		\$8,167	\$14,287
52100842320A	Unit Costs>	360.00	PIPE04S	0.750	30.77	1.95		414.32	724.84
6" Grooved Coupling	22.00 EA	\$8,395	41.02	17	\$677	\$43		\$9,115	\$15,946
52101041110	Unit Costs>	290.00	PIPE04S	6.557	268.98	17.05		593.42	1038.18
8" Stainless Steel, Slip-On Flange	55.00 EA	\$16,907	41.02	361	\$14,794	\$938		\$32,638	\$57,100
52101001140A	Unit Costs>	78.00	PIPE04S	3.600	147.68	9.36		239.72	419.38
8" x 6" Stainless Steel Reducer	22.00 EA	\$1,819	41.02	79	\$3,249	\$206		\$5,274	\$9,226
52101042320A	Unit Costs>	735.00	PIPE04S	1.713	70.27	4.45		853.82	1493.74
8" Grooved Coupling	12.00 EA	\$9,349	41.02	21	\$843	\$53		\$10,246	\$17,925
52101042320A	Unit Costs>	78.00	PIPE04S	1.200	49.23	3.12		135.03	
8" Stainless Steel Grooved End Plug	1.00 EA	\$83	41.02	1	\$49	\$3		\$135	\$236
152101201110A	Unit Costs>	356.00	PIPE04S	6.600	270.74	17.16		665.26	
10" Stainless Steel, Fab'd 90 Elbow	1.00 EA	\$377	41.02	7	\$271	\$17		\$665	\$1,164
52101242320A	Unit Costs>	110.00	PIPE04S	2.200	90.25	5.72		212.57	
10" Stainless Steel Cap	1.00 EA	\$117	41.02	2	\$90	\$6		\$213	\$372
52101201140A	Unit Costs>	115.00	PIPE04S	6.600	270.74	17.16		409.80	716.93
10" x 8" Stainless Steel Reducer	22.00 EA	\$2,682	41.02	145	\$5,956	\$377		\$9,016	\$15,773
52101201130A	Unit Costs>	328.00	PIPE04S	8.800	360.99	22.88		731.54	1279.82
10" Stainless Steel Tee	11.00 EA	\$3,824	41.02	97	\$3,971	\$252		\$8,047	\$14,078
52101243110A	Unit Costs>	444.00	PIPE04S	4.400	180.49	11.44		662.57	1159.16
10" Stainless Steel, Weld on Saddle	11.00 EA	\$5,177	41.02	48	\$1,985	\$126		\$7,288	\$12,751
52101242320A	Unit Costs>	875.00	PIPE04S	2.058	84.42	5.35		1017.27	1779.70
10" Grooved Coupling	11.00 EA	\$10,203	41.02	23	\$929	\$59		\$11,190	\$19,577
52101401140A	Unit Costs>	182.00	PIPE04S	7.200	295.35	18.72		506.99	886.97
12" x 8" Stainless Steel Reducer	12.00 EA	\$2,315	41.02	86	\$3,544	\$225		\$6,084	\$10,644
152101401130A	Unit Costs>	470.00	PIPE04S	9.600	393.80	24.96		916.96	1604.20
12" Stainless Steel Tee	6.00 EA	\$2,989	41.02	58	\$2,363	\$150		\$5,502	\$9,625
CHOMILILLIng			I			1		10/	00/2007 12:52:04

CH2M HILL, Inc.

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

			CRI					TOTAL	TOTAL
DESCRIPTION	QTY UNIT	MATERIALS	RATE	MH	LABOR	EQUIPMENT	INSTL S/C	DIRECT	W/MRKUPS
A 1st St. Reject/2nd St. Feed									
Fluid Systems									
MECHANICAL									
52101443140A	Unit Costs>	659.00	PIPE04S	4.800	196.90	12.48		907.92	1588.39
2" Stainless Steel, Weld on Saddle	6.00 EA	\$4,191	41.02	4.800	\$1,181	\$75		\$5,448	\$9,530
52101442320A	Unit Costs>	1225.00	PIPE04S	2.250	92.30	5.85		1396.65	2443.41
2" Grooved Coupling	6.00 EA	\$7,791	41.02	14	\$554	\$35		\$8,380	\$14,660
52102201140A	Unit Costs>	791.00	PIPE04S	18.600	762.99	48.36		1649.81	, ,
0" x 10" Stainless Steel Reducer	1.00 EA	\$838	41.02	19	\$763	\$48		\$1,650	\$2,886
52102201120A	Unit Costs>	3047.00	PIPE04S	18.600	763.00	48.35		4041.17	7069.94
20" Stainless Steel Elbow, 90 degree (4 Miter Elbow)	2.00 EA	\$6,460	41.02	37	\$1,526	\$97		\$8,082	\$14,140
52102241110A	Unit Costs>	2661.00	PIPE04S	16.393	672.46	42.62		3535.74	6185.70
0" Stainless Steel, Slip-On Flange	2.00 EA	\$5,641	41.02	33	\$1,345	\$85		\$7,071	\$12,371
52102401140A	Unit Costs>	997.00	PIPE04S	19.800	812.22	51.48		1920.52	3359.90
4" x 20" Stainless Steel Reducer	2.00 EA	\$2,114	41.02	40	\$1,624	\$103		\$3,841	\$6,720
52102601140A	Unit Costs>	1994.00	PIPE04S	21.000	861.45	54.59		3029.68	5300.36
0" x 24" Stainless Steel Reducer	2.00 EA	\$4,227	41.02	42	\$1,723	\$109		\$6,059	\$10,601
	Unit Costs>		PIPE04S	200.000	8204.24	519.96		24624.20	
Allowance for Re-Use of Exist Supports & Brackets,	1.00 L.S.	\$15,900	41.02	200	\$8,204	\$520		\$24,624	\$43,080
Plus Additional									
Subtotal		\$445,544			\$152,744	\$9,681		\$607,969	
Markups using CH-MK		\$333,926			\$114,479	\$7,255		4 001,000	\$455,660
TOTAL 15000 MECHANICAL		\$779,470		3,724	\$267,223	\$16,936		\$607,969	\$1,063,629
1.00 LS 1.00 LS									\$1,063,629.00
1.00 E3									φ1,003,029.00
B 1st St. Reject/2nd St. Feed									
Hydranautics									
MECHANICAL									
	Unit Costs>	0.01						0.01	
lydranautics	1.00	0.01						0.01	
iy di di iddioo	1.00								
NIOM IIII I Ing		l l				I	l	10/0	0/2007 12:52:04

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

PROJECT NO.: 345334.AA.T5

			CRE					TOTAL	TOTAL
DESCRIPTION	QTY UNIT	MATERIALS	RATE	MH	LABOR	EQUIPMENT	INSTL S/C	DIRECT	W/MRKUPS
B 1st St. Reject/2nd St. Feed									
Hydranautics MECHANICAL									
MECHANICAL									
	Unit Costs>	0.01						0.01	
Line 13 - DSB Control Block Trench	1.00								
152100901110A	Unit Costs>	69.97	PIPE04S	1.300	53.33	3.38		130.88	228.96
8" SST 316-L, pipe assembly, shop fabricated	120.00 LF	\$8,900	41.02	156	\$6,399	\$406		\$15,705	\$27,476
152101101110A	Unit Costs>	97.62	PIPE04S	1.300	53.33	3.38		160.19	280.24
10" SST 316-L, pipe assembly, shop fabricated	58.00 LF	\$6,002	41.02	75	\$3,093	\$196		\$9,291	\$16,254
152101301140A	Unit Costs>	120.51	PIPE04S	1.500	61.53	3.90		193.17	337.95
12" SST 316-L, pipe assembly, shop fabricated	136.00 LF	\$17,373	41.02	204	\$8,368	\$530		\$26,271	\$45,961
152101501170A	Unit Costs>	150.13	PIPE04S	1.500	61.53	3.90		224.57	392.88
14" SST 316-L, pipe assembly, shop fabricated	55.00 LF	\$8,753	41.02	83	\$3,384	\$214		\$12,351	\$21,608
152101901170A	Unit Costs>	198.29	PIPE04S	1.700	69.74	4.42		284.34	497.45
18" SST 316-L, pipe assembly, shop fabricated	140.00 LF	\$29,426	41.02	238	\$9,763	\$619		\$39,808	\$69,643
	Unit Costs>	0.01						0.01	
Line 13 - Fittings & Work Req'd, Ref Dwg1543 & -1544	1.00								
152101041110	Unit Costs>	290.00	PIPE04S	6.557	268.98	17.05		593.42	1038.18
8" Stainless Steel, Slip-On Flange	30.00 EA	\$9,222	41.02	197	\$8,069	\$511		\$17,803	\$31,145
152101042320A	Unit Costs>	735.00	PIPE04S	1.713	70.27	4.45		853.82	1493.74
8" Grooved Coupling	10.00 EA	\$7,791	41.02	17	\$703	\$45		\$8,538	\$14,937
152101201110A	Unit Costs>	356.00	PIPE04S	6.600	270.74	17.16		665.26	
10" Stainless Steel, Fab'd 90 Elbow	1.00 EA	\$377	41.02	7	\$271	\$17		\$665	\$1,164
152101201130A	Unit Costs>	328.00	PIPE04S	8.800	360.99	22.88		731.54	1279.82
10" Stainless Steel Tee	5.00 EA	\$1,738	41.02	44	\$1,805	\$114		\$3,658	\$6,399
152101243110A	Unit Costs>	444.00	PIPE04S	4.400	180.49	11.44		662.57	1159.16
10" Stainless Steel, Weld on Saddle	6.00 EA	\$2,824	41.02	26	\$1,083	\$69		\$3,975	\$6,955
152101242320A	Unit Costs>	875.00	PIPE04S	2.058	84.42	5.35		1017.27	1779.70
10" Grooved Coupling	12.00 EA	\$11,130	41.02	25	\$1,013	\$64		\$12,207	\$21,356
152101241110A	Unit Costs>	444.00	PIPE04S	8.197	336.25	21.31		828.20	1448.92
10" Stainless Steel, Slip-On Flange	6.00 EA	\$2,824	41.02	49	\$2,018	\$128		\$4,969	\$8,694
152101201140A	Unit Costs>	115.00	PIPE04S	6.600	270.74	17.16		409.80	716.93
10" x 8" Stainless Steel Reducer	10.00 EA	\$1,219	41.02	66	\$2,707	\$172		\$4,098	\$7,169
152101401120A	Unit Costs>	394.00	PIPE04S	7.200	295.35	18.72		731.71	
12" Stainless Steel, Fab'd 90 Elbow	1.00 EA	\$418	41.02	7	\$295	\$19		\$732	\$1,280
152101401120A	Unit Costs>	371.00	PIPE04S	7.200	295.36	18.72		707.34	1237.46
12" Stainless Steel, Fab'd 45 Elbow	2.00 EA	\$787	41.02	14	\$591	\$37		\$1,415	\$2,475
CH2M HILL, Inc.	•		-		•	=	· ·	12/2	20/2007 13:52:04

12/20/2007 13:52:04 Page No. 20

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

PROJECT NO.: 345334.AA.T5

DESCRIPTION	QTY UNIT	MATERIALS	CRE RATE	<u>:W</u> MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
B 1st St. Reject/2nd St. Feed									
Hydranautics									
MECHANICAL									
152101401130A	Unit Costs>	470.00	PIPE04S	9.600	393.80	24.96		916.96	1604.21
12" Stainless Steel Tee	5.00 EA	\$2,491	41.02	48	\$1,969	\$125		\$4,585	\$8,021
152101443140A	Unit Costs>	659.00	PIPE04S	4.800	196.90	12.48		907.92	1588.39
12" Stainless Steel, Weld on Saddle	2.00 EA	\$1,397	41.02	10	\$394	\$25		\$1,816	\$3,177
152101401210A	Unit Costs>	659.00	PIPE04S	9.836	403.49	25.57		1127.60	1972.70
12" Stainless Steel, Slip-On Flange	2.00 EA	\$1,397	41.02	20	\$807	\$51		\$2,255	\$3,945
152101442320A	Unit Costs>	1225.00	PIPE04S	2.250	92.30	5.85		1396.65	2443.40
12" Grooved Coupling	4.00 EA	\$5,194	41.02	9	\$369	\$23		\$5,587	\$9,774
15120030010012 Pipe Specialties, Flexible Couplings - Dresser #138,	Unit Costs> 3.00 EA	134.03 \$426	PIPE05 50.49	3.750 11	189.35 \$568	9.38 \$28		340.80	596.22 \$1,789
12" Dia	3.00 EA	Φ420	50.49	11	φοσσ	\$∠8		\$1,022	\$1,769
152101401140A	Unit Costs>	151.00	PIPE04S	7.200	295.35	18.72		474.13	829.48
12" x 10" Stainless Steel Reducer	6.00 EA	\$960	41.02	43	\$1,772	\$112		\$2,845	\$4,977
152101601140	Unit Costs>	368.00	PIPE04S	9.600	393.80	24.96		808.84	
14" x 10" Stainless Steel Reducer	1.00 EA	\$390	41.02	10	\$394	\$25		\$809	\$1,415
15120030010014	Unit Costs>	241.43	PIPE05	4.000	201.98	10.00		467.89	818.57
Pipe Specialties, Flexible Couplings - Dresser #38, 14" Dia	3.00 EA	\$768	50.49	12	\$606	\$30		\$1,404	\$2,456
152102001140B	Unit Costs>	519.00	PIPE04S	14.700	603.01	38.22		1191.37	
18" x 12" Stainless Steel Reducer	1.00 EA	\$550	41.02	15	\$603	\$38		\$1,191	\$2,084
152102001140A	Unit Costs>	519.00	PIPE04S	14.700	603.01	38.22		1191.37	
18" x 14" Stainless Steel Reducer	1.00 EA	\$550	41.02	15	\$603	\$38		\$1,191	\$2,084
15120030010018	Unit Costs>		PIPE06	6.600	331.06	35.42		661.32	1156.97
Pipe Specialties, Flexible Couplings - Dresser #38, 18" Dia	5.00 EA	\$1,474	50.16	33	\$1,655	\$177		\$3,307	\$5,785

CH2M HILL, Inc.

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

DESCRIPTION QTY UNIT	MATERIALS	CRE RATE	<u>MH</u>	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
B 1st St. Reject/2nd St. Feed Hydranautics MECHANICAL								
Allowance for Re-Use of Exist Supports & Brackets, Plus Additional Unit Costs	10000.00 \$10,600	PIPE04S 41.02	100.000 100	4102.12 \$4,102	259.98 \$260		14962.10 \$14,962	\$26,176
Subtotal Markups using CH-MK	\$134,981 \$101,165			\$63,405 \$47,521	\$4,074 \$3,054		\$202,460	\$151,740
TOTAL 15000 MECHANICAL 1.00 LS 1.00 LS	\$236,146		1,533	\$110,926	\$7,128		\$202,460	\$354,200 \$354,200.00

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

PROJECT NO.: 345334.AA.T5

	[CRE	W				TOTAL	TOTAL
DESCRIPTION	QTY UNIT	MATERIALS	RATE	MH	LABOR	EQUIPMENT	INSTL S/C	DIRECT	W/MRKUPS
A Interstage to ER									
Fluid Systems									
MÉCHANICAL									
	Unit Costs>	0.04						0.04	
Fluid Systems	1.00	0.01						0.01	
Tidia dystems	Unit Costs>	0.01						0.01	
Line 14 - DSB Collection Trench	1.00	0.01						0.01	
152102301170A	Unit Costs>	334.83	PIPE04S	1.800	73.84	4.68		433.44	758.29
24" SST 316-L, pipe assembly, shop fabricated	22.00 LF	\$7,808	41.02	40	\$1,624	\$103		\$9,536	\$16,682
152102501170A	Unit Costs>	646.21	PIPE04S	2.400	98.45	6.24		789.67	1381.52
30" SST 316-L, pipe assembly, shop fabricated	308.00 LF	\$210,975	41.02	739	\$30,323	\$1,922		\$243,219	\$425,507
	Unit Costs>	0.01						0.01	
Line 14 - Fittings & Work Req'd, Ref Dwg4505	1.00								
152102401120A	Unit Costs>	3925.00	PIPE04S	19.800	812.22	51.48		5024.19	8789.72
24" Stainless Steel Elbow, 90 degree (4 Miter Elbow)	4.00 EA	\$16,642	41.02	79	\$3,249	\$206		\$20,097	\$35,159
152102401130A	Unit Costs>	2444.00	PIPE04S	26.400	1082.96	68.63		3742.23	
24" Stainless Steel Tee	1.00 EA	\$2,591	41.02	26	\$1,083	\$69		\$3,742	\$6,547
152102601140A	Unit Costs>	1994.00	PIPE04S	21.000	861.45	54.60		3029.69	
30" x 24" Stainless Steel Reducer	1.00 EA	\$2,114	41.02	21	\$861	\$55		\$3,030	\$5,300
152102601130B	Unit Costs>	4484.00	PIPE04S	28.000	1148.59	72.79		5974.42	
30" x 20" Stainless Steel Reducer Tee	1.00 EA	\$4,753	41.02	28	\$1,149	\$73		\$5,974	\$10,452
152102601130C	Unit Costs>	4484.00	PIPE04S	28.000	1148.59	72.79		5974.42	
30" x 24" Stainless Steel Reducer Tee	1.00 EA	\$4,753	41.02	28	\$1,149	\$73		\$5,974	\$10,452
152102601120A	Unit Costs>	4118.00	PIPE04S	21.000	861.45	54.59		5281.12	9239.21
30" Stainless Steel Elbow, 45 degree (3 Miter Elbow)	2.00 EA	\$8,730	41.02	42	\$1,723	\$109		\$10,562	\$18,478
152102641110	Unit Costs>	8261.00	PIPE04S	24.590	1008.71	63.93		9829.30	17196.15
30" Stainless Steel, Slip-On Flange	2.00 EA	\$17,513	41.02	49	\$2,017	\$128		\$19,659	\$34,392
	Unit Costs>	0.01						0.01	
Line 15 - Outside DSB to Sleeve Valve & Turbines	1.00								
152101901170A	Unit Costs>	198.29	PIPE04S	1.700	69.74	4.42		284.34	497.45
18" SST 316-L, pipe assembly, shop fabricated	118.00 LF	\$24,802	41.02	201	\$8,229	\$522		\$33,552	\$58,699
152102501170A	Unit Costs>	646.21	PIPE04S	2.400	98.45	6.24		789.67	1381.52
30" SST 316-L, pipe assembly, shop fabricated	430.00 LF	\$294,543	41.02	1,032	\$42,334	\$2,683		\$339,559	\$594,052
Line 45 Fittings 9 Work Boald Bot Durg 4000	Unit Costs>	0.01						0.01	
Line 15 - Fittings & Work Req'd, Ref Dwg4209, -4498, -4501, & 4579	1.00								
152102001120A	Unit Costs>	1050.00	PIPE04S	14.700	603.01	38.22		1754.22	3068.98
18" Stainless Steel Elbow, 15 degree (1 Miter Elbow)	2.00 EA	\$2,226	41.02	29	\$1,206	\$76		\$3,508	\$6,138
CH2M HILL, Inc.		<u>'</u>	•			- '	- '-	12/2	0/2007 13:52:04

12/20/2007 13:52:04 Page No. 23

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

			CRE	<u>W</u>				TOTAL	TOTAL
DESCRIPTION	QTY UNIT	MATERIALS	RATE	MH	LABOR	EQUIPMENT	INSTL S/C	DIRECT	W/MRKUPS
A Interstage to ER									
Fluid Systems									
MECHANICAL									
52102001120A	Unit Costs>	1027.00	PIPE04S	14.700	603.01	38.22		1729.85	3026.33
8" Stainless Steel Elbow, 45 degree (3 Miter Elbow)	2.00 EA	\$2,177	41.02	29	\$1,206	\$76		\$3,460	\$6,053
52102001120A	Unit Costs>		PIPE04S	14.700	603.01	38.22		2197.31	
8" Stainless Steel Elbow, 90 degree (4 Miter Elbow)	1.00 EA	\$1,556	41.02	15	\$603	\$38		\$2,197	\$3,844
52102601130C	Unit Costs>		PIPE04S	28.000	1148.59	72.79		5974.42	4
0" x 18" Stainless Steel Reducer Tee	1.00 EA	\$4,753	41.02	28	\$1,149	\$73		\$5,974	\$10,452
52102601120A	Unit Costs>		PIPE04S	21.000	861.45	54.60		2338.57	£4.004
10" Stainless Steel Elbow, 15 degree (1 Miter Elbow)	1.00 EA Unit Costs>	\$1,423	41.02	21	\$861	\$55 54.50		\$2,339	\$4,091
0" Stainless Steel Elbow, 45 degree (3 Miter Elbow)	2.00 EA	4118.00 \$8,730	PIPE04S 41.02	21.000 42	861.45 \$1,723	54.59 \$109		5281.12 \$10,562	9239.21 \$18,478
52102601120A	Unit Costs>		PIPE04S	21.000	861.45	54.59		7150.96	12510.45
0" Stainless Steel Elbow, 90 degree (4 Miter Elbow)	2.00 EA	\$12,470	41.02	42	\$1,723	\$109		\$14,302	\$25,021
e clamicos clos. Elben, es degres (: mile: Elben)	Unit Costs>		PIPE04S	120.000	4922.55	311.98		21134.53	V =0,0=1
Illowance for Re-Use of Exist Supports & Brackets,	1.00 L.S.	\$15,900	41.02	120	\$4,923	\$312		\$21,135	\$36,974
Plus Additional						·			
Subtotal		\$644,458			\$107,134			\$758,382	
Markups using CH-MK		\$483,008			\$80,295	\$5,089			\$568,391
TOTAL 15000 MECHANICAL		\$1,127,466		2,612	\$187,429	\$11,879		\$758,382	\$1,326,774
									¢4 226 772 00
1.00 LS									\$1,326,773.80
1.00 LS 1.00 LS		ψ1,121,400		2,012	Ψ101, 1 23	Ψ11,073		Ψ130,302	
B Interstage to ER									
Hydranautics									
MECHANICAL									
	Unit Costs>	0.01						0.01	
ydranautics	1.00	0.0.						5.61	
•	Unit Costs>	0.01						0.01	
ne 16 - DSB Collection Trench	1.00								
								40/0	0/0007 40 50 04

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

PROJECT NO.: 345334.AA.T5

			CRE					TOTAL	TOTAL
DESCRIPTION	QTY UNIT	MATERIALS	RATE	MH	LABOR	EQUIPMENT	INSTL S/C	DIRECT	W/MRKUPS
B Interstage to ER									
Hydranautics									
MECHANICAL									
I52101701170A	Unit Costs>	172.55	PIPE04S	1.600	65.63	4.16		252.70	442.09
16" SST 316-L, pipe assembly, shop fabricated	82.00 LF	\$14,998	41.02	131	\$5,382	\$341		\$20,721	\$36,251
	Unit Costs>	0.01						0.01	
Line 16 - Fittings & Work Req'd, Ref Dwg4505	1.00	4007.00	DIDE: 40	40.400		40.04		404404	
52101801130A 16" Stainless Steel Tee	Unit Costs> 1.00 EA	1037.00	PIPE04S 41.02	16.400 16	672.75 \$673	42.64 \$43		1814.61	\$3,175
52101801120A	Unit Costs>	\$1,099 975.00	PIPE04S			·		\$1,815	. ,
52101801120A 16" Stainless Steel Elbow, 45 degree (3 Miter Elbow)	2.00 EA	\$2,067	41.02	12.300 25	504.56 \$1,009	31.98 \$64		1570.04 \$3,140	2746.75 \$5,494
52101801120A	Unit Costs>	1041.00	PIPE04S	12.300	504.56	31.98		1640.00	2869.14
16" Stainless Steel Elbow, 90 degree (4 Miter Elbow)	2.00 EA	\$2,207	41.02	25	\$1,009	\$64		\$3,280	\$5,738
	Unit Costs>	0.01			* 1,000	***		0.01	40,000
Line 17 - Outside DSB to Sleeve Valve & Turbines	1.00	0.01						0.01	
52101101110A	Unit Costs>	97.62	PIPE04S	1.300	53.33	3.38		160.18	280.24
10" SST 316-L, pipe assembly, shop fabricated	102.00 LF	\$10,555	41.02	133	\$5,439	\$345		\$16,339	\$28,584
52101701170A	Unit Costs>	172.55	PIPE04S	1.600	65.63	4.16		252.70	442.09
16" SST 316-L, pipe assembly, shop fabricated	492.00 LF	\$89,988	41.02	787	\$32,292	\$2,047		\$124,327	\$217,507
	Unit Costs>	0.01						0.01	
Line 17 - Fittings & Work Req'd, Ref Dwg4259, -4498, -4501, & -4579	1.00								
52101201110A	Unit Costs>	356.00	PIPE04S	6.600	270.74	17.16		665.26	
10" Stainless Steel, Fab'd 90 Elbow	1.00 EA	\$377	41.02	7	\$271	\$17		\$665	\$1,164
52101201111A	Unit Costs>	320.00	PIPE04S	6.600	270.74	17.16		627.10	1097.10
10" Stainless Steel, Fab'd 45 Elbow	2.00 EA	\$678	41.02	13	\$541	\$34		\$1,254	\$2,194
52101801130B	Unit Costs>	1037.00	PIPE04S	16.400	672.75	42.64		1814.61	
16" x 10" Stainless Steel Reducer Tee	1.00 EA	\$1,099	41.02	16	\$673	\$43		\$1,815	\$3,175
52101801120A	Unit Costs>	760.00	PIPE04S	12.300	504.56	31.98		1342.14	
16" Stainless Steel Elbow, 15 degree (1 Miter Elbow)	1.00 EA	\$806	41.02	12	\$505	\$32		\$1,342	\$2,348
52101801120A	Unit Costs>	975.00	PIPE04S	12.300	504.56	31.98		1570.04	2746.75
6" Stainless Steel Elbow, 45 degree (3 Miter Elbow)	2.00 EA	\$2,067	41.02	25	\$1,009	\$64		\$3,140	\$5,494
52101801120A	Unit Costs>	1041.00	PIPE04S	12.300	504.56	31.98		1640.00	2869.14
16" Stainless Steel Elbow, 90 degree (4 Miter Elbow)	2.00 EA	\$2,207	41.02	25	\$1,009	\$64		\$3,280	\$5,738
								l l	
OHOM IIII I Inc			ı			l l	ļ	10/0	00/2007 12:52:04

CH2M HILL, Inc.

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

DESCRIPTION QTY UNIT	MATERIALS	CRE RATE	<u>M</u> MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
B Interstage to ER Hydranautics MECHANICAL								
Allowance for Re-Use of Exist Supports & Brackets, 1.00 L.S. Plus Additional	> 10000.00 \$10,600	PIPE04S 41.02	100.000 100	4102.12 \$4,102	259.98 \$260		14962.10 \$14,962	\$26,176
Subtotal Markups using CH-MK	\$138,749 \$103,989			\$53,914 \$40,408			\$196,080	\$146,958
TOTAL 15000 MECHANICAL 1.00 LS 1.00 LS	\$242,738		1,314	\$94,322	\$5,978		\$196,080	\$343,037 \$343,037.40

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

PROJECT NO.: 345334.AA.T5

DESCRIPTION	OTY LINIT	MATERIALS	CRE RATE	<u>:W</u> MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
DESCRIPTION	QTT ONTI	WATENIALS	IVAIL	IVIII	LABOR	LQOII WILIVI	INSTES/C	DIILCI	WWINTE
A Low Pressure Reject									
Fluid Systems									
MECHANICAL									
	Unit Costs>	0.01						0.01	
Fluid Systems	1.00								
11: 40	Unit Costs>	0.01						0.01	
Line 18 - DSB Control Block Trench No. 1 (East)	1.00	00 = 4	DIDE: 40					50.00	
152100701110A	Unit Costs>	22.74	PIPE04S	0.750	30.77	1.95		56.82	99.41
3" SST 316-L, pipe assembly, shop fabricated	420.00 LF Unit Costs>	\$10,124	41.02	315	\$12,922	\$819		\$23,864	\$41,750
152101701170A	352.00 LF	172.55 \$64,382	PIPE04S 41.02	1.600 563	65.63	4.16 \$1,464		252.70 \$88,949	442.09
16" Sch 10 SST 316-L, pipe assembly, shop fabricated	352.00 LF	\$64,382	41.02	563	\$23,103	\$1,464		\$88,949	\$155,615
143.104.04	Unit Costs>	0.01						0.01	
Line 18 - Fittings & Work Req'd, Ref Dwg4542,	1.00								
-4510, & -4511									
152101841110A	Unit Costs>	1716.00	PIPE04S	13.115	537.99	34.10		2391.05	
16" Stainless Steel, Slip-On Flange	1.00 EA	\$1,819	41.02	13	\$538	\$34		\$2,391	\$4,183
151079603100A	Unit Costs>	49.00	Q15	4.938	219.96	20.86		292.76	512.19
Tee, stainless, straight, butt weld, 3", schedule	17.00 Ea.	\$883	44.55	84	\$3,739	\$355		\$4,977	\$8,707
10, type 316, includes t									
151079607844A	Unit Costs>	44.00	Q1	0.571	25.43			72.08	126.09
Cap, stainless steel, welded, 3", type 316	2.00 Ea.	\$93	44.54	1	\$51			\$144	\$252
	Unit Costs>	50.00	PIPE04S	2.000	82.04	5.20		140.24	245.35
3" Stainless Steel Nozzle, Pe x Pe, Weld to Main Line	18.00 EA	\$954	41.02	36	\$1,477	\$94		\$2,524	\$4,416
151076905010	Unit Costs>	22.50	Q1	0.239	10.65			34.50	60.35
Grooved End Coupling, stainless steel, flexible, 3"	34.00 Ea.	\$811	44.54	0.239	\$362			\$1,173	\$2,052
diameter	04.00 Eu.	φοιι	44.04	O	Ψ002			ψ1,175	Ψ2,002
152100401210	Unit Costs>	70.00	PIPE04S	2.492	102.22	6.48		182.90	319.99
3" Stainless Steel, Slip-On Flange	51.00 EA	\$3,784	41.02	127	\$5,213	\$330		\$9,328	\$16,319
	Unit Costs>	0.01						0.01	
Line 19 - DSB Control Block Trench No. 2 (West)	1.00								
152100701110A	Unit Costs>	22.74	PIPE04S	0.750	30.77	1.95		56.82	99.41
3" SST 316-L, pipe assembly, shop fabricated	263.00 LF	\$6,339	41.02	197	\$8,091	\$513		\$14,944	\$26,144
152101701170A	Unit Costs>	172.55	PIPE04S	1.600	65.63	4.16		252.70	442.09
16" Sch 10 SST 316-L, pipe assembly, shop	352.00 LF	\$64,382	41.02	563	\$23,103	\$1,464		\$88,949	\$155,615
fabricated									
									1

CH2M HILL, Inc.

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

PROJECT NO.: 345334.AA.T5

DESCRIPTION	QTY UNIT	MATERIALS	<u>CRE</u> RATE	<u>.w</u> MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
A Low Pressure Reject Fluid Systems MECHANICAL									
Line 19 - Fittings & Work Req'd, Ref Dwg4542, -4510, & -4511	Unit Costs>	0.01						0.01	
152101841110A	Unit Costs>	1716.00	PIPE04S	13.115	537.99	34.10		2391.05	
16" Stainless Steel, Slip-On Flange	1.00 EA	\$1,819	41.02	13	\$538	\$34		\$2,391	\$4,183
152101801120A	Unit Costs>	975.00	PIPE04S	12.300	504.56	31.98		1570.04	2746.75
16" Stainless Steel Elbow, 45 degree (3 Miter Elbow)	2.00 EA	\$2,067	41.02	25	\$1,009	\$64		\$3,140	\$5,494
151079602110A Elbow, 90 Deg., stainless steel, long, butt weld, 3", schedule 10, type 316, inc	Unit Costs> 12.00 Ea.	30.00 \$382	Q15 44.55	3.292 40	146.64 \$1,760	13.91 \$167		192.35 \$2,308	336.51 \$4,038
151079603100A	Unit Costs>	49.00	Q15	4.938	219.96	20.86		292.77	512.19
Tee, stainless, straight, butt weld, 3", schedule 10, type 316, includes t	5.00 Ea.	\$260	44.55	25	\$1,100	\$104		\$1,464	\$2,561
151079607844A	Unit Costs>	44.00	Q1	0.571	25.44			72.08	126.09
Cap, stainless steel, welded, 3", type 316	5.00 Ea.	\$233	44.55	3	\$127			\$360	\$630
Oll Oct the Control of Dear Dear Market	Unit Costs>	50.00	PIPE04S	2.000	82.04	5.20		140.24	245.35
3" Stainless Steel Nozzle, Pe x Pe, Weld to Main Line	17.00 EA	\$901	41.02	34	\$1,395	\$88		\$2,384	\$4,171
151076905010	Unit Costs>	22.50	Q1	0.239	10.65			34.50	60.35
Grooved End Coupling, stainless steel, flexible, 3" diameter	22.00 Ea.	\$525	44.55	5	\$234			\$759	\$1,328
152100401210	Unit Costs>	70.00	PIPE04S	2.492	102.22	6.48		182.90	319.99
3" Stainless Steel, Slip-On Flange	39.00 EA	\$2,894	41.02	97	\$3,987	\$253		\$7,133	\$12,479
CUDMUUL Inc								40/5	00/2007 12:52:04

CH2M HILL, Inc.

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

PROJECT NO.: 345334.AA.T5

DESCRIPTION	QTY UNIT	MATERIALS	CRE RATE	<u>MH</u>	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
A Low Pressure Reject Fluid Systems MECHANICAL									
Allowance for Re-Use of Exist Supports & Brackets, Plus Additional	Unit Costs> 1.00 L.S.	12000.00 \$12,720	PIPE04S 41.02	100.000 100	4102.12 \$4,102	259.98 \$260		17082.10 \$17,082	\$29,885
Subtotal Markups using CH-MK		\$175,371 \$131,437			\$92,852 \$69,590			\$274,266	\$205,557
TOTAL 15000 MECHANICAL 1.00 LS 1.00 LS		\$306,808		2,249	\$162,442	\$10,572		\$274,266	\$479,823 \$479,822.60

B Low Pressure Reject Hydranautics MECHANICAL								
	Unit Costs>	0.01					0.01	
Hydranautics Line 20 - DSB Control Block Trench	1.00 Unit Costs> 1.00	0.01					0.01	
152100701110A	Unit Costs>	22.74	PIPE04S	0.750	30.77	1.95	56.82	99.41
3" SST 316-L, pipe assembly, shop fabricated	192.00 LF	\$4,628	41.02	144	\$5,907	\$374	\$10,909	\$19,086
152101701170A	Unit Costs>	172.55	PIPE04S	1.600	65.63	4.16	252.70	442.09
16" Sch 10 SST 316-L, pipe assembly, shop fabricated	352.00 LF	\$64,382	41.02	563	\$23,103	\$1,464	\$88,949	\$155,615
	Unit Costs>	0.01					0.01	
Line 20 - Fittings & Work Req'd, Ref Dwg1549	1.00							
152101841110A	Unit Costs>	1716.00	PIPE04S	13.115	537.99	34.10	2391.05	;
16" Stainless Steel, Slip-On Flange	1.00 EA	\$1,819	41.02	13	\$538	\$34	\$2,391	\$4,183
151079602110A	Unit Costs>	30.00	Q15	3.292	146.64	13.91	192.35	;
Elbow, 90 Deg., stainless steel, long, butt weld, 3", schedule 10, type 316, inc	1.00 Ea.	\$32	44.54	3	\$147	\$14	\$192	
3", schedule 10, type 316, inc								I

CH2M HILL, Inc.

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

PROJECT NO.: 345334.AA.T5

			CRE					TOTAL	TOTAL
DESCRIPTION	QTY UNIT L	MATERIALS	RATE	MH	LABOR	EQUIPMENT	INSTL S/C	DIRECT	W/MRKUPS
B Low Pressure Reject Hydranautics MECHANICAL									
51079603100A Fee, stainless, straight, butt weld, 3", schedule I0, type 316, includes t	Unit Costs> 8.00 Ea.	49.00 \$416	Q15 44.55	4.938 40	219.96 \$1,760	20.86 \$167		292.76 \$2,342	512.19 \$4,097
51079607844A Cap, stainless steel, welded, 3", type 316	Unit Costs> 3.00 Ea. Unit Costs>	44.00 \$140 50.00	Q1 44.55 PIPE04S	0.571 2 2.000	25.44 \$76 82.04	5.20		72.08 \$216 140.24	126.10 \$378 245.35
s" Stainless Steel Nozzle, Pe x Pe, Weld to Main ine 51076905010	11.00 EA Unit Costs>	\$583 22.50	41.02 Q1	22	\$902	\$57		\$1,543 34.50	\$2,699 60.35
Grooved End Coupling, stainless steel, flexible, 3" liameter	17.00 Ea.	\$405	44.55	4	\$181			\$586	\$1,026
52100401210 " Stainless Steel, Slip-On Flange	Unit Costs> 26.00 EA Unit Costs>	70.00 \$1,929 6000.00	PIPE04S 41.02 PIPE04S	2.492 65 60.000	102.22 \$2,658 2461.27	6.48 \$168 155.99		182.90 \$4,756 8977.26	319.99 \$8,320
Allowance for Re-Use of Exist Supports & Brackets, Plus Additional	1.00 L.S.	\$6,360	41.02	60	\$2,461	\$156		\$8,977	\$15,706
Subtotal Markups using CH-MK		\$80,694 \$60,478			\$37,733 \$28,280	\$2,435 \$1,825		\$120,862	\$90,584
TOTAL 15000 MECHANICAL 1.00 LS		\$141,172		916	\$66,014	\$4,260		\$120,862	\$211,446
1.00 LS									\$211,446.00

CH2M HILL, Inc.

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

DESCRIPTION			CREW					TOTAL	TOTAL
	QTY UNIT	MATERIALS	RATE	МН	LABOR	EQUIPMENT	INSTL S/C	DIRECT	W/MRKUPS
C Low Pressure Reject Combined MECHANICAL									
152101701170A 16" Sch 10 SST 316-L, pipe assembly, shop fabricated	Unit Costs> 330.00 LF	172.55 \$60,358	PIPE04S 41.02	1.600 528	65.63 \$21,659	4.16 \$1,373		252.70 \$83,390	442.09 \$145,889
Line 21 - Fittings & Work Req'd, Ref Dwg4505	Unit Costs> 1.00	0.01						0.01	
52101801130A	Unit Costs>		PIPE04S	16.400	672.75	42.63		1814.61	3174.61
16" Stainless Steel Tee	2.00 EA	\$2,198	41.02	33	\$1,346	\$85		\$3,629	\$6,349
152101801120A	Unit Costs>		PIPE04S	12.300	504.56	31.98		1640.00	2869.14
16" Stainless Steel Elbow, 90 degree (4 Miter Elbow)	4.00 EA	\$4,414	41.02	49	\$2,018	\$128		\$6,560	\$11,477
52101841110A 16" Stainless Steel, Slip-On Flange	Unit Costs> 5.00 EA	1716.00 \$9,095	PIPE04S 41.02	13.115 66	537.99 \$2,690	34.10 \$170		2391.05 \$11,955	4183.09 \$20,915
To Stairliess Steel, Slip-Off Larige	Unit Costs>		PIPE04S	50.000	2051.06	129.99		7481.05	\$20, 3 13
Allowance for Re-Use of Exist Supports & Brackets, Plus Additional	1.00 L.S.	\$5,300	41.02	50.000	\$2,051	\$130		\$7,481	\$13,088
Subtotal Markups using CH-MK		\$81,365 \$60,981			\$29,764 \$22,307			\$113,015	\$84,703
TOTAL 15000 MECHANICAL 1.00 LS		\$142,346		726	\$52,071	\$3,300		\$113,015	\$197,718
1.00 LS									\$197,718.10

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

PROJECT NO.: 345334.AA.T5

			CRE					TOTAL	TOTAL
DESCRIPTION	QTY UNIT	MATERIALS	RATE	MH	LABOR	EQUIPMENT	INSTL S/C	DIRECT	W/MRKUPS
A Product									
Fluid Systems									
MECHANICAL									
	Unit Costs>	0.01						0.01	
Fluid Systems	1.00								
Line 00 DOD Control Block Treach No. 4 (Feet)	Unit Costs>	0.01						0.01	
Line 23 - DSB Control Block Trench No. 1 (East)	1.00 Unit Costs>	47.75	DIDECAC	4 000	44.00	0.00		04.04	404.00
152100701110A 6" SST 316-L Sch 40, pipe assembly, shop fabricated	57.00 LF	47.75 \$2.885	PIPE04S 41.02	1.000 57	41.02 \$2,338	2.60 \$148		94.24 \$5,371	164.86 \$9,397
152100901110A	Unit Costs>	73.47	PIPE04S	1.125	46.15	2.92		126.95	222.10
8" SST 316-L Sch 20, pipe assembly, shop fabricated	29.00 LF	\$2,258	41.02	33	\$1,338	\$85		\$3,682	\$6,441
152101101110A	Unit Costs>	102.50	PIPE04S	1.250	51.28	3.25		163.18	285.47
10" SST 316-L Sch 20, pipe assembly, shop fabricated	88.00 LF	\$9,561	41.02	110	\$4,512	\$286		\$14,360	\$25,122
152101501170A	Unit Costs>	157.64	PIPE04S	1.438	58.99	3.74		229.83	402.07
14" SST 316-L Sch 10, pipe assembly, shop fabricated	56.00 LF	\$9,358	41.02	81	\$3,303	\$209		\$12,870	\$22,516
152101901170A	Unit Costs>	208.20	PIPE04S	1.594	65.39	4.14		290.22	507.74
18" SST 316-L Sch 10, pipe assembly, shop fabricated	37.00 LF	\$8,166	41.02	59	\$2,419	\$153		\$10,738	\$18,786
152102301170A	Unit Costs>	351.57	PIPE04S	1.750	71.79	4.55		449.00	785.52
24" SST 316-L Sch 10, pipe assembly, shop fabricated	56.00 LF	\$20,869	41.02	98	\$4,020	\$255		\$25,144	\$43,989
152102501170A	Unit Costs>	678.52	PIPE04S	2.375	97.42	6.17		822.83	1439.53
30" SST 316-L Sch 10, pipe assembly, shop fabricated	114.00 LF	\$81,992	41.02	271	\$11,106	\$704		\$93,803	\$164,106
152102701170A	Unit Costs>	810.69	PIPE04S	2.594	106.41	6.74		972.48	1701.34
36" SST 316-L Sch 10, pipe assembly, shop fabricated	66.00 LF	\$56,716	41.02	171	\$7,023	\$445		\$64,184	\$112,288
Line 22 Fittings & Work Boald Bot Dwg 1520	Unit Costs> 1.00	0.01						0.01	
Line 23 - Fittings & Work Req'd, Ref Dwg1539 152101001110A	Unit Costs>	250.00	PIPE04S	2 000	123.06	7.80		395.86	692.55
6" Stainless Steel, Fab'd 90 Elbow	33.00 EA	250.00 \$8,745	41.02	3.000 99	\$4,061	7.80 \$257		\$13,063	\$22,854
152101001140A	Unit Costs>	78.00	PIPE04S	3.600	147.68	9.36		239.72	419.38
8" x 6" Stainless Steel Reducer	34.00 EA	\$2,811	41.02	122	\$5,021	\$318		\$8,150	\$14,259
152101042320A	Unit Costs>	735.00	PIPE04S	1.713	70.27	4.45		853.82	1493.74
8" Grooved Coupling	34.00 EA	\$26,489	41.02	58	\$2,389	\$151		\$29,030	\$50,787
152101103030A	Unit Costs>	125.00	PIPE04S	3.600	147.68	9.36		289.54	506.54
10" Stainless Steel Nozzle, Pe x Pe, Weld to Main	18.00 EA	\$2,385	41.02	65	\$2,658	\$168		\$5,212	\$9,118
Line									
152101201130A	Unit Costs>	328.00	PIPE04S	8.800	360.99	22.88		731.54	1279.82
10" Stainless Steel Tee	17.00 EA	\$5,911	41.02	150	\$6,137	\$389		\$12,436	\$21,757
152101242320A	Unit Costs>	875.00	PIPE04S	2.058	84.42	5.35		1017.27	1779.70
10" Grooved Coupling	33.00 EA	\$30,608	41.02	68	\$2,786	\$177		\$33,570	\$58,730

12/20/2007 13:52:04 Page No. 32

CH2M HILL, Inc.

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

PROJECT NO.: 345334.AA.T5

Costs> 0 EA Costs> 0 EA Costs> 0 EA Costs> 0 EA Costs>	110.00 \$117 115.00 \$2,072 368.00 \$390 519.00 \$550	PIPE04S 41.02 PIPE04S 41.02 PIPE04S 41.02 PIPE04S	2.200 2 6.600 112 9.600 10	90.25 \$90 270.74 \$4,603 393.80	5.72 \$6 17.16 \$292	INSTL S/C	212.57 \$213 409.80 \$6,967	\$372 716.93 \$12,188
0 EA Costs> 0 EA Costs> 0 EA Costs> 0 EA	\$117 115.00 \$2,072 368.00 \$390 519.00	41.02 PIPE04S 41.02 PIPE04S 41.02	2 6.600 112 9.600 10	\$90 270.74 \$4,603 393.80	\$6 17.16 \$292		\$213 409.80	716.93
0 EA Costs> 0 EA Costs> 0 EA Costs> 0 EA	\$117 115.00 \$2,072 368.00 \$390 519.00	41.02 PIPE04S 41.02 PIPE04S 41.02	2 6.600 112 9.600 10	\$90 270.74 \$4,603 393.80	\$6 17.16 \$292		\$213 409.80	716.93
Costs> 0 EA Costs> 0 EA Costs> 0 EA Costs> 0 EA Costs>	115.00 \$2,072 368.00 \$390 519.00	PIPE04S 41.02 PIPE04S 41.02	6.600 112 9.600 10	270.74 \$4,603 393.80	17.16 \$292		409.80	716.93
0 EA Costs> 0 EA Costs> 0 EA Costs>	\$2,072 368.00 \$390 519.00	41.02 PIPE04S 41.02	112 9.600 10	\$4,603 393.80	\$292			
Costs> 0 EA Costs> 0 EA Costs>	368.00 \$390 519.00	PIPE04S 41.02	9.600 10	393.80			\$6,967	\$12 188
O EA Costs> O EA Costs>	\$390 519.00	41.02	10		04.00		. ,	Ψ12,100
osts> 0 EA osts>	519.00				24.96		808.84	
0 EA costs>		PIPE04S	44 -00	\$394	\$25		\$809	\$1,415
osts>	\$550		14.700	603.01	38.22		1191.37	
		41.02	15	\$603	\$38		\$1,191	\$2,084
0 - 4	997.00	PIPE04S	19.800	812.22	51.48		1920.52	
-	\$1,057	41.02	20	\$812	\$51		\$1,921	\$3,360
	1994.00	PIPE04S	21.000	861.45	54.60		3029.69	
-	. ,	41.02	21	·	· ·		. ,	\$5,300
	2643.00	PIPE04S	23.400	959.90	60.84		3822.32	
		41.02	23	\$960	\$61		\$3,822	\$6,687
	0.01						0.01	
-								
								164.86
-		_		. ,	· ·		. ,	\$6,595
								222.10
-	. ,	41.02		·	· ·		. ,	\$4,664
								285.47
-	\$6,736	_		. ,				\$17,699
	157.64							402.07
								\$22,516
								507.74
-								\$18,786
								785.52
	. ,				· ·		. ,	\$43,989
								1439.53
-		_		. ,				\$164,106
								1701.34
-		41.02	171	\$7,023	\$445			\$112,288
	0.01						0.01	
0								
	Costs> 00 EA Costs> 00 LF Costs>	00 EA \$1,057 1994.00 00 EA \$2,114 Costs> 2643.00 00 EA \$2,802 00 EA \$2,802 00 Costs> 47.75 00 LF \$2,025 Costs> 73.47 00 LF \$1,635 Costs> 157.64 00 LF \$9,358 Costs> 208.20 00 LF \$9,358 Costs> 351.57 00 LF \$20,869 00 LF \$20,	00 EA \$1,057 41.02 Costs> 1994.00 PIPE04S 00 EA \$2,114 41.02 Costs> 2643.00 PIPE04S Costs> 0.01 41.02 Costs> 0.01 41.02 Costs> 0.01 41.02 Costs> 73.47 PIPE04S Costs> 102.50 PIPE04S Mol LF \$6,736 41.02 Costs> 157.64 PIPE04S Costs> 208.20 PIPE04S Mol LF \$2,0869 41.02 Costs> 351.57 PIPE04S Costs> 3678.52 PIPE04S Mol LF \$81,66 41.02 Costs> 678.52 PIPE04S Mol LF \$81,69 41.02 Costs> 810.69 PIPE04S Mol LF \$6,716 41.02	00 EA \$1,057 41.02 20 Costs> 1994.00 PIPE04S 21.000 00 EA \$2,114 41.02 21 Costs> 2643.00 PIPE04S 23.400 Costs> 0.01 41.02 23 Costs> 0.01 41.02 23 Costs> 47.75 PIPE04S 1.000 Costs> 73.47 PIPE04S 1.125 Costs> 102.50 PIPE04S 1.250 Costs> 102.50 PIPE04S 1.250 Costs> 157.64 PIPE04S 1.438 Costs> 208.20 PIPE04S 1.594 Costs> 208.20 PIPE04S 1.594 Costs> 351.57 PIPE04S 1.750 Costs> 678.52 PIPE04S 2.375 Costs> 81.069 41.02 271 Costs> 810.69 PIPE04S 2.594 41.02 271	00 EA \$1,057 41.02 20 \$812 Costs> 1994.00 PIPE04S 21.000 861.45 Costs> 2643.00 PIPE04S 23.400 959.90 Costs> 0.0 EA \$2,802 41.02 23 \$960 Costs> 0.01 00 41.02 23 \$960 Costs> 47.75 PIPE04S 1.000 41.02 40 \$1,641 Costs> 73.47 PIPE04S 1.125 46.15 46.15 Costs> 102.50 PIPE04S 1.250 51.28 Costs> 102.50 PIPE04S 1.438 58.99 Costs> 157.64 PIPE04S 1.438 58.99 Costs> 208.20 PIPE04S 1.594 65.39 Costs> 351.57 PIPE04S 1.750 71.79 Costs> 678.52 PIPE04S 2.375 97.42 Costs> 810.69 41.02 271	\$1,057	\$1,057	\$1,921

CH2M HILL, Inc.

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

PROJECT NO.: 345334.AA.T5

DESCRIPTION	OTY UNIT	MATERIALS	<u>CRE</u> RATE	<u>W</u> MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
DESCRIPTION	QTT ONT	WATENIALS	IVAIL	IVIII	LADON	LQOII WLIVI	INSTES/C	DINECT	W/WINKOFS
A Product Fluid Systems MECHANICAL									
152101001110A 6" Stainless Steel, Fab'd 90 Elbow 152101001140A 8" x 6" Stainless Steel Reducer 152101103030A	Unit Costs> 1.00 EA Unit Costs> 1.00 EA Unit Costs>	250.00 \$265 78.00 \$83 125.00	PIPE04S 41.02 PIPE04S 41.02 PIPE04S	3.000 3 3.600 4 3.600	123.06 \$123 147.68 \$148 147.68	7.80 \$8 9.36 \$9 9.36		395.86 \$396 239.72 \$240 289.54	\$693 \$419 506.54
10" Stainless Steel Nozzle, Pe x Pe, Weld to Main	17.00 EA	\$2,253	41.02	61	\$2,511	\$159		\$4,922	\$8,611
Line 152101242320A 10" Stainless Steel Cap 152101201140A	Unit Costs> 2.00 EA Unit Costs>	110.00 \$233 115.00	PIPE04S 41.02 PIPE04S	2.200 4 6.600	90.25 \$180 270.74	5.72 \$11 17.16		212.57 \$425 409.80	371.88 \$744
10" x 8" Stainless Steel Reducer	1.00 EA	\$122	41.02	7	\$271	\$17		\$410	\$717
152101241110A 10" Stainless Steel, Slip-On Flange	Unit Costs> 1.00 EA	444.00 \$471	PIPE04S 41.02	8.197 8	336.25 \$336	21.31 \$21		828.20 \$828	\$1,449
152101601140 14" x 10" Stainless Steel Reducer	Unit Costs> 1.00 EA	368.00 \$390	PIPE04S 41.02	9.600	393.80 \$394	24.96 \$25		808.84 \$809	\$1,415
152101601120A 14" Stainless Steel, Fab'd 90 Elbow 152101642120A	Unit Costs> 1.00 EA Unit Costs>	460.00 \$488 175.00	PIPE04S 41.02 PIPE04S	8.000 8 2.800	328.17 \$328 114.86	20.80 \$21 7.28		836.57 \$837 307.64	\$1,464
14" Stainless Steel Cap 152102001140A	1.00 EA Unit Costs>	\$186 519.00	41.02 PIPE04S	3 14.700	\$115 603.01	\$7 38.22		\$308 1191.37	\$538
18" x 14" Stainless Steel Reducer 152102401140A	1.00 EA Unit Costs>	\$550 997.00	41.02 PIPE04S	15 19.800	\$603 812.22	\$38 51.48		\$1,191 1920.52	\$2,084
24" x 18" Stainless Steel Reducer 152102601140A 30" x 24" Stainless Steel Reducer	1.00 EA Unit Costs> 1.00 EA	\$1,057 1994.00 \$2,114	41.02 PIPE04S 41.02	20 21.000 21	\$812 861.45 \$861	\$51 54.60 \$55		\$1,921 3029.69 \$3,030	\$3,360 \$5,300
152102801140A 36" x 30" Stainless Steel Reducer	Unit Costs> 1.00 EA	2643.00 \$2,802	PIPE04S 41.02	23.400 23	959.90 \$960	60.84 \$61		3822.32 \$3,822	\$6,687

CH2M HILL, Inc.

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

PROJECT NO.: 345334.AA.T5

DESCRIPTION	QTY UNIT	MATERIALS	CRE RATE	<u>MH</u>	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
A Product Fluid Systems MECHANICAL									
Allowance for Re-Use of Exist Supports & Brackets, Plus Additional	Unit Costs> 1.00 L.S.	15000.00 \$15,900	PIPE04S 41.02	120.000 120	4922.55 \$4,923	311.98 \$312		21134.53 \$21,135	\$36,974
Subtotal Markups using CH-MK		\$492,263 \$368,941			\$113,663 \$85,188			\$613,129	\$459,527
TOTAL 15000 MECHANICAL 1.00 LS 1.00 LS		\$861,204		2,771	\$198,850	\$12,603		\$613,129	\$1,072,657 \$1,072,656.60

B Product Hydranautics MECHANICAL								
	Unit Costs>	0.01					0.01	
Hydranautics	1.00							
	Unit Costs>	0.01					0.01	
Line 25 - DSB Control Block Trench	1.00							
152100901110A	Unit Costs>	73.47	PIPE04S	1.125	46.15	2.92	126.95	222.10
8" SST 316-L Sch 20, pipe assembly, shop fabricated	211.00 LF	\$16,432	41.02	237	\$9,737	\$617	\$26,787	\$46,863
152101101110A	Unit Costs>	102.50	PIPE04S	1.250	51.28	3.25	163.18	285.47
10" SST 316-L Sch 20, pipe assembly, shop fabricated	19.00 LF	\$2,064	41.02	24	\$974	\$62	\$3,100	\$5,424
152101501170A	Unit Costs>	157.64	PIPE04S	1.438	58.99	3.74	229.82	402.07
14" SST 316-L Sch 10, pipe assembly, shop fabricated	78.00 LF	\$13,034	41.02	112	\$4,601	\$292	\$17,926	\$31,362
152102101170A	Unit Costs>	263.76	PIPE04S	1.625	66.66	4.22	350.47	613.14
20" SST 316-L Sch 10, pipe assembly, shop fabricated	78.00 LF	\$21,808	41.02	127	\$5,199	\$330	\$27,337	\$47,825
152102501170A	Unit Costs>	678.52	PIPE04S	2.375	97.42	6.17	822.83	1439.53
30" SST 316-L Sch 10, pipe assembly, shop fabricated	209.00 LF	\$150,319	41.02	496	\$20,362	\$1,290	\$171,972	\$300,861
	Unit Costs>	0.01					0.01	
Line 25 - Fittings & Work Req'd, Ref Dwg1547	1.00							
- · · · · · ·								
			•					

CH2M HILL, Inc.

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

DESCRIPTION	QTY UNIT	MATERIALS	CRE RATE	<u>W</u> MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS

B Product									
Hydranautics									
MECHANICAL									
52101103030A	Unit Costs>	125.00	PIPE04S	3.600	147.68	9.36		289.54	506.54
10" Stainless Steel Nozzle, Pe x Pe, Weld to Main	10.00 EA	\$1,325	41.02	36	\$1,477	\$94		\$2,895	\$5,065
ine		, , -			· ,	* -		* ,	, -,
52101201130A	Unit Costs>	328.00	PIPE04S	8.800	360.99	22.88		731.54	1279.82
10" Stainless Steel Tee	8.00 EA	\$2,781	41.02	70	\$2,888	\$183		\$5,852	\$10,239
52101201110A	Unit Costs>	356.00	PIPE04S	6.600	270.74	17.16		665.26	
10" Stainless Steel, Fab'd 90 Elbow	1.00 EA	\$377	41.02	7	\$271	\$17		\$665	\$1,164
52101242320A	Unit Costs>	875.00	PIPE04S	2.058	84.42	5.35		1017.27	1779.70
10" Grooved Coupling	16.00 EA	\$14,840	41.02	33	\$1,351	\$86		\$16,276	\$28,475
52101242320A	Unit Costs>	110.00	PIPE04S	2.200	90.25	5.72		212.57	
10" Stainless Steel Cap	1.00 EA	\$117	41.02	2	\$90	\$6		\$213	\$372
52101201140A	Unit Costs>	115.00	PIPE04S	6.600	270.74	17.16		409.80	
10" x 8" Stainless Steel Reducer	1.00 EA	\$122	41.02	7	\$271	\$17		\$410	\$717
52101601140	Unit Costs>	368.00	PIPE04S	9.600	393.80	24.96		808.84	
4" x 10" Stainless Steel Reducer	1.00 EA	\$390	41.02	10	\$394	\$25		\$809	\$1,415
52102201140A	Unit Costs>	791.00	PIPE04S	18.600	762.99	48.36		1649.81	
20" x 14" Stainless Steel Reducer	1.00 EA	\$838	41.02	19	\$763	\$48		\$1,650	\$2,886
52102601140A	Unit Costs>	1994.00	PIPE04S	23.000	943.49	59.80		3116.93	
30" x 20" Stainless Steel Reducer	1.00 EA	\$2,114	41.02	23	\$943	\$60		\$3,117	\$5,453
	Unit Costs>	12000.00	PIPE04S	80.000	3281.70	207.98		16209.68	
Allowance for Re-Use of Exist Supports & Brackets, Plus Additional	1.00 L.S.	\$12,720	41.02	80	\$3,282	\$208		\$16,210	\$28,358
Cultural		#000.000			# 50.000	# 0.004		#20F 010	
Subtotal Markups using CH-MK		\$239,282 \$179,337			\$52,603 \$39,425	\$3,334 \$2,499		\$295,219	\$221,260
TOTAL 15000 MECHANICAL	_	\$418,618		1,282	\$92,028	\$5,832		\$295,219	\$516,479
1.00 LS 1.00 LS									\$516,479.10

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

DESCRIPTION	QTY UNIT	MATERIALS	<u>CRE</u> RATE	<u>:W</u> MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
C Product Combined MECHANICAL									
Line 26 - DSB Collection Trench	Unit Costs>	0.01						0.01	
152102501170A	Unit Costs>	678.52	PIPE04S	2.375	97.42	6.17		822.83	1439.53
30" SST 316-L Sch 10, pipe assembly, shop fabricated	103.00 LF	\$74,081	41.02	2.575	\$10,035	\$636		\$84,752	\$148,271
152102901170A	Unit Costs>	962.00	PIPE04S	2.813	115.39	7.31		1142.43	1998.65
42" SST 316-L Sch 10, pipe assembly, shop fabricated	145.00 LF	\$147,859	41.02	408	\$16,732	\$1,060		\$165,652	\$289,804
152103301170A	Unit Costs>	1289.12	PIPE04S	3.750	153.83	9.75		1530.05	2676.78
54" SST 316-L Sch 10, pipe assembly, shop fabricated	77.00 LF	\$105,218	41.02	289	\$11,845	\$751		\$117,814	\$206,112
	Unit Costs>	0.01						0.01	
Line 26 - Fittings & Work Req'd, Ref Dwg4503	1.00								
152102601120A	Unit Costs>	5882.00	PIPE04S	21.000	861.45	54.60		7150.97	
30" Stainless Steel Elbow, LR 90 degree (4 Miter	1.00 EA	\$6,235	41.02	21	\$861	\$55		\$7,151	\$12,510
Elbow)	11-11-01-		DIDE: 10			=====		40757.00	
152103001130A 42" x 36" Stainless Steel Tee	Unit Costs> 1.00 EA	9000.00	PIPE04S 41.02	27.900 28	1144.49	72.53 \$73		10757.02	¢40.040
	Unit Costs>	\$9,540	PIPE04S		\$1,144			\$10,757	\$18,819
152103001140A 42" x 30" Stainless Steel Reducer	1.00 EA	2830.00 \$3,000	41.02	18.600 19	762.99 \$763	48.36 \$48		3811.15 \$3,811	\$6,668
152103401130A	Unit Costs>	12670.00	PIPE04S	36.000	1476.76	93.59		15000.55	ψ0,000
54" x 36" Stainless Steel Tee	1.00 EA	\$13,430	41.02	36	\$1,477	\$94		\$15,001	\$26,243
152103401140A	Unit Costs>	3600.00	PIPE04S	24.000	984.51	62.40		4862.91	\$20,240
54" x 42" Stainless Steel Reducer	1.00 EA	\$3,816	41.02	24	\$985	\$62		\$4,863	\$8,508
	Unit Costs>	10000.00	PIPE04S	60.000	2461.27	155.99		13217.26	40,000
Allowance for Re-Use of Exist Supports & Brackets, Plus Additional	1.00 L.S.	\$10,600	41.02	60	\$2,461	\$156		\$13,217	\$23,123
Subtotal Markups using CH-MK		\$373,779 \$280,139			\$46,303 \$34,703	\$2,935 \$2,199		\$423,017	\$317,042
		. ,				. ,			
TOTAL 15000 MECHANICAL		\$653,919		1,129	\$81,006	\$5,134		\$423,017	\$740,059
1.00 LS									
1.00 LS									\$740,058.80

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

DESCRIPTION	OTY UNIT	MATERIALS	CRE RATE	<u>EW</u> MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
DESCRIPTION	QIT UNII	WATERIALS	KAIE	IVID	LABUR	EQUIPMENT	INSTES/C	DIRECT	WINKKUPS
D2 Other									
Exterior, Plant Service									
MECHANICAL									
	Unit Costs>	0.01						0.01	
Line 37 - Plant Service Water Pump Manifolds	1.00								
151079202860A	Unit Costs>	9.65	PIPE04S	0.500	22.27	2.11		34.61	60.56
2" SST 316-L Sch 40, pipe assembly, shop fabricated	15.00 L.F.	\$153	44.55	8	\$334	\$32		\$519	\$908
151079202890A	Unit Costs>	28.52	PIPE04S	0.656	26.91	1.71		58.85	102.95
4" SST 316-L Sch 40, pipe assembly, shop fabricated	30.00 L.F.	\$907	41.02	20	\$807	\$51		\$1,765	\$3,089
152100701110A	Unit Costs>	47.75	PIPE04S	1.000	41.02	2.60		94.24	164.86
6" SST 316-L Sch 40, pipe assembly, shop fabricated	69.00 L.F.	\$3,492	41.02	69	\$2,830	\$179		\$6,502	\$11,376
152100901110A	Unit Costs>	73.47	PIPE04S	1.125	46.15	2.92		126.95	222.10
8" SST 316-L Sch 20, pipe assembly, shop fabricated	42.00 L.F.	\$3,271	41.02	47	\$1,938	\$123		\$5,332	\$9,328
152101301140A	Unit Costs>	126.54	PIPE04S	1.384	56.77	3.60		194.50	340.28
12" SST 316-L Sch 20, pipe assembly, shop fabricated	120.00 L.F.	\$16,096	41.02	166	\$6,813	\$432		\$23,340	\$40,834
	Unit Costs>	0.01						0.01	
Line 37 - Fittings & Work Req'd, Ref Dwg4527 & -4528	1.00								
	Unit Costs>	22600.00	PIPE04S	310.000	12716.58	805.94		37478.52	
Allowance for Fittings Req'd	1.00 L.S.	\$23,956	41.02	310	\$12,717	\$806		\$37,479	\$65,568
Notes: Assumed since this is piping at the Service Water Pur	пр								
Station, it will require lots of fittings - no dwg									
furnished detailing this so allowed cost for these at same as cost of LF of pipe.									
same as cost of Er of pipe.	Unit Costs>	5000.00	PIPE04S	40.000	1640.85	103.99		7044.84	
Allowance for Re-Use of Exist Supports & Brackets,	1.00 L.S.	\$5,300	41.02	40.000	\$1,641	\$104		\$7,045	\$12,325
Plus Additional	1.00 2.0.	ψ0,000	11.02	10	Ψ1,011	Ψισι		Ψ1,010	ψ12,020
Subtotal		\$53,176			\$27,080	\$1,727		\$81,983	
Markups using CH-MK		\$33,176 \$39,854			\$27,080 \$20,296			\$61,963	\$61,444
TOTAL 15000 MECHANICAL		\$93,030		660	\$47,376	. ,		\$81,983	\$143,427
1.00 LS					•				
1.00 LS									\$143,427.00

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

PROJECT NO.: 345334.AA.T5

DESCRIPTION	QTY UNIT	MATERIALS	CRE RATE	<u>W</u> МН	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
A Cleaning Product Return Fluid Systems MECHANICAL									
Fluid Systems	Unit Costs>	0.01						0.01	
Line 38 - DSB Control Block Trench No. 1 (East)	Unit Costs> 1.00	0.01						0.01	
151079202880 Pipe, stainless steel, butt weld, 3" diameter,	Unit Costs> 457.00 L.F.	20.04 \$9,708	Q15 44.55	0.348 159	15.50 \$7,084	1.47 \$672		38.21 \$17,464	66.86 \$30,553
schedule 10, type 316, includes w	Unit Costs>	0.01						0.01	
Line 38 - Fittings & Work Req'd, Ref Dwg5090 151079603100A Tee, stainless, straight, butt weld, 3", schedule 10, type 316, includes t	1.00 Unit Costs> 17.00 Ea.	49.00 \$883	Q15 44.55	4.938 84	219.96 \$3,739	20.86 \$355		292.76 \$4,977	512.19 \$8,707
152100401210 152100401210 3" Stainless Steel, Slip-On Flange 151076905010 Grooved End Coupling, stainless steel, flexible, 3"	Unit Costs> 51.00 EA Unit Costs> 34.00 Ea.	70.00 \$3,784 22.50 \$811	PIPE04S 41.02 Q1 44.54	2.492 127 0.239 8	102.22 \$5,213 10.65 \$362	6.48 \$330		182.90 \$9,328 34.50 \$1,173	319.99 \$16,319 60.35 \$2,052
diameter	Unit Costs>	0.01			****			0.01	4 -,
Line 39 - DSB Control Block Trench No. 2 (West) 151079202880 Pipe, stainless steel, butt weld, 3" diameter, schedule 10, type 316, includes w	1.00 Unit Costs> 307.00 L.F.	20.04 \$6,521	Q15 44.55	0.348 107	15.50 \$4,759	1.47 \$451		38.21 \$11,732	66.86 \$20,524
Line 39 - Fittings & Work Req'd, Ref Dwg5090	Unit Costs> 1.00	0.01						0.01	
151079602110A Elbow, 90 Deg., stainless steel, long, butt weld, 3", schedule 10, type 316, inc	Unit Costs> 12.00 Ea.	30.00 \$382	Q15 44.55	3.292 40	146.64 \$1,760	13.91 \$167		192.35 \$2,308	336.51 \$4,038
152100401210 3" Stainless Steel, Slip-On Flange 151076905010 Grooved End Coupling, stainless steel, flexible, 3"	Unit Costs> 24.00 EA Unit Costs> 12.00 Ea.	70.00 \$1,781 22.50 \$286	PIPE04S 41.02 Q1 44.55	2.492 60 0.239 3	102.22 \$2,453 10.65 \$128	6.48 \$155		182.90 \$4,390 34.50 \$414	319.99 \$7,680 60.35 \$724
diameter									

CH2M HILL, Inc.

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

PROJECT NO.: 345334.AA.T5

DESCRIPTION	QTY UNIT	MATERIALS	CRE RATE	<u>W</u> MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
A Cleaning Product Return Fluid Systems MECHANICAL									
Allowance for Re-Use of Exist Supports & Brackets, Plus Additional	Unit Costs> 1.00 L.S.	1000.00 \$1,060	PIPE04S 41.02	20.000 20	820.42 \$820	52.00 \$52		1932.42 \$1,932	\$3,381
Subtotal Markups using CH-MK		\$25,216 \$18,899			\$26,319 \$19,726			\$53,718	\$40,260
TOTAL 15000 MECHANICAL 1.00 LS 1.00 LS		\$44,115		607	\$46,045	\$3,819		\$53,718	\$93,978 \$93,978.40

B Cleaning Product Return Hydranautics MECHANICAL								
	Unit Costs>	0.01					0.01	
Hydranautics	1.00							
Line 40 - DSB Control Block Trench	Unit Costs>	0.01					0.01	
151079202880	Unit Costs>	20.04	Q15	0.348	15.50	1.47	38.21	66.86
Pipe, stainless steel, butt weld, 3" diameter,	187.00 L.F.	\$3,972	44.54	0.346 65	\$2,899	\$275	\$7,146	\$12,502
schedule 10, type 316, includes w	107.00 E.1 .	ψ0,512	44.04	00	Ψ2,033	ΨΖΙΟ	ψ1,140	Ψ12,302
	Unit Costs>	0.01					0.01	
Line 40 - Fittings & Work Req'd, Ref Dwg5090	1.00							
151079603100A	Unit Costs>	49.00	Q15	4.938	219.96	20.86	292.76	512.19
Tee, stainless, straight, butt weld, 3", schedule 10, type 316, includes t	8.00 Ea.	\$416	44.55	40	\$1,760	\$167	\$2,342	\$4,097
152100401210	Unit Costs>	70.00	PIPE04S	2.492	102.22	6.48	182.90	319.99
3" Stainless Steel, Slip-On Flange	24.00 EA	\$1,781	41.02	60	\$2,453	\$155	\$4,390	\$7,680
151076905010	Unit Costs>	22.50	Q1	0.239	10.65		34.50	60.35
Grooved End Coupling, stainless steel, flexible, 3" diameter	16.00 Ea.	\$382	44.54	4	\$170		\$552	\$966

CH2M HILL, Inc.

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

DESCRIPTION QTY	UNIT MATERIALS	CRI RATE	EW MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
B Cleaning Product Return Hydranautics MECHANICAL								
	sts> 250.00 L.S. \$265	PIPE04S 41.02	6.000 6	246.13 \$246	15.60 \$16		526.73 \$527	\$922
Subtotal Markups using CH-MK	\$6,8 \$5,1			\$7,528 \$5,642			\$14,957	\$11,210
TOTAL 15000 MECHANICAL 1.00 LS	\$11,9	23	174	\$13,171	\$1,072		\$14,957	\$26,166
1.00 LS								\$26,166.20

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

PROJECT NO.: 345334.AA.T5

			CRE					TOTAL	TOTAL
DESCRIPTION	QTY UNIT	MATERIALS	RATE	MH	LABOR	EQUIPMENT	INSTL S/C	DIRECT	W/MRKUPS
D Special									
Filters									
MECHANICAL									
	Unit Costs>	0.01						0.01	
Line 41 - Filter Effluent Pipes (28 ea at 10')	1.00								
152103101170A	Unit Costs>	962.00	PIPE04S	3.100	127.17	8.06		1154.94	2020.55
42" SST 316-L, pipe assembly, shop fabricated	350.00 L.F.	\$356,902	41.02	1,085	\$44,508	\$2,821		\$404,231	\$707,193
	Unit Costs>	0.01						0.01	
Line 41 - Fittings & Work Req'd, Ref Dwg. Figure 4- 14	1.00								
152103041110	Unit Costs>	14300.00	PIPE04S	24.000	984.51	62.40		16204.90	28350.13
42" Stainless Steel, Slip-On Flange	56.00 Ea.	\$848,848	41.02	1,344	\$55,133	\$3,494		\$907,475	\$1,587,607
151076605655A	Unit Costs>	127.00	Q15	7.273	323.98	30.73		489.32	856.06
Nozzle, stainless steel, weld-on, 12" pipe, includes 1 weld per joint and weld	28.00 Ea.	\$3,769	44.55	204	\$9,071	\$860		\$13,701	\$23,970
152101401120A	Unit Costs>	394.00	PIPE04S	8.000	328.17	20.80		766.61	1341.16
12" Stainless Steel, Fab'd 90 Elbow	28.00 EA	\$11,694	41.02	224	\$9,189	\$582		\$21,465	\$37,553
	Unit Costs>		PIPE07	30.000	1499.84	297.00		1796.84	3143.52
Remove & Reinstall Aluminum Grating After Pipe	28.00 Ea.		49.99	840	\$41,995	\$8,316		\$50,311	\$88,019
Upgrade, Over Piping	Hall Oaala								0.00
050909200100	Unit Costs> 616.00 L.F.		E25 41.26	0.025 15	1.03	0.28 \$173		1.31 \$809	2.30
Cutting, steel, to 1/2" thick, by hand, incl prep, torch cutting & grinding, exc				15	\$635			\$809	\$1,415
	Unit Costs>		PIPE07	4.000	199.98	39.60		239.58	419.14
Remove 42" & 12" Piping to be replaced & Dispose of	28.00 L.S.		49.99	112	\$5,599	\$1,109		\$6,708	\$11,736
	Unit Costs>		PIPE07	24.500	1224.87	242.55		1467.42	2567.21
Remove & Reinstall, Flexible Couplings, 42" Dia	28.00 Ea.		49.99	686	\$34,296	\$6,791		\$41,088	\$71,882
0.000 0	Unit Costs>		PIPE07	30.000	1499.84	297.00		1796.84	3143.52
Remove & Reinstall Flgd Butterfly Valve, 42" Dia	28.00 Ea.		49.99	840	\$41,995	\$8,316		\$50,311	\$88,019

CH2M HILL, Inc.

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

DESCRIPTION	QTY UNIT	MATERIALS	CRE RATE	<u>W</u> MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
D Special Filters MECHANICAL									
Allowance for Re-Use of Exist Supports & Brackets, Plus Additional	Unit Costs> 1.00 L.S.	2800.00 \$2,968	PIPE04S 41.02	200.000 200	8204.24 \$8,204	519.96 \$520		11692.20 \$11,692	\$20,455
Subtotal Markups using CH-MK		\$1,224,181 \$917,498			\$250,627 \$187,839			\$1,507,791	\$1,130,057
TOTAL 15000 MECHANICAL 1.00 LS 1.00 LS		\$2,141,679		5,550	\$438,466	\$57,703		\$1,507,791	\$2,637,848 \$2,637,848.00

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

DESCRIPTION	QTY UNIT	MATERIALS	CRE\ RATE	<u>W</u> MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
01 Rehabilitation, Col. D Mobilization GENERAL CONDITIONS									
Mobilization & Demobilization (Approx. 7.5% Total)	Unit Costs> 1.00 LS						45000.00 \$45,000	45000.00 \$45,000	\$45,000
TOTAL 01000 GENERAL CONDITIONS 1.00 LS 1.00 LS							\$45,000	\$45,000	\$45,000 \$45,000.00

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD
REVIEWED BY: Robert Lawson/RDD
T NO. / REV NO.: 2007-REL-L072 // 0

EST NO. / REV NO.: 2007-REL-L072 // 0
FILE NAME: YDP_AB to SST Piping 2007.PWS

PROJECT NO.: 345334.AA.T5

			CRE					TOTAL	TOTAL
DESCRIPTION	QTY UNIT	MATERIALS	RATE	MH	LABOR	EQUIPMENT	INSTL S/C	DIRECT	W/MRKUPS
D Pretreatment									
Exterior									
MECHANICAL									
	Unit Costs>	0.01						0.01	
Line 28 - Intake PS Disch Manifold & Pipeline	1.00								
152101101110A	Unit Costs>	97.62	PIPE04S	1.300	53.33	3.38		160.18	280.24
10" SST 316-L, pipe assembly, shop fabricated	62.00 LF	\$6,416	41.02	81	\$3,306	\$210		\$9,931	\$17,375
152101701170A	Unit Costs>	172.55	PIPE04S	1.600	65.63	4.16		252.70	442.09
16" SST 316-L, pipe assembly, shop fabricated	62.00 LF	\$11,340	41.02	99	\$4,069	\$258		\$15,667	\$27,409
152102501170A	Unit Costs>	646.21	PIPE04S	2.400	98.45	6.24		789.67	1381.52
30" SST 316-L, pipe assembly, shop fabricated	98.00 LF	\$67,128	41.02	235	\$9,648	\$611		\$77,388	\$135,389
152103101170A	Unit Costs>		PIPE04S	3.100	127.17	8.06		1828.10	3198.22
72" SST 316-L, pipe assembly, shop fabricated	89.00 LF	\$150,666	41.02	276	\$11,318	\$717		\$162,701	\$284,641
	Unit Costs>	0.01						0.01	
Line 28 - Fittings & Work Req'd, Ref Dwg. Figure 4-7	1.00								
152101201110A	Unit Costs>	356.00	PIPE04S	6.600	270.74	17.16		665.26	
10" Stainless Steel, Fab'd 90 Elbow	1.00 EA	\$377	41.02	7	\$271	\$17		\$665	\$1,164
152101201111A	Unit Costs>	320.00	PIPE04S	6.600	270.74	17.16		627.10	
10" Stainless Steel, Fab'd 45 Elbow	1.00 EA	\$339	41.02	7	\$271	\$17		\$627	\$1,097
152101103030A	Unit Costs>	125.00	PIPE04S	3.600	147.68	9.36		289.54	
10" Stainless Steel Nozzle, Pe x Pe, Weld to Main	1.00 EA	\$133	41.02	4	\$148	\$9		\$290	\$507
Line									
152101241110A	Unit Costs>	444.00	PIPE04S	8.197	336.25	21.31		828.20	1448.92
10" Stainless Steel, Slip-On Flange	2.00 EA	\$941	41.02	16	\$673	\$43		\$1,656	\$2,898
152101801120A	Unit Costs>	1041.00	PIPE04S	12.300	504.56	31.98		1640.00	***
16" Stainless Steel Elbow, 90 degree (4 Miter Elbow)	1.00 EA	\$1,103	41.02	12	\$505	\$32		\$1,640	\$2,869
152101841110A	Unit Costs>	1716.00	PIPE04S	13.115	538.00	34.09		2391.05	4183.09
16" Stainless Steel, Slip-On Flange	2.00 EA	\$3,638	41.02	26	\$1,076	\$68		\$4,782	\$8,366
152101801120A	Unit Costs>	975.00	PIPE04S	12.300	504.56	31.98		1570.04	£0.747
16" Stainless Steel Elbow, 45 degree (3 Miter Elbow)	1.00 EA	\$1,034	41.02	12	\$505	\$32		\$1,570	\$2,747
152101801150A	Unit Costs>	350.00 \$371	PIPE04S	8.200	336.37	21.32 \$21		728.69 \$729	¢4 075
16" Stainless Steel Nozzle, Pe x Pe, Weld to Main Line	1.00 EA	Ф 3/ I	41.02	8	\$336	\$21		⊅ 129	\$1,275
152102501170A	Unit Costs>	646.21	PIPE04S	2.400	98.45	6.24		789.67	1381.52
30" SST 316-L, pipe assembly, shop fabricated for	2.00 LF	\$1,370	41.02	2. 4 00 5	\$197	\$12		\$1,579	\$2,763
Manway	2.00 LI	ψ1,070	71.02	3	Ψισι	Ψ1Ζ		ψ1,579	ΨΣ,1 00
152102645160A	Unit Costs>	8260.00	PIPE04S	14.000	574.30	36.40		9366.30	
30" Stainless Steel, Weld on Saddle	1.00 EA	\$8,756	41.02	14	\$574	\$36		\$9,366	\$16,386
,		* - /		=	*	***		,	* -,

CH2M HILL, Inc.

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

PROJECT NO.: 345334.AA.T5

DESCRIPTION	QTY UNIT	MATERIALS	<u>CRE</u> RATE	<u>W</u> MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
D Pretreatment Exterior MECHANICAL									
152102601140A	Unit Costs>	1994.00	PIPE04S	21.000	861.45	54.60		3029.69	
30" x 20" Stainless Steel Reducer	1.00 EA	\$2,114	41.02	21	\$861	\$55		\$3,030	\$5,300
152102601120A	Unit Costs>	1342.00	PIPE04S	21.000	861.45	54.60		2338.56	4091.26
30" Stainless Steel Elbow, 15 degree (1 Miter Elbow)	15.00 EA	\$21,338	41.02	315	\$12,922	\$819		\$35,078	\$61,369
152102641110	Unit Costs>	8261.00	PIPE04S	24.590	1008.71	63.93		9829.30	17196.15
30" Stainless Steel, Slip-On Flange	10.00 EA	\$87,567	41.02	246	\$10,087	\$639		\$98,293	\$171,962
152104001120A	Unit Costs>	6500.00	PIPE04S	48.000	1969.02	124.79		8983.81	
72" Stainless Steel Elbow, 30 degree (2 Miter Elbow)	1.00 EA	\$6,890	41.02	48	\$1,969	\$125		\$8,984	\$15,717
152104001126A	Unit Costs>	6500.00	PIPE04S	32.000	1312.68	83.19		8285.87	
72" Stainless Steel End Cap	1.00 EA	\$6,890	41.02	32	\$1,313	\$83		\$8,286	\$14,496
	Unit Costs>	0.01						0.01	
Line 33 - Backwash Manifold	1.00								
152102301170A	Unit Costs>	334.83	PIPE04S	1.800	73.84	4.68		433.44	758.29
24" SST 316-L, pipe assembly, shop fabricated	100.00 LF	\$35,492	41.02	180	\$7,384	\$468		\$43,344	\$75,829
	Unit Costs>	0.01						0.01	
Line 33 - Fittings & Work Req'd, Ref Dwg. Figure 4-	1.00								
11									
15060012000009A	Unit Costs>	75.00	PIPE04S	2.000	82.04	5.20		166.74	
6" Stainless Steel Nozzle, Pe x Pe, Weld to Main	1.00 EA	\$80	41.02	2	\$82	\$5		\$167	\$292
Line	11 '' 0 '								
152101801150A	Unit Costs>	350.00	PIPE04S	8.200	336.38	21.32		728.70	1274.83
16" Stainless Steel Nozzle, Pe x Pe, Weld to Main Line	2.00 EA	\$742	41.02	16	\$673	\$43		\$1,457	\$2,550
	Unit Costs>	4740.00	DIDEGAG	40.445	507.00	0440		0004.05	4400.00
152101841110A 16" Stainless Steel, Slip-On Flange	3.00 EA	1716.00 \$5,457	PIPE04S 41.02	13.115 39	537.99 \$1,614	34.10 \$102		2391.05 \$7,173	4183.09 \$12,549
·	Unit Costs>	φ5,457 1041.00	PIPE04S		504.56	* -		. ,	\$12,549
152101801120A 16" Stainless Steel Elbow, 90 degree (4 Miter Elbow)	1.00 EA	\$1,103	41.02	12.300 12	\$505	31.98 \$32		1640.00 \$1,640	\$2,869
152101701170A	Unit Costs>	\$1,103 172.55	PIPE04S	1.600		4.16		\$1,640 252.70	\$2,869 442.09
16" SST 316-L, pipe assembly, shop fabricated	34.00 LF	\$6,219	41.02	54	65.63 \$2,232	4.16 \$141		\$8,592	\$15,031
152102401140A	Unit Costs>	\$6,219 997.00	PIPE04S		φ2,232 812.22	51.48		\$6,592 1920.52	φ10,031
24" x 16" Stainless Steel Reducer	1.00 EA	997.00 \$1,057	41.02	19.800 20	\$12.22	51.48 \$51		1920.52 \$1,921	\$3,360
	Unit Costs>	. ,				· ·		. ,	\$3,300
152102401130A 24" Stainless Steel Tee	1.00 EA	2444.00 \$2,591	PIPE04S 41.02	26.400 26	1082.96 \$1,083	68.63 \$69		3742.23 \$3,742	\$6,547
	Unit Costs>	. ,	PIPE04S		\$1,083 812.22	*			Ф 0,54 <i>1</i>
152102401120A 24" Stainless Steel Elbow, 90 degree (4 Miter Elbow)	1.00 EA	3925.00 \$4,161	41.02	19.800 20	\$12.22	51.48 \$51		5024.20 \$5,024	\$8,790
24 Stairliess Steel Elbow, 90 degree (4 Miller Elbow)	1.00 EA	Ф4, 10 I	41.02	20	\$612	\$51		ֆⴢ,∪24	\$0,7 YU

CH2M HILL, Inc.

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

DESCRIPTION	QTY UNIT	MATERIALS	CRE RATE	<u>MH</u>	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
D Pretreatment Exterior MECHANICAL									
152102441110 24" Stainless Steel, Slip-On Flange Allowance for Re-Use of Exist Supports & Brackets, Plus Additional	Unit Costs> 1.00 EA Unit Costs> 1.00 L.S.	\$3,798	PIPE04S 41.02 PIPE04S 41.02	19.762 20 100.000 100	810.66 \$811 4102.12 \$4,102	51.38 \$51 259.98 \$260		4660.02 \$4,660 12312.10 \$12,312	\$8,153 \$21,540
Subtotal Markups using CH-MK		\$447,058 \$335,060			\$80,157 \$60,076			\$532,295	\$398,943
TOTAL 15000 MECHANICAL 1.00 LS 1.00 LS		\$782,118		1,954	\$140,232	\$8,888		\$532,295	\$931,238 \$931,238.20

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

PROJECT NO.: 345334.AA.T5

DESCRIPTION	QTY UNIT	MATERIALS	<u>CRE</u> RATE	<u>W</u> MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
D1 Other Exterior, WQIC MECHANICAL									
Line 35 - WQIC Intake/Supply Pipe	Unit Costs> 1.00	0.01	DID=2.40		50.00			0.01	200.00
152100901110A 8" SST 316-L, pipe assembly, shop fabricated	Unit Costs> 19.00 LF	69.97 \$1,409	PIPE04S 41.02	1.300 25	53.33	3.38 \$64		130.88 \$2,487	228.96 \$4,350
152101101110A	Unit Costs>	\$1,409 97.62	PIPE04S	1.300	\$1,013 53.33	3.38		\$2,487 160.19	\$4,350 280.24
10" SST 316-L, pipe assembly, shop fabricated	330.00 LF Unit Costs>	\$7.62 \$34,147 0.01	41.02	429	\$17,598	\$1,115		\$52,861 0.01	\$92,479
Line 35 - Fittings & Work Req'd, Ref Dwg. Figure 4- 13	1.00								
152101201140A	Unit Costs>	115.00	PIPE04S	6.600	270.74	17.16		409.80	
10" x 8" Stainless Steel Reducer	1.00 EA	\$122	41.02	7	\$271	\$17		\$410	\$717
152101201110A	Unit Costs>	356.00	PIPE04S	6.600	270.74	17.16		665.26	64.464
10" Stainless Steel, Fab'd 90 Elbow	1.00 EA Unit Costs>	\$377	41.02	7	\$271	\$17		\$665	\$1,164
152101241110A 10" Stainless Steel, Slip-On Flange	4.00 EA	444.00 \$1,883	PIPE04S 41.02	8.197 33	336.25 \$1,345	21.31 \$85		828.20 \$3,313	1448.92 \$5,796
152101201111A	Unit Costs>	320.00	PIPE04S	6.600	270.74	17.16		627.10	\$3,790
10" Stainless Steel, Fab'd 45 Elbow	1.00 EA	\$339	41.02	7	\$271	\$17		\$627	\$1,097
	Unit Costs>	0.01	2	•	Ψ=			0.01	V 1,001
Line 36 - WQIC Supply Pipe	1.00	0.01						0.01	
152100901110A	Unit Costs>	69.97	PIPE04S	1.300	53.33	3.38		130.88	228.96
8" SST 316-L, pipe assembly, shop fabricated	8.00 LF	\$593	41.02	10	\$427	\$27		\$1,047	\$1,832
	Unit Costs>	0.01						0.01	
Line 36 - Fittings & Work Req'd, Ref Dwg. Figure 4- 13	1.00								
152101001110A	Unit Costs>	300.00	PIPE04S	3.600	147.68	9.36		475.04	831.06
8" Stainless Steel, Fab'd 90 Elbow	2.00 EA	\$636	41.02	7	\$295	\$19		\$950	\$1,662
152101041110	Unit Costs>	290.00	PIPE04S	6.557	268.98	17.05		593.42	1038.18
8" Stainless Steel, Slip-On Flange	2.00 EA	\$615	41.02	13	\$538	\$34		\$1,187	\$2,076

CH2M HILL, Inc.

CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Piping Rehabilitation for YDP

CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate

PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO.:

ENR CCI: November 2007 ENR for Los Angeles at 8871.09

ESTIMATOR: Robert Lawson/RDD REVIEWED BY: Robert Lawson/RDD EST NO. / REV NO.: 2007-REL-L072 // 0

FILE NAME: YDP_AB to SST Piping 2007.PWS

DESCRIPTION	QTY UNIT	MATERIALS	CRE RATE	<u>W</u> MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
D1 Other Exterior, WQIC MECHANICAL									
Allowance for Re-Use of Exist Supports & Brackets, Plus Additional	Unit Costs> 1.00 L.S.	2500.00 \$2,650	PIPE04S 41.02	50.000 50	2051.06 \$2,051	129.99 \$130		4831.05 \$4,831	\$8,452
Subtotal Markups using CH-MK		\$42,772 \$32,057			\$24,080 \$18,047			\$68,378	\$51,247
TOTAL 15000 MECHANICAL 1.00 LS		\$74,828		587	\$42,127	\$2,670		\$68,378	\$119,625
1.00 LS									\$119,625.00

CH2M HILL - CONTRACTOR MARKUP REPORT - Ver 3.9

PROJECT: **Piping Rehabilitation for YDP**

ESTIMATOR: Robert Lawson/RDD CLIENT: **United States Bereau of Reclamation** REVIEWED BY: Robert Lawson/RDD **DESIGN STAGE: Preliminary Design, Class 3 Estimate** EST NO. / REV NO.: 2007-REL-L072 // 0

Bruce Johnson/LAS PROJ MGR:

CLIENT PROJ NO.:

FILE NAME: YDP_AB to SST Piping 2007.PWS

November 2007 ENR for Los Angeles at 8871.09

PROJECT NO.: 345334.AA.T5

ENR CCI:

Reported From: Replacement of Piping

	replacement of riping			A	pplied to			
Code	Contractor/Markup Description	Markup Add-On Amount	Labor	Equip	Material	Other1	Other2	Other3
СН-МК	CH2M HILL Standard Markup Set - Prime Contractor							
	Field Detail Allowance	2.000%	Yes	Yes	Yes	Yes	Yes	Yes
	2. Bond/Permits/Insurance	5.000%	Yes	Yes	Yes	Yes	Yes	Yes
	3. Contractors Overheads	10.000%	Yes	Yes	Yes	Yes	Yes	Yes
	4. Contractors Profit	8.000%	Yes	Yes	Yes	Yes	Yes	Yes
	5. Project Contingency	25.000%	Yes	Yes	Yes	Yes	Yes	Yes
	6. Market Adjustment Factor	10.000%	Yes	Yes	Yes	Yes	Yes	Yes
* CH-MK	CH2M HILL Standard Markup Set - Prime Contractor	Percentages>	74.95%	74.95%	% 74.95%	74.95%	74.95%	74.95%
* Indicates Co.	ntractor is used in estimate.							
SUB-EL	Sub-Contractor							
	Electrical/I & C							
SUB-EL	Sub-Contractor	Percentages>	0.00%	0.00%	6 0.00%	0.00%	0.00%	0.00%
	Electrical/I & C							
* Indicates Co.	ntractor is used in estimate.							
SUB-PA	Sub-Contractor							
	Painting							
SUB-PA	Sub-Contractor	Percentages>	0.00%	0.00%	6 0.00%	0.00%	0.00%	0.00%
	Painting	•						
* Indicates Co	ntractor is used in estimate.							
SUB-SC	Sub-Contractor							
002 00	Site/Civil & Earthworks							
SUB-SC	Sub-Contractor	Percentages>	0.00%	0.00%	6 0.00%	0.00%	0.00%	0.00%
-	Site/Civil & Earthworks							. , ,

^{*} Indicates Contractor is used in estimate. SUB-SS **Sub-Contractor**

CH2M HILL, Inc.

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004

12/20/07 13:50:39 Page

CH2M HILL - CONTRACTOR MARKUP REPORT - Ver 3.9

PROJECT: **Piping Rehabilitation for YDP**

ESTIMATOR: Robert Lawson/RDD CLIENT: **United States Bereau of Reclamation** REVIEWED BY: Robert Lawson/RDD **DESIGN STAGE: Preliminary Design, Class 3 Estimate** EST NO. / REV NO.: 2007-REL-L072 // 0

Bruce Johnson/LAS PROJ MGR:

CLIENT PROJ NO.:

FILE NAME: YDP_AB to SST Piping 2007.PWS

November 2007 ENR for Los Angeles at 8871.09

PROJECT NO.: 345334.AA.T5

ENR CCI:

Reported From: Replacement of Piping

	, , , , , , , , , , , , , , , , , , ,		Applied to								
Code	Contractor/Markup Description	Markup Add-On Amount	Labor	Equip	Material	Other1	Other2	Other3			
	Steel & Metals										
SUB-SS	Sub-Contractor Steel & Metals	Percentages>	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%			

^{*} Indicates Contractor is used in estimate.

12/20/07 13:50:39 Page

PROJECT: Piping Rehabilitation for YDP
CLIENT: United States Bereau of Reclamation
DESIGN STAGE: Preliminary Design, Class 3 Estimate
PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO:

ESTIMATOR: REVIEWED BY: EST NO / REVISION NO: FILE NAME: CH2M Hill PROJ NO:

Robert Lawson/RDD Robert Lawson/RDD 2007-REL-L072 // 0 YDP_AB to SST Piping 2007.PWS

345334.AA.T5

	QUANTITY	UNIT of MEAS	UNIT PRICE	<u>TOTAL</u>
- Replacement of Piping	1	LS	\$16,091,750	\$16,091,750
- A Rehabilitation, Col. B	1	LS	\$14,995,887	\$14,995,887
+ 01 Mobilization	1	LS	\$625,000	\$625,000
- 02 1st St. Feed/2nd St. Reject	1	LS	\$5,163,646	\$5,163,646
+ A Fluid Systems	1	LS	\$3,470,088	\$3,470,088
+ B Hydranautics	1	LS	\$1,693,558	\$1,693,558
- 03 1st St. Reject/2nd St. Feed	1	LS	\$1,417,829	\$1,417,829
+ A Fluid Systems	1	LS	\$1,063,629	\$1,063,629
+ B Hydranautics	1	LS	\$354,200	\$354,200
- 04 Interstage to ER	1	LS	\$1,669,811	\$1,669,811
+ A Fluid Systems	1	LS	\$1,326,774	\$1,326,774
+ B Hydranautics	1	LS	\$343,037	\$343,037
- 05 Low Pressure Reject	1	LS	\$888,987	\$888,987
+ A Fluid Systems	1	LS	\$479,823	\$479,823
+ B Hydranautics	1	LS	\$211,446	\$211,446
+ C Combined	1	LS	\$197,718	\$197,718
- 06 Product	1	LS	\$2,329,195	\$2,329,195
+ A Fluid Systems	1	LS	\$1,072,657	\$1,072,657
+ B Hydranautics	1	LS	\$516,479	\$516,479

PROJECT: Piping Rehabilitation for YDP CLIENT: United States Bereau of Reclamation DESIGN STAGE: Preliminary Design, Class 3 Estimate PROJ MGR: Bruce Johnson/LAS

CLIENT PROJ NO:

ESTIMATOR: REVIEWED BY: EST NO / REVISION NO: FILE NAME: CH2M Hill PROJ NO:

Robert Lawson/RDD Robert Lawson/RDD 2007-REL-L072 // 0 YDP_AB to SST Piping 2007.PWS

345334.AA.T5

	QUANTITY	UNIT of MEAS	UNIT PRICE	<u>TOTAL</u>	
+ C Combined	1	LS	\$740,059	\$740,059	
- 08 Other	1	LS	\$143,427	\$143,427	
+ D2 Exterior, Plant Service	1	LS	\$143,427	\$143,427	
- 09 Cleaning Product Return	1	LS	\$120,145	\$120,145	
+ A Fluid Systems	1	LS	\$93,978	\$93,978	
+ B Hydranautics	1	LS	\$26,166	\$26,166	_
- 10 Special	 1	LS	\$2,637,848	\$2,637,848	

+ B Hydranautics	1	LS	\$26,166	\$26,166
- 10 Special	1	LS	\$2,637,848	\$2,637,848
+ D Filters	1	LS	\$2,637,848	\$2,637,848
- B Rehabilitation, Col. D	1	LS	\$1,095,863	\$1,095,863
+ 01 Mobilization	1	LS	\$45,000	\$45,000
- 07 Pretreatment	1	LS	\$931,238	\$931,238
+ D Exterior	1	LS	\$931,238	\$931,238
- 08 Other	1	LS	\$119,625	\$119,625
+ D1 Exterior, WQIC	1	LS	\$119,625	\$119,625