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Yield Variability as Influenced by Climate: A Statistical Investigation

Abstract:

Studies of agricultural impacts of possible future climate change seldom report

distributions of potential outcomes.  Part of the reason for this may be that little empirical

evidence is available on sources of agricultural output variability.  This study presents maximum

likelihood panel data estimates of the impacts of climate on yield variability for the major U.S.

agricultural crops.  Panel data time-series techniques are used to specify and estimate a stochastic

production function of the form suggested by Just and Pope .  The effects of climate on yield

levels and variances are shown to vary depending on the crop.  For sorghum more rainfall and

higher temperatures increase yields while increasing yield variability.  Precipitation and

temperature individually have opposite effects on corn yield levels and variability.
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Yield Variability as Influenced by Climate: A Statistical Investigation

Variability of agricultural yield is well known to depend on the weather.  Extreme

weather events like hurricanes and droughts have obvious impacts and recently necessitated two

disaster relief bills for farmers.  Identification and prediction of the influences of seasonal-to-

interannual climate phenomena, like the El NiÁo Southern Oscillation (ENSO), has brought

attention to possible short-term impacts of changes in climate.  More subtle seasonal phenomena

also have been linked to agricultural productivity, with Florida citrus freeze risk (Downton and

Miller), and dryland maize production in southern Africa having been shown to be influenced by

ENSO and other ocean circulation patterns (Cane, Eshel, and Buckland).

The considerable attention that has been focused on agricultural impacts of climate

change, has largely focused on fifty to 100 year mean climate change effects (Lewandrowski and

Schimmelpfennig; Adams et al.).  Climate variability has been considered in a few longer term

studies, but the studies do not generally incorporate sensitivity tests or estimate changes in

distributions of outcomes (Mearns, Rosenzweig, and Goldberg, 1996 and 1997;

Schimmelpfennig).

Factors other than climate influence the variability of agricultural production.  Anderson

and Hazell argue that adoption of common high-yielding varieties, uniform planting practices,

and common timing of field operations, have caused yields of many crops to become more

sensitive to the weather, especially in developing countries.  Hazell makes similar observations

concerning cereal production in the United States.  Roumasset et al. and Tollini and Seagraves

argue that increased fertilizer use has had an impact.

An open question is how sensitive might agricultural yield variability be to climatic
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change?   The ultimate answer will depend upon future technological progress, crop climatic

adaptation, and CO2 fertilization effects among many other factors, but a current statistical

answer can be obtained from historical records relating crop yield variability to climate.  An

approach using pooled time-series cross-sectional data much like that employed in Mendelsohn,

Nordhaus and Shaw can be used to measure yield variability impacts of shifts in climate.  The

question addressed is how is the variability of U.S. corn, cotton, sorghum, soybeans, and wheat

yields affected by shifts in climate?

Methodological Background 

Just and Pope (1978,1979) developed a stochastic production function specification that

after estimation explicitly shows the effects of independent variables on the probability

distribution of output (p.79) and does not impose dependence between an item’s effect on yield

variability and it’s effect on mean yield.  Just and Pope (1978,1979) described both Maximum

Likelihood (MLE) and  a three step, feasible generalized least squares (FGLS)  procedure for

estimating the function. 

Antle extended Just and Pope’s approach by developing a moment-based stochastic

production function that estimated higher order moments and used it in the estimation of a set of

input demand functions and a distribution of risk preferences.  Love and Buccola applied related

techniques to primal risk models, allowing joint estimation of either technology and yield

variability or input demands and yield variability.  Saha, Shumway, and Talpaz’s showed how to

jointly estimate risk preferences and the production technology.  Buccola and McCarl

investigated the small-sample properties of Just and Pope’s three stage method, using Monte

Carlo experiments. McCarl and Rettig used the three step approach to examine the effects of
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changes in ocean conditions on the variability of the salmon catch.  

Despite the fact that Just-Pope production functions have traditionally been estimated by

the three-step FGLS approach, Saha, Havenner, and Talpaz show in Monte Carlo experiments

that for small samples, MLEs are more efficient and unbiased than FGLS estimates.  They show

that FGLS estimates systematically understate the risk effects of inputs, a serious problem in the

present context.

Panel Data Set for Estimation

The availability of state level detailed climate and yield data across the U.S. allows for

the exploration of both inter-temporal and inter-spatial variances in the data with state level

characteristics, and changes in technology controlled.  State level yields and acreage harvested

for 25 years, 1973 to 1997 were used from USDA-NASS Agricultural Statistics for the

contiguous 48 states, yielding about 1200 observations.

State-level climate data that matches the agricultural output data is available on the

NOAA Internet home-page which includes time series observations for thousands of weather

stations.  The temperature data predominantly April to November averages for the published

weather stations in a state.  For regions growing predominantly winter wheat, we used the

November to March average temperature. The rainfall data are state annual totals, reflecting both

precipitation falling directly on a crop, and also inter-seasonal water accumulation.

Time Series Estimation

The Just-Pope production function can be estimated from panel data relating yield to

exogenous variables.  This procedure produces estimates of the impacts of the exogenous

variables on levels and the variance of yield. An assumption of the model is that included
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variables are stationary.  Deterministic and stochastic trends in variables can introduce spurious

correlations between the variables, because the errors in the data-generating-processes for

different series might not be independent (Granger and Newbold).  In other words, correlations

might be detected between variables that are increasing for different reasons and in increments

that are uncorrelated (Banerjee, et al, p.71).  

An early method for accounting for the trends in many economic time series, and the

positive trends that are certainly evident in agricultural yields, was to include a deterministic time

trend.  Unfortunately, correlations between variables may still be spurious even when

deterministic time trends are accounted for.  To make matters worse, standard t-statistics on the

time trend variable are inflated when the other variables in a regression are non-stationary

(Phillips).  This might make it seem that a time trend is properly accounted for when it is not. 

The solution to these problems, is to first test for stationarity.  Non-stationary variables can be

differenced once and retested.  If the differenced versions are stationary, the variables are said to

be integrated order one or I(1).  Stationary time series are integrated order zero or I(0). 

Regressions on stationary variables may satisfy ideal conditions, and inferences on a

deterministic time trend can be made safely.  Even though our data has more regions than annual

observations, any data set with a time dimension of 20 years or more should be tested for its time

series properties.

Practitioners have tested for unit roots and used differencing or other filtering techniques

to make their variables stationary.  Until recently the time-series characteristics of panel data

have been difficult to characterize.  The observations on one or more regions in a panel could be

non-stationary when considered alone, but with panel data models all of the regions are generally
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taken together.  The question has been how to characterize the time series properties of one

variable made up of many regions?  New tests are available that offer more power than earlier

tests on region series.  These new tests for stationarity are applied to each variable taking the

whole panel at once.  This avoids possibly conflicting time series information on regions in the

panel.  There are several versions of these so-called panel unit root tests due to Im, Pesaran, and

Shin, Levin and Lin (1992, 1993), and Quah.  Quah’s test does not allow for region specific

effects.  Since we show the importance of region effects in the next section, we rely on Im et al.’s

test.  Their test shows better finite sample performance than the tests due to Levin and Lin, in

Monte Carlo simulations on panels with a large number of regions relative to the number of time

periods.1

Panel Unit Root Tests

Im, Pesaran, and Shin propose a series of unit root test statistics in dynamic heterogenous

panels based on individual Dickey-Fuller (Dickey and Fuller) regressions.  The LM-bar test is

based on the mean of individual unit root statistics.  The test is valid when the errors in the

region regressions are serially uncorrelated, and normally and independently distributed across

regions.  Under these circumstances LM-bar is distributed as standard normal as long as the

number of regions (N) is large relative to the number of time periods (T).  For wheat, corn, and

soybeans we have 25 annual observations with in some cases substate level observations.  There

are, e.g. 1400 observations for wheat, with 25 years of data across 56 regions.  This is the widest

panel, but for all the crops considered here, N is large relative to T.
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Suppose that the variable of interest, yit, has a representation as a stochastic first-order

auto-regressive process for region i and time period t,

( ) , ,..., ; ,..., ,,1 1 11∆ y y i N t Tit i i i t it= + + = =−α β ε

where . The null hypothesis of a unit root in (1) is then a test of∆ y y yit it i t= − −, 1

H for all ii0 0: .β =

Under the assumption of serially uncorrelated errors, the LM-bar statistic used 

to test this null hypothesis is defined by
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When the assumptions hold, 0iT will be identically and independently distributed with a finite

mean, , and finite variance, , for any T<N.2 E iT( )η Var iT( )η

Results of the Panel Unit Root Test

The above panel unit root test procedure is individually applied to each of our potential

dependent (yield) and independent variables (acreage, rainfall, and temperature).  The results in

Table 1 show that for corn, cotton, sorghum, soybeans, and wheat, the variables are stationary as

a panel or integrated order zero (I(0)), rejecting the null hypothesis of a unit root.  To test the

sensitivity of this result to possible violation of the assumption of serially uncorrelated errors,

either the error terms can be tested directly, or an additional test can be performed.

A slightly modified test is described in Im, Pesaran, and Shin that is robust to serial

correlation.  Since the results we obtain by this second method are the same as for the first,

reported in the second section of Table 1, we conclude that we do not have serial correlation in
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the errors of any of the variables.  The bottom section of Table 1, shows that a different

modification of the test, based on de-meaned variables in each panel, yields slightly different

results.  Since the de-meaned version of the test is robust to correlation across regions, we

conclude that there is correlation across regions.  This result is not surprising since we will show

the existence of random region effects in the production functions that we estimate in the next

section.  We proceed by differencing the non-stationary variables, sorghum yield, cotton

precipitation, and soybean temperature, in their region panels.  These differenced versions are re-

tested as panels and are shown to be stationary or I(0).

These panel time series characteristics of the data are used in formulating the estimation

approach.  Stationary versions of all of the variables are used in the panel production function

model in the next section.  This avoids possible spurious correlations between variables and

allows the establishment of valid relationships.  In addition, a deterministic time trend may be

included that does not suffer from an inflated t-statistic.

Fixed or Random Effects?

Having established the time series properties of the variables, it is important to establish

the correct panel model form.  Results of the previous section reveal that some of the variables in

Table 1 have correlations across regions.  To test for fixed or random region effects in the model,

several approaches are available.

The Breusch and Pagan test considers a null hypothesis that the variance of region and

time specific effects is zero, in a two-way error component model.  Honda suggests a one-sided

version of this test, which is preferred because of expected non-negative variance components. 

Honda’s version of the test is a uniformly most powerful test of H0 :  vs. fixed effects,σ µ
2 0=
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where µ are unobserved region specific effects.  The test statistic is (Baltagi p.62),
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where N  are the number of cross-sections (regions);
T  the number of time-series observations;

  is a vector of residuals;u
~

 is an identity matrix with dimension N;I N

is a matrix of ones with dimension T;JT

u IID v IIDi u it v~ ( , ), ~ ( , )0 02 2σ σ

The results from the estimation of (2), in the second row of Table 2, indicates that the null

hypothesis (HO) is rejected for all five equations, and a zero variance on the region effect is

rejected with 99% confidence.  An alternative test for fixed or random region effects is provided

by Hausman.

The MLE Approach to Estimating the Production Function

The previous sections established stationarity of the variables and random region effects,

without ruling out possible deterministic trends. Following Saha, Havenner and Talpaz we

estimate production functions of the form

( ) ( , ) ( , )3 y f X h X= +β α ε

where y is crop yield (corn, cotton, sorghum, soybeans, and wheat), f(@) is an average production
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function, and X is a set of independent explanatory variables (climate, location, and time period). 

The functional form h(@) for the error term ui, is an explicit form for heteroskedastic errors,

allowing estimation of variance effects.  Estimates of the parameters of f(@) give the average

effect of the independent variables on yield, while h2(@) gives the effect of each independent

variable on the variance of yield.  The interpretation of the signs on the parameters of h(@) are

straightforward.  If the marginal effect on yield variance of any independent variable is positive,

then increases in that variable increase the standard deviation of yield, while a negative sign

implies increases in that variable reduces yield variance.

The log-likelihood function is then:

 ( ) ln [ *ln( ) ln( ( , ) )
( ( , ))

( , )
].4

1
2

2 2
2

2
11

L n h X
y f X

h X
i

i i

ii

n

i

n

= − + +
−

==
∑∑π α

β

α

Due to advances in non-linear optimization procedures, the parameters  and can beα β

estimated in single-stage maximization of (4), under the assumptions that

and .y N f X h Xi i i~ ( ( , ), ( , ) )β α 2 ε i N~ ( , )0 1

Crop Yield Production Function Estimates

  After controlling for random effects, the MLEs of the f(X,$) part of the crop production

functions are displayed in Table 3.  Two specifications are tested, linear and Cobb-Douglas, and

for precipitation and temperature for corn, cotton and sorghum these forms give similar results. 

The sign on precipitation is positive for all three crops and is negative on temperature.  This

indicates that crop yields increase with more rainfall and decrease with higher temperatures,
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holding acreage constant and after controlling for a deterministic time trend that may serve as a

proxy for the non-stochastic portion of the advance of agricultural technology.

Higher temperatures positively impact soybean yields (Cobb-Douglas estimate

insignificant) and negatively impact wheat yields.  The coefficients on the deterministic time

trend are positive and significant as expected for all crops, except the Cobb-Douglas estimates

for cotton and wheat.  This may come from the tendency of Cobb-Douglas forms to pick up

curvature because this form is non-linear over a wide range of parameter values, and may

indicate a declining rate of increase in the effect of technology on yield rather than an actual

negative impact of technology .  

The coefficients for rainfall and temperature can be converted to elasticities by

multiplying by sample average climate and dividing by average yield.  These elasticities are

reported in Table 4.  For corn yields, the percentage effects of changes in climate estimated by

Cobb-Douglas are higher than the linear estimates.  Elasticities for the other crops are mixed,

with uniformly high elasticities being measured for both rainfall and temperature on sorghum.

A Test of Model Adequacy

Before considering variability estimates in the next section, it is worthwhile to test the

adequacy of the panel production function models.  The classical assumption of the random

effects model is that the errors are region specific.  The significance of a deterministic time trend

along with the other stationary variables, raises a question whether region production function

errors might also be time specific.  If serial correlation was previously ignored, estimates in Table

3 could be consistent but inefficient, with biased standard errors.

Since random region effects are identified in Table 2, it is appropriate to test for serial
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correlation jointly with this information.  Baltagi and Li present a series of tests for serial

correlation that are carried out jointly with various assumptions concerning region effects.  Their

Lagrange Multiplier (LM) test for zero first-order serial correlation assuming random region

effects, is the same whether the alternative is AR(1) or MA(1) (Baltagi, pp.91-93), which is

fortunate as we have no way of testing which is the appropriate alternative.

For AR(1) serial correlation, a new specification of the error terms in equation (4) are as

an AR(1) process with .   The null hypothesis is thev v Nit i t it it= +−ρ ε ε σ ε, , ~ ( , )1
20

restriction on this equation that .  The test statistic is distributedH0 0:ρ = LM D J= ( )
^ ^

ρ
2

11
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and are the maximum likelihood residuals under the null hypothesis.  is an informationu
^

J
^

matrix while G is a bidiagonal matrix with bidiagonal elements all equal to one.

Test results for serial correlation are displayed in the third row of Table 2, along with the

other panel model specification tests. They fail to reject the null hypothesis, indicating no serial

correlation in the  production functions for all five crops.   Since the region production function
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errors are not time specific, the estimates in Table 3 are efficient and unbiased.  Another

assumption of the maximum likelihood models are that the error terms are normally distributed. 

A standard test of this assumption is available in Greene (chapter 4) and the null hypothesis of

non-normality is rejected with 99% confidence.  Test statistics are reported in the last row of

Table 2.

Variability Results from the Estimated Model

As was the case for the average production functions, the clearest results are obtained for

corn, cotton and sorghum, and do not depend on functional form (Table 5).  Increases in rainfall

decrease the variability of corn and cotton yields.  More precipitation also increases the

variability of sorghum yields, which is not surprising given the tolerance of sorghum to dry

conditions.  Higher temperatures decrease the variance of cotton and sorghum yields, which is

consistent with their geographic distribution.

Corn yields are predictably more variable with higher temperatures, because corn is

grown in areas where it is seldom stressed by low temperatures.  The deterministic trend in

technology has an interesting positive impact on yield variability for these three crops.  In Table

3 the deterministic trend has a positive impact on yield levels, so this might have been achieved

at the expense of increased yield risk confirming work by Anderson and Hazell.  More rainfall

decreases the variability of wheat yields, but the temperature effect is mixed.  For soybeans, the

linearly estimated impacts are negative and the Cobb-Douglas estimates are positive.

Elasticities calculated for rainfall and temperature variability are reported in Table 6. 

Cotton and sorghum rainfall variability elasticities are all small, with a one percent increase in

rainfall leading to a half of one percent or less increase or decrease in yield variability.  Cotton
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and sorghum have high temperature variance elasticities with a one percent change in

temperature leading to an up to eleven times decrease in yield variability.  Similarly large

elasticities are obtained for rainfall effects on corn and wheat yield variability.  All of these

results are consistent across functional forms.  Soybean elasticities are all less than one, but sign

inconsistency across functional forms make these results harder to interpret.  The distinction

between the impacts of climate on levels and variance of yields, raises several policy questions

related to crop insurance and climate change assessment that will be addressed in the

conclusions.

Finally and for perspective we used the regional estimates of climate change arising under

the Canadian and Hadley simulators used under the US Global Climate Change Research

Program’s National Synthesis using the 2090 climate projections to obtain estimates of the

effects of projected climate change on crop yield variance for selected crops in selected regions. 

These involved plugging the projected precipitation and temperature changes for the selected

regions into the formulas and computing the projected yield changes into the Cobb Douglas

form.  The results are given in Table 7 and show uniform decreases in corn and cotton yield

variability with mixed results for the other crops.  

Concluding Comments

This study has developed quantitative estimates of the impacts of climate on yield

variability of major U.S. agricultural crops by incorporating recent time series and panel data in 

Just-Pope stochastic production function estimation exercise.  The results highlight crop specific

differences in the climate impacts on yield levels and variability.  For corn, precipitation and
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temperature results are found to have opposite effects on yield levels and variability.  More

rainfall causes corn yield levels to rise, while decreasing yield variance.  Temperature has the

reverse effects on corn yield levels and variance.  For sorghum the effects go in the same

direction, with higher temperatures reducing yields but also reducing variability.  More rainfall

increases sorghum yields but also increases variability.

These results have important policy implications.  If future climate changes can be

predicted to increase or decrease climate variables, a guide to possibly differential impacts on

U.S. crops may be inferred from these results.  This information might be useful to agricultural

climate change impact modelers.  These results could also be considered when future crop

insurance programs are being constructed that protect farmers while providing desired incentives

for adaptation through possible crop switching.  Federal agricultural R&D policy might also be

informed by the results on deterministic technological advance.  If further research continues to

confirm the result that technology has improved yields while also intensifying cycles of boom

and bust, it may be possible to formulate technological responses to the problem while relieving

some of the burden on U.S. taxpayers evidenced by recent disaster relief packages.
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Table 1 Unit Root Test Results

No-Serial
Correlation

Yield Acre Precipitation Temperature

Corn 13.87* 65.08* 73.17* 125.88*

Cotton 14.48* 35.38* 83.74* 81.18*

Sorghum 14.83* 51.34* 91.02* 88.42*

Soybeans 34.37* 52.39* 56.73* 104.00*

Wheat 27.77* 46.82* 73.38* 128.81*

Serial correlation Yield Acre Precipitation Temperature

Corn -4.86* 64.37* 63.88* 126.07*

Cotton 6.86* 32.98* 67.63* 84.13*

Sorghum -2.26* 70.22* 81.82* 89.58*

Soybeans 6.92* 63.06* 49.45* 101.26*

Wheat 2.31* 50.88* 64.19* 126.20*

Correlation across
groups

Yield Acre Precipitation Temperature

Corn 2.79* -3.72* 7.10* 9.92*

Cotton 35.13* -5.69* 0.79
28.22*

1.91*

Sorghum 0.55
10.40*

-3.34* 2.54* 2.21*

Soybeans 8.17* -6.98* 5.53* -0.48
499.13*

Wheat 8.15* -7.02* 7.05* 10.36*

Notes: Table 1 reports three versions of Im et al.’s LM-bar test statistic.  “Serial correlation” statistics are robust
to error term serial correlation, while “correlation across groups” statistics are robust to serial correlation in
the cross-section dimension.  

Key: * Null hypothesis of non-stationarity is rejected with 99% confidence. 
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Table 2 Panel Model Specification Tests

Corn Cotton Sorghum Soybeans Wheat

Fixed vs. Random
Effects

15.37* 6.44* 7.52* 14.45* 12.06*

Serial Correlation 0.87** 0.81** 1.22** 1.23** 0.18**

Normality 6.27E+12* 123.34* 4.16E+12* 2.34E+9* 2.86E+12*

Key: * Null hypothesis is rejected with 99% confidence. 
** Fails to reject the null hypothesis of no serial correlation with 99% confidence. 
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Table 3 Average Crop Yield Production Function (f(X,$))–Comparison of Maximum
Likelihood Linear and Cobb-Douglas Estimates 

Corn Acre Precipitation Temperature Year Constant

Linear 0.0146*
(0.00039)

0.9265*
(0.00606)

-0.3843*
(0.01599)

3.3018*
(0.06492)

0.4430
(0.9978)

Cobb-
Douglas

1.0728*
(0.00105)

1.5148*
(0.00160)

-2.9792*
(0.00064)

2.0470*
(0.00061)

0.0560*
(0.00007)

Cotton

Linear -0.00010*
(0.000001)

0.00679*
(0.00010)

-0.02731*
(0.00035)

0.02107*
(0.00014)

2.8990*
(0.02524)

Cobb-
Douglas

0.30879*
(0.00736)

0.40751*
(0.01812)

-0.74763*
(0.02059)

-0.31626*
(0.01382)

2.6774*
(0.01618)

Sorghum

Linear 0.00042*
(0.00002)

0.05786*
(0.00086)

-0.02242*
(0.00281)

0.10573*
(0.00186)

-1.4303*
(0.19234)

Cobb-
Douglas

0.3895*
(0.02159)

1.8977*
(0.03633)

-2.6070*
(0.04189)

1.3758*
(0.02864)

0.2610*
(0.01441)

Soybeans

Linear 0.00149*
(0.000006)

-0.16234*
(0.00082)

0.00386*
(0.00037)

0.34695*
(0.00145)

29.865*
(0.04464)

Cobb-
Douglas

0.1558*
(0.00086)

0.3640*
(0.00267)

0.0016
(0.00149)

0.2113*
(0.00159)

1.5992*
(0.00351)

Wheat

Linear 0.00130*
(0.000004)

-0.15262*
(0.00054)

-0.33372*
(0.00145)

0.63271*
(0.00094)

60.371*
(0.08986)

Cobb-
Douglas

0.03485*
(0.01337)

1.4178*
(0.03053)

-0.37209*
(0.00613)

-0.23611*
(0.01605)

1.6014*
(0.00364)

Key: Numbers in parentheses are standard errors.
* Significant at 99% confidence level.
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Table 4 Elasticity of Average Crop Yield to a Change in Climate

Production
Function Form

Corn   
Precipitation   Temperature

Cotton
Precipitation   Temperature

Sorghum
Precipitation  Temperature

Linear 0.3273 -0.2433 0.0371 -1.5334 2.8844 -2.0866

Cobb-Douglas 1.5148 -2.9792 0.4075 -0.7476 1.8977 -2.6070

Soybeans
Precipitation   Temperature

Wheat
Precipitation    Temperature

Linear -0.2068 0.0002 -0.1309 -0.5076

Cobb-Douglas 0.34640 N.S. 1.4178 -0.3721

Note: Linear elasticities are coefficients in the Table 3 times average climate divided by average yield.

Key: N.S. not significant.
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Table 5 Crop Yield Variability (h(X,")) –Comparison of Maximum Likelihood Linear and
Cobb-Douglas Estimates

Corn Acre Precipitation Temperature Year Constant

Linear 0.0005*
(0.000002)

-0.2720*
(0.00070)

0.1172*
(0.00105)

0.2052*
(0.00217)

9.4197*
(0.0555)

Cobb-
Douglas

0.4711*
(0.00116)

-1.4461*
(0.00284)

0.8923*
(0.11526)

0.1356*
(0.00019)

2.2785*
(0.4744)

Cotton

Linear -0.00007*
(0.000005)

-0.04405*
(0.00068)

-0.15506*
(0.00095)

0.03161*
(0.00052)

9.2579*
(0.06642)

Cobb-
Douglas

0.2537*
(0.00534)

-0.02124*
(0.00798)

-3.5800*
(0.22972)

0.34964*
(0.00798)

13.519*
(0.9732)

Sorghum

Linear 0.00028*
(0.00003)

0.01431*
(0.00015)

-0.07847*
(0.00041)

0.03925*
(0.00030)

8.7116*
(0.0291)

Cobb-
Douglas

0.2373*
(0.00672)

0.48029*
(0.00399)

-2.5633*
(0.05870)

0.55248*
(0.00269)

11.238*
(0.2211)

Soybeans

Linear -0.00006*
(0.000001)

-0.02048*
(0.00021)

-0.16895*
(0.00139)

-0.00148*
(0.00033)

5.0756*
(0.01035)

Cobb-
Douglas

0.0210*
(0.00356)

0.8194*
(0.02242)

0.0586*
(0.00267)

0.2028*
(0.00846)

0.4920*
(0.0803)

Wheat

Linear -0.00003*
(0.000001)

-0.06201*
(0.00006)

-0.00167*
(0.00015)

0.05412*
(0.00015)

6.4186*
(0.01034)

Cobb-
Douglas

0.14732*
(0.01035)

-1.6473*
(0.01493)

5.0875*
(0.24809)

-2.1145*
(0.02403)

-8.8744*
(0.9673)

Key: Numbers in parentheses are standard errors.
* Significant at 99% confidence level.
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Table 6 Elasticity of Variance in Crop Yield to a Change in Climate

Yield Variability
Function

Corn
Precipitation  Temperature

Cotton
Precipitation  Temperature

Sorghum
Precipitation  Temperature

Linear -9.7187 7.5058 -0.3028 -10.9386 0.5230 -5.3517

Cobb-Douglas -1.4461 0.8923 -0.0212 -3.5800 0.4802 -2.5633

Soybeans
Precipitation   Temperature

Wheat
Precipitation    Temperature

Linear -0.7932 -0.2739 -2.1572 -0.1035

Cobb-Douglas 0.8194 0.0586 -1.6473 5.0875
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Table 7. Percentage Increase in Crop Variability for 2090 Year by Scenario

Canadian Climate Change Scenario Hadley Climate Change Scenario

Corn Soybeans Cotton Wheat Sorghum Corn Soybeans Cotton Wheat Sorghum

CA -12.84 -11.81

CO 34.43 -10.60

GA -10.35 -6.92

IL -25.71 21.28 -24.73 18.90

IN -8.73 8.06 -26.31 20.30

IA -36.89 33.14 -26.83 20.90

KS -14.39 -0.75 -18.16 3.38

LA -13.03 -7.97

MN 4.01 10.60

MT 32.86 -6.36

MS -13.92 -7.73

NE 15.30 -4.74 48.22 -16.15 -15.05 11.65 -5.57 -1.72

OK 16.34 -9.27 -17.07 2.83

SD -21.75 -6.94 -24.37 -19.10

TX -13.21 27.86 -10.83 -8.05 2.26 -3.10
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