Xenobiotic Bioavailability: Role of Intestinal Disposition

Thomas J. Cook Department of Pharmaceutics Ernest Mario School of Pharmacy Rutgers, The State University of New Jersey

Bioavailability and Fraction Dose Absorbed

- Bioavailability (F) measurement of the rate and extent of therapeutically active drug that reaches the systemic circulation and is available at the site of action (Shargel & YII, 1999)
- Fraction Dose Absorbed (f_a) fraction of oral dose that traverses the intestine intact

Intestinal Disposition

- Intestinal permeability, metabolism, solubility, stability and dissolution of a xenobiotic
- Inhibition of membrane transporters and/or metabolizing enzymes
- Modulation of the expression of membrane transporters and/or metabolizing enzymes

Factors Affecting Oral Bioavailability

Physicochemical

- Solubility
- Ionization
- Dissolution Rate
- Chemical Stability
- Diffusion (intra-lumenal)

Physiological

- GI Transit
- Bile Secretion
- Transport Mechanisms
- Metabolism
- Regional Effects
- Polymorphism of Transporters/Enzymes

Oral Bioavailability Comparison

Fa – Permeability Comparison

From: L. Salphati, et. al., J. Pharmacy Pharmocol., 53:1007-1013 (2001)

Permeability – Permeability Comparison

From: L. Salphati, et. al., J. Pharmacy Pharmocol., 53:1007-1013 (2001)

Intestinal Transport and Metabolism

Figure from Eur J Pharm Sci 21: 25, 2004

Proteins Involved in Intestinal Disposition

- Influx Transporters
 - Peptide, bile acid, nucleoside, amino acid, etc.
- Efflux Transporters
 - P-gp, MRP2, BCRP, etc.

- Metabolizing Enzymes
 - Phase I CYP isoforms (primarily 3A4, 2D6,
 - Phase II GSTs, UGTs, sulfotransferases
- Nuclear Hormone Receptors
 CAR, PXR, PPAR, RXR, etc.

Intestinal Disposition

PermeabilityMetabolism

Also Inhibition Induction

figure from Drug Metab Dispos 31: 1507, 2003.

Biopharmaceutical Classification System

Permeability

		High	Low
Solubility	High	Class 1 Dissolution Rate Limited	Class 3 Permeability Limited
	Low	Class 2 Solubility Limited	Class 4 Mixed

Factors affecting rate and extent of oral absorption

S. Agrawal

Clinical Intestinal Metabolism Drug

Interactions

Drug	Interacting agent	Effect on relative bioavailability	Inhibition or induction	Clinical significance
Immunosuppressants				
Cyclosparin	Ketoconazole	↑ × 2.5	Inhibition	High <u>cyclosporin</u> concentrations, enabling a reduction in dosage
	Erythromycin	↑ × 2.0	Inhibition	
	Grapefruit juice	↑ × 0.6	Inhibition	
Tacrolimus	<u>Rifampicin</u>	↓ × 2.7	Induction	Therapeutic failure: transplant rejection
	Ketoconazole	↑ × 2	Inhibition	High concentrations: dosage reduction
Antivirals				
Saquinavir	Grapefruit juice	↑ × 2	Inhibition	High concentrations: dosage reduction
Indinavir	St John's <u>wort</u>		Induction	Therapeutic failure
Cardiac	Diferenciain	1 0	la du chi ca	
INITEDIDINE	Ritampicin	₩ ×8	Induction	I nerapeutic failure
	juice	↑ × 2.8	Inhibition	Potential toxicity
<u>Eelodipine</u>	Erythromycin	↑ × 2.5	Inhibition	Increased toxicity: low blood pressure
	Grapefruit juice	↑ × 1-2	Inhibition	
	Itraconazole	↑×6	Inhibition	
Other				
Simvastatin	Itraconazole	↑×5	Inhibition	Potential for increased skeletal muscle pain
	Grapefruit juice	↑ × 16	Inhibition	
	Erythromycin	↑×4	Inhibition	
Lovastatin	Grapefruit juice	↑ × 15	Inhibition	Potential for increased skeletal muscle pain
	Cyclosporin	↑ × 20	Inhibition	
	Itraconazole	↑ × 20	Inhibition	

(adapted from: Doherty, M.M. and Charman, W.N., *Clin Pharmacokinet*, **41**:235-253, 2002)

Preclinical Methods for Intestinal Disposition

- Intestinal permeability studies
 - Perfusion
 - Diffusion chamber (excised tissue or cultured cells)
 - Everted gut sac
 - PAMPA
- Intestinal metabolism
 - Perfusion
 - Microsomes
- Oral PK studies
 - P-gp, CYP inhibitors
 - Knockout animals

Chlorpyrifos

- Organophosphate pesticide
- Potential exposure routes
- Limited human bioavailability studies
- Goals
 - Determine intestinal permeability as a function of region and concentration
 - Determine effect of chlorpyrifos on expression and function of membrane transporters

Chlorpyrifos

Single-pass Intestinal Perfusion (SPIP)
Regional permeability as a function of concentration
Exposure studies in Caco-2 cells
Competitive PCR assay for MDR1
Effect on membrane efflux function

Single Pass Intestinal Perfusion

Permeability determined by loss from perfusate

$$P_{eff} = \frac{-Q}{2\pi r l} \ln \left(\frac{C_{out}}{C_{in}} \right)$$

Correct for adsorption, stability, accumulation

Results – Permeability

T.J. Cook and S.S. Shenoy, *Toxicology*, **184**:125-133, 2003

Results – Effect of CPF on MDR1 Expression in Caco-2 Cells

S. Agarwala, W. Chen and T.J. Cook, Toxicol. In Vitro, 18:403-409 (2004)

Results

Effect of CPF on Efflux Function in Caco-2 Cells

	VL	VC	VH
Control	2.87	3.40	4.44
8 hr CPF pre- incubation	3.65	4.18	5.01
Increase	27%	23%	13%

S. Agarwala, W. Chen and T.J. Cook, *Toxicol. In Vitro*, 18:403-409 (2004)

Sulforaphane

- Isothiocyanate from cruciferous vegetables
- Potential chemopreventive agent
- Mechanism of action
 - Induction of Phase II metabolizing enzymes and efflux transporters, e.g., MRP2
- Goal: Determine intestinal disposition and effect of SFN on expression of Phase II enzymes and MRP2 in intestine

SPIP-MV

Fig. 1. Illustration of the experimental setup for single-pass intestinal perfusion with mesenteric cannulation and continuous infusion of blood through the jugular vein.

Permeability
Determination

- Lumenal
- Blood
- Bioanalytical

Figure from Cummings, et al, *JPET*, **305**:306, 2003.

SFN and SFN-GLU in Mesenteric Blood

Permeability of SFN and Metabolites

Agrawal, S., Tsao, Y., Hu, P., and Cook, T.J., Intestinal Disposition of Sulforaphane, In Preparation, 2005.

Effect of SFN on GST Expression in Rat Ileum

Tsao, Y., Hu, P., and Cook, T.J., AACR Frontiers in Cancer Prevention Research, #A133, 2004.

Model of SFN Intestinal Disposition

Agrawal, S., Tsao, Y., Hu, P., and Cook, T.J., Intestinal Disposition of Sulforaphane, In Preparation, 2005.

Relevance

Depends on:

- Metabolic pathways
- Therapeutic index of drug
- Toxicity of xenobiotic
- Variability in intestinal metabolism
- Xenobiotic Drug Interactions
 - Induction of expression
 - Relative affinity for transporter/enzyme
 - Concentration, etc
 - Exposure

Summary

- Intestinal disposition is critical for the bioavailability of orally administered compounds (but may not be the limiting factor)
- Interactions with transporters/enzymes (modulation of expression and/or function) should be considered
- Dietary factors (e.g., grapefruit juice) can contribute to variability in oral drug bioavailability
- "Baseline" expression of patients may change based on dietary factors
- Potential contribution of unidentified transporters and enzyme isoforms

Acknowledgements

Group Members

- Dr. Shruti Agrawal
- Shilpi Agarwala
- Joseph Desiderio
- Peidi Hu
- Lemuel Liou
- **Tamira Mullarkey**
- Smriti Shenoy
- Yvonne Tsao
- Yan Xu
- Brian Yeagy

Collaborators

- Dr. Tony Kong
- Dr. Harold Newmark
- Dr. Eric Weyand
- Financial Support
 - U.S. E.P.A.
 - Charles and Johanna Busch Grant
 - National Cancer Institute
 - McKesson Bioservices