1081920

#### 510(k) SUMMARY

DEC 1 9 2008

December 17, 2008

#### BD Diagnostics BD GeneOhm™ Cdiff Assay

<u>Submitted by</u>: BD Diagnostics (GeneOhm Sciences Canada, Inc.) 2050, boul. René-Lévesque O, 4<sup>e</sup> étage Sainte-Foy, Québec Canada G1V 2K8

| Contact/    | Raymond Boulé            |
|-------------|--------------------------|
| U.S. Agent: | BD Diagnostics – GeneOhm |
|             | 6146 Nancy Ridge Drive   |
|             | San Diego, CA 92121 USA  |

Name of Device:

| Trade Name:<br>Common Name:<br>Classification Name: | BD GeneOhm™ Cdiff Assay<br><i>Clostridium difficile tcdB</i> detection assay<br>System, Test, Genotypic Detection, <i>Clostridium difficile</i><br>Toxin B |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Predicate Device:                                   | Techlab <i>C. difficile</i> Tox-B Test (K935296)<br>Techlab <i>Clostridium difficile</i> Toxin/Antitoxin Kit (K923463)                                     |

**Device Description:** 

Intended Use:

The BD GeneOhm<sup>™</sup> Cdiff Assay is a rapid *in vitro* diagnostic test for the direct, qualitative detection of *C. difficile* toxin B gene (*tcdB*) in human liquid or soft stool specimens from patients suspected of having *Clostridium difficile*-associated disease (CDAD). The test, based on real-time PCR, is intended for use as an aid in diagnosis of CDAD. The test is performed directly on the specimen, utilizing polymerase chain reaction (PCR) for the amplification of specific targets and fluorogenic target-specific hybridization probes for the detection of the amplified DNA.

Test Description:

A liquid or soft stool specimen is collected and transported to the laboratory. A sterile dry swab is dipped into the liquid or soft stool material and processed. For testing, the swab is eluted in sample buffer and the specimen is lysed. An aliquot of the lysate is added to PCR reagents which contain the *tcdB* specific primers used to amplify the genetic target of *Clostridium difficile*, if present. The assay also includes an internal control (IC) to detect PCR inhibited specimens and to confirm the integrity of assay reagents. Amplified targets are detected with hybridization probes labelled with quenched fluorophores (molecular beacons). The amplification, detection and interpretation of the signals are done automatically by the Cepheid SmartCycler<sup>®</sup> software. The entire procedure takes about 75 to 90 minutes, depending on the number of specimens processed.

The amplified DNA target is detected with a molecular beacon, a hairpin-forming singlestranded oligonucleotide labelled at one end with a quencher and at the other end with a fluorescent reporter dye (fluorophore). In the absence of target, the fluorescence is quenched. In the presence of target, the hairpin structure opens upon beacon/target hybridization, resulting in emission of fluorescence. For the detection of *tcdB* amplicons, the molecular beacon contains the fluorophore FAM at the 5' end and the nonfluorescent quencher DABCYL at the opposite 3' end of the oligonucleotide. For the detection of the IC amplicons, the molecular beacon contains the fluorophore TET at the 5' end and the quencher moiety DABCYL at the 3' end. Each beacon-target hybrid fluoresces at a wavelength characteristic of the fluorophore used in the particular molecular beacon. The amount of fluorescence at any given cycle, or following cycling, depends on the amount of specific amplicons present at that time. The SmartCycler<sup>®</sup> software simultaneously monitors the fluorescence emitted by each molecular beacon, interprets all data, and provides a final result at the end of the cycling program.

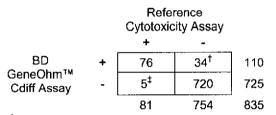
#### Substantial Equivalence:

The BD GeneOhm<sup>™</sup> Cdiff Assay has been found to be substantially equivalent to the Techlab *C. difficile* Tox-B Test (K935296) and the Techlab *Clostridium difficile* Toxin/Antitoxin Kit (K923463). These methods were used as the reference methods in the clinical trials.

#### Performance Characteristics:

Performance characteristics of the BD GeneOhm<sup>™</sup> Cdiff Assay were determined in a multi-site prospective investigational study. Four (4) medical centers, two (2) in Canada and two (2) in the United States, participated in the study. To be enrolled in the study, specimens had to be from individuals for whom *Clostridium difficile* testing was indicated and/or ordered, according to institutional policies.

The Reference Cytotoxicity Assay was performed using a tissue culture Cytotoxicity assay on liquid or soft stool specimens within 48 hours of collection. The procedure was performed according to the Manufacturer's Instructions for Use.


A total of 1108 specimens were tested with both the Reference Assay described above and the BD GeneOhm<sup>™</sup> Cdiff Assay, producing 1090 reportable results. The first dataset includes 835 fresh specimens tested at three (3) of the four (4) clinical sites (Table 1). In comparison to the Reference Assay, the BD GeneOhm<sup>™</sup> Cdiff Assay identified 93.8% of the *C. difficile* positive specimens and 95.5% of the negative specimens (Table 2). For the population tested this resulted in a Negative Predictive Value (NPV) of 99.1% and a Positive Predictive Value (PPV) of 67.3%.

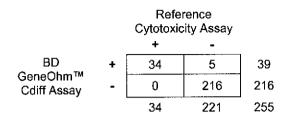
Testing at the fourth clinical site revealed that the Reference Cytotoxicity Assay was not reporting accurate results. Due to the high number of inaccurate reference assay results, samples were retested from aliquots of the original stool specimens which had been frozen after the initial testing. These frozen aliquots were tested with both the Reference Assay and the BD GeneOhm<sup>™</sup> Cdiff Assay. The second dataset includes results from 255 frozen stool specimens available for analysis (Table 3).

In comparison to the Reference Assay, the BD GeneOhm<sup>™</sup> Cdiff Assay identified 100% of the C. difficile positive specimens and 97.7% of the negative specimens in the frozen dataset; resulting in a NPV of 99.2% and PPV of 81.5% (Table 4).

Out of 852 fresh specimens tested with the BD GeneOhm<sup>™</sup> Cdiff Assay, 39 were initially reported as unresolved (4.6%). Upon repeat testing from the frozen lysates, 22 were resolved and 17 remained unresolved (2.0%) (Table 5). Out of 256 frozen specimens tested with the BD GeneOhm<sup>™</sup> Cdiff Assay, only one (1) specimen (0.4%) was initially reported unresolved. The specimen remained unresolved upon repeat testing from the frozen lysate (0.4%) (Table 6). One (1) run was reported invalid due to Run Control failure (0.6%). The run was reported valid upon repeat testing of the specimen lysates (Table 7).

## Table 1: Fresh Stool Results Obtained with the BD GeneOhm™ Cdiff Assay in Comparison with the Reference Assay




<sup>†</sup> Cytotoxicity Assay on isolated strains was positive for 21 out of the 34 samples, verifying the presence of toxigenic *C. difficile*. For the remaining 13 samples, standard PCR with alternative primers followed by bi-directional sequencing revealed that 11 out of the 13 samples contained the expected *tcdB* gene. <sup>‡</sup> For two (2) of the five (5) false negative specimens, *C. difficile* was recovered by culture, and only one (1) of these two (2) was reported as toxigenic. Of the remaining three (3) false negative PCR specimens, no *C. difficile* was recovered by culture.

| Table 2: Performance Obtained with Fresh Stools using the BD GeneOhm™ Cdiff |  |
|-----------------------------------------------------------------------------|--|
| Assay in Comparison with the Reference Method                               |  |

| <b>Clinical Sites</b> | Prevalence      | Sensitivity with 95% CI*      | Specificity with 95% CI*        |
|-----------------------|-----------------|-------------------------------|---------------------------------|
| Site 1                | 11.0% (40/365 ) | 90.5% (38/42) (77.4% - 97.3%) | 95.7% (309/323) (92.8% - 97.6%) |
| Site 2                | 6.7% (16/240)   | 94.4% (17/18) (72.7% - 99.9%) | 96.4% (240/249) (93.2% - 98.3%) |
| Site 3                | 11.1% (18/162)  | 100% (21/21) (83.9% - 100%)   | 94.0% (171/182) (89.4% - 96.9%) |
| Overall               | 9.6% (74/767)   | 93.8% (76/81) (86.2% - 98.0%) | 95.5% (720/754) (93.8% - 96.9%) |

\* CI: Confidence Intervals

# Table 3: Frozen Stool Results Obtained with the BD GeneOhm™ Cdiff Assay in Comparison with the Reference Assay



#### Table 4: Performance Obtained with Frozen Stools using the BD GeneOhm™ Cdiff Assay in Comparison with the Reference Method

| Clinical Site | Prevalence     | Sensitivity with 95% CI*      | Specificity with 95% CI*        |
|---------------|----------------|-------------------------------|---------------------------------|
| Site 4        | 12.7% (34/267) | 100.0% (34/34) (89.7% - 100%) | 97.7% (216/221) (94.8% - 99.3%) |

\* CI: Confidence Intervals

#### **Table 5: Fresh Stool Unresolved Rates**

| Clinical Sites |               | olved rate with<br>% CI* | Unresolved rate after repeat wit<br>95% CI* |               |  |  |
|----------------|---------------|--------------------------|---------------------------------------------|---------------|--|--|
| Site 1         | 0.8% (3/367)  | (0.2% - 2.4%)            | 0.5% (2/367)                                | (0.1% - 2.0%) |  |  |
| Site 2         | 6.6% (18/273) | (4.0% - 10.2%)           | 2.2% (6/273)                                | (0.8% - 4.7%) |  |  |
| Site 3         | 8.5% (18/212) | (5.1% - 13.1%)           | 4.2% (9/212)                                | (2.0% - 7.9%) |  |  |
| Overall        | 4.6% (39/852) | (3.3% - 6.2%)            | 2.0% (17/852)                               | (1.2% - 3.2%) |  |  |

\* CI: Confidence Intervals

#### **Table 6: Frozen Stool Unresolved Rates**

| Clinical Site | Initial unresolved rate with<br>95% CI* |               | Unresolved rate after repeat with<br>95% CI* |               |  |
|---------------|-----------------------------------------|---------------|----------------------------------------------|---------------|--|
| Site 4        | 0.4% (1/256)                            | (0.0% - 2.2%) | 0.4% (1/256)                                 | (0.0% - 2.2%) |  |

\* CI: Confidence Intervals

#### Table 7: Overall Invalid Run Rates

| Site    | Invalid Run Rates with 95% Cl |                |  |  |  |  |  |  |
|---------|-------------------------------|----------------|--|--|--|--|--|--|
| Site 1  | 2.6% (1/38)                   | (0.1% - 13.8%) |  |  |  |  |  |  |
| Site 2  | 0.0% (0/41)                   | (0.0% - 8.6%)  |  |  |  |  |  |  |
| Site 3  | 0.0% (0/58)                   | (0.0% - 6.2%)  |  |  |  |  |  |  |
| Site 4  | 0.0% (0/23)                   | (0.0% - 14.8%) |  |  |  |  |  |  |
| Overall | 0.6% (1/160)                  | (0.0% - 3.4%)  |  |  |  |  |  |  |

\* CI: Confidence Intervals

#### Analytical Specificity

Genomic DNA from one non toxigenic *C. difficile* strain, two strains of Toxinotype XI lacking *tcdB* gene and 29 other-*Clostridium* strains (including one strain of *C. sordellii*), along with 99 closely related organisms and other pathogenic and commensal flora found in the intestine and stools (representing 96 species) were tested. All strains were tested at a concentration of approximately 1X10<sup>8</sup> CFU/mL or 1X10<sup>8</sup> target copies/mL. None of these species tested positive with the BD GeneOhm<sup>™</sup> Cdiff Assay (Attachment 1).

#### Analytical Sensitivity

Quantitated culture and purified genomic DNA diluted in BD GeneOhm<sup>™</sup> Cdiff Assay sample buffer were tested in five (5) replicates. The LOD was defined as the lowest concentration, in DNA copy number per reaction and CFU per reaction, at which five replicates out of five were found positive.

The analytical sensitivity (limit of detection or LOD) of the BD GeneOhm<sup>™</sup> Cdiff Assay was determined with one strain of Toxinotype 0 *Clostridium difficile* carrying the *tcdB* gene (ATCC 43255).

The BD GeneOhm<sup>™</sup> Cdiff Assay LOD is 10 DNA copies per reaction. The LOD in Colony Forming Units (CFU) is established at 4 CFU per reaction.

The analytical sensitivity in CFU per reaction was confirmed with a second Toxinotype 0 (ATCC 9689) and with Toxinotypes IIIa (SE844), V (SE881), VII (57267) and VIII (1470) *Clostridium difficile* toxigenic strains.

In addition to strains used for LOD determination, one hundred (100) other toxigenic *C. difficile* strains (including 17 other Toxinotypes), representing 21 countries, from well-characterized clinical isolates or public collections were evaluated using the BD GeneOhm<sup>TM</sup> Cdiff Assay. *C. difficile* strains were tested at a concentration of approximately 6.7 DNA copies/µL or 1 CFU/µL. The assay correctly identified all 100 *C. difficile* strains carrying the *tcdB* gene.

#### **Reproducibility**

The reproducibility panel consisted of three (3) simulated specimen categories where each tube contained 100  $\mu$ L of simulated bowel flora; the two positive panel members were also inoculated with *C. difficile* (ATCC 43255). Additionally, two (2) Specimen Processing Controls (ATCC 9689 and ATCC 25922) and, two (2) Run Controls (Positive and Negative) were included. The specimens were tested in triplicate per panel run, on five (5) distinct days (consecutive or not), wherein each day two (2) panels were tested, one for each of two (2) technologists, at three (3) clinical sites with one (1) lot of reagents. One (1) of these clinical sites participated in the extended study where two (2) additional lots of reagents were tested. The overall percent agreement for the low positive *C. difficile* specimen category is 96.7%; the moderate positive *C. difficile* specimen category is 100% and the negative specimen category is 100% for the Site-to-Site Reproducibility (Table 8).

The overall percent agreement for the low positive *C. difficile* specimen category is 100%; the moderate positive *C. difficile* specimen category is 97.8% and the negative specimen category is 100% for the Lot-to-Lot Reproducibility (Table 9). Cycle threshold (Ct), an internal criteria used to determine a final assay result, was selected as an additional means of assessing assay reproducibility. Overall mean Ct values with variance components (SD and %CV) are shown in Tables 8 and 9.

An additional reproducibility study was performed, in accordance with the original reproducibility study protocol, to assess high negative specimens below the BD GeneOhm<sup>™</sup> Cdiff Assay limit of detection (LOD). A sample containing simulated bowel flora was inoculated with *C. difficile* (ATCC 43255) at a concentration equivalent to the assay LOD. 100-fold and 10-fold dilutions of this sample were prepared, respectively, to obtain the two (2) high negative panel members. Overall percent agreement for negative test results and overall mean Ct values with variance components (SD and %CV) are shown in Table 10. As expected, the more dilute panel member (100-fold below the LOD) containing lower levels of target, demonstrates a higher percent agreement for negative test results than the less dilute panel member (10-fold below the LOD) which contains higher levels of target. Although high negative panel members are below the analytical LOD of the assay, positive test results may still be observed due to the presence of target in these specimens.

| Category   |           |          |           | Overall   | Percent   | Ct Values |       |        |                   |                  |                             |
|------------|-----------|----------|-----------|-----------|-----------|-----------|-------|--------|-------------------|------------------|-----------------------------|
| Carciforia | Percent A | greement | Percent A | vgreement | Percent A | greement  |       |        | Overall.<br>Mean  | so               | reeproperty that a strategy |
| NEG        | 30/30     | 100.0%   | 30/30     | 100.0%    | 30/30     | 100.0%    | 90/90 | 100.0% | 36.2 <sup>†</sup> | 0.3 <sup>†</sup> | 0.8% <sup>†</sup>           |
| LOW POS    | 28/30     | 93.3%    | 29/30     | 96.7%     | 30/30     | 100.0%    | 87/90 | 96.7%  | 38.8              | 0.9              | 2.3%                        |
| MOD POS    | 30/30     | 100.0%   | 30/30     | 100.0%    | 30/30     | 100.0%    | 90/90 | 100.0% | 38.3              | 1.0              | 2.7%                        |

Table 8: Site-To-Site Reproducibility Study Results using One Lot

<sup>†</sup> Data represent values from the internal control.

#### Table 9: Lot-To-Lot Reproducibility Study Results using Three Lots

|         | LOT<br>Category Lot 1 Lot 2 Lot 3 |          |           |          | <b>(3</b> | Overall<br>Agree | Percent<br>ment                                                                                                  | Cl Values |                   |                         |            |
|---------|-----------------------------------|----------|-----------|----------|-----------|------------------|------------------------------------------------------------------------------------------------------------------|-----------|-------------------|-------------------------|------------|
|         | Percent A                         | greement | Percent A | greement | Percent A | greement         | and the second |           | Overali<br>Mean   | いたち - 「「後辺会」」、「つくや茶やてい」 | ///#vavava |
| NEG     | 30/30                             | 100.0%   | 30/30     | 100.0%   | 30/30     | 100.0%           | 90/90                                                                                                            | 100.0%    | 36.1 <sup>‡</sup> | 0.3 <sup>‡</sup>        | 0.8%‡      |
| LOW POS |                                   | 100.0%   | 30/30     | 100.0%   | 30/30     | 100.0%           | 90/90                                                                                                            | 100.0%    | 38.6              | 1.0                     | 2.5%       |
| MOD POS | 29/30                             | 96.7%    | 29/30     | 96.7%    | 30/30     | 100.0%           | 88/90                                                                                                            | 97.8%     | 37.8              | 1.1                     | 2.8%       |

<sup>4</sup> Data represent values from the internal control.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | <b>_</b>                                    | <u> </u>         | ¥                              |                                                                                                                 |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------|------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------|---------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Site 2           |                                             | Site             |                                | en al antiger de la companya de la c |         |                    | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and the second pro- |
| Site 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sile 2           | share substitution is:                      | SIE              | 93                             | Overall I                                                                                                       | 2otront | 18:1-7<br>• 18:1-7 | Ct Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
| High Negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | . In an | it sexelégedenem | odi nomena dakanda suskan su i | Agreel                                                                                                          |         |                    | uéulaisan, puatesaren.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tracotoretorc.ex-   |
| Panel Member                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                                             |                  |                                | - Ağı <del>ac</del> ı                                                                                           | uen     | Overall            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Percent Agreeme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nt" Percent Agre | emenr                                       | Percem Ag        | reement"                       |                                                                                                                 |         | Mean               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36V                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | 1.1                                         |                  |                                |                                                                                                                 |         |                    | and the second s |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                                             |                  |                                |                                                                                                                 |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 1:100 dilution 25/30 83.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | % 21/30          | 70.0%                                       | 26/30            | 86.7%                          | 72/90                                                                                                           | 80.0%   | 41.3               | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.1%                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                                             |                  |                                |                                                                                                                 |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 1:10 dilution 11/30 36.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | % 5/30           | 16.7%                                       | 5/30             | 16.7%                          | 21/90                                                                                                           | 23.3%   | 40.2               | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.4%                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2/00             |                                             | 0,00             |                                |                                                                                                                 | 20.070  |                    | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.770               |
| the second second second for a second burner of the second s |                  |                                             |                  |                                |                                                                                                                 |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |

#### Table 10: Additional Reproducibility Study Using a High Negative Sample Panel

\*Percent agreement for a negative result.

#### **Precision**

Within-laboratory precision was evaluated for the BD GeneOhm Cdiff Assay at one (1) site. The study was performed over 12 days, with two (2) runs per day and two (2) sample replicates per run. Samples included simulated specimens representing low and moderate positive *C. difficile* as well as negative *C. difficile*. One (1) out of 24 runs was excluded due to failure of the positive control (PC). One (1) moderate positive sample produced an unresolved result. All remaining samples and controls produced reportable results for a total of 46 replicates. Precision study results for low and moderate positive samples demonstrated agreement for (46/46) and (45/46) replicates, respectively; negative sample results demonstrated agreement for (46/46) replicates.

#### Interfering Substances

Twenty-six (26) biological and chemical substances occasionally used or found in perianal, rectal and/or stool specimens were evaluated for interference with the BD GeneOhm<sup>™</sup> Cdiff Assay. Potentially interfering substances include, but are not limited to, blood and mucus. The presence of excessive blood may inhibit PCR and may give unresolved results. The remaining twenty-four (24) substances illustrated in the table below showed no detectable interference with the BD GeneOhm<sup>™</sup> Cdiff Assay.

| Endogenous and Commercial Exogenous Substances Tested with the | BD |
|----------------------------------------------------------------|----|
| GeneOhm Cdiff Assay                                            |    |

| Substance                                                                      | Result |
|--------------------------------------------------------------------------------|--------|
| Anusol <sup>MC</sup> Plus *                                                    | NI**   |
| Atlas Ihle's Paste *<br>Zinc oxide 25 % w/w paste (Laboratoire Atlas Inc.)     | NI     |
| Barium sulfate<br>Fresh solution from powder form (LabMat)                     | NI     |
| Exact™ Hydrocortisone acetate * Cream<br>USP 0.5 % (Taro Pharmaceuticals Inc.) | NI     |
| Exact™ stomach relief<br>Bismuth subsalicylate liquid (Perrigo®)               | NI     |
| Fecal fat                                                                      | NI     |
| Fresh control <sup>®</sup> Moist towelettes pH 5,5 (Blue Skin)                 | NI     |
| Gyne Moistrin <sup>®</sup> Vaginal moisturizing gel (Schering)                 | NI     |
| Imodium AD <sup>®</sup> *<br>Loperamide hydrochloride oral solution (McNeil)   | NI     |
| Kaopectate®<br>Oral attaplugite suspension (Pharmacia & Upjohn)                | NI     |
| K-Y <sup>®</sup> Jelly (Johnson & Johnson Inc.)                                | NI     |
| Metronidazole<br>Fresh solution from powder form (Acros Organics)              | NI     |

| Substance                                                                                                 | Result |
|-----------------------------------------------------------------------------------------------------------|--------|
| Monistat™ Derm<br>Miconazole nitrate cream USP 2% (McNeil)                                                | NI     |
| Palmitic acid *<br>Fresh solution from powder (LabMat)                                                    | NI     |
| Preparation H <sup>®</sup> with Bio-Dyne <sup>®</sup> *<br>Cream (Wyeth)                                  | NI     |
| Preparation H <sup>®</sup> with Bio-Dyne <sup>®</sup> *<br>Ointment (Wyeth)                               | NI     |
| Rougier Neo-Laryngobis *Suppositories<br>(Rougier Pharma)                                                 | NI     |
| SAB-Dimenhydrinate <sup>®</sup> * Suppositories<br>(SABEX <sup>®</sup> )                                  | NI     |
| Steric acid *<br>Fresh solution from powder (LabMat)                                                      | NI     |
| Trojan <sup>®</sup> latex condoms (with nonoxynol-9)<br>Spermicidal lubricant (Church & Dwight Co., Inc.) | NI     |
| Tucks <sup>MC</sup> personal cleansing pads<br>Moist, soft clothpads (Pfizer)                             | NI     |
| Vagisil <sup>®</sup> Anti-itch cream (Combe Incorporated)                                                 | NI     |
| Vancomycin<br>Liquid (MP Biomedicals, LLC)                                                                | NI     |
| Vaseline <sup>™</sup> *<br>White petroleum jelly U.S.P. (Lever Pond's)                                    | NI     |

\* Substance tested with two strains of C. difficIle (Tox 0 and Tox VIII) \*\* NI: No detectable interference with the BD GeneOhm Cdiff Assay

|                                          |                       | BD GeneOhm <sup>M</sup> Cdiff |  |
|------------------------------------------|-----------------------|-------------------------------|--|
| Genera and Species                       | Strain                | Assay                         |  |
| Abiotrophia defective                    | ATCC 49176            | neg                           |  |
| Acinetobacter baumannii                  | ATCC 19606            | neg                           |  |
| Acinetobacter Iwoffii                    | CDCF 3697             | neg                           |  |
| Aeromonas hydrophila                     | ATCC 7966/ CCRI-10071 | neg                           |  |
| Alcaligenes faecalis subsp. Faecalis     | ATCC 15554            | neg                           |  |
| Anaerococcus tetradius                   | ATCC 35098            | neg                           |  |
| Bacillus cereus                          | ATCC 13472            | neg                           |  |
| Bacillus cereus                          | HER 1414              | neg                           |  |
| Bacteroides caccae                       | ATCC 43185            | neg                           |  |
| Bacteroides merdae                       | ATCC 43184            | neg                           |  |
| Bacteroides stercoris                    | ATCC 43183            | neg                           |  |
| Bifidobacterium adolescentis             | ATCC 15703            | neg                           |  |
| Bifidobacterium longum                   | ATCC 15707            | neg                           |  |
| Campylobacter coli                       | ATCC 43479            | neg                           |  |
| Campylobacter jejuni subsp. jejuni       | ATCC 33292            | neg                           |  |
| Candida albicans                         | ATCC 10231            | neg                           |  |
| Candida catenulate                       | IDI-1729              | neg                           |  |
| Cedecea davisae                          | ATCC 33431            | neg                           |  |
| Chlamydia trachomatis                    | ABI 08-901-000        | neg                           |  |
| Citrobacter amalonaticus                 | ATCC 25405            | neg                           |  |
| Citrobacter freundii                     | ATCC 8090             | neg                           |  |
| Citrobacter koseri                       | ATCC 27028            | neg                           |  |
| Citrobacter sedlakii                     | ATCC 51115 (IDI-2178) | neg                           |  |
| Clostridium beijerinckii                 | ATCC 8260             | neg                           |  |
| Clostridium bifermentans                 | ATCC 638              | neg                           |  |
| Clostridium bolteae                      | BAA-613               | neg                           |  |
| Clostridium botulinum                    | Hali A                | neg                           |  |
| Clostridium butyricum                    | CCRI-11128            | neg                           |  |
| Clostridium chauvoei                     | ATCC 11957            | neg                           |  |
| Clostridium difficile non-toxigenic      | ATCC-700057           | neg                           |  |
| Clostridium difficile XIa (A-B-tox bin+) | 1858                  | neg                           |  |
| Clostridium difficile XIb (A-B-tox bin+) |                       | neg                           |  |
| Clostridium fallax                       | ATCC 19400            | neg                           |  |
| Clostridium haemolyticum                 | ATCC 9650             | neg                           |  |
| Clostridium histolyticum                 | ATCC 19401            | neg                           |  |
| Clostridium innocuum                     | CCRI-9927 / IDI 1986  | neg                           |  |
| Clostridium methylpentosum               | ATCC 43829            | neg                           |  |
| Clostridium nexile                       | ATCC 27757            | neg                           |  |
| Clostridium novyi                        | ATCC 19402            | neg                           |  |
| Clostridium orbiscindens                 | ATCC 49531            |                               |  |
| Clostridium paraputrificum               | ATCC 25780            |                               |  |
| Clostridium perfringens                  | ATCC 13124            |                               |  |
| Clostridium ramosum                      | ATCC 25582            |                               |  |
| Clostridium scindens                     |                       | ATCC 35704 Neg <sup>1</sup>   |  |
| Clostridium septicum                     | ATCC 12464            | neg                           |  |

Attachment 1: BD GeneOhm<sup>™</sup> Cdiff Assay Reactivity Study using DNA and Lysates from Various Species

| Genera and Species                      | Strain                   | BD GeneOhm <sup>™</sup> Cdiff<br>Assay |  |
|-----------------------------------------|--------------------------|----------------------------------------|--|
| Clostridium sordellii                   | ATCC 9714                | neg                                    |  |
| Clostridium sp                          | CCRI-9842 / IDI 1987     | neg                                    |  |
| Clostridium sp                          | CCRI-9929 / IDI-1988     | neg                                    |  |
| Clostridium sphenoides                  | ATCC 19403               | neg                                    |  |
| Clostridium spiroforme                  | ATCC 29899               | neg                                    |  |
| Clostridium sporogenes                  | ATCC 15579               | neg                                    |  |
| Clostridium symbiosum                   | CCRI-9928 / IDI 1989     | neg                                    |  |
| Clostridíum symbiosum                   | ATCC 14940               | neg                                    |  |
| Clostridium tertium                     | ATCC 14573               | neg                                    |  |
| Clostridium tetani                      | ATCC 19406               | neg                                    |  |
| Collinsella aerofaciens                 | ATCC 25986               | neg                                    |  |
| Corynebacterium genitalium              | LSPQ 3583                | neg                                    |  |
| Desulfovibrio piger                     | ATCC 29098               | ×                                      |  |
| Edwardsiella tarda                      | ATCC 29038               | neg                                    |  |
|                                         |                          | neg                                    |  |
| Eggerthella lenta                       | CCRI-9926 / IDI 1990     | neg                                    |  |
| Enterobacter aerogenes                  | ATCC 13048               | neg                                    |  |
| Enterobacter cloacae                    | ATCC 13047               | neg                                    |  |
| Enterococcus casseliflavus (vanC2)      | CCRI-1566 / IDI 1981     | neg                                    |  |
| Enterococcus cecorum                    | ATCC 43198               | neg                                    |  |
| Enterococcus dispar                     | ATCC 51266               | neg                                    |  |
| Enterococcus faecalis vanB              | ATCC 51299               | neg                                    |  |
| Enterococcus faecium vanA               | ATCC 700221              | neg                                    |  |
| Enterococcus gallinarum vanC            | CCRI-1561 / IDI 1982     | neg                                    |  |
| Enterococcus hirae                      | ATCC 8043                | neg                                    |  |
| Enterococcus raffinosus                 | ATCC 49427               | neg                                    |  |
| Escherichia coli                        | ATCC 23511               | пеġ                                    |  |
| Escherichia coli                        | Top10 (IDI-266)          | neg                                    |  |
| Escherichia fergusonii                  | ATCC 35469               | neg                                    |  |
| Escherichia hermannii                   | ATCC 33650               | neg                                    |  |
| Fusobacterium varium                    | ATCC 8501                | neg                                    |  |
| Gardnerella vaginalis                   | ATCC 14019               | neg                                    |  |
| Gemella morbillorum                     | ATCC 27824               | neg                                    |  |
| Hafnia alvei                            | ATCC 13337               | neg                                    |  |
| Helicobacter fennelliae                 | ATCC 35683 / IDI-2180    | neg                                    |  |
| Helicobacter pylori                     | ATCC 43504               | neg                                    |  |
| Homo sapiens                            | ATCC MGC-15492 / 2.16    | neg                                    |  |
| Klebsiella oxytoca                      | ATCC 33496               | neg                                    |  |
| Klebsiella oxytoca                      | ATCC 33497               | neg                                    |  |
| Klebsiella pneumoniae subsp. Pneumoniae | ATCC 13883               | neg                                    |  |
| Lactobacillus acidophilus               | ATCC 4356                | neg                                    |  |
| Lactobacillus reuteri                   | ATCC 23272               | neg                                    |  |
| Lactococcus lactis                      | ATCC 11454               | ······································ |  |
|                                         | ATCC 11434<br>ATCC 33999 | neg                                    |  |
| Leminorella grimontii                   | ATCC 33999<br>ATCC 19120 | neg                                    |  |
| Listeria grayi                          |                          | neg                                    |  |
| Listeria innocua                        | ATCC 33090               | neg                                    |  |
| Listeria monocytogenes                  | L374                     | neg                                    |  |
| Mitsuokella multacida                   | ATCC 27723               | neg                                    |  |
| Mobiluncus curtisii subsp. Holmesii     | ATCC 35242               | пед                                    |  |
| Moellerella wisconsensis                | ATCC 35017               | neg                                    |  |
| Morganella morganii subsp. morganii     | ATCC 25830 neg           |                                        |  |
| Neisseria gonorrhoeae                   | ATCC 35201               | neg                                    |  |

1997 - 1997 - **1**997

| Genera and Species                                                                            | Strain         | BD GeneOhm <sup>™</sup> Cdiff<br>Assay |
|-----------------------------------------------------------------------------------------------|----------------|----------------------------------------|
| Peptoniphilus asaccharolyticus                                                                | ATCC 14963     | neg                                    |
| Peptostreptococcus anaerobius                                                                 | ATCC 27337     | neg                                    |
| Plesiomonas shigelloides                                                                      | ATCC 14029     | neg                                    |
| Porphyromonas asaccharolytica                                                                 | ATCC 25260     | neg                                    |
| Prevotella melaninogenica                                                                     | ATCC 25845     | neq                                    |
| Proteus mirabilis                                                                             | ATCC 25933     | neg                                    |
| Proteus penneri                                                                               | ATCC 35198     | neg                                    |
| Providencia alcalifaciens                                                                     | ATCC 9886      | neg                                    |
| Providencia rettgeri                                                                          | ATCC 9250      | neg                                    |
| Providencia stuartii                                                                          | ATCC 33672     | neg                                    |
| Pseudomonas aeruginosa                                                                        | ATCC 35554     | neg                                    |
| Pseudomonas putida                                                                            | LCDC D7172     | neg                                    |
| Ruminococcus bromii                                                                           | ATCC 27255     | neg                                    |
| Salmonella choleraesuis (typhimurium)                                                         | ATCC 14028     | neg                                    |
| Salmonella enterica subsp. Arizonae (formerly choleraesuis arizonae)                          | ATCC 13314     | neg                                    |
| Salmonella enterica subsp. Enterica (formerly<br>Salmonella choleraesuis subsp. choleraesuis) | ATCC 7001      | neg                                    |
| Serratia liquefaciens                                                                         | ATCC 27592     | neg                                    |
| Serratia marcescens <sup>2</sup>                                                              | ATCC 13880     | neg                                    |
| Shigella boydii                                                                               | ATCC 9207      | neg                                    |
| Shigella dysenteriae                                                                          | ATCC 11835     | neg                                    |
| Shigella sonnei                                                                               | ATCC 29930     | neg                                    |
| Staphylococcus aureus <sup>3</sup>                                                            | ATCC 43300     | neg                                    |
| Staphylococcus epidermidis                                                                    | ATCC 14990     | neg                                    |
| Stenotrophomonas maltophilia                                                                  | ATCC 13637     | neg                                    |
| Streptococcus agalactiae                                                                      | ATCC 12973     | neg                                    |
| Streptococcus dysgalactiae                                                                    | ATCC 43078     | neg                                    |
| Streptococcus intermedius                                                                     | ATCC 27335     | neg                                    |
| Streptococcus uberis                                                                          | ATCC 19436     | neg                                    |
| Trabulsiella guamensis                                                                        | ATCC 49490     | neg                                    |
| Veillonella parvula                                                                           | ATCC 10790     | neg                                    |
| Vibrio cholerae                                                                               | ATCC 25870 neg |                                        |
| Vibrio parahaemolyticus                                                                       | ATCC 17802 neg |                                        |
| Yersinia bercovieri                                                                           | ATCC 43970 neg |                                        |
| Yersinia rohdei                                                                               | ATCC 43380 neg |                                        |
| Yokenella regensburgei                                                                        | ATCC 35313     | neg                                    |

<sup>1</sup> A SC curve with a strong background was obtained at the first testing leading to a positive status. Retest in triplicate generated a final negative result. <sup>2</sup>Two lysates were prepared because the first one gave an appearance of degradation on agarose gel. <sup>3</sup>Tested with two lots of isolated DNA

.



#### **DEPARTMENT OF HEALTH & HUMAN SERVICES**

Public Health Service

Food and Drug Administration 2098 Gaither Road Rockville MD 20850

Mr. Raymond J Boule Senior Director, Regulatory Affairs, Quality Assurance BD Diagnostics (GeneOhm Sciences Inc.) 6146 Nancy Ridge Drive San Diego, CA 92121

DEC 1 9 2008

Re: k081920

Trade/Device Name: BD GeneOhm<sup>™</sup> Cdiff Assay Regulation Number: 21 CFR § 866.2660 Regulation Name: Clostridium difficile toxin Regulatory Class: I Product Code: LLH Dated: July 2, 2008 Received: July 3, 2008

Dear Mr. Boule:

We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration.

If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to such additional controls. Existing major regulations affecting your device can be found in Title 21, Code of Federal Regulations (CFR), Parts 800 to 895. In addition, FDA may publish further announcements concerning your device in the <u>Federal Register</u>.

Please be advised that FDA's issuance of a substantial equivalence determination does not mean that FDA has made a determination that your device complies with other requirements of the Act or any Federal statutes and regulations administered by other Federal agencies. You must comply with all the Act's requirements, including, but not limited to: registration and listing (21 CFR Part 807); labeling (21 CFR Parts 801 and 809); and good manufacturing practice requirements as set forth in the quality systems (QS) regulation (21 CFR Part 820).

This letter will allow you to begin marketing your device as described in your Section 510(k) premarket notification. The FDA finding of substantial equivalence of your device to a legally

Page 2-

This letter will allow you to begin marketing your device as described in your Section 510(k) premarket notification. The FDA finding of substantial equivalence of your device to a legally marketed predicate device results in a classification for your device and thus, permits your device to proceed to the market.

If you desire specific advice for your device on our labeling regulation (21 CFR Part 801), please contact the Office of In Vitro Diagnostic Device Evaluation and Safety at 240-276-0450. Also, please note the regulation entitled, "Misbranding by reference to premarket notification" (21CFR Part 807.97). For questions regarding postmarket surveillance, please contact CDRH's Office of Surveillance and Biometric's (OSB's) Division of Postmarket Surveillance at 240-276-3474. For questions regarding the reporting of device adverse events (Medical Device Reporting (MDR)), please contact the Division of Surveillance Systems at 240-276-3464. You may obtain other general information on your responsibilities under the Act from the Division of Small Manufacturers, International and Consumer Assistance at its toll-free number (800) 638-2041 or (240) 276-3150 or at its Internet address <a href="http://www.fda.gov/cdrh/industry/support/index.html">http://www.fda.gov/cdrh/industry/support/index.html</a>.

Sincerely yours,

Jall attant

Sally A. Hojvat, M.Sc., Ph.D. Director Division of Microbiology Devices Office of *In Vitro* Diagnostic Device Evaluation and Safety Center for Devices and Radiological Health

Enclosure

## **Indications For Use Statement**

510(k) Number (if known): \_\_\_K081920\_

Device Name: BD GeneOhm™ Cdiff Assay

### Indications For Use

Intended Use:

The BD GeneOhm<sup>™</sup> Cdiff Assay is a rapid *in vitro* diagnostic test for the direct, qualitative detection of *C. difficile* toxin B gene (*tcdB*) in human liquid or soft stool specimens from patients suspected of having *Clostridium difficile*-associated disease (CDAD). The test, based on real-time PCR, is intended for use as an aid in diagnosis of CDAD. The test is performed directly on the specimen, utilizing polymerase chain reaction (PCR) for the amplification of specific targets and fluorogenic target-specific hybridization probes for the detection of the amplified DNA.

| Prescription UseXXX  | OR | Over-The-Counter Use     |
|----------------------|----|--------------------------|
| (Per 21 CFR 801.109) |    | (Optional Format 1-2-96) |

#### (PLEASE DO NOT WRITE BELOW THIS LINE - CONTINUE ON ANOTHER PAGE IF NEEDED)

Concurrence of CDRH, Office of In Vitro Diagnostic Devices Evaluation and Safety (OIVD)

Office of In Vitro Diagnostic Device Evaluation and Safety

510KK KO81920