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Abstract

This paper studies the implications of information-processing limits on the con-
sumption and savings behavior of households through time. It presents a dynamic
model in which consumers rationally choose the size and scope of the information
they want to process concerning their �nancial possibilities, constrained by a Shan-
non channel. The model predicts that people with higher degrees of risk aversion
rationally choose more information. This happens for precautionary reasons since,
with �nite processing rate, risk averse consumers prefer to be well informed about
their �nancial possibilities before implementing a consumption plan. Moreover,
numerical results show that consumers with processing capacity constraints have
asymmetric responses to shocks, with negative shocks producing more persistent
e¤ects than positive ones. This asymmetry results in more savings. I show that the
predictions of the model can be e¤ectively used to study the impact of tax reforms
on consumers spending.
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Information is, we must steadily remember, a measure of one�s freedom of
choice in selecting a message. The greater this freedom of choice, and hence
the greater the information, the greater is the uncertainty that the message ac-
tually selected is some particular one. Thus greater freedom of choice, greater
uncertainty, greater information go hand in hand. (Claude Shannon, sic.)

1 Introduction

Every day people face an overwhelming amount of data. Every day, though, people
use these for their decisions. In selecting useful information, people face a trade o¤
between reacting quickly and precisely to news about their �nancial possibilities and not
spending time crunching numbers to �gure out their exact net worth. To match these
facts, macroeconomists have adopted a number of modelling strategies able to inject
inertia within the rational expectation framework. These devices, such as the costly
acquisition and di¤usion of information, largely rely on ad-hoc technology to generate
smooth and delayed responses of consumption to a shock to income consistent with
observed data. Contrary to this approach, this paper proposes a way to relate inertial
behavior in consumption and savings based on people�s preferences.

To this end, the paper o¤ers a micro-founded explanation on the nature of inertia in
consumption and savings. Following Rational Inattention (Sims, 2003, 2006), I model
the limits of people to process information at an in�nite rate by using Shannon channels.

Under this information processing constraint, individuals choose a signal that con-
veys information about their �nancial possibilities. The signal can provide any kind of
information as long as its overall content is within the channel�s capacity. Consumers
base their expectations of the economic conditions on the signal and decide how much
to consume. Thus, in my framework, the delayed and smoothed responses of savings to
changes in wealth are the result of a slow information �ow due to processing constraints.
Combining the standard utility maximization framework subject to a budget constraint
with information processing limits leads to a departure from rational expectations. My
paper shows how to model this formally in an intertemporal setting. In particular, I
assume that people do not know the exact value of their wealth but have an idea of their
net worth. A way of thinking about this hypothesis is that people do not know exactly
of what the dollar value of their paycheck (nominal) corresponds to in terms of cups of
co¤ee (real), assuming that this is what they care about. People process information to
sharpen their knowledge of how much consumption their wealth can purchase. I model
initial uncertainty as a probability distribution over the possible realizations of wealth.
In such a framework, it is possible to study how choices of information play out with
people�s preferences when they decide on consumption throughout their life time.

The challenge of this model and, more generally, of models of rational inattention is
dealing with the in�nite dimensional state space implied by having a prior as state. For
this reason, the applications of rational inattention have been limited to either a linear
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quadratic framework where Gaussian uncertainty has been considered (such as Sims 1998,
2003, Luo 2007, Mackowiak and Wiederholt 2007, Mondria, 2006, Moscarini 2004) or a
two-period consumption-saving problem (Sims 2006) where the choice of optimal ex post
uncertainty is analyzed for the case of log utility and two Constant Relative Risk Aversion
(CRRA) utility speci�cations. The linear quadratic Gaussian (LQG) framework can be
seen as a particular instance of rational inattention in which the optimal distribution
chosen by the household turns out to be Gaussian. Gaussianity has two main advantages.
First, it allows an explicit analytical solution for these models. One can show that the
problem can be solved in two steps. First, the information gathering scheme is found
and then, given the optimal information, the consumption pro�le. Second, it is easy
to compare the results to a signal extraction problem. When looking at the behavior of
rational inattentive consumers, it is impossible to separate an exogenously given Gaussian
noise in the signal extraction model from an endogenous noise that is optimally chosen
to be Gaussian.

The tractability of rational inattention LQG models comes at the cost of restrictive
assumptions on preferences and the nature of the signal. Constraining uncertainty of the
individual to a quadratic loss / certainty equivalent setting does not take into account
the possibility that the agent is very uncertain about his economic environment; ceteris
paribus, more uncertainty generates second-order e¤ects of information that have �rst
order impact on individuals�decisions. In this sense, rational inattention LQG models
are subject to the same limits as methods that use linear approximation of optimality
conditions to study stochastic dynamic models.1 With little uncertainty about the eco-
nomic environment, linear approximations of the optimality conditions may provide a
fairly adequate description of the exact solution of the system. This fact suggests that
the uncertainty at the individual level might actually be large, undermining the accuracy
of both linearized and rational inattention LQG models. To assess the importance of
information choices for people�expectations, it is important to let consumers select their
information from a wider set of distributions that includes but it is not limited to the
Gaussian family.

The theoretical contribution of this paper is to provide the analytical and computa-
tional tools necessary to apply information theory in a dynamic context with optimal
choice of ex-post uncertainty. I propose a methodology to handle the additional com-
plexity without the LQG setting. I propose a discretization of the framework and derive
its theoretical properties. Then, I provide a computational strategy that is able to solve
the model.

Several predictions emerge from the model. Evaluating the unconditional moments
of the time series of consumption for a given degree of risk aversion, the �rst result of the
paper is that higher information costs are associated with more persistence and higher
volatility. The seemingly paradoxical results of having sluggish and volatile consumption

1Since the work of Hall (1982), the assumption of certainty equivalence has also been questioned
in the consumption savings literature with no information friction, starting from e.g. Blanchard and
Mankiw (1988).
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at the same time can be reconciled if one considers that information-processing con-
straints prevent the consumers to respond promptly to �uctuations in wealth. To make
a concrete example, suppose a person starts o¤ with low wealth and initially chooses
to consume a little. If he is risk averse, he may decide not to modify his consumption
pro�le until he acquires more information about his wealth. As he processes information
through time, he gets more and more data about his high value of wealth and changes his
consumption when he is sure that he has saved enough to a¤ord a higher consumption
expenditure. The more risk averse the consumer is, the longer he waits. The longer
the wait, the more wealth grows because of the accumulation of savings and current
income. The combination of waiting while processing information and sharp changes
once information has been processed through time generates sluggishness and volatility
in consumption.

Second, by looking at the life-cycle pro�le of consumption I �nd that the behavior of
consumption is smooth and persistent with several peaks along the simulated path. These
peaks in consumption occur later in life for people that have access to low information
�ow. This e¤ect is stronger as risk aversion increases. The logic behind this result is that
risk averse consumers react to uncertainty by processing more information on their low
values of wealth and keep their consumption low as a precaution until the uncertainty is
diminished. They accumulate more savings throughout early adult life than their in�nite-
information-processing counterparts. They keep saving until the accumulation of wealth
and information indicates that they can enjoy a high consumption pro�le.

This leads also to the �nding that individual consumption can have more than one
hump along its path as wealth accumulates through time. The key point is that individ-
uals can vary their information �ow during their life time. To see why, suppose that a
person receives signals that his wealth is low. In this case, he wants to pay attention to
his expenses and closely monitor the activity of his account. Once he makes sure that he
has saved enough, he may decide to spend less e¤ort monitoring his balance and enjoy
consumption. Decumulation of savings continues until he receives information that he
has emptied his checking account. This news call for his attention again, so he starts
saving and monitor his balance more frequently than before. These results combined are
suggestive of a precautionary motive for savings driven by information processing limits.

Third, I �nd that consumers with processing capacity constraints have asymmetric
responses to income �uctuations, with negative shocks producing sharper and more per-
sistent e¤ects than positive ones. This e¤ect is stronger as the degree of risk aversion
increases. Compared with a situation in which there are no information-processing limits,
in a rational-inattention consumption-savings model, an adverse temporary income shock
makes consumers reduce their consumption for a longer period of time. This happens
because risk-averse people who receive bad news about their �nances save right away
to hedge against the possibility of running out of wealth in the future. Once they have
enough savings and information, they gradually increase their consumption and smooth
the remaining e¤ect of the shock over time. This result also points toward precautionary
motive due to information-processing limits.
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Finally, I �nd that the predictions of the model can be used to address important
policy questions. In the context of �scal reforms of consumer spending, I show that, as
wealth decreases, rationally inattentive consumers respond faster to a tax rebate that
increases their income by 10%. For a given level of wealth, the lower the processing
capacity, the longer it takes for consumption to react to shocks to disposable income.
These �ndings make intuitive sense. A tax rebate matters more for people with lower
income and, as a result, tighter budgetary constraints than for wealthy people.2 As
a result, poorer people acknowledge and react faster to the positive income shocks. By
contrast, wealthy people do not perceive the increase in disposable income as a signi�cant
change in their �nancial position. Thus, consumption for wealthy people does not change
signi�cantly, instead it adjusts slowly over time. Consider an individual that has wealth
and in�nite processing capacities. The reaction of consumption to a temporary positive
income shock would be to adjust immediately to a new higher value of consumption so
to smooth out the e¤ect of the shock throughout time. With limited processing capacity,
the individual smooths consumption slowly over time because the e¤ect of the increase
in disposable income on wealth spread out slowly through time. These predictions are in
line with the empircal evidence on tax rebate (e.g., Johnson, Parker, and Soules (2006)).

My results are observational distinct from the previous literature on consumption and
information (e.g., Reis (2006)). The distinguishing feature of my model with respect to
previous works is its ability to generate endogenously asymmetric response of consump-
tion to shocks.3 Finally, my paper contributes to the literature that models how people
form endogenously expectations and react to the economy on the basis of their rationally
chosen information.4

The paper is organized as follows. Section 2 lays out the theoretical basis of rational
inattention and informally introduces the model. Section 3 states the problem of the
consumers as a discrete stochastic dynamic programming problem, while Section 4 derives
the properties of the Bellman function. Section 5 provides the numerical methodology
used to solve the model. Section 6 delivers its main results. By comparing the predictions
of the model on the preliminary evidence on tax rebates, I �nd that the model can be a
valid instrument to address the impact of tax reforms on consumer spending. Section 7
concludes.

2Another way of looking at it is that people with lower income are generally more liquidity constrained.
This makes their marginal propensity to consume to a positive shock closer to one than the wealthier
people.

3In particular, for a given degree of risk aversion and magnitude of a shock, the response of con-
sumption to a negative shock is stronger on impact and more persistent than the one to a positive
shock.

4A necessarily non-exhaustive list of papers that address the issue of modeling consumers� expec-
tations includes the absent-minded consumer model proposed by Ameriks, Caplin and Leahy (2003),
together with Mullainathan (2002) and Wilson (2005), whose models feature agents with imperfect re-
call. Mankiw and Reis (2002) develop a di¤erent model in which information disseminates slowly due
to infrequent update of information.
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2 Foundations of Rational Inattention

Rational inattention (Sims 1988,5 1998, 2003, 2005, 2006) blends two main �elds: Infor-
mation Theory and Economics. The �rst draws mainly on the work of Shannon (1948).
The main contribution is to de�ne a measure of the choice involved in the selection of
the message and the uncertainty regarding the outcome. The measure used is entropy.
Details on this part are in Appendix F. Based on Shannon�s apparatus, the economic
contribution is that of using Shannon capacity as a technological constraint to capture
individuals�inability of processing information about the economy at in�nite rate. Given
these limits, people reduce their uncertainty by selecting the focus of their attention. The
resulting behavior depends on the choices of what to observe of the environment once
the information-processing frictions are acknowledged.

2.1 The Economics of Rational Inattention

Consider a person who wants to buy lunch. He doesn�t know his exact wealth but he
knows that he has some cash and a credit card. Not recalling the expenses charged on the
credit card up to that point, he can go to the bank or simply check his wallet. Going to
the bank to �gure out his wealth for lunch is beyond his time and interest, so he decides
to check his wallet. He browses through it thinking about what he wants and what he can
a¤ord to buy for lunch. Mapping dollar bills into his knowledge of prices from previous
consumption, he realizes he can only a¤ord a sandwich instead of his favorite sushi roll.
Then, he uses the receipt to update his prior on the price of sandwiches, what he thinks
he has left in his wallet and, ultimately, his wealth. This updated knowledge will be used
for his next purchase. Such a story can be directly mapped into a rational inattention
framework.

First, the person does not know his wealth, W , but he has a prior on it, p (W ).
Before processing any information, his uncertainty about wealth is the entropy of his
prior, H (W ) � �E[log2(p(W ))], where E [:] denotes the expectation operator.6 Before
processing any information, lunch too is a random variable, C, ranging from sandwiches
to sushi. To reduce entropy, he can choose whether to have a detailed report from the
bank or to look at his wallet. The two options di¤er in amount of information and e¤ort
in processing their content. The choice of the option (signal) together with consumption
result in a joint probability p (c; w). Both dollars in the wallet and knowledge of prices of
sandwiches and sushi contribute to the reduction of uncertainty in wealth of an amount
equal toH (W jC) = �

R
p (w; c) log2 p (wjc) dcdw, which is the entropy ofW that remains

given the knowledge of C. The information �ow, or maximum reduction of uncertainty

5The bulk of the idea of rational inattention can be found in C. Sims�1988 comment in the Brooking
Papers on Economic Activity .

6Entropy is a universal measure of uncertainty that can be de�ned for a density against any base
measure. The standard convention is to use base 2 for the logarithms, so that the resulting unit of
information is binary and called a bit, and to attribute zero entropy to the events for which p = 0.
Formally, given that s log (s) is a continuous function on s 2 [0;1), by l�Hopital Rule lims!0 s log (s) = 0.
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about the prior on wealth, is bounded by the information that the selected signal conveys.
In formulae:

I (C;W ) = H (W )�H (W jC) � � (1)

where � is measured in number of bits transmitted. Finally, the signal -peeking at the
wallet, p (w; c)- and the receipt for the sandwich, �c, are used to update the prior on wealth
via Bayes�rule and the update is then carried over for future purchases.

The example illustrates how people handle everyday decision weighing the e¤ort of
processing all the available information (personal net worth), against the precision of the
information they can absorb (walking to the bank versus checking the wallet) guided by
their interest (buying lunch). This is the core of rational inattention: information is freely
available but people can only process it at �nite rate. Information-processing limits make
attention a scarce resource. As for any other scarce resource, rational people use attention
optimally according to what they have at stake. By appending an information-processing
constraint to an otherwise standard optimization framework, the theory explains why
people react to changes in the economic environment with delays and errors.

The appeal of Shannon capacity as a constraint to attention is that it provides a
measure of uncertainty which does not depend on the characteristics of the channel. The
quantity (1) is a probabilistic measure of the information shared by two random variables
and it applies to any channel. Thus, the Shannon capacity does not require explicit
modelling of how individuals process information. Moreover, treating processing capacity
as a constraint to utility maximization produces inertial reactions to the environment as
a result of individual rational choices. A rational person may not �nd it worthy to look
beyond his wallet when deciding what to buy for lunch. The dollar bills in his wallet
provide little information about current and future activities of his balance. Thus, if
something happened to his current account, for example, a sudden drop in his investment,
checking his wallet would give him no acknowledgement of the event. Nevertheless, the
signal is capable of guiding the consumer on his lunch decision. Over time and through
expenses, the person would �gure out the drop in his investment and modify his behavior
even with respect to lunch.

3 The Formal Set-up

3.1 The problem of the household

To understand the implications of the limits to information processing, I start with the
full information problem.

Let (
;B) be the measurable space where 
 represents the sample set and B the
event set. States and actions are de�ned on (
;B). Let It be the ��algebra generated
by fct; wtg up to time t, i.e., It = � (ct; wt; ct�1; wt�1; :::; c0; w0). Then, the collection
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fItg1t=0 such that It � Is 8s � t is a �ltration. Let u (c) be the utility of the household
de�ned over a consumption good, c. I assume that the utility belongs to the CRRA
family, u (c) = c1�
= (1� 
) with 
 the coe¢ cient of risk aversion. Consumer�s problem
is:

max
fctg1t=0

E0

( 1X
t=0

�t
��

c1�
t

1� 


������� I0
)

(2)

s.t.
wt+1 = R (wt � ct) + yt+1 (3)

w0 given (4)

where � 2 [0; 1) is the discount factor and R = 1=� is the interest on savings, (wt � ct). I
assume that yt 2 Y �

�
y1; y2; ::; yN

	
follows a stationary Markov process with constant

mean Et ((yt+1)j It) = �y:

Consider now a consumer who cannot process all the information available in the
economy to track his wealth precisely. This not only adds a constraint to the decision
problem but fundamentally a¤ects each constraint (3)-(4).

First, because the consumer doesn�t know his wealth, (4) no longer holds. His un-
certainty about wealth is given by the prior g (w0). Second, before processing any infor-
mation, consumption is also a random variable. This is because the uncertainty about
wealth translates into a number of possible consumption pro�les with various levels of
a¤ordability. It follows that to maximize lifetime utility, consumer needs to reduce un-
certainty about wealth and, at the same time, to choose consumption. Hence, when
information cannot �ow at an in�nite rate, the choice of the consumer is the distribution
p (w; c) as opposite to the stream of consumption fctg1t=0 in (2). Another way of looking
at this is that the consumer chooses a noisy signal on wealth where the noise can assume
any distribution selected by the consumer. Given that the agent has a probability distri-
bution over wealth, choosing this signal is akin to choosing p (c; w). The optimal choice
of this distribution is the one that makes the distribution of consumption conditional on
wealth as close to the wealth as the limits imposed by the Shannon capacity allow.

Third, with respect to the program (2)-(4), there is a new constraint on the amount
of information the consumer can process. The reduction in uncertainty conveyed by the
signal depends on the attention allocated by the consumer to track his wealth. Paying
attention to reduce uncertainty requires spending some time and e¤ort to process infor-
mation. I model the task of thinking by appending a Shannon channel to the constraint
sets. Limits in the capacity of the consumers are captured by the fact that the reduc-
tion in uncertainty conveyed by the signal cannot be higher than a given number, ��:
The information �ow available to the consumer is a function of the signal, i.e., the joint
distribution p (�ct ; �wt). In formulae:

�t � I (p (�ct ; �wt)) =
Z
p (ct; wt) log

�
p (ct; wt)

p (ct) g (wt)

�
dctdwt (5)

Fourth, the update of the prior replaces the law of motion of wealth by using the
budget constraint in (3). To describe the way individuals transit across states, de�ne
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the operator Ewt (Et (xt+1)j ct) � x̂t+1; which combines the expectation in period t of
a variable in period t + 1 with the knowledge of consumption in period t, ct, and the
remaining uncertainty over wealth. Applying Ewt (Et (�)j ct) to equation (3) leads to:

ŵt+1 = R (ŵt � ct) + by (6)

where,

by = Ewt (Et (yt+1)j ct)
� Ewt (Et ((yt+1)j It)j ct) + [Ewt (Et (yt+1)j ct)� Ewt (Et ((yt+1)j It)j ct)]

LIE
= �y + Ewt [(Et (yt+1)j ct)� (Et (yt+1)j ct)]

= �y:

To fully characterize the transition from the prior g (wt) to its posterior distribution, I
need to take into account how the choice in time t, p (wt; ct) a¤ects the distribution of
consumer�s belief after observing ct: Given the initial prior state g (w0), the successor
belief state, denoted by g0ct (wt+1) is determined by revising each state probability as
displayed by the expression:

g0
�
wt+1jct

�
=

Z
~T (wt+1;wt; ct) p (wtjct) dwt (7)

which is known as Bayesian conditioning. In (7), the function ~T is the transition function
representing (6). Note that the belief state itself is completely observable. Meanwhile,
Bayesian conditioning satis�es the Markov assumption by keeping a su¢ cient statistics
that summarizes all information needed for optimal control.7 Thus, (7) replaces (3) in
the limited processing world.

Let � be the shadow cost of using the channel (5), and combine all these four ingre-
dients. Then, the program of the household under information frictions is:

max
fp(wt;ct)g1t=0

E0

( 1X
t=0

�t
Z �

c1�
t

1� 


�
p (ct; wt)� (dct; dwt)

����� I0
)

(8)

s.t.

(�)

�t = It (p (�ct ; �wt)) =
Z
p (ct; wt) log

 
p (ct; wt)�R

p (ŵt; ct) dŵt
�
g (wt)

!
dctdwt (9)

p (ct; wt) 2 D (w; c) (10)

g0
�
wt+1jct

�
=

Z
~T (wt+1;wt; ct) p (wtjct) dwt (11)

7See Astrom, K. (1965).
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g (w0) given (12)

where � (�) in (8) is the Dirac measure that accounts for discreteness in the optimal
choice p (c; w) and D (w; c) �

�
(c; w) :

R
p (c; w) dcdw = 1; p (c; w) � 0;8 (c; w)

	
in (10)

restricts the choice of the agent to be drawn from the set of distributions.

This problem is a well-posed mathematical problem with convex objective function
and concave constraint sets. What makes it hard to solve is that both the state and the
control variables are in�nite dimensional. To make progress in solving it, I implement
two simpli�cations: a) I discretize the framework and b) I show that the resulting setting
admits a recursive formulation. Then, I study the properties of the Bellman recursion
and solve the problem.

Before turning to the solution, I present a brief digression about how constraint
(9) operates and how the di¤erence between this model and the existing literature on
rational inattention may help to build up the intuition for the solution methodology and
the results.

3.2 The role of Shannon�s capacity constraint

3.2.1 Shannon�s constraint in action

To get a sense of how the Shannon capacity constraints a¤ect the decision of the house-
hold, I contrast the optimal policy function p� (c; w) for consumers that have identical
characteristics but di¤er in their limits of information-processing.

A caveat is in order. In order to explore the interaction between information �ow and
coe¢ cient of risk aversion, I solve the model in (8)-(12) information �ow by �xing the
shadow cost of processing information, �, attached to (9) and let � vary endogenously
every period. In this section, I follow a di¤erent route. In order to clarify the mechanisms
behind Shannon capacity as a constraint for information transmission, I �x the number
of bits, �, across utilities and adjust the shadow cost � to map di¤erent coe¢ cients of
risk aversion to the same information �ow.8 First consider u (c) = log (c). In the full
information case,9 the distribution g (w) is degenerate, the choice of p (ct; wt) reduces to
that of c (wt) in (8).10 The resulting optimal policy is given by

c�t (wt) = (1� �)wt + ��y: (13)

8To be more speci�c, I solve the model with CRRA consumer assuming the same parameters as
the baseline model (�;R; �y)�(0:9881; 1:012; 1; 1), the same simplex point (prior) g ( ~w) and adjusting the
shadow cost of processing capacity, �, to get roughly the same information capacity (�log = 2:08 and
�crra = 2:13). The latter implies that the di¤erence in allocation of probabilities within the grid are
attributable solely on the coe¢ cient of risk aversion 
. As I will explain in more details in the solution
methodologies, the same shadow cost (�) does deliver di¤erent information �ow (�) according to the
degree of risk aversion of the agents with more risk averse agents having higher � for a given � than less
risk averse ones. To get �log t �crra , I set �log = 0:02 in Figure 3 while �crra = 0:08 in Figure 4.

9Or, in the wording of my model, when information �ows at in�nite rate, �!1 in (9).
10More formally, for I (p (�w; �c)) ! 1, the probabilities g (w) and p (�w; �c) are degenerate. Using
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For comparison with the case with �nite �, I plot the policy function for the (discretized)
full information case as the joint distribution p (c; w) �c�(w) (c; w) with �c�(w) as the Dirac
measure. Figure 1 plots such a distribution for a 20x20 grid where the equi-spaced vector
c ranges from 0:8 to 3 and w is also equi-spaced with support in [1; 10].
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1.842
2.421
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w

pcw,
Log Utility, κ→∞

c

pc
w

Figure 1: Joint pdf p (c; w), high capacity.

Suppose now that capacity is low. In this case, rational consumers limit their process-
ing e¤ort by concentrating probability on the highest feasible value(s) of consumption.
To see why, recall that consumers are risk averse (log-utility). They process the neces-
sary information to learn where the boundary c � w is and avoid infeasible consumption
bundles.11 Since the Shannon capacity places high restriction on information-processing,
this individual consumes roughly the same amount each period, independently of his level

Fano�s inequality (Thomas and Cover 1991),

c (I (p (�w; �c))) = c (w)

which makes the �rst order conditions for this case the full information solutions.

11The model assumes a standard No-Ponzi condition for the model (8)-(12).
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of wealth.
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Figure 2: Joint pdf p (c; w), low capacity.

This case describes situations in which people have a vague idea of their wealth and
prefer default savings/spending options (whether it is a pension plan or health insurance)
rather than �guring out the exact consistency of their net worth. Figure 2 displays the
resulting optimal policy. Finally, Figure 3 displays the optimal joint distribution for
an intermediate case, 0 < � < 1. The �rst observation is that a person with a �nite
information �ow tries to make p (cjw) as close to w as the information constraint allows
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Figure 3. Joint distribution p (c; w), intermediate capacity.

The second observation is that the optimal policy function for the information-
constrained consumer places low weight, even no weight, on low values of consumption
for high values of wealth. The reason why this happens depends on the utility function.
A consumer with log-utility wants to maintain a consumption pro�le that is fairly smooth
throughout the lifetime, as can be seen from (13). To avoid values of consumption that
are either too low or too high, he needs to be well informed about such events to re-
duce the probability of their occurrence. The resulting optimal policy places a higher
probability mass on the central values of consumption and wealth.

To see how the allocation of probability changes with the utility function, consider a
consumer that di¤ers from the previous only in the utility speci�cation which now assume
a CRRA form, u (c) = c1�
= (1� 
) with 
 = 2. As in the previous case, the optimal
policy function still places a close-to-zero probability on low values of consumption for
high values of wealth but now the CRRA consumer trade o¤ probabilities about modest
values of consumption and wealth so that he can have high probability mass on high
values of consumption when wealth is high.
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Figure 4. Joint distribution p (c; w), CRRA utility.

In other words, with CRRA preferences, individuals want to be better informed on
low and middle values of wealth to enjoy high consumption in every period. Figure 4
illustrates this case.

3.2.2 Shannon�s channel through the economic literature

The goal of this section is to compare my model with the literature in rational inatten-
tion. The �rst comparison is with the consumption saving model in the linear quadratic
Gaussian (LQG) case 12 Sims(2003) fully characterizes the analytical solution of a con-
sumption saving model where utility is quadratic, u (c) = c � 0:5�c2, constraints are
linear and ex-ante optimal shape of uncertainty is Gaussian. In this LQG setting, the
optimal distribution of ex-post uncertainty is also Gaussian. The Gaussian solution make
a model with rational inattention in the LQG case observationally equivalent to a signal
extraction problem a la Lucas.

Note that the analytical solution in Sims (2003) cannot be recovered if one assume a
restriction in the support of either c or w (e.g., the conventional c > 0) or a no-borrowing
constraint (e.g., ct < wt 8t). This is because both constraints break the LQ framework,
necessary to obtain Gaussianity in the optimal ex-post uncertainty.

12cfr. Sims (1998, 2003), Luo (2008), Lewis (2007).
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The second issue with the LQG approach is that the linear quadratic approximation
gives valid predictions when uncertainty is small. This is similar to the argument for
linearizing the �rst order condition of a problem and getting locally a good approximation.
However, if one wants to explain an observed consumption and savings time series through
limited processing constraints, the inertial behavior that we see in the data suggests that
uncertainty is fairly big. Thus, the tractability of the LQG framework comes at the
expense of e¤ectiveness in matching the data.

The third issue, which is the most important for the purpose of this paper, is that
rational inattention LQG models do not allow to explain di¤erent speed and amounts of
reactions of people to di¤erent news about their wealth. For instance, consumption drops
faster following a sudden layo¤than in the event of a tax break. Moreover, the magnitude
of the change in consumption depends on people�s attitude towards risk13 and their
income level14. The certainty equivalence framework that arises with Gaussian ex ante
uncertainty and quadratic utility does not allow for endogenous di¤erentiation amongst
these events. In such a setting, the speed and amount of households�reactions to di¤erent
news are created by sources of inertia exogenous to the model. This has been one of the
criticisms to signal extraction models a la Lucas and applies also to rational inattention
LQG.15 For instance, di¤erent reactions are generated by assuming that people have
immediate access to some signals and not others, as in Lucas (1973) or they receive
independent information about di¤erent news, as in Mac̀kowiak and Wiederholt (2008).
In this paper, I choose another approach. I assume that information is freely available
and I do not constrain ex-ante uncertainty to be Gaussian. Moreover, I explore the link
between risk aversion and information-processing limits by allowing utility speci�cations
of the CRRA family.

Before this paper, Sims (2006) solves a two period model with non-Gaussian ex-ante
uncertainty and CRRA preferences. Sims (2006) assumes that agents live two periods, the
�rst of which they are inattentive while the second period their uncertainty is resolved.
This paper focuses on a fully dynamic rational inattention model. I depart from the
work of Sims (2006) in two main dimensions. The �rst is conceptual. A fully dynamic
model with rational inattention allows the researcher to investigate time series properties
of consumption and savings. The resulting behavior reveals endogenous noise and delays
of consumption in response to shock to income, with negative income shocks producing
faster reactions e¤ects as the risk aversion increases. The intuition for this result is
the reaction of risk adverse individuals to signals that indicate a reduction in wealth
is to immediately decrease their consumption for precautionary motives while collecting
information over time about the consistency of their net worth. Complementary to these
�ndings, richer dynamic makes the model suitable to address policy questions such as
reaction to �scal policy stimulus as I will show in the last section. This paper is also
distinct from the one of Lewis (2008) . The most prominent di¤erences are that, in Lewis
(2008), households do not see consumption over time and they optimize over a �nite

13cfr., e.g. Gourinchas and Parker, 2001.
14cfr., e.g., Johnson, Souleles and Parker (2006).
15For a discussion on the Gaussian assumption in rational inattention models see Lewis (2007).
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horizon. Not observing consumption in turn implies that once the stream of probabilities
is chosen at the beginning of period, the update of the beliefs is deterministic in the choice
of the signal. While Lewis (2008)�s framework does deliver upward-sloping age pro�les as
average consumption over a �xed time length, it does not allow to study unconditional
moments of consumption nor conditional response of consumption to shocks as in my
framework.

The second contribution is methodological. A fully dynamic rational inattention
model involves facing an in�nite dimensional problem as displayed in (8)-(12). To work
with this framework, I developed analytical and computation tools that are suitable to
address the dynamics of a non-LQG model.

Moreover, my results are observational distinct from the previous literature on sticky
information (Mankiw and Reis (2002)) and consumption and information (Reis (2006)).
Mankiw and Reis (2002) assume that every period an exogenous fraction of agents (�rms)
obtain perfect information concerning all current and past disturbances, while all other
�rms set prices based on old information. Reis (2006) shows that a model with a �xed
cost of obtaining perfect information can provide a microfoundation for this kind of slow
di¤usion of information. My model di¤ers from the literature on inattentiveness in that I
assume that information is freely available in each period but the bounds on information
processing given by the Shannon channel force consumers to choose the scope of their
information within the limit of their capacity. The interaction of information �ow and
risk aversion in my model delivers endogenous asymmetry in the response of consumption
to shocks both in terms of speed and amount. This prediction constitutes a distinguishing
feature of my model with respect to the literature of inattentiveness and, more generally,
to the consumption-saving literature.

4 Solution Methodology

4.1 Discretizing the Framework

I consider wealth and consumption as de�ned on compact sets. In particular, admissible
consumption pro�les belong to 
c � fcmin; :::; cmaxg : Likewise, wealth has support 
w �
fwmin; :::; wmaxg. I identify by j the elements of set 
c and by i the elements in 
w: I
approximate the state of the problem, i.e., the distribution of wealth by using the simplex:

De�nition The set � of all mappings g : 
w ! R ful�lling g (w) � 0 for all w 2 
w
and

P
w2
w

g (w) = 1 is called a simplex. Elements w of 
w are called vertices of

the simplex �, functions g are called points of �.

Let jSj be the dimension of the belief simplex which approximates the distribution

g (w) and let � �
(
g 2 RjSj : g (i) � 0 for all i

jSjP
i=1

g (i) = 1

)
denote the set of all prob-
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ability distribution on �. The initial condition for the problem is g (w0) :

The consumer enters each period choosing the joint distribution of consumption and
�nancial possibilities. From the previous section, the control variable for the discretized
set up as the probability mass function Pr (w; c) where c 2 
c and w 2 
w, constrained
to belong to the set of distributions. Given g (w0) and Pr (ct; wt) and the observation of
ct consumed in period t; the belief state is updated using Bayesian conditioning:

g0
�
wt+1jct

�
=
X
wt2
w

T (wt+1;wt; ct) Pr (wtjct) (14)

where T (:) is a discrete counterpart of the transition function ~T (:). Note that ~T (:) is a
density function on the real line while T (:) is a density function on a discrete set with
counting measure. The processing constraint, in terms of the discrete mutual information
between state and actions, is:

It (p (�ct ; �wt)) =
X
wt2
w

X
ct2
c

Pr (ct; wt)

�
log

Pr (ct; wt)

p (ct) g (wt)

�
(15)

The interpretation of (15) is akin to its continuous counterpart. The capacity of the
agents to process information is constrained by a number, ��, which denotes the upper
bound on the rate of information �ow between the random variables C and W 16 in time
t. Finally, the objective function (8) in the discrete world amounts to

max
fp(wt;ct)g1t=0

E0

( 1X
t=0

�t

" X
wt2
w

X
ct2
w

�
c1�
t

1� 


�
Pr (ct; wt)

#����� I0
)
: (16)

4.2 Recursive Formulation

The purpose of this section is to show that the discrete dynamic programming problem
has a solution and to recast it into a Bellman recursion. To show that a solution ex-
ists, �rst note that the set of constraints for the problem is a compact-valued concave
correspondence. Second, I need to show that the state space is compact. Compactness
comes from the curvature of the utility function and the fact that the belief space has a
bounded support in [0; 1]. The compact domain of the state and the fact that Bayesian
conditioning for the update preserves the Markovianity of the belief state ensures that
the transition Q : (
w � Y � B ! [0; 1]) and (14) has the Feller property. Then, the
conditions for applying the Theorem of the Maximum are ful�lled which guarantees the
existence of a solution. In the next section, I provide su¢ cient conditions to guarantee
uniqueness.

Casting the problem of the consumer in a recursive Bellman equation formulation,

16Recall from the argument in Section 2.1 that both W and C are random variables before the
household has acquired and processed any information.
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the full discrete-time Markov program amounts to:

V (g (wt)) = max
Pr(ct;wt)

26664
X
wt2
w

 X
ct2
c

u (ct) Pr (ct; wt)

!
+

+�
P

wt2
w

X
ct2
c

V
�
g0
cjt
(wt+1)

�
Pr (ct; wt)

37775 (17)

subject to:

(� :)

�t = It (p (�ct ; �wt)) =
X
wt2
w

X
ct2
c

Pr (ct; wt)

�
log

Pr (ct; wt)

p (ct) g (wt)

�
(18)

g0
�
wt+1jct

�
=
X
wt2
w

T (wt+1;wt; ct) Pr (wtjct) (19)

X
ct2
c

Pr (ct; wt) = g (wt) (20)

1 � Pr (ct; wt) � 0 8 (ct; wt) 2 B; 8t (21)

where B � f(ct; wt) : wt � ct; 8ct 2 
c;8wt 2 
w, 8tg and � is the Lagrange multiplier
(shadow cost) associated to (18).

The Bellman equation in (17) takes up as its argument the marginal distribution
of wealth g (wt) and uses as the control variable the joint distribution of wealth and
consumption, Pr (ct; wt). The latter links the behavior of the agent with respect to
consumption (c), on one hand, and income (w) on the other, hence specifying the actions
over time. The �rst term on the right hand side of (17) is the utility function u (:). The

second term,
P

wt2
w

X
ct2
c

V
�
g0
cjt
(wt+1)

�
Pr (ct; wt), represents the expected continuation

value of being in state g (:) discounted by the factor � = 1=R = 0:9881. This corresponds
to interest rate R = 1:012 which gives an annualized gross real rate of investment R^4 =
1:0489, with a quarterly frequency of the data. The expectation is taken with respect to
the endogenously chosen distribution Pr (ct; wt). I have discussed the relations in (18)-
(21) earlier. Moreover, I appended the equation in (20) which constrains the choice of
the distribution to be consistent with the initial prior g (wt) :

Next, I analyze the main properties of the Bellman recursion (17) and derive condi-
tions under which it is a contraction mapping and show that the mapping is isotone.

4.3 Properties of the Bellman Recursion

To prove that the value function is a contraction and an isotonic mapping, I shall in-
troduce the relevant de�nitions. Let me restrict attention to choices of probability dis-
tributions that satisfy the constraints (18)-(21). To make the notation more compact,
let p � Pr (cjjwi), 8cj 2 
c, 8wi 2 
w and let � be the set that contains (18)-(21). I
introduce the following de�nitions:
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D1. A control probability distribution p � Pr (ci; wj) is feasible for the problem (17)-
(21) if p 2 �: Let jW j be the cardinality of 
w and let

G �

8<:g 2 RjW j : g (wi) � 0; 8i;
jW jX
i=1

g (wi) = 1

9=;
denote the set of all probability distributions on 
w. An optimal policy has a value
function that satis�es the Bellman optimality equation in (17):

V � (g) = max
p2�

"X
w2
w

 X
c2
c

u (c) p (cjw)
!
g (w) + �

X
w2
w

X
c2
c

(V � (g0c (�))) p (cjw) g (w)
#

(22)
The Bellman optimality equation can be expressed in value function mapping form.
Let V be the set of all bounded real-valued functions V on G and let h : G �
w �
(
w � 
c)� V ! R be de�ned as follows:

h (g; p; V ) =
X
w2
w

 X
c2
c

u (c) p (cjw)
!
g (w) + �

X
w2
w

X
c2
c

(V (g0c (�))) p (cjw) g (w) :

De�ne the value function mapping H : V ! V as (HV ) (g) = maxp2� h (g; p; V ).

D2. A value function V dominates another value function U if V (g) � U (g) for all
g 2 G:

D3. A mapping H is isotone if V , U 2 V and V � U imply HV � HU:

D4. A supremum norm of two value functions V , U 2 V over G is de�ned as

jjV � U jj = max
g2G

jV (g)� U (g)j

D5. A mapping H is a contraction under the supremum norm if for all V , U 2 V,

jjHV �HU jj � � jjV � U jj

holds for some 0 � � < 1:

Endowed with these notion, it is possible to derive some properties of the solution to
the Bellman equation.

First, note that the uniqueness of the solution to which the value function converges
to requires concavity of the constraints and convexity of the objective function. It is
immediate to see that all the constraints but (18) are actually linear in p (c; w) and
g (w). For (18), the concavity of p (c; w) is guaranteed by Theorem (16.1.6) of Thomas
and Cover (1991). The concavity of g (w) is the result of the following:

Lemma 1. For a given p (cjw) ; the expression (18) is concave in g (w).
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Proof. See Appendix B.

Next, I need to prove the convexity of the value function and the fact that the value
iteration is a contraction mapping. All the proofs are in Appendix A.

Proposition 1. For the discrete Rational Inattention Consumption Saving value recur-
sion H and two given functions V and U , it holds that

jjHV �HU jj � � jjV � U jj ;
with 0 � � < 1 and jj:jj the supreme norm. That is, the value recursion H is a
contraction mapping.

Proposition 1 can be explained as follows. The space of value functions de�nes a
vector space and the contraction property ensures that the space is complete. Therefore,
the space of the value functions together with the supreme norm form a Banach space;
the Banach �xed-point theorem ensures (a) the existence of a single �xed point and (b)
that the value recursion always converges to this �xed point (see Theorem 6 of Alvarez
and Stockey, 1998 and Theorem 6.2.3 of Puterman, 1994).

Corollary For the discrete Rational Inattention Consumption Saving value recursion H
and two given functions V and U , it holds that

V � U =) HV � HU

that is the value recursion H is an isotonic mapping.

The isotonic property of the value recursion ensures that the value iteration converges
monotonically.

These theoretical results establish that in principle there is no barrier in de�ning
value iteration algorithms for the Bellman recursion for the discrete rational inattention
consumption-savings model.

5 Numerical Technique and its Predictions

I solve the model by transforming the underlying partially observable Markov decision
process into an equivalent, fully observable Markov decision process with a state space
that consists of all probability distributions over the core 17 state of the model (wealth).

For a model with n core states, w1; ::; wn, the transformed state space is the (n� 1)-
dimensional simplex, or belief simplex. Expressed in plain terms, a belief simplex is a
point, a line segment, a triangle or a tethraedon in a single, two, three or four-dimensional
space, respectively. Formally, a belief simplex is de�ned as the convex hull18 of belief
17The state of the model is a probability distribution of wealth, i.e., g (w). For lack of a better

alternative, I call core state the random variable w whose distribution is the state of the model. This
nomenclature is borrowed from information theory and AI literature. cfr. Puterman (1994) .
18A convex hull of a set of points is de�ned as the closure of the set under convex combination.
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states from an a¢ nely independent19 set B. The points of B are the vertices of the belief
simplex. The convex hull formed by any subset of B is a face of the belief simplex. To
address the issue of dimensionality in the state space of my model, I use a grid-based
approximation approach. The idea of a grid based approach is to use a �nite grid to
discretize the uncountably in�nite continuous state space. The implementation has the
following steps: I place a �nite grid over the simplex point, I compute the values for
points in the grid, and I use a kernel regression to interpolate solution points that fall
outside the grid.

5.1 Belief Simplex and Dynamic Programming

If full information were available, previous history of the process would be irrelevant to
the problem. However, because the consumer cannot completely observe wealth, he may
require all the past information about the system to behave optimally. The most general
approach is to keep track of the entire history of his previous consumption purchases up
to time t, denoted Ht = fg0; c1; ::; ct�1g. For any given initial state probability distribu-
tion g0, the number of possible histories is (jCj)t with C denoting the set of consumption
behavior up to time t. This number goes to in�nity as the decision horizon approaches
in�nity, which makes this method of representing history useless for in�nite-horizon prob-
lems.

To overcome this issue, Astrom (1965) proposed an information state approach. It is
based upon the idea that all the information needed to act optimally can be summarized
by a vector of probabilities over the system, the belief state. Let g (w) denote the
probability that the wealth is in state w 2 
w where 
w is assumed to be a �nite set.
Probability distributions such as g (w) that are de�ned on �nite sets are in fact simplices.
Let n be the possible values that w can assume. The discretization of the core state is an
equi-spaced grid with n = 20 values of w ranging from 1 to 10. The points in the simplex
� are n distinct values for the marginal pdf g (w) in the interval I � [0; 1]. The simplex
is constructed using uniform random samples from the unit simplex. The reason why I
use this methodology is that it is computationally faster than non-uniform grid and it is
able to handle higher dimensional space.20 In my model, each point in the simplex is an
n-array whose column contains m random values in the [0; 1] range and whose sum per
row is 1. To span the simplex I use m = (n� 1)!.21 The distribution of values within
the simplex is uniform in the sense that it has the conditional probability of a uniform
distribution over the whole m-cube, given that the sum per row is 1. The algorithm
calls three types of random processes that determine the placement of random points

19A set of belief states fgig, 1 � i � z is called a¢ nely independent when the vectors fgi � gzg are
linearly independent for 1 � i � z.
20At least compared to the ndgrid library functions in Matlab. This is because the algorithm creates

the simplex directly while when using ndgrid it is necessary to de�ne a uniform grid over the whole n�1
space and then sectioning the resulting grid so that each simplex point sum to one.
21With n = 20, the proposed sampling produces the same results for sample size of m = (n� k)!, for

k = 1; ::; 5. I have not tried cases with k < 5: When k > 1, even if the algorithm produces the same
results it takes longer to converge (about 3 minutes more per iteration).
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in the n � 1�dimensional simplex. The �rst process considers values uniformly within
each simplex. The second random process selects samples of di¤erent types of simplex in
proportion to their volume. Finally, the third process implements a random permutation
in order to have an even distribution of simplex choices among types.

For each simplex point, I initialize the corresponding joint distribution of consumption
c and wealth w. I assume n = 20 equi-spaced values for c ranging in 
c � [0:8; 3]. The
values in 
c are chosen so that w is about 3 times c, roughly consistent with individual
data on consumption and wealth.

Let core states and behavior states be sorted in descending order. I impose the con-
straint c < w,22. Then, given the symmetry in the dimensionality of 
c and 
w, the joint
distribution of consumption and wealth for a given multidimensional grid point is square
matrix with rows corresponding to levels of consumption. Summing the matrix per row
results in the marginal distribution of consumption, p (c). Likewise, the columns of the
matrix correspond to levels of wealth. Evaluating the sum per columns of the matrix
amounts to the marginal pdf of wealth, g (w). Given the initial belief simplex, its succes-
sor belief states can be determined by Bayesian conditioning at each multidimensional
point of the simplex and gives the expression:

g (w0jc) =
X
i

T (w0;wi; c) Pr (wijc) = Pr (w0jc) : (23)

Let V be the set of all bounded real-valued function V on G. Then, the Bellman
optimality equation of the household is described by (17)-(21).

Without loss of generality, I restrict the columns of the matrix Pr (c; w) to sum to the
marginal pdf of wealth in the main diagonal. Moreover, because some of the values of the
marginal g (w) per simplex-point are exactly zero given the de�nition of the envelope for
the simplex, I constrain the choices of the joint distributions corresponding to those values
to be zero. This handling of the zeroes makes the parameter vector being optimized over
have di¤erent lengths for di¤erent rows of the simplex. Hence the degrees of freedom
in the choice of the control variables for simplex points vary from a minimum of 0 to a
maximum of n�(n�1)

2
.23 Once the belief simplex is set up, I initialize the joint probability

distribution of consumption and wealth per belief point and solve the program of the
household by backward induction iterating on the value function V (g (w)). To map the

22The constraint c < w makes economic sense since there is no borriwng in this economy. To encode
this constraint without complicating the model, one may assume that �t in (18) is the capacity left after
th consumer has processed his spending limits.
Note also that this constraint is computationally convenient reducing the number of choice variables

from n2 = 400 to n(n+1)
2 = 210 per iteration.

23To illustrate this point, two example in which the 0-degree of freedom and the n�(n�1)
2 -degree of

freedom occur are as follows. Suppose for simplicity that n = 3: Then, if a simplex point has realization

g � f1; 0; 0g the joint pdf of consumption and wealth turns out to be p (c; w) =

24 1 0 0
0 0
0

35 leaving
zero degrees of freedom. If, instead, e.g., g �

�
1
3 ;

1
3 ;

1
3

	
, the consumers has to choose 3�(2)

2 = 3 points on
the joint distribution, fp1; p2; p3g placed as:
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�ner state space into Matlab possibilities, I interpolate the value function with the new
values of (23) using a kernel regression of V (�) into g0 (w0ja) : I use an Epanechnikov
kernel with smoothing parameter h = 2:7. 24 A kernel regression approximates the
exact non linear value function in (17) with a piece-wise linear function. The following
propositions illustrate this point.

Proposition 2. If the utility is CRRA with a parameter of risk aversion 
 2 (0;+1)
and if Pr (cj; wi) satis�es (18)-(21), then the optimal n�step value function Vn (g)
de�ned over G can be expressed as:

Vn (g) = max
f�ingi

X
i

�n (wi) g (wi)

where the �� vectors, � : 
w ! R, are jW j �dimensional hyperplanes.

Intuitively, each �n�vector corresponds to a plan and the action associated with a
given �n�vector is the optimal action for planning horizon n for all priors that have such
a function as the maximizing one. With the above de�nition, the value function amounts
to:

Vn (g) = max
f�ingi



�in; g

�
;

and thus the proposition holds.

Using the above proposition and the fact that the set of all consumption pro�les
P � fc < w : p (c) > 0g is discrete, it is possible to show directly the convex properties
for the value function. For �xed �in�vectors, the h�in; gi operator is linear in the belief
space. Therefore, the convex property is given by the fact that Vn is de�ned as the
maximum of a set of convex (linear) functions and, thus, obtains a convex function as a
result. The optimal value function V � is the limit for n!1 and, becuase all the Vn are
convex function, so is V �.

Proposition 3. Assuming the CRRA utility function and the conditions of Proposition
1, let V0 be an initial value function that is piecewise linear and convex. Then
the ith value function obtained after a �nite number of update steps for a rational
inattention consumption-saving problem is also �nite, piecewise linear and convex
(PCWL).

p (c; w) =

24 1
3 p1 p2

1
3 p3

1
3

35 :
24Epanechnikov kernel is an optimum choice for smoothing because it minimizes asymptotic mean

integrated squared error (cfr. Marron, J. S. and Nolan, D. (1988)). I use the algorithm proposed in
Beresteanu, A. and C. F. Manski (2000) and experiement with smoothing paramter h 2 [0:3 : 0:3 : 4:2].
For the characteristics of the problem, and the optimization routine used (csminwel), for di¤erent spec-
i�cation of utility functions and Lagrange multiplier �, the parameter h = 2:7 performs best in terms of
computational time and convergence of the value function.
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To implement numerically the optimization of the value function at each point of the
simplex, I use Sims�csminwel as a gradient-based search method and iterate on the
value function up to convergence. The value iteration converges in about 202 iterations.
Table 1 reports the benchmark parameter values and the grids.

I simulate the model for T = 80 periods by drawing from the optimal policy function,
p� (c; w), and generate the time series path of consumption, wealth and expected wealth.
For each t = 1; ::; T , I use the joint distribution p�t (c; w) to evaluate the time path of

information �ow (��t �
P

i

P
j p

�
t (cj; wi) log

�
p�t (cj ;wi)

p�t (cj)g
�
t (wi)

�
). Finally, I derive the impulse

response functions for the economy by assuming temporary shocks to the mean of income,
�y. A pseudocode that implements the procedure is in Appendix C.

Benchmark V alues

Discretization
Wealth Space W [1 : 0:4737 : 10]
Consumption Space C [0:8 : 0:1158 : 3]
Mean of Income, �y 1.1
Joint Distribution per simplex point, p (c; w) 20�20
Marginal C 20�1
Marginal W 20�1
Coe¤. risk aversion, 
 1
Interest rate, R 1.012
Discount Factor, � 0.9881

Table 1

6 Results

In this section, I investigate the dynamic interplay of information �ow and degree of risk
aversion. In particular, I study di¤erent speci�cations of the baseline model changing
degrees of risk aversion, 
 2 f0:5; 1; 2; 5; 7g, and di¤erent Lagrange multipliers, � 2
[0:2; 4], representing the shadow costs of processing information in (18). Time path for
each individual are average across simplex points. For the time series of the aggregate
economy, I perform 10; 000 Monte Carlo runs and simulate the model for each path
for T = 80 periods. Then, I compute average across runs and simplex-points. Sample
statistics are calculated after I compute these averages. I choose this way of calculating
average to compare my model, tailored for individual behavior, to aggregate data. I
divide the results into three parts: (1) interaction of information �ow and risk aversion;
(2) implications of information constraint on lifetime consumption; and (3) consumption
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reaction to temporary income shocks.

Statistics
�=0:2

CRRA 
 = 7 CRRA 
 = 5 Log Utility CRRA 
 = :5
E (C) 1.14 1.09 1.08 1.02
std (C) 0.08 0.09 0.11 0.14
� 2.03 1.99 1.87 1.72

�=2

CRRA 
 = 7 CRRA 
 = 5 Log Utility CRRA 
 = :5
E (C) 1.01 0.98 0.91 0.83
std (C) 0.15 0.18 0.21 0.33
� 1.41 1.20 0.86 0.78

Table 2

Result 1. Information �ow and risk aversion In the discrete rational inattention
consumption-savings model, higher degrees of risk aversion result in a higher amount
of information processed for a given processing cost. Moreover, for a given degree
of risk aversion, as the information �ow decreases, the volatility of consumption
increases.

This �nding is documented in Table 2 and in Figures 5-6. Figure 5a plots the dif-
ference between the mean of the time series of consumption between � = 0 and � > 0.
After deriving the time path of consumption as described above, I calculate the mean
and standard deviation of the average of the time path and subtract from it the mean
of the time path for the full information equivalent (� = 0).25 Figure 5a shows how
this di¤erence changes as � varies and when utility is logarithmic. Figure 5b plots the
corresponding di¤erence in standard deviation of consumption as a function of �.

25For the parameter of the model, when � = 0 a full information solution cft = �wt + (1� �) �y has
mean E

�
cft

�
= 1:124 and standard deviation std

�
cft

�
= 0:0713:
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Loss in consumption due to increasing processing e¤ort
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Di¤erence in std. of consumption due to processing e¤ort.
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Figure 5b.

To understand this result, consider what happens in the full information (� = 0) case.
With R� = 1, the agent smooths consumption regardless of his utility. To appreciate
how preferences towards risk play out with processing limits (� > 0), consider Figure
6c. It plots the optimal distribution of consumption for two individuals (
 ! 1 and

 = 5) when information is very costly to process (� = 3). In this case, a rational agent
consumes a �xed amount every period in the limits of his net worth. This requires very
little bits of information. In Figure 6c note how a person with log-utility puts probability
mass mostly on the lower values of consumption while a more risk averse agent sacri�ces
smoothing consumption to allocate some probability on higher values of consumption.
Assuming the same �; the resulting e¤ect is solely due to consumer preference. Now
consider Table 2 and Figures 6a-6b.
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Marginal Distribution of Consumption, Log Utility
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Marginal Distribution of Consumption, �=3
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Figure 6c.

When � = 2, people select how much information they want to process and which
values of wealth to be better informed about according to their utility. Also in this case,
the higher the degree of risk aversion, the higher the quest for information (�). This
is exactly what Table 2 shows. In the table, the higher the coe¢ cient of risk aversion,

, the higher the information collected by the agent, �, and the higher the mean of
consumption. The same story can be told in terms of probability distribution as in 6a-
6c. For a given level of �, a person with log utility would be better informed on extreme
values of wealth to avoid such values. This knowledge makes it possible to assign high
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probability to the middle value of consumption, as his utility commands. By contrast, a
consumer with CRRA, 
 = 5, wants to avoid low values of consumption for high values
of wealth. Processing information about these events decreases the likelihood of their
occurrence and makes it possible to place high probability on high value of consumption.
This mechanism makes consumption more persistent for people with a higher degree of
risk aversion (cfr. Figure 6a-6c).

Processing capacity (�) strengthens this e¤ect. This is because high information �ow
allows consumers to enjoy high and smooth consumption throughout their life time. If
information �ows at very low rate, households update their knowledge slowly over time
and wait to modify their behavior until they have su¢ cient knowledge of their �nancial
possibilities. Inertial behavior of consumption due to low information �ow induces sharp
changes in consumption after the consumer accumulates information. This mechanism
makes consumption more volatile for people with lower information �ow.

Figure 5b plots the standard deviation of consumption for several values of �. As
pointed out, for very high shadow cost of processing information � > 3, consumption
does not vary over time. For 0 < � < 3, the volatility of consumption increases with
�. This result makes sense. To see why, consider again the full information version of
the model. People�s will to smooth consumption in full information is limited by the
�nite �ow of information available. When deciding on the precision of their signals, risk
averse people trade o¤ lower volatility in consumption for better knowledge of low value
of wealth.

The time series path of consumption, wealth and information �ow drawn from the
optimal policy p� (c; w) con�rm this result and o¤er further insights on the properties of
the model.

Aggregate Consumption
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Aggregate Consumption and Information Flow
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Result 2. Time path of consumption and savings. Changes in consumption over
time are infrequent and signi�cant. Moreover:

1. Consumption is hump-shamped. It gets to its peak later for individual that have low
information �ow. The e¤ect is stronger as the degree of risk aversion increases..

2. Individuals with high information �ow, by having sharper signals on their wealth,
have savings behavior that follows closely their wealth. Furthermore, the lower the
degree of risk aversion, the higher the �uctuations of savings per period.

3. Individuals with low information �ow, tend to consume a constant amount every
period. They increase their consumption only if the information they process points
them towards a signi�cant increase in wealth. The higher the degree of risk aversion,
the less volatile the time path of consumption for these types.

Figures 7-8 illustrate these points for aggregate and individual time series behavior,
respectively. The simulations are derived by drawing the time path of consumption
and wealth from p� (c; w), after the value iteration has converged. Figures 7a-7c plot
the average across the Monte Carlo runs and simplex points (i.e., initial beliefs about
wealth). Individual time series (Figures 8a-8b) are an average of initial beliefs. To have
some interesting transitional dynamics, I begin the simulation with an initial condition
for wealth far from the steady state26.

26For the grid in the model, the steady state value of wealth is �= 5:65 and I initialize the simulation
with w0 = 3.
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Individual savings and wealth
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Figure 8b.

To appreciate the results, consider what would happen with full information. In such
a case, consumption smoothing (R� = 1) implies an immediate (T = 1) adjustment of
consumption to its long-run optimal values and no transient behavior. Thus, in that case
from T = 2 onwards, the simulations lead to a constant time path. Now consider Figures
7(a-c)-8(a,b). The hump in consumption comes from Result 1 and a simple intuition:
information-constrained people are cautious (degree of risk aversion 
 � 1), consume a
little and collect information about wealth before they change consumption. For a �xed
�, the more risk averse they are (cfr. Figure 7a with log utility and Figure 7b with CRRA,

 = 2), the longer they wait before increasing their consumption. This inertial behavior
in consumption leads to an increase in savings and, as a result, in wealth (cfr. Figure
8a-8b). Processed information keeps signaling the increase in wealth until households
realize that they are wealthy enough to increase their consumption. Thus, the hump in
consumption is the mirrored image of the rise (until people know they rich) and fall (once
people know they are rich) in wealth. Note that, depending on the history of income
shocks, consumption can have more than one hump in its path. To see why, consider a
high realization of income occurring after a hump in consumption. Over time, signals
about wealth convey such information, consumers start saving and history as well as
humps repeat themselves. These e¤ects are enhanced by the shadow cost of processing
information, �, with higher costs forcing long periods of inertia in consumption followed
by sizeable changes. Note also the relationship between consumption and information
�ow (Figure 7c): risk averse agents would rather push forward consumption in times in
which they are processing information about wealth. Finally, note from 7(a-b)-8(a,b)
how the peak in consumption occurs later for an individual with higher degree of risk
aversion and lower information �ow. The rationale for this result is that more cautious
people wait to be better informed about their wealth before modifying their consumption
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behavior. In particular, since a consumer with CRRA utility (
 = 2) chooses to be better
informed about low values of wealth than a log utility consumer (cfr. Figures 7a and
7b), he processes news about high value of wealth slower than his log counterpart. The
resulting additional savings for precautionary motives are triggered by both the curvature
of the utility function and the bound on information-processing constraint.

The last result comes from studying how consumers with limited processing capacity
react to temporary shocks to income (y). Before stating the result, it is worth comparing
to the predictions of standard consumption-saving literature. With full information,
the response of consumption to either negative and positive temporary income shocks
are immediate: consumption adjust in period T = 0 to an amount exactly equal to the
discounted present value of the shock, j�yj. This is the case regardless whether the shock
is adverse or favorable, so long as the absolute value of these shocks match. The same
holds true under certainty-equivalence with a linear constraints and quadratic utility
(LQ) framework. With risk averse agents and information-processing limits, it happens
that:

Result 3. Persistent stickiness and asymmetric response to shocks. Consumption�s
response to temporary �uctuations of wealth is asymmetric: Negative shocks trigger
a sharper reaction and higher persistence of consumption than positive ones.

The logic behind this result is easily understood by considering the interdependence
of information �ow and coe¢ cient of risk aversion. A risk averse person is more likely
to be a¤ected by negative events than positive ones. As soon as he receives signals that
his wealth is lower than what he thought, he reacts by decreasing his consumption. The
change in behavior and its persistence are more consistent the more risk averse and unin-
formed the consumer is. This occurs because consumers wait to gather more information
before changing their behavior and, in the meanwhile, build up a savings bu¤er. Thus,
the temporary change in income propagates slowly over time. A positive temporary
income shock triggers the opposite behavior in a risk averse uninformed person. The in-
tuition is that this type of consumer is concerned about negative wealth �uctuations and
allocates most of his information capacity to prevent this event. A signal that indicates
positive wealth may be ignored, generating extra savings in the meanwhile. Once this is
acknowledged, a prudent consumer distributes the additional consumption driven by the
income shock plus savings throughout his lifetime. This pattern of consumption behavior
matches what we observe in macro data on consumption and documented in the literature
as excess smoothness. Furthermore, the discrete rational inattention consumption-saving
model provides a rationale for excess sensitivity in response to news on wealth.27

27Excess sensitivity (Flavin, 1981) of consumption refers to the empirical evidence that aggregate
consumption reacts with delays to anticipated changes in income while excess smoothness (Deaton,
1987) refers to the observation that aggregate consumption is smoother than permanent income in that
it reacts with a less than one-to-one ratio to shocks to permanent income.
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IRF to a temporary increase in income
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Figure 9a.

IRF to a temporary decrease in income
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Figure 9b.

Since the model is non-linear, let me �rst explain how the impulse responses are
generated and then focus on the intuition that the graphs suggest. I simulate the model
drawing 10; 000 times from the same optimal policy distribution under two scenarios. In
the �rst, I draw from a distribution with constant mean of the shock to income. In the
second, I assume that the mean of the shocks increase/decrease in the very �rst period
(one-time shocks) and then revert back to its original distribution. Impulse responses
of consumption are the di¤erence between the two income paths averaged over simplex-
points and 10; 000 Monte Carlo draws of income. The impulse response functions are
plotted in Figures 9a-9b. Consider Figures 9a �rst. They display a positive (Figure 9a)
and a negative (Figure 9b) shock to income respectively. Note that for both log and
CRRA 
 = 2 and for di¤erent value of the shadow cost (� = 0:2 _ � = 2) the reaction
to a negative shocks (�y = j1j) starts from the very �rst period. However, the extent
of the reaction varies across utilities and information costs. When � = 0:2, a log utility-
type consumer reacts on impact by increasing savings to an extent lower than the shock.
He then adjust savings and consumption so to distribute the averse shock throughout
time. The same log-type but with � = 1 decreases more consumption on impact than his
� = 0:2 counterpart. He increases consumption slowly over time until it reaches its new
long-run value. Likewise, a consumer with risk aversion 
 = 2 varies his saving when
the shock hits to an extent that depends on his information �ow. In particular, note
that for � = 2 the decrease in consumption on impact and in the following periods is
so signi�cant that consumers can use the accumulated savings to restore their original
consumption plan. The endogenous asymmetric response to shocks, even in this very
simple setting, makes rational inattention models observationally distinct from any other
standard macroeconomic model. In those frameworks, either there is no asymmetric

32



reaction (as in LQG) or the asymmetric response is due to the asymmetric magnitude
of the shocks (as in models a la Lucas). These implications make the theory appealing
from an empirical standpoint (e.g., think about consumers�reactions to a tax break vs.
being �red from the job). Moreover, they make the theory suitable to study the impact
of policy changes on private sectors decision. The 2008 Tax Rebate provides one such
example.

6.1 Sensitivity analysis and policy implications

A feature of the model worth exploring is how consumption�s reaction to shocks depends
on the initial value of wealth.

Drawing a time series from the probability distribution that solves the model, it is
natural that the farther away wealth is from its steady state, the more consumption
reacts to a shock to wealth. The interesting prediction of the model with an information-
processing constraint is that for either the log or the CRRA, 
 > 1 utility, it does matter
for the impulse response whether we start from a value of wealth above or below the
steady state. In both cases, the reactions are faster in case of a negative shock than a
positive one. However, extent and timing are di¤erent with wealthier people reacting
faster and with sharper decrease in consumption to a negative shock than poorer people
do when facing the same kind of shock. This is due to the fact that poorer people
already consume small amount so that when a negative shock hits, even if they receive
immediately signal of the news, they only gradually reduce their consumption. Savings
slowly accumulate over time until the shock is absorbed. For a given processing capacity,
wealthier people can a¤ord to reduce their consumption as soon as they acknowledge
the negative shock. The jump start in savings makes it possible for them to absorb
the shock faster. By contrast, a positive shock has a stronger e¤ect on poorer people
than wealthier one. To see why, consider a tax rebate. Taking two individuals with the
same characteristics in terms of risk aversion and information-processing constraints but
di¤erent initial net worth, the wealthier person takes longer to change his consumption
behavior. When the change does occur, the magnitude is smaller than the one for a
poorer person. The intuition for this result is that an increase in disposable income for a
less wealthy person .implies a more sizeable �nancial break than the same amount does
to a wealthy person. Risk aversion prevents both types of consumers from immediately
disposing of the additional credit but it has a bigger e¤ect on impact for the more
constrained consumer.
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Impulse Response function as a function of wealth, �y=0:02
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Figure 10. Solid: w0 = 1:94; Star Dashed:w0 = 3:3; Dotted: w0 = 5:2
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Even in its simplicity, the model can be used to address important policy questions. In
particular, it can be used to analyze the e¤ectiveness of tax policy reforms on individual
consumption and savings decisions. Figure 10 displays the impulse response function of
consumption to a stimulus payment which increases income of 2% with respect to its
(constant) long run level. The discretized solutions are generated using equi-spaced grid
of consumption and wealth, with 50 points each. Consumption takes up value in [0:5; 3]
while wealth ranges from 1 to 10. I use the same parameters (R = 1:012 and � = 1=R)
of the baseline model and a simplex of size (50!) � (49) and two speci�cations of utility
functions. In both cases I choose � so that the capacities corresponds to �= 2:5 bits and
0:88 bits28. Once the value iteration converged, I generate the impulse response function
by simulating a time series path of consumption and wealth with 10; 000Monte Carlo runs
for each initial condition on wealth. I consider three initial values of wealth as a proxy of
population with low, middle and low net worth. I then average the time series per quarters
and simplex points. Figure 10 gives interesting insights on the e¤ect of the stimulus on
consumer spending. For the degrees of risk aversion considered and information capacity,
the reaction of the stimulus is higher the lower the initial wealth. This is not surprising, as
the stimulus payments have bigger impact on the disposable income of credit constrained
consumers than richer people. For a given amount of information capacity and wealth,
the higher the risk aversion, the lower the spending in the �rst quarter. This result also
makes sense. If a consumer is risk averse and have no credit frictions, he allocates more
attention in processing information about low values of wealth. This leads to processing
information slower and, in turn, reacting slower to positive news to income (Result 3).
Finally for a given wealth and degree of risk aversion, the lower the information processing
capacity, the lower the response of consumption spending to the rebate. The �ndings in
Figure 10 can be summarized as:

Result 4. Economic stimulus and rational inattention. The impact of a one time
tax rebate on rational inattentive consumers:

1. is stronger the lower the initial net worth.

2. is more delayed the higher the degree of risk aversion.

3. is more persistent but less e¤ective the lower the information-processing capacity.

The insights one can gather from the model have strong policy implications on the
e¤ectiveness of tax reform on people�s behavior. The 2008 tax rebate provides one such
example. The model predicts that such a policy has greater response on impact for
individual with low net worth. Figure 10 also suggests that the e¤ect will be mild and
spread out through several quarters for middle-high income households. These �ndings
are consistent with the empircal evidence on consumers spending of 2001 tax rebates
(cfr., Johnson, Parker and Soules (2006)).

28The constraint � = 2:5 corresponds to �log = 0:01 and �crra = 0:05 for the log case and the crra,

 = 2 case respectively, while � = 0:88 is given by �log = 0:1 and �crra = 0:9:
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7 Conclusions

This paper applies rational inattention to a dynamic model of consumption and savings.
Consumers rationally choose the nature of the signal they want to acquire subject to the
limits of their information processing capacity. The dynamic interaction of risk aversion
and endogenous choice of information �ow enhances precautionary savings.

I showed that for a given degree of risk aversion, the lower the information �ow, the
�atter the consumption path. The model predicts that for a given information �ow, the
higher the degree of risk aversion, the more persistent consumption. Also, for a given
degree of risk aversion, the lower the information �ow, the more volatile consumption.

Furthermore, the model predicts that consumption path has humps. Under information-
processing constraints, an hump occurs when people consume a little and save a lot while
collecting information about wealth. When consumers realize that they are rich, they in-
crease consumption and decumulate savings. This increase stops when they acknowledge
that their wealth is low again: they start to save and process more information. Thus,
consumption decreases. Consistent with the previous two results, I �nd that the peak in
consumption is delayed the more the individual becomes risk averse.

Di¤ering from other life-cycle models, in my model there could be more than one
hump in the consumption path. Depending on the history of the income shocks, a very
low or very high realization of income a¤ects consumers� signal through its e¤ect on
wealth. Consumers react to the news by varying savings and information over time,
thereby generating another hump.

Finally, the model predicts that consumers with processing capacity constraints have
asymmetric responses to shocks, with negative shocks producing more persistent e¤ects
than positive ones. This asymmetry, observed in actual data, is novel to the theoretical
literature of consumption and savings. Studying the reactions of rational inattentive
people to temporary income shocks can also be used to assess the e¤ectiveness of policy
reforms on consumption spending. The model predicts that, for a given level of wealth,
the speed and magnitude of the consumption adjustment to the income shock depends on
their processing capacity. Moreover, consumers with low wealth react faster to temporary
tax relief than wealthier people. The results agree with both intuition and preliminary
data on consumer spending.

The results seem to suggest that enriching the standard macroeconomic toolbox with
rational inattention theory is a step worth taking.
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8 Appendix A

8.1 Proof of Proposition 1.

The Bellman Recursion in the discrete Rational Inattention Consumption-
Saving Model is a Contraction Mapping.

Proof. The H mapping displays:

HV (g) = max
p
HpV (g) ;

with

HpV (g) =

"X
w2
w

 X
c2
c

u (c) p (cjw)
!
g (w) + �

X
w2
w

X
c2
c

(V (g0c (�))) p (cjw) g (w)
#
:

Suppose that jjHV �HU jj is the maximum at point g. Let p1 denote the optimal control
for HV under g and p2 the optimal one for HU

HV (g) = Hp1V (g) ;

HU (g) = Hp2U (g) :

Then it holds
jjHV (g)�HU (g)jj = Hp1V (g)�Hp2U (g) :

Suppose WLOG that HV (g) � HU (g) : Since p1 maximizes HV at g , I get

Hp2V (g) � Hp1V (g) :

Hence,

jjHV �HU jj =
jjHV (g)�HU (g)jj =
Hp1V (g)�Hp2U (g) �
Hp2V (g)�Hp2U (g) =

�
X
w2
w

X
c2
c

[(V p2 (g0c (�)))� (Up2 (g0c (�)))] p2g (w) �

�
X
w2
w

X
c2
c

(jjV � U jj) p2g (w) �

� jjV � U jj :
Recalling that 0 � � < 1 completes the proof.

42



8.2 Proof of Corollary.

The Bellman Recursion in the discrete Rational Inattention Consumption-
Saving Model is an Isotonic Mapping.

Proof. Let p1 denote the optimal control for HV under g and p2 the optimal one for
HU

HV (g) = Hp1V (g) ;

HU (g) = Hp2U (g) :

By de�nition,
Hp1U (g) � Hp2U (g) :

From a given g, it is possible to compute g0c (�)jp1 for an arbitrary c and then the following
will hold

V � U =)
8g (w) ; c;

V
�
g0c (�)jp1

�
� U

�
g0c (�)jp1

�
=)X

c2
c

V
�
g0c (�)jp1

�
� p1g �

X
c2
c

U
�
g0c (�)jp1

�
� p1g =)

X
w2
w

 X
c2
c

u (c) p1

!
g (w) + �

X
c2
c

V
�
g0c (�)jp1

�
� p1g

�
X
w2
w

 X
c2
c

u (c) p1

!
=)

Hp1V (g) � Hp1U (g) =)
Hp1V (g) � Hp2U (g) =)
HV (g) � HU (g) =)

HV � HU:

Note that g was chosen arbitrarily and, from it, g0c (�)jp1 completes the argument that the
value function is isotone.

8.3 Proof of Proposition 2.

The Optimal Value Function in the discrete Rational Inattention Consumption-
Saving Model is Piecewise Linear and Convex (PCWL).
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Proof. The proof is done via induction. I assume that all the operations are well-
de�ned in their corresponding spaces. For planning horizon n = 0, I have only to take
into account the immediate expected rewards and thus I have that:

V0 (g) = max
p2�

"X
w2
w

 X
c2
c

u (c) p

!
g (w)

#
(24)

and therefore if I de�ne the vectors

�
�i0 (w)

	
i
�
 X
c2
c

u (c) p

!
p2�

(25)

I have the desired
V0 (g) = max

f�i0(w)gi



�i0; g

�
(26)

where h:; :i denotes the inner product h�i0; gi �
X
w2
w

�i0 (w) ; g (w). For the general case,

using equation (22):

Vn (g) = max
p2�

26664
X
w2
w

 X
c2
c

u (c) p (cjw)
!
g (w)+

+�
X
w2
w

X
c2
c

(Vn�1 (g
0
c (�)c)) p (cjw) g (w)

37775 (27)

by the induction hypothesis

Vn�1 (g (�)jc) = max
f�in�1gi



�in�1; g

0
c (�)
�

(28)

Plugging into the above equation (19) and by de�nition of h:; :i ,

Vn�1 (g
0
c (�)) = max

f�in�1gi

X
w02
w

�in�1 (w
0)

 X
w2
w

X
c2
c

T (�;w; c) Pr (w; c)
Pr (c)

!
(29)

With the above:

Vn (g) = max
p2�

266664
X
w2
w

 X
c2
c

u (c) p

!
g (w)+

+�maxf�in�1gi
X
w02
w

�in�1 (w
0)

 X
w2
w

 X
c2
c

T (�;w;c)
Pr(c)

� p
!
g (w)

!
377775

= max
p2�

"
hu (c) � p; g (w)i+ �

X
c2
c

1

Pr (c)
max
f�in�1gi

* X
w02
w

�in�1 (w
0)T (�;w; c) � p; g

+#
(30)
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At this point, it is possible to de�ne

�jp;c (w) =
X
w02
w

�in�1 (w
0)T (� : w; c) � p: (31)

Note that these hyperplanes are independent on the prior g for which I am computing
Vn: Thus, the value function amounts to

Vn (g) = max
p2�

"
hu (c) � p; gi+ �

X
c2
c

1

Pr (c)
max
f�jp;cg

j



�jp;c; g

�#
; (32)

and de�ne:
�p;c;g = arg max

f�jp;cg
j



�jp;c; g

�
: (33)

Note that �p;c;g is a subset of �jp;c and using this subset results into

Vn (g) = max
p2�

"
hu (c) � p; gi+ �

X
c2
c

1

Pr (c)
h�p;c;g; gi

#

= max
p2�

*
u (c) �+�

X
c2
c

1

Pr (c)
�p;c;g; g

+
: (34)

Now �
�in
	
i
=
[
8g

(
u (c) � p+ �

X
c2
c

1

Pr (c)
�p;c;g

)
p2�

(35)

is a �nite set of linear function parametrized in the action set.

8.4 Proof of Proposition 3.

Proof. The �rst task is to prove that f�ingi sets are discrete for all n. The proof proceeds
via induction. Assuming CRRA utility and since the optimal policy belongs to �, it is
straightforward to see that through (25), the set of vectors f�i0gi,

�
�i0
	
i
�
 X
w2
w

 X
c2
c

c1�


1� 

p (cjw)

!
g (w)

!
p2�

is discrete. For the general case, observe that for discrete controls and assuming M =����jn�1	��, the sets ��jp;c	 are discrete, for a given action p and consumption c, I can only
generate �jp;c�vectors. Now, �xing p it is possible to select one of theM �jp;c�vectors for
each one of the observed consumption c and, thus, f�jngi is a discrete set. The previous
proposition, shows the value function to be convex. The piecewise-linear component of
the properties comes from the fact that f�jngi set is of �nite cardinality. It follows that
Vn is de�ned as a �nite set of linear functions.
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9 Appendix B

9.1 Concavity of Mutual information in the Belief State.

For a given p (cjw),Mutual Information is concave in g (w)

Proof. Let Z be the binary random variable with P (Z = 0) = � and let W = W1 if
Z = 0 and W = W2 if Z = 1. Consider

I (W;Z;C) = I (W ;C) + I (Z;CjW )
= I (W ;CjZ) + I (Z;C)

Condition on W , C and Z are independent, I (C;ZjW ) = 0: Thus,

I (W ;C) � I (W ;CjZ)
= � (I (W ;CjZ = 0)) + (1� �) (I (W ;CjZ = 1))
= � (I (W1;C)) + (1� �) (I (W2;C))

Q.E.D.

10 Appendix C

Pseudocode

Let � be the shadow cost associated to �t = It (Ct;Wt). De�ne a Model as a pair (
; �).
For a given speci�cation :

� Step 1: Build the simplex. Construct an equi-spaced grid to approximate each g (wt)-
simplex point.

� Step 2: For each simplex point, de�ne p (ct; wt). and Initialize with V
�
g0cj (�)

�
= 0:

� Step 3: For each simplex point, �nd p� (c; w) s.t.

V0 (g (wt))jp�(ct;wt) = maxp(ct;wt)
� P
wt2
w

P
ct2
c

�
c1�
t

1�


�
p� (ct; wt)� � [It (Ct;Wt)]

�
:

� Step 4: For each simplex point, compute g0cj (�) =
P

wt2
w T (�;wt; ct) p
� (wtjct). Use a

kernel regression to interpolate V0 (g (wt)) into g0cj (�).

� Step 5: Optimize using csminwel and iterate on the value function up to convergence.
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Obs. Convergence and Computation Time vary with the speci�cation (
; �).

! 180-320 iterations each taking 8min-20min

� Step 6. For each model (
; �), draw from the ergodic p� (c; w) a sample (ct; wt) and
simulate the time series of consumption, wealth, expected wealth and information �ow
by averaging over 1000 draws.

� Step 7. Generate histograms of consumption and impulse response function of consump-
tion to temporary positive and negative shocks to income.

11 Appendix D

11.1 Optimality Conditions

In this section I incorporate explicitly the constraint on information processing and derive
the Euler Equations that characterize its solution.

The main feature of this section is to relate the link between the output of the channel
consumption, with the capacity chosen by the agent. In deriving the optimality condi-
tions, I incorporate the consistency assumption (20) in the main diagonal of the joint
distribution to be chosen, Pr t (cj; wi). Note that such a restriction is WLOG. I then
show the analytical details of the derivatives with respect to control and states.

11.2 First Order Conditions

To evaluate the derivative of the Bellman equation with respect to a generic distrib-
ution Pr (ck1 ; wk2), de�ne the di¤erential operator �kv (l) � v (lk1) � v (lk2) and � as
the shadow cost of processing information: Then, the optimal control for the program
(17)-(21) amounts to:

@p� (ck1 ; wk2) :

�ku (c) + ��kV (g
0
c (:)) = p� (ck1 ; wk2)

�
��ku

0 (c) �p� (wk2jck1)� ��kV
0
p� (g

0
c (:))

�
(36)

This expression states that the optimal distribution depends on the weighted di¤er-
ence of two consumption pro�les, ck1 and ck2 where the weights are given by current and
future discounted utilities. Note that the di¤erential of the marginal utility of current
consumption is also weighted by the conditional optimal distribution of consumption and
wealth.

The interpretation of (36) is that the optimal probability of consumption and wealth
depends on both levels of current and intertemporal utility and marginal utility. In
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particular, there is an intertemporal trade-o¤by consuming the maximum value of wealth
allowed by the signal, ck2 and a lower consumption ck2. To illustrate the argument,
suppose a consumer believes that his wealth is wk2 with high probability. Suppose for
simplicity that wk2 allows him to spend ck1 or ck2. The decision of shifting probability
from p (ck2 ; wk2) to p (ck1 ; wk2) depends on four variables. First, the current di¤erence
in utility levels, �ku (c) which tells the immediate satisfaction of consuming ck1 rather
than ck2. However, consuming more today has a cost in future consumption and wealth
levels tomorrow, ��kV (g

0
c (:)). Optimal allocation of probabilities requires trading o¤

not only intertemporal levels of utility but also marginal intertemporal utilities where
now the current marginal utility of consumption is weighted by the e¤ort required to
process information today.

To explore this relation further, I evaluate the derivative of the continuation value for
a given optimal p� (ck1 ; wk2), that is �kV

0
p� (g

0
c (:)). To this end, de�ne the ratio between

di¤erential in utilities (current and discounted future) and di¤erential in marginal current
utility as 	� � �ku(c(�))+��kV (g

0
c(:))

��[u0(ck1 (�))�u0(ck2 (�))]
. Also, let �� be the ratio 	� when current level of

utilities are equalized and future di¤erential utilities are constant, i.e., �ku (c) = 0 and
�kV (g

0
c (:)) = 1 or, �

� � �

��[u0(ck1 (�))�u0(ck2 (�))]
. Then, an application of Chain rule and

point-wise di¤erentiation leads to

p� (ck1 ; wk2) = � (k1; k2) p
� (ck1) (37)

where

� (k1; k2) � �1 (	�; p� (ck1 ; wk2))��2
�
��; g0ck1

(�) ; p� (ck1 ; wk2)
�
��3
�
��; g0ck2

(�) ; p� (ck1 ; wk2)
�

Let me focus on the explanation for the terms � (k1; k2) which characterize the optimal
solution of the conditional distribution p� (wk2 jck1) :

The �rst term �1 (	�; p� (ck1 ; wk2)) � exp (	�= (p� (ck1 ; wk2))) states that the optimal
choice of the distribution balances di¤erentials between current and future levels of utili-
ties between high (k2) and low (k1) values of consumption. In case of log utility, the term
exp (	�) is a likelihood ratio between utilities in the two states of the word (k1 and k2) and
the interpretation is that the higher is the value of the state of the world k2 with respect
to k1 as measured by the utility of consumption, the lower is the optimal p� (ck1 ; wk2).
This matches the intuition because the consumer would like to place more probability
on the occurrence of k2 the wider the di¤erence between ck1 and ck2. A perhaps more
interesting intertemporal relation is captured by the terms �2 and �3, both of which
display the occurrence of the update distribution g0cki (�), i = 1; 2. To disentangle the
contribution of each argument of �2 and �3, I combine the derivative of the control with
the envelope condition. Let �01 be the term �1 led one period and de�ne the di¤erential
between transition from one particular state to another and transition from one particu-

lar state to all the possible states as ~�Tj � T
�
�;wk2 ; ckj

�
�
�P

i

T (�;wi; ck1) p�
�
wijckj

��
for j = 1; 2. Evaluating the derivative with respect to the state almost surely reveals
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that �2 � exp
�
�
�
���01

~�T1

�
=p (ck1)

�
while �3 � exp

�
�
�
���01

~�T2=p (ck2)
��
. The

terms �2 and �3 reveal that in setting the optimal distribution p� (ck1 ; wk2) consumers
take into account not only di¤erential between levels and marginal utilities but also how
the choice of the distribution shrinks or widens the spectrum of states that are reachable
after observing the realized consumption pro�le.

An interesting special case that admits a closed form solution is when the agent is
risk neutral. Consider the framework in Section (3.2) and let utility take up the form
u (c) = ct, then in the region of admissible solution ct < wt, the optimal probability
distribution makes c independent on w. To see this, it is easy to check that in the two
period case with no discounting, the utility function reduces to u (c) = w, which implies
cjw / U (wmin; wmax). That is, since all the uncertainty is driven by w, the consumer does
not bother processing information beyond the knowledge of where the limit of c = w lies.
In other word, the constraint on information �ow does not bind. With the continuation
value, exploiting risk neutrality, the optimal policy function amounts to:

p� (wk2jck1) =
e

 
[(ck1�ck2)+��k �V (g

0
c(:))]

�

!
P
j

~�Tj
(38)

The solution uncovers some important properties of the interplay between risk neutrality
and information �ow. First of all, households with linear utility do not spend extra
consumption units in sharpening their knowledge of wealth. This is due to the fact that
because the consumer is risk neutral and, at the margin, costs and bene�ts of information
�ows are equalized amongst periods, there is no necessity to gather more information
than the boundaries of current consumption possibilities. In each period, the presence of
information processing constraint forces the consumer to allocate some utils to learn just
enough to prevent violating the non-borrowing constraint. Once those limits are �gured
out, the consumption pro�les in the region c < w are independent on the value of wealth.

Derivative with Respect to Controls In the main text, I state that the optimal
control amounts to :

@p� (ck1 ; wk2) :

�ku (c (�)) + ��kV (g
0
c (:)) = p� (ck1 ; wk2) (���ku

0 (c (�)) + ��kVp� (g
0
c (:))) (39)

which can be rewritten, opening up the operator �k as:

'�(ck1 ;ck2)
= Pr (ck1 ; wk2)

0@ �(ck1 ;ck2 ;�) ln Pr (ck1 ; wk2)Pr (ck1)
+ �

24@V 0
�
g0ck1

(�)
�

@ Pr (ck1 ; wk2)
�
@V 0

�
g0ck2

(�)
�

@ Pr (ck1 ; wk2)

351A
where
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� '�
(ck1 ;ck2)

� �
h
u (ck1 (�))� u (ck2 (�)) + �

�
V
�
g0ck1

(�)
�
� V

�
g0ck2

(�)
��i

, and

�  �(ck1 ;ck2 ;�)
� �� [u0 (ck1 (�))� u0 (ck2 (�))] :

Note that by Chain rule
@V 0

�
g0ckj

(�)
�

@ Pr(ckj ;wk2)
=

@V 0
�
g0ckj

(�)
�

@

�
g0ckj

(�)
� @

�
g0ckj

(�)
�

@ Pr(ckj ;wk2)
, for j = 1; 2: Plug (36)

in the second term of the above expression and evaluating point-wise the derivatives
delivers

In cj = ck1 ;

=)
@g

�
�jck1

�
@ Pr(ck1 ;wk2)

=
@

"
1

p(ck1)

 P
i

T(�;wi;ck1)Pr(wi;ck1)
!#

@ Pr(ck1 ;wk2)
=

1

p (ck1)

0BB@T (�;wk2 ; ck1)�
�P

i

T (�;wi; ck1) Pr (wi; ck1)
�

p (ck1)

1CCA
De�ne 	� �

'�

(ck1 ;ck2)
 �

(ck1 ;ck2)
and �� � �

 �

(ck1 ;ck2 ;�)
; to get rid of cumbersome notation, let

(k1; k2) �
�
	�;��; g0ck1

(�) ; g0ck2 (�) ;Pr (ck1 ; wk2) ;
�
: Then the �rst order conditions

result into
Pr (ck1 ; wk2) = � (k1; k2) Pr (ck1) (40)

where

� (k1; k2) � �1 (	�;Pr (ck1 ; wk2))��2
�
��; g0ck1

(�) ;Pr (ck1 ; wk2)
�
��3
�
��; g0ck2

(�) ;Pr (ck1 ; wk2)
�

while

� �1 (	�;Pr (ck1 ; wk2)) � e

0B@	� 1

Pr(ck1 ;wk2)

1CA
;

� �2
�
��; g0ck1

(�) ;Pr (ck1 ; wk2)
�
� e

0BBB@��� @V
�
g0ck1

(�)
�

@

�
g0ck1

(�)
� 1

p(ck1)

0BBB@T(�;wk2 ;ck1)�
0@P

i

T(�;wi;ck1)Pr(wi;ck1)
1A

p(ck1)

1CCCA
1CCCA
;

� �3 (k1; k2) � e

0BBB@�� @V
�
g0ck2

(�)
�

@

�
g0ck2

(�)
� 1

p(ck2)

0BBB@T(�;wk2 ;ck2)�
0@P

i

T(�;wi;ck1)Pr(wi;ck2)
1A

p(ck2)

1CCCA
1CCCA
:
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Derivative with Respect to States To derive the envelope condition with respect
to a generic state g (wk) for k = 1; 2; 3, let me start by placing the restrictions on the
marginal distribution of wealth in the main diagonal of the joint distribution Pr (c; w).
The derivative then amounts to:

@ Pr t(cj ;wk)

@g(wk)
=

@ Pr t(cj)

@g(wk)
=

8<:
1 f(j = k) \ (j 6= max l 2 
c)g
�1 fj = max l 2 
cg
0 o/whise

:

Let lmax denote the maximum indicator l belonging to 
c: Then the derivative of the
state g (wk) displays:

@V (g(wk))
@g(wk)

a:s
=�

u (ck (�)) + �
�
V
�
g0ck (�)

��
�
�
u
�
c
lmax

(�)
�
+ �V

�
g0clmax

(�)
���

+

��
�
log
�
Pr(ck;wk)
p(ck)g(wk)

�
u0 (ck (�)) Pr (ck; wk)� log

�
Pr(clmax ;wk)
p(clmax )g(wk)

�
u0
�
clmax (�)

�
Pr
�
clmax ; wk

��
+

+�
P

j

"
@V

�
g0ckj

(�)
�

@

�
g0ckj

(�)
�
 
@

�
g0ckj

(�)
�

@g(wk)

!
Pr (cj; wk)

#
:

Combining �rst order conditions and the envelope condition after some algebra leads
to the result in (40).

12 Appendix E.

12.1 A simple example

To illustrate how a consumer with information constraints di¤ers from a consumer with
full information and a consumer with no information, consider the following model of
consumer�s choice.

Suppose the household has three wealth possibilities, w 2 W � f2; 4; 6g, and three
consumption possibilities c 2 C � f2; 4; 6g. Before any observation is made, the con-
sumer has the following prior on wealth, Pr (w = 2) = :5, Pr (w = 4) = :25, Pr (w = 6) =
:25. Moreover the consumer cannot borrow, c � w and, if his check bounces he su¤ers
c = 0. He derives utility from consumption de�ned as u (c) � log (c). His payo¤ matrix
is summarized in Figure a.

cnw 2 4 6

2 0:7 0:7 0:7
4 �1 1:38 1:38
6 �1 �1 1:8

Figure a: Payo¤ Matrix with u(c)�log(c)
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If uncertainty in the payo¤ can be reduced at no cost, the consumer would set c = w;
8c 2 C; 8w 2 W .

In contrast, if he cannot gather any information about wealth besides that provided
by the prior, the consumer will avoid unpleasant surprises by setting c = 2 whatever the
wealth.

The di¤erence in bits in the two policies is measured by the mutual information
between C and W . The ex-ante uncertainty embedded in the prior for w is calculated
by evaluating its entropy in bits, i.e.,

H (W ) � �
X
w2W

p (w)�log2 (p (w)) = 0:5�log2
�
1

0:5

�
+0:25�log2

�
1

0:25

�
+0:25�log2

�
1

0:25

�
= 1:5

bits. Since observation of c provides information on wealth, conditional on the knowledge
of consumption uncertainty aboutw is reduced by the amountH (W jC) �

X
w2W

X
c2C

p (c; w) log2 (p (wj c)).

The mutual information between C and W , i.e., the remaining uncertainty about the
wealth after observing consumption, is the di¤erence between ex-ante uncertainty of W
(H (W )) and the knowledge of W given by C (H (W jC)). In formulae, the mutual infor-
mation or capacity of the channel amounts to:

I (C;W ) =
X
w2W

X
c2C

p (c; w) log

�
p (c; w)

p (c) p (w)

�

To see what this formula implies, consider �rst the situation in which information can
�ow at in�nite rate. In this case ex-post uncertainty is fully resolved. Moreover, note
that (p (wj c)) = 1; 8c 2 C; 8w 2 W since the consumer is setting positive probability
on one and only one value of consumption per value of wealth. This in turns implies
H (W jC) = 0, so the mutual information in this case will be I (C;W ) = H (W ) = 1:5:bits.

Instead, if the consumer has zero information �ow or, equivalently, if processing in-
formation is prohibitively hard for him, his optimal policy of setting c = 2 at all times
makes consumption and wealth independent of each other. This implies that H (W jC) =X
w2W

 X
c2C

p (c) p (w) log2

�
p(c)p(w)
p(c)

�!
= H (W ). Hence, in this case I (C;W ) = 0 and no

reduction in the uncertainty about wealth occurs upon observing consumption. The in-
tuition is that if a consumer decides to spend the same amount in consumption regardless
of his wealth level, his purchase will tell him nothing about his �nancial possibilities. The
expected utility in the �rst case is EFullInfo (u (c)) = (log (2)) � (:5) + (log (4) + log (6)) �
(:25) = 1:14 while in the second case ENoInfo (u (c)) = 0:7.

Now, assume that the consumer can allocate some e¤ort in choosing size and scope
of information about his wealth he wants to process, under the limits imposed by his
processing capacity. Let �� = 0:3 be the maximum amount of information �ow that the
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consumer can process. Let the probability matrix of the consumer be:

cnw P (w = 2) P (w = 5) P (w = 8)

P (c = 2) 0:5 p1 p2
P (c = 4) 0 :25� p1 p3
P (c = 6) 0 0 :25� p2 � p3

Figure b: Probability Matrix

where the zeroes on the lower left corner of the matrix encode a non-borrowing constraint
c � w.29 The program of the consumer is:30

max
fp1;p2;p3g

E� (u (c))

s.t.
�� � I (C;W ) :

Given �� = 0:3,31 the optimal policy sets p�1 = 0:125; p�2 = 0:125, p3 = 0:125, which
corresponds to Pr (C = 2) = 0:75; Pr (C = 4) = 0:25, Pr (C = 6) = 0. This leads to an
expected utility of E� (u (c)) = 0:87. Hence, consumers who invest e¤ort in tracking their
wealth using the channel are better o¤ than in the no information case (higher expected
utility) even though they cannot do as well as in the constrained case.

Note that the result of trading information for the highest value to gain a more precise
knowledge of the lower value of wealth is driven by the functional form of utility. For

29I append a non-borrowing constraint c � w to reduce the number of the probabilities to be calculated
in Figure (b), thereby keeping the example easy. Figure (b) can be rationalized by assuming that the
consumer acquires a signal on wealth ws = w+ " and chooses the distribution of " always such that the
support of " is in (0;�1]. One can think that �� is net of the bits used to set the desired support of ".
30In details:

max
fp1;p2;p3g

E� (u (c)) = (log (2)) � (:5 + p1 + p2) +

+ (log (4)) � (:25� p1 + p3) +
+ (log (6)) � (:25� p2 � p3)

and

�� � I (C;W ) =

= :5 log2

�
:5

:5 (:5 + p1 + p2)

�
+ :p1 log2

�
p1

:25 (:5 + p1 + p2)

�
+

+p2 log2

�
p2

:25 (:5 + p1 + p2)

�
+ (:25� p1) log2

�
(:25� p1)

:25 (:25� p1 + p3)

�
+

+(:25� p2 � p3) log2
�

(:25� p2 � p3)
:25 (:25� p2 � p3)

�
:

31Note that such a bound of information �ow is unrealistically low. However I decided to trade o¤
realism for simplicity in this example.
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instance, a consumer with the same bound on processing capacity but CRRA utility with
coe¢ cient of risk aversion, say, 
 = 5, would have chosen a probability Pr (C = 2) lower
than his log-utility counterpart. This is because higher degrees of risk aversion induce the
consumers to be better informed about low values of wealth to avoid such occurrences.
The intuition is that because the attention of the consumer within the limits of the
Shannon capacity is allocated according to his utility, the degree of risk aversion plays an
important role in determining what events receive the consumer�s attention. A log-utility
consumer wants to be well informed about the middle values of his wealth, while a high
risk averse consumer selects a signal which provides sharper information about the lower
values of wealth, so that he can avoid high disutility. The opposite direction is taken by
the less risk-averse agent.

12.2 Analytical Results for a three-point distribution

In this section I will focus on the optimality conditions derived above for a three point
distribution. The goal is to fully characterize the solution for this particular case and
explore its insights.32

Let me assume the wealth to be a random variable that takes up values in w 2

w � fw1; w2; w3g with distribution g (wi) = Pr (w = wi) described by:

W wl wm wh

g (wi) g1 g2 1� g1 � g2

The equation describing the evolution of the wealth is displayed by the budget constraint

wt+1 = R (wt � ct) + Yt

where I denote by Yt the exogenous stochastic income process earned by the household
and by R > 0 the (constant) interest rate on savings, (wt � ct). Like wealth, before
processing information consumption, ct; is a random variable. It takes up a discrete
number of values in the event space 
c � fc1; c2; c3g. The joint distribution of wealth
and consumption, Pr t (cj; wi), amounts to:

Pr t (cj; wi)

CnW w1 w2 w3

c1 x1 x2 x3
c2 0 x4 x5
c3 0 0 x6

32A three-point distribution is indeed a special case of the more general N points distribution since two
of the states in the event space 
w are absorbing states. This, in turn, sets to zero several dimensions of
the problem and allows for a close form solution of the optimal policies. Although the solution for this
particular case does not have a straightforward generalization, it provides useful insights on the optimal
choice for the joint probability distribution of wealth and consumption and its relation with the prior
distribution of wealth (g (w)) and the utility of the consumer.
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where the zeros in the SW end of the matrix encodes the feasibility constraint wi (t) �
cj (t) 8i 2 
w; j 2 
c and 8t � 0. The additional restrictions to the above matrix are
the ones commanded by the marginal on wealth. That is:

x1 = g1

x2 + x4 = g2

x3 + x5 + x6 = 1� g1 � g2

Without loss of generality, I place the marginal distribution of wealth in the main diagonal
of Pr t (cj; wi) and I impose the restrictions above together with the condition that the
resulting matrix describes a proper distribution. The joint distribution of wealth and
consumption amounts to:

Pr (cj; wi) :

CnW w1 w2 w3

c1 g1 p1 p2
c2 0 g2 � p1 p3
c3 0 0 1� (g1 + g2)� (p2 + p3)

(41)

The resulting marginal distribution of consumption that endogenously depends on the
choices of pi�s, i = 1; 2; 3; displays:

Pr (C = cj) =

8<:
c1 w.p g1 + p1 + p2
c2 w.p g2 � p1 + p3
c3 w.p 1� (g1 + g2)� (p2 + p3)

:

Once the consumer chooses pi�s and observes the realized consumption ct, he updates
the marginal distribution of wealth. The latter, g0

�
�jcj
�
, is obtained combining the

joint distribution of wealth and consumption and the transition probability function. In
formulae, the updated marginal on wealth amounts to:

g0
�
�jcj
�
=
P
i

T (�;wi; cj) Pr (wijcj) : (42)

The speci�cation of T (�;wi; cj) adopted in the analytical derivation of the discrete prob-
ability distribution as well as in the numerical simulation can be explained as follows.
The transition probability function is meant to approximate the expected value of next
period wealth:

EW 0 = R (wt � ct) + �Y : (43)

The approximation is necessary since (43) cannot hold exactly at the boundaries of the
support of the wealth, 
w. In the above equation, R is the interest rates assumed to be a
given number while �Y is the mean of the stochastic income process, Yt. Suppose we have a
three point distribution. AssumeWLOG that the values wi 2 
w are equally spaced. For
a given (wi; cj) pair, the distribution of next period wealth is concentrated on three w0i val-
ues closest to R (wi � cj)+ �Y , which will be denoted by !1; !2; !3 with respective proba-
bilities �1; �2; �3. The mean of the distribution is ��1 (!2 � !1)+�3 (!3 � !2)+!2. Let �
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be the distance between the values of wi: Then the mean becomes �! � �� (�3 � �1)+!2.
The variance of the distribution is then �2! � �2 (�3 � �1) � (�! � !2)

2. Since �2 is an
exact function of �1 and �3, the equations for mean and variance of the process consti-
tutes two equations in two unknowns. With the additional restriction that all the �i�s
are positive and sum to one, it is not possible to guarantee the existence of a solution for
R (wi � cj) + �Y close to the boundaries of the support of the distribution of wealth. To
make sure that there is always a solution for �! 2 (min (w) + :5�;max (w)� :5�), and
the solution is continuous at points where �! =

(wi+wi+1)
2

, one has to choose �2! = :25�2.

Euler Equations. Making use of the marginal distribution of wealth described above
and making use of (42) together with the speci�cations of T (�;wi; cj) and Pr (wi; cj), I
can explicitly evaluate g0

�
�jcj
�
point-wise. To illustrate this point, using the numerical

values of T (�;wi; cj) above, the derivatives point-wise are as follows.

In cj = c1;

g0
�
�jc1
�
=

1

(g1 + p1 + p2)
(T (�;w1; c1) g1 + T (�;w2; c1) p1 + T (�;w3; c1) p2)

In cj = c2

g0
�
�jc2
�
=

1

(g2 � p1 + p3)
(T (�;w2; c2) (g2 � p1) + T (�;w3; c2) p3)

In cj = c3
g0
�
�jc3
�
= T (�;w3; c3)

Then, the �rst order conditions and envelope conditions amount to

@p1 : �
u (c1)� u (c2) + �

�
V 0 �g0c2 (�)�� V 0 �g0c2 (�)���

= p1

0@ � ([u0 (c1 � ��)� u0 (c2 � ��)]) ln
�

p1
(g1+p1+p2)

�
+

+
@V 0(g0c1 (�))
@g0c1 (�)

@g0c1 (�)
@p1

� @V 0(g0c2 (�))
@g0c2 (�)

@g0c2 (�)
@p1

1A
Note that

@g0cj (�)
@pj

= 0 for j 2 f1; 2; 3g.33 This result is not driven by the speci�ca-
tion chosen for the transition function T (�;wi; cj), but it is a feature of the three point

33To see this, plug (42) in
@g0cj

(�)
@pj

for j 2 f1; 2g and evaluating pointwise the derivatives delivers
@g0
�
�jc1
�
:

1

(g1 + p1 + p2)
2

24 0:81p2 � 0:15g1
� (0:56p2 � 0:15g1)

�0:25p2

35 = 0
@g0
�
�jc2
�
:

p3

(g2 � p1 + p3)2

24 �0:15
0:15
0

35 = 0
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distribution. Indeed, because two of the three values of wealth are at the boundaries
of 
w, the absorbing states w1 and w3 place tight restrictions on the continuation value
V 0
�
g0cj (�)

�
through the transition function and, as a result, the update for the marginal

g0cj (�) according to (42). That is, the marginal probability on wealth g
0
cj
(�) in this case

tends to its ergodic value �gcj (�). It follows that V 0 ��gcj (�)� a:s:�! �V � ��gcj (�)� which is a
constant since the functional argument is. This is what makes the 3-point distribution
tractable.

For the general case, the �rst order condition with respect to the �rst control amounts
to:

@p1 : �
u (c1 (�))� u (c2 (�)) + �

�
�V (�gc1 (�))� �V (�gc2 (�))

��
= p1

�
� ([u0 (c1 (�))� u0 (c2 (�))]) ln

�
p1

(g1 + p1 + p2)

��
(44)

Similarly, for the second control

@p2 : �
u (c1 (�))� u (c3 (�)) + �

�
�V (�gc1 (�))� �V (�gc3 (�))

��
= p2

�
� ([u0 (c1 (�))� u0 (c3 (�))]) ln

�
p2

(g1 + p1 + p2)

��
(45)

And �nally:

@p3 : �
u (c2 (�))� u (c3 (�)) + �

�
�V (�gc2 (�))� �V (�gc3 (�))

��
= p3

�
� (u0 (c2 (�))� u0 (c3 (�))) ln

�
p3

(g2 � p1 + p3)

��
(46)

Using the result that the value function converges to V � when the utility function belongs
to the family of constant absolute risk aversion (CARA), I assume the utility takes up
the speci�cation:

u (cj (�)) =

8><>:
� e

�
(cj(�))



for 
 > 0

log (cj (�)) for lim
!0

�
� e

�
(cj(�))



�
where 
 is the coe¢ cient of absolute risk aversion and j 2 
c � fc1; c2; c3g. Moreover,
by proposition 1, the value function is PCWL, that is:

�V
�
�gcj (�)

�
= arg max

f�0jgj

D
�0j; �g

0
cj
(�)
E
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where
�
�0j
	
j
are a set of vectors each of them generated for a particular observation of

previous values of consumption cj and h:; :i denotes the inner product
D
�0j; �g

0
cj
(�)
E
�X

w02
w

�0j (w
0)T (� : w; cj) � p (cjjw). To get a close form solution, I need to represent the

probability distribution of the prior. One of the possibilities is to use a particle based
representation. The latter is performed by using N random samples, or particles, at
points wi and with weights $i. The prior is then

gt (w) =
NP
i=1

$i
~� (w � wi)

where ~� (w � wi) = Dirac (w � wi) is the Dirac delta function with the center in zero. A
particle-based representation can approximate arbitrary probability distributions (with
an in�nite number of particles in the extreme case), it can accommodate nonlinear tran-
sition models without the need of linearizing the model, and it allows several quantities of
interest to be computed e¢ ciently. In particular, the expected value in the belief update
equation becomes:

�g0
�
�jcj
�
= Pr (cjj�)

NP
i=1

$iT (�;wi; cj)

The central issue in the particle �lter approach is how to obtain a set of particles to
approximate �g0

�
�jcj
�
from the set of particles approximating g (w). The usual Sampling

Importance Re-sampling (SIR) approach (Dellaert et al., 1999; Isard and Blake, 1998)
samples particles using the motion model T (�;wi; cj), then it assigns a new weights in
order to make all particles weights equal. The trouble with the SIR approach is that it
requires many particles to converge when the likelihood Pr (cjj�) is too peaked or when
there is a small overlap between prior and posterior likelihood. The main problem with
SIR is that it requires many particles to converge when the likelihood is too peaked or
when there is only a small overlap between the prior and the likelihood. In the auxiliary
particle �lter, the sampling problem is addressed by inserting the likelihood inside the
mixture

�g0
�
�jcj
�
/

NX
i=1

$i Pr (cjj�)T (�;wi; cj) :

The state (�) used to de�ne the likelihood Pr (cjj�) is not observed when the particles are
resampled and this calls for the following approximation

�g0
�
�jcj
�
/

NX
i=1

$i Pr
�
cjj�i!

�
T (�;wi; cj)

with �i! any likely value associated with the i
th component of the transition densityT (�;wi; cj),

e.g., its mean. In this case, we have that �i! = wi + �(cj) : Then, �g0
�
�jcj
�
can be re-

garded as a mixture of N transition components T (�;wi; cj) with weights $i Pr (cjj�i!) :
Therefore, sampling a new particle w0j to approximate �g

0
�
�jcj
�
can be carried out by
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selecting one of the N components, say im, with probability $i � Pr (cjj�i!) and then
sampling w0i from the corresponding component T (�;wim ; cj) : Sampling is performed in
the intersection of the prior and the likelihood and, consequently, particles with larger
prior and larger likelihood (even if this likelihood is small in absolute value) are more
likely to be used. After the set of states for the new particles is obtained using the above
procedure, it is necessary to de�ne the weights. This is done using

$0
m /

Pr (cjjw0m)
Pr (cjj�im! )

:

Using the sample-based belief representation the averaging operator h:; :i can be com-
puted in close form as:

h�; �g0i =
X
w2
w

"X
k

$k� (wjwk;�k)
#"X

l

$0
l
~� (w � wl)

#

=
X
k

$k

X
w2
w

 
� (wjwk;�k)

"X
l

$l
~� (w � wl)

#!
=
X
k

$k

X
l

$l� (wljwk;�k)

=
X
k;l

$k$l� (wljwk;�k) :

where � (:) is the distribution of the r.v. W 0 that use the speci�cation of the transition
function above, i.e., mean �! � �� (�3 � �1) + !2 and variance �2! � �2 (�3 � �1) �
(�! � !2)

2 with � the (constant) distance between the values of wi.

Representing priors in this fashion allows an explicit evaluation of the di¤erences in the
value functions in the �rst order conditions, since V 0

�
�g0cj (�)

�
= argmaxf�0jgj

D
�0j; �g

0
cj
(�)
E
=X

k;l

~$0
k ~$

0
l� (wljwk;�k), where ~$0

k �
�
Pr(cj jw0k)
Pr(cj j�k!)

�
; ~$0

l �
�
Pr(cj jw0l)
Pr(cj j�l!)

�
: Since the result of

the argmax is just one of the member of the set
�
�0j
	
j
and all the elements involved in

the de�nition of �0j function in �(p) are a �nite set of linear function parametrized in the
action set, so is the �nal result.

Let a prime (" 0 ") denote the variables led one period ahead, algebraic manipulation
delivers the following optimal control functions:

p�1 (~g; �) =
g1 ( 1 � ���1)

�g1 (LambertW (�1)x12 � LambertW (�11)x11) + 2g1 ( 1 � ��v1)
; (47)

p�2 (~g; �) =
g1 ( 2 � ���2)

�g1 (LambertW (�2)x21 � LambertW (�2)x22) + 2 2g1 ( 2 � ���3)
; (48)
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p�3 (~g) =
 3 � ��v3

�x3 LambertW (�3)
(49)

where

�  1 �
�
e�
(c2���)e�
(c1���)




�
;  2 �

�
e�
(c3���)e�
(c1���)




�
; 3 �

�
e�
(c3���)e�
(c2���)




�
;

� �1 � g2 ( 
0
3) + (g2 � g1) ( 

0
2 �  03) ;

� �2 � g2 ( 
0
1) + (g2 � g1) ( 

0
1 �  02) ;

� �3 � (1� g2 � g1) ( 
0
2) + (g2 � g1) ( 

0
3 �  01)

� �1 �
( 1���v1) 1
�g1(e
(c2�c1))

; ; x11 � e�
(c1���); x12 � e�
(c2���);

� �21 �
( 2���v2) 2
�g1(e
(c3�c1))

; x21 � e�
(c1���); x22 � e�
(c3���) and

� �3 �
 3���v3

�g2(e
(c3�c2))
; x3 � e
(c3�c2):

and LambertW (:) is the LambertW function that satis�es LambertW (x) eLambertW(x) =
x34. The argument of the LambertW is always positive for the �rst order conditions
derived, implying that for each of the optimal policies the function returns a real solu-
tion amongst other complex roots, which is unique and positive. Since @ LambertW(x)

@x
=

LambertW(x)
x(1+LambertW(x))

it is possible to calculate the derivatives of the above expression with
respect to f�; g1; g2g. However, the sign of the derivatives with respect to those variables
is indeterminate. The rationale behind this result is quite simple. Consider the joint
probability distribution Pr (ci; wj) . The overall e¤ect of an increase in this probability
results from the interplay of several factors. In general, if � is low (or, equivalently,
the capacity of the channel, ��, in (18) is high), a risk averse consumer will try to re-
duce the o¤ diagonal term of the joint as much as possible. That is, he would set

34Formally, the LambertW function is the inverse of the function f : C ! C given by f (x) � xex:
Hence LambertW (x) is the complex function that satis�es

LambertW (x) eLambertW(x) = x

for all x 2 C:. In practice the de�nition of LambertW requires a branch cut, which is usually taken
along the negative real axis. LambertW (x) function is sometimes also called product log function.
This function allows to solve the functional equation

g (x)
g(x)

= x

given that
g (x) = eLambertW(ln(x)):

See Corless, Gonnet, Hare, Je rey and Knuth (1996).
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p1 = Pr (c1; w2) ; p2 = Pr (c1; w3) and p3 = Pr (c3; w2) as low as its capacity allows him
to sharpen his knowledge of the state. On the opposite extreme, for very high value of
the cost associated to information processing, �, p1 and p2 will be higher, the higher the
prior g1 = g (w1) with respect to g2 = g (w2) and g3 = g (w3). This is due to the fact
that when the capacity of the channel is low -or, equivalently, the e¤ort of processing
information is high-, the �rst order conditions indicate that it is optimal for the con-
sumer to shift probabilities towards the higher belief state. The intuition is that when
it is costly to process information, the household cannot reduce the uncertainty about
his wealth. If the individual is risk adverse as implied by the CRRA utility function, in
each period, he would rather specialize in the consumption associated to the higher prior
than attempt to consume a di¤erent quantity and running out of wealth in the following
periods. This intuition leads to an optimal policy of the consumer that commands high
probability to one particular consumption pro�le and set the remaining probabilities as
low as possible. To illustrate this, consider a consumer who has a high value of � and
a prior on w1 higher than the other priors. If he cannot sharpen his knowledge of the
wealth due to prohibitively information processing e¤ort, he will optimize its dynamic
problem by placing very high probability on Pr (c1) = g1 + p1 + p2, i.e., increase p1 and
p2 and decrease p3. Likewise, if g2 is higher than the other priors and � is high -� is low-,
optimality commands to decrease both p1 and p2 and increase p3.

13 Appendix F:

13.1 The Mathematics of Rational Inattention

This part addresses the mathematical foundations of rational inattention. The main
reference is the seminal work of Shannon (1948). Drawing from the information theory
literature, I provide an overview Shannon�s axiomatic characterization of entropy and
mutual information and show the main theoretical features of these two quantities.

Formally, the starting point is a set of possible events whose probabilities of occurrence
are p1; p2; : : : ; pn. Suppose for a moment that these probabilities are known but that is
all we know concerning which event will occur. The quantity H = �

P
i pi log pi is called

the entropy of the set of probabilities p1; : : : ; pn. If x is a chance variable, then H (x)
indicates its entropy; thus x is not an argument of a function but a label for a number,
to di¤erentiate it from H (y) say, the entropy of the chance variable y.

Quantities of the form H = �
P

i pi log pi play a central role in Information Theory
as measures of information, choice and uncertainty. The quantity H goes by the name
of entropy 35 and pi is the probability of a system being in cell i of its phase space.

The measure of howmuch choice is involved in the selection of the events isH (p1; p2; ::; pn)
and it has the following properties:

35See, for example, R. C. Tolman, Principles of Statistical Mechanics, Oxford, Clarendon, 1938.
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Axiom 1 H is continuous in the pi.

Axiom 2 If all the pi are equal, pi = 1
n
, then H should be a monotonic increasing function of

n. With equally likely events there is more choice, or uncertainty, when there are
more possible events.

Axiom 3 If a choice is broken down into two successive choices, the original H should be the
weighted sum of the individual values of H.

Theorem 2 of Shannon (1948) establishes the following results:

Theorem 1 The only H satisfying the three above assumptions is of the form:

H = �K
nX
i=1

pi log pi

where K is a positive constant to account for the change in unit of measurement.

Figure a: Entropy of two choices with probability p and q=1�p as function of p:

Remark 1. . H = 0 if and only if all the pi but one are zero, with the one remaining
having the value unity. Thus only when we are certain of the outcome does H
vanish. Otherwise H is positive.

Remark 2. For a given n, H is a maximum and equal to log n when all the pi are equal
(i.e., 1

n
). This is also intuitively the most uncertain situation.

Remark 3. Suppose there are two random variables, X and Y ,

H(Y ) = �
X
x;y

p(x; y) log
X
x

p(x; y)

Moreover,
H(X; Y ) � H(X) +H(Y )

with equality only if the events are independent (i.e., p(x; y) = p(x)p(y)). This
means that the uncertainty of a joint event is less than or equal to the sum of the
individual uncertainties.
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Remark 4. Any change toward equalization of the probabilities p1; p2; : : : ; pn increases
H. Thus if p1 < p2 an increase in p1, or a decrease in p2 that makes the two probabil-
ities more alike results into an increase inH. The intuition is trivial since equalizing
the probabilities of two events makes them indistinguishable and therefore increases
uncertainty on their occurrence. More generally, if we perform any �averaging�op-
eration on the pi of the form p0i =

P
j aijpj where

P
i aij =

P
j aij = 1, and all

aij � 0, then in general H increases36.

Remark 5. Given two random variables X and Y as in Remark 3, not necessarily in-
dependent, for any particular value x that X can assume there is a conditional
probability px(y) that Y has the value y. This is given by

px(y) =
p(x; y)P
y p(x; y)

:

The conditional entropy of Y , is then de�ned as HX(Y ) and it is the average of
the entropy of Y for each possible realization the random variable X, weighted
according to the probability of getting a particular realization x. In formulae,

HX(Y ) = �
X
x;y

p(x; y) log px(y):

This quantity measures the average amount of uncertainty in Y after knowing X.
Substituting the value of px(y) , delivers

HX(Y ) = �
X
x;y

p(x; y) log p(x; y) +
X
x;y

p(x; y) log
X
y

p(x; y)

= H(X; Y )�H(X)

or
H(X; Y ) = H(X) +HX(Y ):

This formula has a simple interpretation. The uncertainty (or entropy) of the joint
event X;Y is the uncertainty of X plus the uncertainty of Y after learning the realization
of X.

Remark 6. Combining the results in Axiom 3 and remark 5, it is possible to recover
H(X) +H(Y ) � H(X; Y ) = H(X) +HX(Y ):

This reads H(Y ) � HX(Y ) and implies that the uncertainty of Y is never increased
by knowledge of X. If the two random variables are independent, then the entropy will
remain unchanged.

36The only case in which H remains unchanged is when the transformation results in just one permu-
tation of pj .

63



To substantiate the interpretation of entropy as the rate of generating information, it
is necessary to linkH with the notion of a channel. A channel is simply the medium used
to transmit information from the source to the destination, and its capacity is de�ned
as the rate at which the channel transmits information. A discrete channel is a system
through which a sequence of choices from a �nite set of elementary symbols S1; : : : ; Sn
can be transmitted from one point to another. Each of the symbols Si is assumed to have
a certain duration in time ti seconds. It is not required that all possible sequences of
the Si be capable of transmission on the system; certain sequences only may be allowed.
These sequeences will be possible signals for the channel. Given a channel, one may be
interested in measuring its capacity to transmit information. In general, with di¤erent
lengths of symbols and constraints on the allowed sequences, the capacity of the channel
is de�ned as:

De�nition 2 The capacity C of a discrete channel is given by

C = lim
T!1

logN(T )

T

where N(T ) is the number of allowed signals of duration T .

To explain the argument in a very simple case, consider transmitting �les via comput-
ers. The speed at which one can exchange documents depends on the internet connection
and it is expressed in bits per seconds. The maximum amount of bits per second that
can be transmitted is negotiated with the provider. However, this does not mean that
the computer will always be transmitting data at this rate; this is the maximum possible
rate and whether or not the actual rate reaches this maximum depends on the usage and
the source of information which feeds the channel. The link between channel capacity
and entropy is illustrated by the following Theorem 9 of Shannon:

Theorem 3 Let a source have entropy H (bits per second) and a channel have a capacity
C (bits per second). Then it is possible to encode the output of the source in such a way

as to transmit at the average rate
C

H � " symbols per second over the channel where " is

arbitrarily small. It is not possible to transmit at an average rate greater than
C

H .

The intuition behind this result is that by selecting an appropriate coding scheme,
the entropy of the symbols on a channel achieves its maximum at the channel capacity.
Alternatively, channel capacity can be related to mutual information.

De�nition 4 The Mutual Information between two random variables X and Y
is de�ned as the average reduction in uncertainty of random variable X achieved upon
the knowledge of the random variable Y .
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In formulae:
I (X;Y ) � H (X)� E (H (XjY )) ;

which says that the mutual information is the average reduction in uncertainty of X due
to the knowledge of Y or, symmetrically, it is the reduction of uncertainty of X due to
the knowledge of Y . Mutual information is invariant to transformation of X and Y ,
depending only on their copula.

Intuitively, I(X;Y ) measures the amount of information that two random variables
have in common. The capacity of the channel is then alternatively de�ned by

C = max
p(Y )

(I(X;Y ))

where the maximum is with respect to all possible information sources used as input to
the channel (i.e., the probability distribution of Y , p(Y )). If the channel is noiseless,
E(Hy(x)) = E(H (X(jY ))) = 0. For example, think about a newspaper editor who
wants to maximize his sales. To do that, he has to choose the allocation of space for
his articles in such a way that it is attractive for the consumers. In this example, Y is
the random variable space, X the random variable sales, the channel�s capacity is the
maximum number of pages in the newspaper and the channel itself is the best articles�
allocation of space which signals that the journal is worth buying.
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