
ENERGYPLUS™

COPYRIGHT © 1998-2009 THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS AND THE REGENTS OF THE
UNIVERSITY OF CALIFORNIA THROUGH THE ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY.
ALL RIGHTS RESERVED. NO PART OF THIS MATERIAL MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY
ANY MEANS WITHOUT THE PRIOR WRITTEN PERMISSION OF THE UNIVERSITY OF ILLINOIS OR THE ERNEST ORLANDO
LAWRENCE BERKELEY NATIONAL LABORATORY.
ENERGYPLUS IS A TRADEMARK OF THE US DEPARTMENT OF ENERGY.

Guide for Module Developers

Everything You Need to Know about Developing
for EnergyPlus
(but were hesitant to ask)

Date: March 24, 2009

TABLE OF CONTENTS

3/24/09 I

Introduction ..1

Modules in EnergyPlus..2

What is a module anyway? ... 2

Program Modules.. 2

Data Only Modules.. 2

What is a module developer?.. 2

Input Concepts...3

Input Data Dictionary... 3

Data Dictionary Naming Conventions ... 5

Class (Object) Names ... 5

Field Names .. 5

Choice Names... 6

Input Data File... 6

Input Considerations ... 8

Advanced Input Considerations .. 10

DataSets ... 11

Module Structure..12

Module Outline .. 12

Module Example ... 14

How it fits together ...40

Top Level Calling Tree.. 40

High Level HVAC Calling Tree (schematic – not all routines are shown) 40

Air System Calling Tree (schematic – not all routines are shown).................................. 41

Plant Supply Calling Tree (schematic – not all routines are shown) 42

Zone Equipment Calling Tree (schematic – not all routines are shown)......................... 42

Inserting the New Module into the Program.. 43

TABLE OF CONTENTS

3/24/09 II

Changing existing code... 46

Considerations for Legacy Codes ... 46

Code Readability vs. Speed of Execution ... 46

Speed of Execution ... 47

EnergyPlus Services..49

Utility Routines/Functions.. 49

Table 1. Table of Utility Functions ... 49

Input Services ... 50

InputProcessor .. 51

GetNumObjectsFound .. 51

GetObjectItem ... 51

GetObjectDefMaxArgs .. 52

Extensible input techniques.. 52

GetObjectItemNum ... 52

FindItemInList.. 52

SameString ... 53

VerifyName ... 53

RangeCheck ... 53

MakeUPPERCase... 54

Object Services ... 55

Branch & Node Checking and Services .. 59

BranchInputManager... 59

NumBranchesInBranchList ... 59

GetBranchList ... 60

GetBranchData ... 60

NodeInputManager ... 61

TABLE OF CONTENTS

3/24/09 III

Node Information Arguments .. 61

NodeFluidType ... 61

NodeObjectType... 62

NodeObjectName... 62

NodeConnectionType... 62

NodeFluidStream.. 63

ObjectIsParent.. 64

GetOnlySingleNode .. 65

GetNodeNums .. 65

Unique Node Checking ... 66

InitUniqueNodeCheck ... 66

CheckUniqueNodes .. 66

EndUniqueNodeCheck.. 67

SetUpCompSets and TestCompSet ... 67

SetUpCompSets... 68

TestCompSet.. 70

CheckOutAirNodeNumber .. 71

CheckAndAddAirNodeNumber ... 72

Schedule Services .. 72

GetScheduleIndex... 73

GetDayScheduleIndex .. 74

CheckScheduleValueMinMax ... 74

CheckScheduleValue.. 74

GetScheduleMinValue .. 75

GetScheduleMaxValue ... 75

GetCurrentScheduleValue .. 75

TABLE OF CONTENTS

3/24/09 IV

GetScheduleValuesForDay... 76

GetSingleDayScheduleValues .. 76

LookUpScheduleValue.. 76

Data Services.. 76

Global variable: MetersHaveBeenInitialized ... 76

GetMeterIndex .. 77

GetVariableKeyCountAndType ... 77

GetVariableKeys ... 77

GetCurrentMeterValue .. 78

GetInstantMeterValue ... 78

GetInternalVariableValue .. 78

Other Useful Utilities ... 78

GetNewUnitNumber .. 78

FindUnitNumber .. 79

FindNumberinList .. 79

ValidateComponent... 79

CheckComponent ... 80

CreateSysTimeIntervalString .. 80

TrimSigDigits... 81

RoundSigDigits ... 81

SafeDivide... 82

Error Messages... 82

Recurring Error Handling .. 84

Display Strings .. 85

Performance Curve Services .. 85

GetCurveIndex .. 86

TABLE OF CONTENTS

3/24/09 V

GetCurveCheck... 86

GetCurveType... 86

CurveValue ... 87

Fluid Property Services ... 87

Using Fluid Property Routines in EnergyPlus Modules... 87

Fluid Properties Functions for Refrigerant Class Fluids.. 88

Reference Data Set (RDS) Values for Refrigerant Class Fluids 88

Table 2. Regions for Fluid Properties .. 89

Fluid Property Data and Expanding the Refrigerants Available to
EnergyPlus.. 89

Fluid Properties Functions for Glycol Class Fluids.. 92

Default Values for Glycol Class Fluids .. 92

Fluid Property Data and Expanding the Glycols Available to EnergyPlus................. 93

Weather Services.. 95

Global Data: Flags and Parameters.. 95

Parameters.. 95

Simulation Flags.. 96

Psychrometric services ... 97

PsyRhoAirFnPbTdbW (Pb,Tdb,W,calledfrom) .. 98

PsyCpAirFnWTdb (W,Tdb,calledfrom).. 98

PsyHfgAirFnWTdb (W,Tdb,calledfrom)... 98

PsyHgAirFnWTdb (W,Tdb,calledfrom).. 98

PsyTdpFnTdbTwbPb (Tdb,Twb,Pb,calledfrom) .. 98

PsyTdpFnWPb (W,Pb,calledfrom) .. 98

PsyHFnTdbW (Tdb,W,calledfrom) .. 98

PsyHFnTdbRhPb (Tdb,Rh,Pb,calledfrom) .. 98

PsyTdbFnHW (H,W,calledfrom)... 99

TABLE OF CONTENTS

3/24/09 VI

PsyRhovFnTdbRh (Tdb,Rh,calledfrom) .. 99

PsyRhovFnTdbWP (Tdb,W,Pb,calledfrom)... 99

PsyRhFnTdbRhov (Tdb,Rhov,calledfrom) .. 99

PsyRhFnTdbWPb (Tdb,W,Pb,calledfrom) .. 99

PsyTwbFnTdbWPb (Tdb,W,Pb,calledfrom) .. 99

PsyVFnTdbWPb (Tdb,W,Pb,calledfrom)... 99

PsyWFnTdpPb (Tdp,Pb,calledfrom) ... 99

PsyWFnTdbH (Tdb,H,calledfrom) ... 99

PsyWFnTdbTwbPb (Tdb,Twb,Pb,calledfrom) ... 99

PsyWFnTdbRhPb (Tdb,Rh,Pb,calledfrom) ... 100

PsyPsatFnTemp (T,calledfrom) .. 100

PsyTsatFnHPb (H,Pb,calledfrom) .. 100

PsyTsatFnPb (P,calledfrom) ... 100

CPCW (Temp,calledfrom) ... 100

CPHW (Temp,calledfrom) ... 100

CVHW (Temp,calledfrom) ... 100

RhoH2O (Temp,calledfrom) .. 100

Tabular Output Utilities.. 100

WriteReportHeaders(reportName,objectName,averageOrSum)............................. 100

WriteSubtitle(subtitle) .. 101

WriteTable(body,rowLabels,columnLabels,widthColumn) 101

HVAC Network...102

Branches, Connectors, and Nodes ... 102

Figure 1. HVAC Input Diagram.. 102

Nodes in the simulation... 105

Getting Nodes ... 107

TABLE OF CONTENTS

3/24/09 VII

Data Flow in an HVAC Component Module.. 107

Node Mass Flow Variables ... 110

Output ..112

How Do I Output My Variables?.. 112

Table 3. SetupOutputVariable Arguments... 113

Output Variable Dos and Don’ts.. 114

What Variables Should I Output?.. 114

Output Variable Naming Conventions... 114

What are Meters?.. 115

How Do I Create A Meter? .. 115

Rules for Meter Variables.. 115

Running/Testing EnergyPlus – for Developers...117

DDOnly: Design Days Only .. 118

FullAnnualRun: Full Annual simulation... 118

NoWeatherFile: Do not use weatherfile even if indicated................................... 118

ReverseDD: Reverse Design Days during run ... 118

MinReportFrequency: Set minimum reporting frequency for outputs 118

Caution: Environment Variables ... 119

Air Loop Simulation ... 119

TRACK_AIRLOOP: Runtime performance tracker for air loop
simulation ... 119

TRACE_AIRLOOP: Air loop simulation tracer.. 119

TRACE_HVACCONTROLLER: Individual HVAC controller tracer..................... 119

Quick Procedure Outline For Making Code Changes to EnergyPlus...120

Important Rules for Module Developers..122

Appendix A. DataGlobals and DataEnvironments Modules..123

DataGlobals .. 123

TABLE OF CONTENTS

3/24/09 VIII

DataEnvironment .. 123

Appendix B. Submissions and Check-ins ..124

Appendix C. Documentation Specifics ...128

Appendix D. Module, Subroutine, Function Templates ...130

Appendix E. Test File Documentation..138

Appendix F. New or Changed Proposal Feature Template..139

Appendix G. ...140

GUIDE FOR MODULE DEVELOPERS 0BINTRODUCTION

3/24/09 1

Introduction

EnergyPlus is a modular simulation program designed to model the
performance, energy consumption and pollutant production of a building.
EnergyPlus models energy transport through the building envelope, heat
gains within the building, and all the HVAC equipment used to heat and cool
the building. The program is designed for ease of development. The concept
is that many people will contribute to EnergyPlus and the program structure
has been designed to make this possible.
EnergyPlus is written entirely in Fortran 90 with updates to Fortran 95 – all of
EnergyPlus code should be at minimum Fortran 90 compliant and can accept
the newer features of Fortran 95 as well. Fortran 90/95 is a powerful modern
programming language with many features. Using Fortran 90/95 it is possible
to program in many different styles. The EnergyPlus team has chosen a
particular style that emphasizes code extensibility (ease of development),
understandability, maintainability, and robustness. Less emphasis was placed
on program speed and size. Fortran 90/95 has all the features that permit the
creation of readable, maintainable, and extensible code. In particular, the
ability to create data and program modules with various levels of data hiding
allows EnergyPlus to be built out of semi-independent modules. This allows a
new EnergyPlus developer to concentrate on programming a single
component without having to learn the entire program and data structure.
The EnergyPlus programming style is described in the EnergyPlus
Programming Standard. The Programming Standard should be consulted for
details such as variable and subroutine naming conventions. In this
document, we will describe the steps a developer must follow to create a new
EnergyPlus component model. In particular, we will assume the developer
wishes to simulate an HVAC component that cannot yet be modeled by
EnergyPlus.

GUIDE FOR MODULE DEVELOPERS 1BMODULES IN ENERGYPLUS

3/24/09 2

Modules in EnergyPlus

What is a module anyway?

Program Modules

A module is a Fortran 90/95 programming construct that can be used in
various ways. In EnergyPlus, its primary use is to segment a rather large
program into smaller, more manageable pieces. Each module is a separate
package of source code stored on a separate file. The entire collection of
modules, when compiled and linked, forms the executable code of
EnergyPlus.
Each module contains source code for closely related data structures and
procedures. For instance, the WeatherManager module contains all the
weather handling routines in EnergyPlus. The module is contained in the file
WeatherManager.f90. Another example is PlantPumps. This module
contains all the code to simulate pumps in EnergyPlus. It is contained in file
PlantPumps.f90.
Of course dividing a program into modules can be done in various ways. We
have attempted to create modules that are as self-contained as possible. The
philosophy that has been used in creating EnergyPlus is contained in the
Programming Standard reference document. Logically, the modules in
EnergyPlus form an inverted tree structure. At the top is EnergyPlus. Just
below that are ProcessInput and ManageSimulation. At the bottom are the
modules such as HVACDamperComponent that model the actual HVAC
components.

Data Only Modules

EnergyPlus also uses modules that contain only data. These modules form
one of the primary ways data is structured and shared in EnergyPlus. An
example is the DataEnvironment module. Many parts of the program need
access to the outdoor conditions. All of that data is encapsulated in
DataEnvironment. Modules that need this data obtain access through a
Fortran USE statement. Without such access, modules cannot use or change
this data.

What is a module developer?

A module developer is someone who is going to add to the simulation
capabilities of EnergyPlus. Someone, for instance, who is interested in
adding code to model a new type of HVAC equipment. The most
straightforward way of doing this is to create a new program module – hence
the term “module developer”. Another kind of module developer would be
the adaptation of an existing “legacy” code to EnergyPlus.
In EnergyPlus, the first step in creating a new component model is to define
the input. So, before we discuss modules in more detail, we must first
describe the EnergyPlus input.

GUIDE FOR MODULE DEVELOPERS 2BINPUT CONCEPTS

3/24/09 3

Input Concepts

In EnergyPlus, input and output are accomplished by means of ASCII (text)
files. On the input side, there are two files:
1) the Input Data Dictionary (IDD) that describes the types (classes) of input objects

and the data associated with each object;
2) the Input Data File (IDF) that contains all the data for a particular simulation.
Each EnergyPlus module is responsible for getting its own input. Of course,
EnergyPlus provides services to the module that make this quite easy. The
first task of a module developer is to design and insert a new entry into the
Input Data Dictionary.

Input Data Dictionary

An entry in the IDD consists of comma-separated text terminated by a
semicolon. For instance:
Coil:Heating:Water,
 \min-fields 14
 A1 , \field Name
 \required-field
 \type alpha
 \reference HeatingCoilName
 \reference HeatingCoilsWater
 A2 , \field Availability Schedule Name
 \type object-list
 \object-list ScheduleNames
 N1 , \field U-Factor Times Area Value
 \units W/K
 \autosizable
 \default Autosize
 N2 , \field Maximum Water Flow Rate
 \units m3/s
 \autosizable
 \ip-units gal/min
 \default Autosize
 A3 , \field Water Inlet Node Name
 \required-field
 A4 , \field Water Outlet Node Name
 \required-field
 A5 , \field Air Inlet Node Name
 \required-field
 A6 , \field Air Outlet Node Name
 \required-field
 A7 , \field Performance Input Method
 \type Choice
 \key UFactorTimesAreaAndDesignWaterFlowRate
 \key NominalCapacity
 \default UFactorTimesAreaAndDesignWaterFlowRate
 N3 , \field Nominal Capacity
 \type real
 \units W
 \autosizable
 \minimum 0
 \default Autosize
 N4 , \field Design Inlet Water Temperature
 \units C

GUIDE FOR MODULE DEVELOPERS 2BINPUT CONCEPTS

3/24/09 4

 \type real
 \default 82.2
 N5, \field Design Inlet Air Temperature
 \units C
 \type real
 \default 16.6
 N6, \field Design Outlet Water Temperature
 \units C
 \type real
 \default 71.1
 N7; \field Design Outlet Air Temperature
 \units C
 \type real
 \default 32.2

This entry defines a simple water-heating coil and specifies all of the input
data needed to model it. The following rules apply.

 The first element Coil:Heating:Water is the class name (also called a
keyword or key). This class name must be unique in the IDD. The
maximum length for the class name is 100 characters. Embedded
spaces are allowed and are significant.

 In most cases, one should have fields following the object name. An
object name by itself (terminated with a semicolon) is a “section” – there
may be uses for sections in input but the “Getting” of input is not
hierarchical – one typically gets all objects of one type and then all
objects of the next type.

 In most cases, the second field of an object should be an “alpha” and the
field name should contain the word “name”. (This will allow for certain
validations later on.)

 Commas separate fields. They always act as separators – thus there is
no way to include a comma in a class name or as part of a data field.

 Similarly, semicolons are terminators – a semicolon is always interpreted
as the end of an EnergyPlus “sentence”. So, avoid embedded semicolons
in class names or data fields.

 Blank lines are allowed.
 Each line can be up to 500 characters in length.
 The comment character is an exclamation or a backslash. Anything on a

line after an “!” or a “\” is ignored during EnergyPlus input.
The only significant syntax elements are the commas, the semicolon, the N’s
(denoting numeric data), and the A’s (denoting alphanumeric data) and the
exclamation and backslash. Everything else including blanks, end of lines, or
even text that is not a comma, semicolon, N, or A is ignored. There are
several style conventions in use however.

 Sequence numbers are appended to the letters A or N denoting each
data element. Thus, A2 is the second alphanumeric data item and N3 is
the third numeric data item.

 The class name contains a naming convention: type:subtype:subsubtype.
For further naming conventions, please see the next section of this
document.

GUIDE FOR MODULE DEVELOPERS 2BINPUT CONCEPTS

3/24/09 5

 Backslashes denote specially formatted comments. These comments
provide information about the input, such as a description of the item,
units, limits, mins & maxes, etc., in a form that can be processed by an
input editor or interface. A complete description of the backslash
comment format is given at the start of the IDD file and in the Guide for
Interface Developers. While these are “comments”, they are quite
important and allow the InputProcessor module to do some error
checking for you. They are also used by the IDFEditor that many users
continue to use and by interface developers in understanding EnergyPlus.

 \default – the number (N fields) or phrase (A fields) after this special field will
be filled for any input file that has a blank in that field.

 \minimum or \minimum> -- the number following this special field will be
automatically checked during input

 \maximum or \maximum< -- the number following this special field will be
automatically checked during input

 \extensible:# – allows you to structure your GetInput routine so that the
object arguments can be expanded (you include the number of fields in the
“extension” and the Input Processor can automatically extend IDD
definitions) – you will still need to determine how many maximum arguments
are in the object.

 \type integer – (or real or alpha) – this field has gained increased
importance after a user kept hitting an internal maximum detected by the
program and kept increasing their input number until it overflowed the
system’s integer size. Until all types are shown on numeric fields it will be
hard for the InputProcessor to provide proper error detection.

Overall, the IDD file has very little structure. Generally, a new entry should
be placed next to entries describing similar components. Coil:Heating:Water,
for instance, is grouped with entries describing other water coils.
Summary
One of the early tasks for a module developer is to create a new entry in the
Input Data Dictionary. This entry defines the data needed to model the new
component.

Data Dictionary Naming Conventions

Class (Object) Names

Class names shall be written in camel case where words are joined together
without spaces and each word is capitalized. The colon shall be used to
delimit hierarchy moving from general to specific. Natural language
terminology shall be used when possible for each member separated by
colons.
Example: ZoneHVAC:PackagedTerminalHeatPump

Field Names

Field names shall be written in title case where every major word is
capitalized (exceptions: "a", "the", "for", etc.) with spaces separating words.
Field names shall be written using natural language terminology but should
be relatively concise (no unnecessary abbreviations or acronyms). If the field
is for the name of this object, the field name shall simply be "Name" to

GUIDE FOR MODULE DEVELOPERS 2BINPUT CONCEPTS

3/24/09 6

eliminate redundancy. The nature of an alpha field shall be explicit, for
instance, "Availability Schedule Name" instead of merely "Availability
Schedule". Generally, the object is not also included as the field name.
Example: Availability Schedule Name

When object names/types are included as part of the input, then the field
name should contain “Object Type”:
Example: Zone Equipment 1 Object Type

Choice Names

When field choices list object references, the field choices shall list the
class/object type name the same as its class definition in the IDD. When field
choices list other key words, the field choice names shall be written in camel
case where words are joined together without spaces and each word is
capitalized. Field choice names shall be written using natural language
terminology but should be relatively concise (no unnecessary abbreviations
or acronyms) and avoid overly lengthy key words. Field choice names shall
only use alphanumeric characters with the addition of the forward slash ("/")
character as a concise alternative to the word "per"; colons shall be allowed if
the field choices are class names.

 A2 , \field Period Selection
 \retaincase
 \note Following is a list of all possible types of Extreme and Typical periods
that
 \note might be identified in the Weather File. Not all possible types are
available
 \note for all weather files.
 \type choice
 \key SummerExtreme
 \key SummerTypical
 \key WinterExtreme
 \key WinterTypical
 \key AutumnTypical
 \key SpringTypical
 \key WetSeason
 \key DrySeason
 \key NoDrySeason
 \key NoWetSeason
 \key TropicalHot
 \key TropicalCold

Input Data File

The Input Data File (IDF) is the file containing the data for an actual
simulation. This file is also a text (ASCII) file with a syntax “filling in the
blanks” of the definitions in the IDD. A portion of an IDF with input data for
the hot water coil defined in the IDD example looks like:

GUIDE FOR MODULE DEVELOPERS 2BINPUT CONCEPTS

3/24/09 7

 Coil:Heating:Water,
 SPACE1-1 Zone Coil, !- Name
 ReheatCoilAvailSched, !- Availability Schedule Name
 autosize, !- U-Factor Times Area Value {W/K}
 autosize, !- Maximum Water Flow Rate {m3/s}
 SPACE1-1 Zone Coil Water In Node, !- Water Inlet Node Name
 SPACE1-1 Zone Coil Water Out Node, !- Water Outlet Node Name
 SPACE1-1 Zone Coil Air In Node, !- Air Inlet Node Name
 SPACE1-1 In Node, !- Air Outlet Node Name
 UFactorTimesAreaAndDesignWaterFlowRate, !- Performance Input Method
 autosize, !- Nominal Capacity {W}
 82.2, !- Design Inlet Water Temperature {C}
 16.6, !- Design Inlet Air Temperature {C}
 71.1, !- Design Outlet Water Temperature {C}
 32.2; !- Design Outlet Air Temperature {C}

 Coil:Heating:Water,
 SPACE2-1 Zone Coil, !- Name
 ReheatCoilAvailSched, !- Availability Schedule Name
 autosize, !- U-Factor Times Area Value {W/K}
 autosize, !- Maximum Water Flow Rate {m3/s}
 SPACE2-1 Zone Coil Water In Node, !- Water Inlet Node Name
 SPACE2-1 Zone Coil Water Out Node, !- Water Outlet Node Name
 SPACE2-1 Zone Coil Air In Node, !- Air Inlet Node Name
 SPACE2-1 In Node, !- Air Outlet Node Name
 UFactorTimesAreaAndDesignWaterFlowRate, !- Performance Input Method
 autosize, !- Nominal Capacity {W}
 82.2, !- Design Inlet Water Temperature {C}
 16.6, !- Design Inlet Air Temperature {C}
 71.1, !- Design Outlet Water Temperature {C}
 32.2; !- Design Outlet Air Temperature {C}

 Coil:Heating:Water,
 SPACE3-1 Zone Coil, !- Name
 ReheatCoilAvailSched, !- Availability Schedule Name
 autosize, !- U-Factor Times Area Value {W/K}
 autosize, !- Maximum Water Flow Rate {m3/s}
 SPACE3-1 Zone Coil Water In Node, !- Water Inlet Node Name
 SPACE3-1 Zone Coil Water Out Node, !- Water Outlet Node Name
 SPACE3-1 Zone Coil Air In Node, !- Air Inlet Node Name
 SPACE3-1 In Node, !- Air Outlet Node Name
 UFactorTimesAreaAndDesignWaterFlowRate, !- Performance Input Method
 autosize, !- Nominal Capacity {W}
 82.2, !- Design Inlet Water Temperature {C}
 16.6, !- Design Inlet Air Temperature {C}
 71.1, !- Design Outlet Water Temperature {C}
 32.2; !- Design Outlet Air Temperature {C}

Each coil entry begins with the class name (keyword) specifying the type of
coil. Next is the coil name – a user (or interface) created name that is unique
within the given class. Generally in EnergyPlus, objects within a class are
distinguished by unique names. The object name is usually the first data
element following the class name. Any alphanumeric data item in the IDF
can be up to 100 characters long. Any characters past 100 are truncated
(lost). After the object name comes the real data. If we look at the IDD we
see that the first data item after the object name is expected to be an
alphanumeric – a schedule name. In the IDF, we see the corresponding field
is “ReheatCoilAvailSched”, the object name of a schedule elsewhere in the
IDF file. In EnergyPlus, all references to other data entries (objects) are via

GUIDE FOR MODULE DEVELOPERS 2BINPUT CONCEPTS

3/24/09 8

object names. The next two data items are numeric: the coil UA and the
maximum water mass flow rate. The final four items are again alphanumeric
– the names of the coil inlet and outlet nodes. Nodes are used in EnergyPlus
to connect HVAC components together into HVAC systems.
The example illustrates the use of comments to create clear input. The IDF is
intended to be human readable, largely for development and debugging
purposes. Of course, most users will never see an IDF – they will interact
with EnergyPlus through a Graphical User Interface (GUI), which will write the
IDF for them. However, a module developer is a special kind of user. The
module developer will need to create a portion of an IDF by hand very early in
the development process in order to begin testing the module under
development. Thus, it is important to understand the IDF syntax and to use
comments to create readable test IDF files.
Summary
One of the early tasks of a module developer is to create input (most likely by
hand) for the new component and to insert it into an existing IDF file in order
to test the new component model. The IDF syntax resembles the syntax for
the IDD. The data follows the IDD class description. Comments should be
used to make the IDF readable.

Input Considerations

The IDD/IDF concept allows the module developer much flexibility. Along
with this flexibility comes a responsibility to the overall development of
EnergyPlus. Developers must take care not to obstruct other developers with
their additions or changes. Major changes in the IDD require collaboration
among the developers (both module and interface).
In many cases, the developer may be creating a new model – a new HVAC
component, for instance. Then the most straightforward approach is to create
a new object class in the IDD with its own unique, self-contained input. This
will seldom impact other developers.
In some cases, the developer may be adding a calculation within an existing
module or for an existing class of objects. This calculation may require new or
different input fields. Then the developer has a number of choices. This
section will present some ideas for adding to the IDD that will minimize
impact to other developers.
For example, consider the implementation of Other Side Coefficients (OSC)
in the IDD. Other side coefficients are a simplification for the surface heat
balance and were used mostly in BLAST 2.0 before we had interzone
surfaces. We have carried this forward into EnergyPlus for those users that
understand and can use it. We’ll use it as an example of approaches to
adding data items to the IDD. Moreover, we’ll try to give some hints on which
approaches might be used for future additions.
So, you're adding something to EnergyPlus and it is part of an existing
module or object class. What do you do with your required inputs to your
model? There are at least four options:

 Embed your values in a current object class definition.
 Put something in the current definition that will trigger a "GetInput" for your

values.

GUIDE FOR MODULE DEVELOPERS 2BINPUT CONCEPTS

3/24/09 9

 Put something in the current definition that will signal a "special" case and embed
a name (of your item) in the definition (this adds 1 or 2 properties to the object).

 Just get your input and have each of those inputs reference a named object.
For example, using the OSC option in surfaces, in the beta 2 version of
EnergyPlus we had
 A8 , \field Exterior environment
 \type alpha
 \note <for Interzone Surface:Adjacent surface name>
 \note For non-interzone surfaces enter:
 \note ExteriorEnvironment, Ground, or OtherSideCoeff
 \note OSC won't use CTFs

 N24, \field User selected Constant Temperature
 N25, \field Coefficient modifying the user selected constant
 temperature
 N26, \field Coefficient modifying the external dry bulb temperature
 N27, \field Coefficient modifying the ground temperature
 N28, \field Combined convective/radiative film coefficient
 \note if=0, use other coefficients
 N29, \field Coefficient modifying the wind speed term (s/m)
 N30, \field Coefficient modifying the zone air temperature part of
 the equation

1) We have done option 1: embed the values in the input. (We have also
embedded these values in each and every surface derived type (internal data
structure) but that can be discussed elsewhere).
When to use: It makes sense to embed these values when each and every
object (SURFACE) needs these values (e.g. we need to specify Vertices for
Every Surface -- so these clearly should be embedded).
After beta 2, the definition of Surfaces was changed. Obviously option 1 was
not a good choice for the OSC data: the data would be rarely used. Our other
options were:
2) Obviously the ExteriorEnvironment field will remain (but its name was
changed to Outside Face Environment).
However, we do not want to embed the values for OtherSideCoef in the
Surface items. So, if the ExteriorEnvironment continues to reference
OtherSideCoef, we can easily trigger a "GetInput" for them. An additional
object class would be necessary for this case.
OtherSideCoef, A1, \field name of OtherSideCoef,
 A2, \field SurfaceName (reference to surface using OSC)

When to use: This option can be used for many cases. The same object
definition will work for option 4 below. Obviously, if there is not a convenient
trigger in SURFACE but you want to add a feature, this would let you do it
without embedding it in the Surface Definition. If there is a trigger, such as
exists with the ExteriorEnvironment, the A2 field might not be needed. This
approach would become a bit cumbersome if you expected there to be a lot
of these or if there were a one-to-many relationship (i.e. a single set of OSCs
could be used for many surfaces). Nevertheless, the approach provides a
convenient "data check"/cross reference that can be validated inside the
code.

GUIDE FOR MODULE DEVELOPERS 2BINPUT CONCEPTS

3/24/09 10

3) We could also have the SURFACE definition reference an OSC name (in
this instance).
So, we'd add a field to the Surface that would be the name in the
OtherSideCoef object above. Then, the OtherSideCoef objects wouldn’t
need a Surface Name. This is the most straightforward approach: including
data in one object by referencing another and it was the approach chosen for
the redefined Surface class.
When to use: when there is a set of parameters that would be used
extensively, then this would provide a name for those. If hand editing, then
you only would need to change one set of these parameters rather than
having to go through many. Of course, the OtherSideCoef object wouldn’t
also have to have the true numbers but could reference yet a third named
object...... (starting to get messy).
4) We could have the OtherSideCoef object as above and just "get" it as a
matter of course. (e.g., in the case where we don’t have a convenient trigger
such as ExteriorEnvironment).
When to use: Note that the same structure for 2 works here too. It's just not
triggered (to get the input) by a value in the other object (SURFACE).
Summary
There are several approaches to adding items to the IDD. Developers need
to consider impacts to other developers and users early in the implementation
planning.

Advanced Input Considerations

Creating a new module/adding a new feature to EnergyPlus is a good
accomplishment. However, it is likely that future additions will be done and
will impact any objects created. In this regard, we ask that module
developers take a longer view than “just getting my thing” going.
For example, in the “Fan Coil” object, prior to the V1.2 release, the object
definition specified a cooilng coil name. But it did not specify a cooling coil
type. Rather than restrict coil names to be unique over all coils (which
becomes difficult as more coil types are added), the developers only have
unique names within a type. Thus, it would become difficult for the Fan Coil
module to get the proper link to the correct cooling coil.
In the V1.2 release, a cooling coil type was added to the object. But the
resulting object is less readable now. For upwards compatibility, the coil type
was placed at the end of the object whereas the coil name is in the middle. If
this had been thought of earlier, then the coil type and coil name could be in
succeeding fields in the object definition.
The “standard” for describing such fields would be to list the “coil type” and
then the “coil name” fields, such as in the
UNITARYSYSTEM:HEATPUMP:AIRTOAIR object.
The point – try to envision future changes in making up objects, even if you
think “that will never happen”. You do not have to try to address every future
case, only the most likely.

GUIDE FOR MODULE DEVELOPERS 2BINPUT CONCEPTS

3/24/09 11

FAN COIL UNIT:4 PIPE,
 \min-fields 21
 A1 , \field name of fan coil unit
 \required-field
 A2 , \field availability schedule
 \required-field
 \type object-list
 \object-list ScheduleNames
 N1 , \field maximum air flow rate
 \required-field
 \autosizable
 \units m3/s
 N2 , \field maximum outside air flow rate
 \required-field
 \autosizable
 \units m3/s
 A3 , \field air inlet node
 \required-field
 <snip>
 A11, \field cooling coil name
 \required-field
 N3 , \field maximum cold water flow
 \required-field
 \autosizable
 \units m3/s
 \ip-units gal/min
 <snip>
 A13; \field Cooling coil type
 \required-field
 \type choice
 \key COIL:Water:SimpleCooling
 \key COIL:Water:DetailedFlatCooling
 \key COIL:Water:CoolingHeatExchangerAssisted

DataSets

Akin to the libraries of other programs, EnergyPlus uses data sets. Data sets
are similar to libraries but many items are contained in a single file (usually
input file format or sometimes macro format). Developers are encouraged,
as appropriate, to submit data sets along with new features. Some of the
existing data sets include:

 Materials properties
 Construction elements (layers of materials)
 Composite construction definitions (equivalent constructions for complex

elements)
 Solar Collector parameters
 Economic Tariffs
 Design Day definitions
 Location definitions
 Standard report definitions

GUIDE FOR MODULE DEVELOPERS 3BMODULE STRUCTURE

3/24/09 12

Module Structure

Let us assume that the novice EnergyPlus developer wishes to model a new
HVAC component called NewHVACComponent. Right at the start there is a
choice to make: whether to insert the new model into an existing module or to
create an entirely new EnergyPlus component simulation model. Creating a
new module is the easier option to explain, implement and test. We will
discuss this option in this document. The discussion should also impart
enough information to allow a new developer to insert a model into an
existing EnergyPlus module if that option is chosen.
If you intend that the module will become part of the distributed EnergyPlus,
follow the guidance in the Programming Standard document. Even if you
don’t intend that your module will become part of EnergyPlus – but you might
want some advice from one of the core development team, follow the
guidance in the Programming Standard.

Module Outline

The developer will create a new file NewHVACComponent.f90. The file shall
contain the following elements:

Note – even if your component does not need some of the suggested modules, you should
include “stub” routines for these.

MODULE NewHVACComponent
Documentation: Fortran comments describing and documenting the module.
Included are sections showing module author, module creation date, date
modified and modification author. Each routine and/or function should also follow
the documentation guidelines as shown in the templates.
USE Statements: Fortran statements naming other modules that this module can
access, either for data or for routines.
Module Parameters: If you will be implementing more than one “type” of
component in the module, it is a good idea to assign numeric parameters to each
type so as to retain readability yet reduce alpha comparisons which are
notoriously slow for most systems. Assign numeric parameters to alphanumeric
fields within a class type (.e.g. object UnitarySystem:HeatPump, field Fan
Placement: “blow through” or “draw through”) when this information is required in
init, calc, update or report subroutines to further reduce alpha comparisons. Use
string comparison only in GetInput subroutines.
Module Data structure Definitions: Using the Fortran TYPE statement define the
data structures needed in the module that will not be available from other
modules. Define all module level variables that will be needed.
Typically, you define your module’s data structure within the module. If this data
must be used by multiple modules, you should define a separate Data module for
the data.
Character strings in structures are not allowed (except for name of object) – any
exceptions must be approved. Schedule names, curve object names, and child
object types MUST all be referenced by an integer.

GUIDE FOR MODULE DEVELOPERS 3BMODULE STRUCTURE

3/24/09 13

For existing code, convert all character string structure variables to integer
parameters and delete the character variable from the structure. Also delete
unused strings rather than converting to integer. Do not use structure variable to
store information used only during GetInput even if you think it could be used in
the future, use local variables instead. Usually won't hurt anything until some
user puts a large number of objects in their input (memory use impact).
Currently, the furnace structure includes many that should not be there.
SuppHeatCoilType is an example of a character string structure variable that is
only used in GetInput and is not needed in the structure. Should have been a
local instead. And CoolingPLFFPLR and HeatingPLFFPLR structure variables
are not even used.
CONTAINS
SUBROUTINE SimNewHVACComponent

This routine selects the individual component being simulated and calls
the other module subroutines that do the real work. This routine is the
only routine in the module that is accessible outside the module
(PUBLIC). All other routines in the module are PRIVATE and are only
callable within the module. This routine is sometimes called the “driver”
routine for the module.

END SUBROUTINE SimNewHVACComponent
SUBROUTINE GetNewHVACComponentInput

This routine uses the “get” routines from the InputProcessor module to
obtain input for NewHVACComponent. The module data arrays are
allocated and the data is moved into the arrays.

END SUBROUTINE GetNewHVACComponentInput
SUBROUTINE InitNewHVACComponent

This routine performs whatever initialization calculations that may be
needed at various points in the simulation. For instance, some
calculations may only need to be done once; some may need to be done
at the start of each simulation weather period; some at the start of each
HVAC simulation time step; and some at the start of each loop solution.
This routine also transfers data from the component inlet nodes to the
component data arrays every time the component is simulated, in
preparation for the actual component simulation.

END SUBROUTINE InitNewHVACComponent
SUBROUTINE SizeNewHVACComponent

This routine can create the sizing options (if applicable) for the
component or be left as a placeholder for later manipulation for sizing
purposes.

END SUBROUTINE SizeNewHVACComponent
SUBROUTINE CalcNewHVACComponent

This routine does the actual calculations to simulate the performance of
the component. Only calculation is done – there is no moving of data
from or to input or output areas. There may be more than one “CALC”
subroutine if more than one component is being modeled within this
module.

END SUBROUTINE CalcNewHVACComponent
SUBROUTINE UpdateNewHVACComponent

This routine moves the results of the “Calc” routine(s) to the component
outlet nodes.

END SUBROUTINE UpdateNewHVACComponent

GUIDE FOR MODULE DEVELOPERS 3BMODULE STRUCTURE

3/24/09 14

SUBROUTINE ReportNewHVACComponent
This routine performs any special calculations that are needed purely for
reporting purposes.

END SUBROUTINE ReportNewHVACComponent
Utility Routines (as appropriate) – in the Fan module we allow outside
modules to access internal fan inlets, outlets, and design volume flow rate.

END MODULE NewHVACComponent

Module Example

This example can be used as a template for new HVAC component modules.
In particular, the commenting structure in the module and within the
subroutines should be followed closely. Of course, there is no perfect
example module – this one is particularly simple. Some others that might be
examined are in files Humidifiers.f90, HVACHeatingCoils.f90 and
PlantChillers.f90. Templates are also available as separate files.
In particular, the module template with routines contains structure and
information pertinent to module development.
Note that in the following module, the “Data IPShortcuts” is not used – rather
those variables are allocated within this module – likely because another
module calls this one during input.

Module Fans
 ! Module containing the fan simulation routines

 ! MODULE INFORMATION:
 ! AUTHOR Richard J. Liesen
 ! DATE WRITTEN April 1998
 ! MODIFIED Shirey, May 2001
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS MODULE:
 ! To encapsulate the data and algorithms required to
 ! manage the Fan System Component

 ! REFERENCES: none

 ! OTHER NOTES: none

 ! USE STATEMENTS:
 ! Use statements for data only modules
USE DataPrecisionGlobals
USE DataLoopNode
USE DataHVACGlobals, ONLY: TurnFansOn, TurnFansOff, Main, Cooling, Heating, Other, &
 OnOffFanPartLoadFraction, SmallAirVolFlow, UnbalExhMassFlow, NightVentOn, cFanTypes, &
 FanType_SimpleConstVolume, FanType_SimpleVAV, FanType_SimpleOnOff, FanType_ZoneExhaust
USE DataGlobals, ONLY: SetupOutputVariable, BeginEnvrnFlag, BeginDayFlag, MaxNameLength, &
 ShowWarningError, ShowFatalError, ShowSevereError, HourofDay, SysSizingCalc, CurrentTime, &
 OutputFileDebug, ShowContinueError, ShowRecurringWarningErrorAtEnd, WarmupFlag, &
 ShowContinueErrorTimeStamp
Use DataEnvironment, ONLY: StdBaroPress, DayofMonth, Month, StdRhoAir
USE Psychrometrics, ONLY:PsyRhoAirFnPbTdbW, PsyTdbFnHW, PsyCpAirFnWTdb

 ! Use statements for access to subroutines in other modules
USE ScheduleManager

IMPLICIT NONE ! Enforce explicit typing of all variables

PRIVATE ! Everything private unless explicitly made public

GUIDE FOR MODULE DEVELOPERS 3BMODULE STRUCTURE

3/24/09 15

 !MODULE PARAMETER DEFINITIONS
 !na

 ! DERIVED TYPE DEFINITIONS
TYPE FanEquipConditions
 CHARACTER(len=MaxNameLength) :: FanName =' ' ! Name of the fan
 CHARACTER(len=MaxNameLength) :: FanType =' ' ! Type of Fan ie. Simple, Vane axial,
Centrifugal, etc.
 CHARACTER(len=MaxNameLength) :: Schedule =' ' ! Fan Operation Schedule
 INTEGER :: FanType_Num =0 ! DataHVACGlobals fan type
 Integer :: SchedPtr =0 ! Pointer to the correct schedule
 REAL(r64) :: InletAirMassFlowRate =0.0 !MassFlow through the Fan being Simulated
[kg/Sec]
 REAL(r64) :: OutletAirMassFlowRate =0.0
 REAL(r64) :: MaxAirFlowRate =0.0 !Max Specified Volume Flow Rate of Fan [m3/sec]
 REAL(r64) :: MinAirFlowRate =0.0 !Min Specified Volume Flow Rate of Fan [m3/sec]
 REAL(r64) :: MaxAirMassFlowRate =0.0 ! Max flow rate of fan in kg/sec
 REAL(r64) :: MinAirMassFlowRate =0.0 ! Min flow rate of fan in kg/sec
 REAL(r64) :: InletAirTemp =0.0
 REAL(r64) :: OutletAirTemp =0.0
 REAL(r64) :: InletAirHumRat =0.0
 REAL(r64) :: OutletAirHumRat =0.0
 REAL(r64) :: InletAirEnthalpy =0.0
 REAL(r64) :: OutletAirEnthalpy =0.0
 REAL(r64) :: FanPower =0.0 !Power of the Fan being Simulated [kW]
 REAL(r64) :: FanEnergy =0.0 !Fan energy in [kJ]
 REAL(r64) :: FanRuntimeFraction =0.0 !Fraction of the timestep that the fan operates
 REAL(r64) :: DeltaTemp =0.0 !Temp Rise across the Fan [C]
 REAL(r64) :: DeltaPress =0.0 !Delta Pressure Across the Fan [N/m2]
 REAL(r64) :: FanEff =0.0 !Fan total efficiency; motor and mechanical
 REAL(r64) :: MotEff =0.0 !Fan motor efficiency
 REAL(r64) :: MotInAirFrac =0.0 !Fraction of motor heat entering air stream
 REAL(r64), Dimension(5):: FanCoeff =0.0 !Fan Part Load Coefficients to match fan
type
 ! Mass Flow Rate Control Variables
 REAL(r64) :: MassFlowRateMaxAvail =0.0
 REAL(r64) :: MassFlowRateMinAvail =0.0
 REAL(r64) :: RhoAirStdInit =0.0
 INTEGER :: InletNodeNum =0
 INTEGER :: OutletNodeNum =0
 INTEGER :: NVPerfNum =0
 INTEGER :: FanPowerRatAtSpeedRatCurveIndex =0
 INTEGER :: FanEffRatioCurveIndex =0
 CHARACTER(len=MaxNameLength) :: EndUseSubcategoryName=' '
 LOGICAL :: OneTimePowerRatioCheck = .TRUE. ! one time flag used for error message
 LOGICAL :: OneTimeEffRatioCheck = .TRUE. ! one time flag used for error message
END TYPE FanEquipConditions

TYPE NightVentPerfData
 CHARACTER(len=MaxNameLength) :: FanName =' ' ! Name of the fan that will use this data
 REAL(r64) :: FanEff =0.0 !Fan total efficiency; motor and mechanical
 REAL(r64) :: DeltaPress =0.0 !Delta Pressure Across the Fan [N/m2]
 REAL(r64) :: MaxAirFlowRate =0.0 !Max Specified Volume Flow Rate of Fan [m3/s]
 REAL(r64) :: MaxAirMassFlowRate =0.0 ! Max flow rate of fan in kg/sec
 REAL(r64) :: MotEff =0.0 !Fan motor efficiency
 REAL(r64) :: MotInAirFrac =0.0 !Fraction of motor heat entering air stream
END TYPE NightVentPerfData

 !MODULE VARIABLE DECLARATIONS:
 INTEGER :: NumFans =0 ! The Number of Fans found in the Input
 INTEGER :: NumNightVentPerf =0 ! number of FAN:NIGHT VENT PERFORMANCE objects found in the input
 TYPE (FanEquipConditions), ALLOCATABLE, DIMENSION(:) :: Fan
 TYPE (NightVentPerfData), ALLOCATABLE, DIMENSION(:) :: NightVentPerf
 LOGICAL :: GetFanInputFlag = .True. ! Flag set to make sure you get input once

! Subroutine Specifications for the Module
 ! Driver/Manager Routines
Public SimulateFanComponents

GUIDE FOR MODULE DEVELOPERS 3BMODULE STRUCTURE

3/24/09 16

 ! Get Input routines for module
PRIVATE GetFanInput

 ! Initialization routines for module
PRIVATE InitFan
PRIVATE SizeFan

 ! Algorithms for the module
Private SimSimpleFan
PRIVATE SimVariableVolumeFan
PRIVATE SimZoneExhaustFan

 ! Update routine to check convergence and update nodes
Private UpdateFan

 ! Reporting routines for module
Private ReportFan

CONTAINS

! MODULE SUBROUTINES:
!***
SUBROUTINE SimulateFanComponents(CompName,FirstHVACIteration)

 ! SUBROUTINE INFORMATION:
 ! AUTHOR Richard Liesen
 ! DATE WRITTEN February 1998
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:
 ! This subroutine manages Fan component simulation.

 ! METHODOLOGY EMPLOYED:
 ! na

 ! REFERENCES:
 ! na

 ! USE STATEMENTS:
 USE InputProcessor, ONLY: FindItemInList

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 CHARACTER(len=*), INTENT(IN) :: CompName
 LOGICAL, INTENT (IN):: FirstHVACIteration

 ! SUBROUTINE PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS

 ! DERIVED TYPE DEFINITIONS
 ! na

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:
 INTEGER :: FanNum ! current fan number
 LOGICAL,SAVE :: GetInputFlag = .True. ! Flag set to make sure you get input once

 ! FLOW:

 ! Obtains and Allocates fan related parameters from input file
 IF (GetInputFlag) THEN !First time subroutine has been entered
 CALL GetFanInput
 GetInputFlag=.false.
 End If

GUIDE FOR MODULE DEVELOPERS 3BMODULE STRUCTURE

3/24/09 17

 ! Find the correct FanNumber with the AirLoop & CompNum from AirLoop Derived Type
 !FanNum = AirLoopEquip(AirLoopNum)%ComponentOfTypeNum(CompNum)
 ! Determine which Fan given the Fan Name
 FanNum = FindItemInList(CompName,Fan%FanName,NumFans)
 IF (FanNum == 0) THEN
 CALL ShowFatalError('Fan not found='//TRIM(CompName))
 ENDIF

 ! With the correct FanNum Initialize
 CALL InitFan(FanNum,FirstHVACIteration) ! Initialize all fan related parameters

 ! Calculate the Correct Fan Model with the current FanNum
 IF (Fan(FanNum)%FanType_Num == FanType_SimpleConstVolume) THEN
 Call SimSimpleFan(FanNum)
 Else IF (Fan(FanNum)%FanType_Num == FanType_SimpleVAV) THEN
 Call SimVariableVolumeFan(FanNum)
 Else If (Fan(FanNum)%FanType_Num == FanType_SimpleOnOff) THEN
 Call SimOnOffFan(FanNum)
 Else If (Fan(FanNum)%FanType_Num == FanType_ZoneExhaust) THEN
 Call SimZoneExhaustFan(FanNum)
 End If
 ! Update the current fan to the outlet nodes
 Call UpdateFan(FanNum)

 ! Report the current fan
 Call ReportFan(FanNum)

 RETURN

END SUBROUTINE SimulateFanComponents

! Get Input Section of the Module
!**
SUBROUTINE GetFanInput

 ! SUBROUTINE INFORMATION:
 ! AUTHOR Richard Liesen
 ! DATE WRITTEN April 1998
 ! MODIFIED Shirey, May 2001
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:
 ! Obtains input data for fans and stores it in fan data structures

 ! METHODOLOGY EMPLOYED:
 ! Uses "Get" routines to read in data.

 ! REFERENCES:
 ! na

 ! USE STATEMENTS:
 USE InputProcessor
 USE NodeInputManager, ONLY: GetOnlySingleNode
 USE CurveManager, ONLY: GetCurveIndex
 USE BranchNodeConnections, ONLY: TestCompSet
! USE DataIPShortCuts

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 ! na

 ! SUBROUTINE PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS
 ! na

 ! DERIVED TYPE DEFINITIONS
 ! na

GUIDE FOR MODULE DEVELOPERS 3BMODULE STRUCTURE

3/24/09 18

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:
 INTEGER :: FanNum ! The fan that you are currently loading input into
 INTEGER :: NumSimpFan ! The number of Simple Const Vol Fans
 INTEGER :: NumVarVolFan ! The number of Simple Variable Vol Fans
 INTEGER :: NumOnOff ! The number of Simple on-off Fans
 INTEGER :: NumZoneExhFan
 INTEGER :: SimpFanNum
 INTEGER :: OnOffFanNum
 INTEGER :: VarVolFanNum
 INTEGER :: ExhFanNum
 INTEGER :: NVPerfNum
 LOGICAL :: NVPerfFanFound
 INTEGER :: NumAlphas
 INTEGER :: NumNums
 INTEGER :: IOSTAT
 LOGICAL :: ErrorsFound = .false. ! If errors detected in input
 LOGICAL :: IsNotOK ! Flag to verify name
 LOGICAL :: IsBlank ! Flag for blank name
 CHARACTER(len=*), PARAMETER :: RoutineName='GetFanInput: ' ! include trailing blank space
 CHARACTER(len=MaxNameLength+40),ALLOCATABLE, DIMENSION(:) :: cAlphaFieldNames
 CHARACTER(len=MaxNameLength+40),ALLOCATABLE, DIMENSION(:) :: cNumericFieldNames
 LOGICAL, ALLOCATABLE, DIMENSION(:) :: lNumericFieldBlanks
 LOGICAL, ALLOCATABLE, DIMENSION(:) :: lAlphaFieldBlanks
 CHARACTER(len=MaxNameLength),ALLOCATABLE, DIMENSION(:) :: cAlphaArgs
 REAL(r64),ALLOCATABLE, DIMENSION(:) :: rNumericArgs
 CHARACTER(len=MaxNameLength) :: cCurrentModuleObject
 INTEGER :: NumParams
 INTEGER :: MaxAlphas
 INTEGER :: MaxNumbers

 ! Flow
 MaxAlphas=0
 MaxNumbers=0
 NumSimpFan = GetNumObjectsFound('Fan:ConstantVolume')
 IF (NumSimpFan > 0) THEN
 CALL GetObjectDefMaxArgs('Fan:ConstantVolume',NumParams,NumAlphas,NumNums)
 MaxAlphas=MAX(MaxAlphas,NumAlphas)
 MaxNumbers=MAX(MaxNumbers,NumNums)
 ENDIF
 NumVarVolFan = GetNumObjectsFound('Fan:VariableVolume')
 IF (NumVarVolFan > 0) THEN
 CALL GetObjectDefMaxArgs('Fan:VariableVolume',NumParams,NumAlphas,NumNums)
 MaxAlphas=MAX(MaxAlphas,NumAlphas)
 MaxNumbers=MAX(MaxNumbers,NumNums)
 ENDIF
 NumOnOff = GetNumObjectsFound('Fan:OnOff')
 IF (NumOnOff > 0) THEN
 CALL GetObjectDefMaxArgs('Fan:OnOff',NumParams,NumAlphas,NumNums)
 MaxAlphas=MAX(MaxAlphas,NumAlphas)
 MaxNumbers=MAX(MaxNumbers,NumNums)
 ENDIF
 NumZoneExhFan = GetNumObjectsFound('Fan:ZoneExhaust')
 IF (NumZoneExhFan > 0) THEN
 CALL GetObjectDefMaxArgs('Fan:ZoneExhaust',NumParams,NumAlphas,NumNums)
 MaxAlphas=MAX(MaxAlphas,NumAlphas)
 MaxNumbers=MAX(MaxNumbers,NumNums)
 ENDIF
 NumNightVentPerf = GetNumObjectsFound('FanPerformance:NightVentilation')
 IF (NumNightVentPerf > 0) THEN
 CALL GetObjectDefMaxArgs('FanPerformance:NightVentilation',NumParams,NumAlphas,NumNums)
 MaxAlphas=MAX(MaxAlphas,NumAlphas)
 MaxNumbers=MAX(MaxNumbers,NumNums)
 ENDIF
 ALLOCATE(cAlphaArgs(MaxAlphas))
 cAlphaArgs=' '
 ALLOCATE(cAlphaFieldNames(MaxAlphas))
 cAlphaFieldNames=' '
 ALLOCATE(lAlphaFieldBlanks(MaxAlphas))
 lAlphaFieldBlanks=.false.
 ALLOCATE(cNumericFieldNames(MaxNumbers))

GUIDE FOR MODULE DEVELOPERS 3BMODULE STRUCTURE

3/24/09 19

 cNumericFieldNames=' '
 ALLOCATE(lNumericFieldBlanks(MaxNumbers))
 lNumericFieldBlanks=.false.
 ALLOCATE(rNumericArgs(MaxNumbers))
 rNumericArgs=0.0

 NumFans = NumSimpFan + NumVarVolFan + NumZoneExhFan+NumOnOff
 IF (NumFans > 0) THEN
 ALLOCATE(Fan(NumFans))
 ENDIF

 DO SimpFanNum = 1, NumSimpFan
 FanNum = SimpFanNum
 cCurrentModuleObject= 'Fan:ConstantVolume'
 CALL GetObjectItem(TRIM(cCurrentModuleObject),SimpFanNum,cAlphaArgs,NumAlphas, &
 rNumericArgs,NumNums,IOSTAT, &
 NumBlank=lNumericFieldBlanks,AlphaBlank=lAlphaFieldBlanks, &
 AlphaFieldNames=cAlphaFieldNames,NumericFieldNames=cNumericFieldNames)
 IsNotOK=.false.
 IsBlank=.false.
 CALL VerifyName(cAlphaArgs(1),Fan%FanName,FanNum-
1,IsNotOK,IsBlank,TRIM(cCurrentModuleObject)//' Name')
 IF (IsNotOK) THEN
 ErrorsFound=.true.
 IF (IsBlank) cAlphaArgs(1)='xxxxx'
 ENDIF
 Fan(FanNum)%FanName = cAlphaArgs(1)
 Fan(FanNum)%FanType = cCurrentModuleObject
 Fan(FanNum)%Schedule = cAlphaArgs(2)
 Fan(FanNum)%SchedPtr = GetScheduleIndex(cAlphaArgs(2))
 IF (Fan(FanNum)%SchedPtr == 0) THEN
 IF (lAlphaFieldBlanks(2)) THEN
 CALL ShowSevereError(RoutineName//TRIM(cCurrentModuleObject)//':
'//TRIM(cAlphaFieldNames(2))// &
 ' is required, missing for
'//TRIM(cAlphaFieldNames(1))//'='//TRIM(cAlphaArgs(1)))
 ELSE
 CALL ShowSevereError(RoutineName//TRIM(cCurrentModuleObject)//': invalid
'//TRIM(cAlphaFieldNames(2))// &
 ' entered ='//TRIM(cAlphaArgs(2))// &
 ' for '//TRIM(cAlphaFieldNames(1))//'='//TRIM(cAlphaArgs(1)))
 END IF
 ErrorsFound=.true.
 END IF
! Fan(FanNum)%Control = 'CONSTVOLUME'
 Fan(FanNum)%FanType_Num=FanType_SimpleConstVolume

 Fan(FanNum)%FanEff = rNumericArgs(1)
 Fan(FanNum)%DeltaPress = rNumericArgs(2)
 Fan(FanNum)%MaxAirFlowRate= rNumericArgs(3)
 IF (Fan(FanNum)%MaxAirFlowRate == 0.0) THEN
 CALL ShowWarningError(TRIM(cCurrentModuleObject)//'="'//TRIM(Fan(FanNum)%FanName)// &
 '" has specified 0.0 max air flow rate. It will not be used in the simulation.')
 ENDIF
 Fan(FanNum)%MotEff = rNumericArgs(4)
 Fan(FanNum)%MotInAirFrac = rNumericArgs(5)
 Fan(FanNum)%MinAirFlowRate= 0.0

 Fan(FanNum)%InletNodeNum = &

GetOnlySingleNode(cAlphaArgs(3),ErrorsFound,TRIM(cCurrentModuleObject),cAlphaArgs(1), &
 NodeType_Air,NodeConnectionType_Inlet,1,ObjectIsNotParent)
 Fan(FanNum)%OutletNodeNum = &

GetOnlySingleNode(cAlphaArgs(4),ErrorsFound,TRIM(cCurrentModuleObject),cAlphaArgs(1), &
 NodeType_Air,NodeConnectionType_Outlet,1,ObjectIsNotParent)

 IF (NumAlphas > 4) THEN
 Fan(FanNum)%EndUseSubcategoryName = cAlphaArgs(5)
 ELSE
 Fan(FanNum)%EndUseSubcategoryName = 'General'

GUIDE FOR MODULE DEVELOPERS 3BMODULE STRUCTURE

3/24/09 20

 END IF

 CALL TestCompSet(TRIM(cCurrentModuleObject),cAlphaArgs(1),cAlphaArgs(3),cAlphaArgs(4),'Air
Nodes')

 END DO ! end Number of Simple FAN Loop

 DO VarVolFanNum = 1, NumVarVolFan
 FanNum = NumSimpFan + VarVolFanNum
 cCurrentModuleObject= 'Fan:VariableVolume'
 CALL GetObjectItem(TRIM(cCurrentModuleObject),VarVolFanNum,cAlphaArgs,NumAlphas, &
 rNumericArgs,NumNums,IOSTAT, &
 NumBlank=lNumericFieldBlanks,AlphaBlank=lAlphaFieldBlanks, &
 AlphaFieldNames=cAlphaFieldNames,NumericFieldNames=cNumericFieldNames)
 IsNotOK=.false.
 IsBlank=.false.
 CALL VerifyName(cAlphaArgs(1),Fan%FanName,FanNum-
1,IsNotOK,IsBlank,TRIM(cCurrentModuleObject)//' Name')
 IF (IsNotOK) THEN
 ErrorsFound=.true.
 IF (IsBlank) cAlphaArgs(1)='xxxxx'
 ENDIF
 Fan(FanNum)%FanName = cAlphaArgs(1)
 Fan(FanNum)%FanType = cCurrentModuleObject
 Fan(FanNum)%Schedule = cAlphaArgs(2)
 Fan(FanNum)%SchedPtr =GetScheduleIndex(cAlphaArgs(2))
 IF (Fan(FanNum)%SchedPtr == 0) THEN
 IF (lAlphaFieldBlanks(2)) THEN
 CALL ShowSevereError(RoutineName//TRIM(cCurrentModuleObject)//':
'//TRIM(cAlphaFieldNames(2))// &
 ' is required, missing for
'//TRIM(cAlphaFieldNames(1))//'='//TRIM(cAlphaArgs(1)))
 ELSE
 CALL ShowSevereError(RoutineName//TRIM(cCurrentModuleObject)//': invalid
'//TRIM(cAlphaFieldNames(2))// &
 ' entered ='//TRIM(cAlphaArgs(2))// &
 ' for '//TRIM(cAlphaFieldNames(1))//'='//TRIM(cAlphaArgs(1)))
 END IF
 ErrorsFound=.true.
 ENDIF
! Fan(FanNum)%Control = 'VARIABLEVOLUME'
 Fan(FanNum)%FanType_Num=FanType_SimpleVAV

 Fan(FanNum)%FanEff = rNumericArgs(1)
 Fan(FanNum)%DeltaPress = rNumericArgs(2)
 Fan(FanNum)%MaxAirFlowRate= rNumericArgs(3)
 IF (Fan(FanNum)%MaxAirFlowRate == 0.0) THEN
 CALL ShowWarningError(TRIM(cCurrentModuleObject)//'="'//TRIM(Fan(FanNum)%FanName)// &
 '" has specified 0.0 max air flow rate. It will not be used in the simulation.')
 ENDIF
 Fan(FanNum)%MinAirFlowRate= rNumericArgs(4)
 Fan(FanNum)%MotEff = rNumericArgs(5)
 Fan(FanNum)%MotInAirFrac = rNumericArgs(6)
 Fan(FanNum)%FanCoeff(1) = rNumericArgs(7)
 Fan(FanNum)%FanCoeff(2) = rNumericArgs(8)
 Fan(FanNum)%FanCoeff(3) = rNumericArgs(9)
 Fan(FanNum)%FanCoeff(4) = rNumericArgs(10)
 Fan(FanNum)%FanCoeff(5) = rNumericArgs(11)
 IF (Fan(FanNum)%FanCoeff(1) == 0.0 .and. Fan(FanNum)%FanCoeff(2) == 0.0 .and. &
 Fan(FanNum)%FanCoeff(3) == 0.0 .and. Fan(FanNum)%FanCoeff(4) == 0.0 .and. &
 Fan(FanNum)%FanCoeff(5) == 0.0) THEN
 CALL ShowWarningError('Fan Coefficients are all zero. No Fan power will be
reported.')
 CALL ShowContinueError('For '//TRIM(cCurrentModuleObject)//',
Fan='//TRIM(cAlphaArgs(1)))
 ENDIF
 Fan(FanNum)%InletNodeNum = &

GetOnlySingleNode(cAlphaArgs(3),ErrorsFound,TRIM(cCurrentModuleObject),cAlphaArgs(1), &

GUIDE FOR MODULE DEVELOPERS 3BMODULE STRUCTURE

3/24/09 21

 NodeType_Air,NodeConnectionType_Inlet,1,ObjectIsNotParent)
 Fan(FanNum)%OutletNodeNum = &

GetOnlySingleNode(cAlphaArgs(4),ErrorsFound,TRIM(cCurrentModuleObject),cAlphaArgs(1), &
 NodeType_Air,NodeConnectionType_Outlet,1,ObjectIsNotParent)

 IF (NumAlphas > 4) THEN
 Fan(FanNum)%EndUseSubcategoryName = cAlphaArgs(5)
 ELSE
 Fan(FanNum)%EndUseSubcategoryName = 'General'
 END IF

 CALL TestCompSet(TRIM(cCurrentModuleObject),cAlphaArgs(1),cAlphaArgs(3),cAlphaArgs(4),'Air
Nodes')

 END DO ! end Number of Variable Volume FAN Loop

 DO ExhFanNum = 1, NumZoneExhFan
 FanNum = NumSimpFan + NumVarVolFan + ExhFanNum
 cCurrentModuleObject= 'Fan:ZoneExhaust'
 CALL GetObjectItem(TRIM(cCurrentModuleObject),ExhFanNum,cAlphaArgs,NumAlphas, &
 rNumericArgs,NumNums,IOSTAT, &
 NumBlank=lNumericFieldBlanks,AlphaBlank=lAlphaFieldBlanks, &
 AlphaFieldNames=cAlphaFieldNames,NumericFieldNames=cNumericFieldNames)
 IsNotOK=.false.
 IsBlank=.false.
 CALL VerifyName(cAlphaArgs(1),Fan%FanName,FanNum-
1,IsNotOK,IsBlank,TRIM(cCurrentModuleObject)//' Name')
 IF (IsNotOK) THEN
 ErrorsFound=.true.
 IF (IsBlank) cAlphaArgs(1)='xxxxx'
 ENDIF
 Fan(FanNum)%FanName = cAlphaArgs(1)
 Fan(FanNum)%FanType = cCurrentModuleObject
 Fan(FanNum)%Schedule = cAlphaArgs(2)
 Fan(FanNum)%SchedPtr =GetScheduleIndex(cAlphaArgs(2))
 IF (Fan(FanNum)%SchedPtr == 0) THEN
 IF (lAlphaFieldBlanks(2)) THEN
 CALL ShowSevereError(RoutineName//TRIM(cCurrentModuleObject)//':
'//TRIM(cAlphaFieldNames(2))// &
 ' is required, missing for
'//TRIM(cAlphaFieldNames(1))//'='//TRIM(cAlphaArgs(1)))
 ELSE
 CALL ShowSevereError(RoutineName//TRIM(cCurrentModuleObject)//': invalid
'//TRIM(cAlphaFieldNames(2))// &
 ' entered ='//TRIM(cAlphaArgs(2))// &
 ' for '//TRIM(cAlphaFieldNames(1))//'='//TRIM(cAlphaArgs(1)))
 END IF
 ErrorsFound=.true.
 ELSE
 IF (HasFractionalScheduleValue(Fan(FanNum)%SchedPtr)) THEN
 CALL ShowWarningError(TRIM(cCurrentModuleObject)//'="'//TRIM(Fan(FanNum)%FanName)// &
 '" has fractional values in Schedule='//TRIM(cAlphaArgs(2))//'. Only 0.0 in the
schedule value turns the fan off.')
 ENDIF
 ENDIF
! Fan(FanNum)%Control = 'CONSTVOLUME'
 Fan(FanNum)%FanType_Num=FanType_ZoneExhaust

 Fan(FanNum)%FanEff = rNumericArgs(1)
 Fan(FanNum)%DeltaPress = rNumericArgs(2)
 Fan(FanNum)%MaxAirFlowRate= rNumericArgs(3)
 Fan(FanNum)%MotEff = 1.0
 Fan(FanNum)%MotInAirFrac = 1.0
 Fan(FanNum)%MinAirFlowRate= 0.0
 Fan(FanNum)%RhoAirStdInit = StdRhoAir
 Fan(FanNum)%MaxAirMassFlowRate = Fan(FanNum)%MaxAirFlowRate * Fan(FanNum)%RhoAirStdInit

 IF (Fan(FanNum)%MaxAirFlowRate == 0.0) THEN
 CALL ShowWarningError(TRIM(cCurrentModuleObject)//'="'//TRIM(Fan(FanNum)%FanName)// &
 '" has specified 0.0 max air flow rate. It will not be used in the simulation.')

GUIDE FOR MODULE DEVELOPERS 3BMODULE STRUCTURE

3/24/09 22

 ENDIF

 Fan(FanNum)%InletNodeNum = &

GetOnlySingleNode(cAlphaArgs(3),ErrorsFound,TRIM(cCurrentModuleObject),cAlphaArgs(1), &
 NodeType_Air,NodeConnectionType_Inlet,1,ObjectIsNotParent)
 Fan(FanNum)%OutletNodeNum = &

GetOnlySingleNode(cAlphaArgs(4),ErrorsFound,TRIM(cCurrentModuleObject),cAlphaArgs(1), &
 NodeType_Air,NodeConnectionType_Outlet,1,ObjectIsNotParent)

 IF (NumAlphas > 4) THEN
 Fan(FanNum)%EndUseSubcategoryName = cAlphaArgs(5)
 ELSE
 Fan(FanNum)%EndUseSubcategoryName = 'General'
 END IF

 ! Component sets not setup yet for zone equipment
 ! CALL
TestCompSet(TRIM(cCurrentModuleObject),cAlphaArgs(1),cAlphaArgs(3),cAlphaArgs(4),'Air Nodes')

 END DO ! end of Zone Exhaust Fan loop

 DO OnOffFanNum = 1, NumOnOff
 FanNum = NumSimpFan + NumVarVolFan + NumZoneExhFan + OnOffFanNum
 cCurrentModuleObject= 'Fan:OnOff'
 CALL GetObjectItem(TRIM(cCurrentModuleObject),OnOffFanNum,cAlphaArgs,NumAlphas, &
 rNumericArgs,NumNums,IOSTAT, &
 NumBlank=lNumericFieldBlanks,AlphaBlank=lAlphaFieldBlanks, &
 AlphaFieldNames=cAlphaFieldNames,NumericFieldNames=cNumericFieldNames)
 IsNotOK=.false.
 IsBlank=.false.
 CALL VerifyName(cAlphaArgs(1),Fan%FanName,FanNum-
1,IsNotOK,IsBlank,TRIM(cCurrentModuleObject)//' Name')
 IF (IsNotOK) THEN
 ErrorsFound=.true.
 IF (IsBlank) cAlphaArgs(1)='xxxxx'
 ENDIF
 Fan(FanNum)%FanName = cAlphaArgs(1)
 Fan(FanNum)%FanType = cCurrentModuleObject
 Fan(FanNum)%Schedule = cAlphaArgs(2)
 Fan(FanNum)%SchedPtr = GetScheduleIndex(cAlphaArgs(2))
 IF (Fan(FanNum)%SchedPtr == 0) THEN
 IF (lAlphaFieldBlanks(2)) THEN
 CALL ShowSevereError(RoutineName//TRIM(cCurrentModuleObject)//':
'//TRIM(cAlphaFieldNames(2))// &
 ' is required, missing for
'//TRIM(cAlphaFieldNames(1))//'='//TRIM(cAlphaArgs(1)))
 ELSE
 CALL ShowSevereError(RoutineName//TRIM(cCurrentModuleObject)//': invalid
'//TRIM(cAlphaFieldNames(2))// &
 ' entered ='//TRIM(cAlphaArgs(2))// &
 ' for '//TRIM(cAlphaFieldNames(1))//'='//TRIM(cAlphaArgs(1)))
 END IF
 ErrorsFound=.true.
 ENDIF
! Fan(FanNum)%Control = 'ONOFF'
 Fan(FanNum)%FanType_Num=FanType_SimpleOnOff

 Fan(FanNum)%FanEff = rNumericArgs(1)
 Fan(FanNum)%DeltaPress = rNumericArgs(2)
 Fan(FanNum)%MaxAirFlowRate= rNumericArgs(3)
 IF (Fan(FanNum)%MaxAirFlowRate == 0.0) THEN
 CALL ShowWarningError(TRIM(cCurrentModuleObject)//'="'//TRIM(Fan(FanNum)%FanName)// &
 '" has specified 0.0 max air flow rate. It will not be used in the simulation.')
 ENDIF

! the following two structure variables are set here, as well as in InitFan, for the Heat
Pump:Water Heater object
! (Standard Rating procedure may be called before BeginEnvirFlag is set to TRUE, if so
MaxAirMassFlowRate = 0)

GUIDE FOR MODULE DEVELOPERS 3BMODULE STRUCTURE

3/24/09 23

 Fan(FanNum)%RhoAirStdInit = StdRhoAir
 Fan(FanNum)%MaxAirMassFlowRate = Fan(FanNum)%MaxAirFlowRate * Fan(FanNum)%RhoAirStdInit

 Fan(FanNum)%MotEff = rNumericArgs(4)
 Fan(FanNum)%MotInAirFrac = rNumericArgs(5)
 Fan(FanNum)%MinAirFlowRate= 0.0

 Fan(FanNum)%InletNodeNum = &

GetOnlySingleNode(cAlphaArgs(3),ErrorsFound,TRIM(cCurrentModuleObject),cAlphaArgs(1), &
 NodeType_Air,NodeConnectionType_Inlet,1,ObjectIsNotParent)
 Fan(FanNum)%OutletNodeNum = &

GetOnlySingleNode(cAlphaArgs(4),ErrorsFound,TRIM(cCurrentModuleObject),cAlphaArgs(1), &
 NodeType_Air,NodeConnectionType_Outlet,1,ObjectIsNotParent)

 IF (NumAlphas > 4 .AND. .NOT. lAlphaFieldBlanks(5)) THEN
 Fan(FanNum)%FanPowerRatAtSpeedRatCurveIndex = GetCurveIndex(cAlphaArgs(5))
 END IF

 IF (NumAlphas > 5 .AND. .NOT. lAlphaFieldBlanks(6)) THEN
 Fan(FanNum)%FanEffRatioCurveIndex = GetCurveIndex(cAlphaArgs(6))
 END IF

 IF (NumAlphas > 6 .AND. .NOT. lAlphaFieldBlanks(7)) THEN
 Fan(FanNum)%EndUseSubcategoryName = cAlphaArgs(7)
 ELSE
 Fan(FanNum)%EndUseSubcategoryName = 'General'
 END IF

 CALL TestCompSet(TRIM(cCurrentModuleObject),cAlphaArgs(1),cAlphaArgs(3),cAlphaArgs(4),'Air
Nodes')

 END DO ! end Number of Simple ON-OFF FAN Loop

 cCurrentModuleObject= 'FanPerformance:NightVentilation'
 NumNightVentPerf = GetNumObjectsFound(TRIM(cCurrentModuleObject))

 IF (NumNightVentPerf > 0) THEN
 ALLOCATE(NightVentPerf(NumNightVentPerf))
 NightVentPerf%FanName = ' '
 NightVentPerf%FanEff = 0.0
 NightVentPerf%DeltaPress = 0.0
 NightVentPerf%MaxAirFlowRate = 0.0
 NightVentPerf%MotEff = 0.0
 NightVentPerf%MotInAirFrac = 0.0
 NightVentPerf%MaxAirMassFlowRate = 0.0
 END IF
 ! input the night ventilation performance objects
 DO NVPerfNum=1,NumNightVentPerf
 CALL GetObjectItem(TRIM(cCurrentModuleObject),NVPerfNum,cAlphaArgs,NumAlphas, &
 rNumericArgs,NumNums,IOSTAT, &
 NumBlank=lNumericFieldBlanks,AlphaBlank=lAlphaFieldBlanks, &
 AlphaFieldNames=cAlphaFieldNames,NumericFieldNames=cNumericFieldNames)
 IsNotOK=.false.
 IsBlank=.false.
 CALL VerifyName(cAlphaArgs(1),NightVentPerf%FanName,NVPerfNum-
1,IsNotOK,IsBlank,TRIM(cCurrentModuleObject)//' Name')
 IF (IsNotOK) THEN
 ErrorsFound=.true.
 IF (IsBlank) cAlphaArgs(1)='xxxxx'
 ENDIF
 NightVentPerf(NVPerfNum)%FanName = cAlphaArgs(1)
 NightVentPerf(NVPerfNum)%FanEff = rNumericArgs(1)
 NightVentPerf(NVPerfNum)%DeltaPress = rNumericArgs(2)
 NightVentPerf(NVPerfNum)%MaxAirFlowRate = rNumericArgs(3)
 NightVentPerf(NVPerfNum)%MotEff = rNumericArgs(4)
 NightVentPerf(NVPerfNum)%MotInAirFrac = rNumericArgs(5)
 ! find the corresponding fan

GUIDE FOR MODULE DEVELOPERS 3BMODULE STRUCTURE

3/24/09 24

 NVPerfFanFound = .FALSE.
 DO FanNum=1,NumFans
 IF (NightVentPerf(NVPerfNum)%FanName == Fan(FanNum)%FanName) THEN
 NVPerfFanFound = .TRUE.
 Fan(FanNum)%NVPerfNum = NVPerfNum
 EXIT
 END IF
 END DO
 IF (.NOT. NVPerfFanFound) THEN
 CALL ShowSevereError(TRIM(cCurrentModuleObject)//', fan name not
found='//TRIM(cAlphaArgs(1)))
 ErrorsFound=.true.
 END IF

 END DO

 DEALLOCATE(cAlphaArgs)
 DEALLOCATE(cAlphaFieldNames)
 DEALLOCATE(lAlphaFieldBlanks)
 DEALLOCATE(cNumericFieldNames)
 DEALLOCATE(lNumericFieldBlanks)
 DEALLOCATE(rNumericArgs)

 IF (ErrorsFound) THEN
 CALL ShowFatalError(RoutineName//'Errors found in input. Program terminates.')
 ENDIF

 Do FanNum=1,NumFans
 ! Setup Report variables for the Fans
 CALL SetupOutputVariable('Fan Electric Power[W]', Fan(FanNum)%FanPower,
'System','Average',Fan(FanNum)%FanName)
 CALL SetupOutputVariable('Fan Delta Temp[C]', Fan(FanNum)%DeltaTemp,
'System','Average',Fan(FanNum)%FanName)
 CALL SetupOutputVariable('Fan Electric Consumption[J]', Fan(FanNum)%FanEnergy,
'System','Sum',Fan(FanNum)%FanName, &
 ResourceTypeKey='Electric',GroupKey='System', &
 EndUseKey='Fans',EndUseSubKey=Fan(FanNum)%EndUseSubcategoryName)
 END DO

 DO OnOffFanNum = 1, NumOnOff
 FanNum = NumSimpFan + NumVarVolFan + NumZoneExhFan + OnOffFanNum
 CALL SetupOutputVariable('On/Off Fan Runtime Fraction', Fan(FanNum)%FanRuntimeFraction,
'System','Average', &
 Fan(FanNum)%FanName)
 END DO
 RETURN

END SUBROUTINE GetFanInput

! End of Get Input subroutines for the HB Module
!**

! Beginning Initialization Section of the Module
!**

SUBROUTINE InitFan(FanNum,FirstHVACIteration)

 ! SUBROUTINE INFORMATION:
 ! AUTHOR Richard J. Liesen
 ! DATE WRITTEN February 1998
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:
 ! This subroutine is for initializations of the Fan Components.

 ! METHODOLOGY EMPLOYED:
 ! Uses the status flags to trigger initializations.

GUIDE FOR MODULE DEVELOPERS 3BMODULE STRUCTURE

3/24/09 25

 ! REFERENCES:
 ! na

 ! USE STATEMENTS:
 USE DataSizing, ONLY: CurSysNum
 USE DataAirLoop, ONLY: AirLoopControlInfo

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 LOGICAL, INTENT (IN):: FirstHVACIteration
 Integer, Intent(IN) :: FanNum

 ! SUBROUTINE PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS
 ! na

 ! DERIVED TYPE DEFINITIONS
 ! na

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:
 Integer :: InletNode
 Integer :: OutletNode
 Integer :: InNode
 Integer :: OutNode
 LOGICAL,SAVE :: MyOneTimeFlag = .true.
 LOGICAL, ALLOCATABLE,Save, DIMENSION(:) :: MyEnvrnFlag
 LOGICAL, ALLOCATABLE,Save, DIMENSION(:) :: MySizeFlag

 ! FLOW:

 IF (MyOneTimeFlag) THEN

 ALLOCATE(MyEnvrnFlag(NumFans))
 ALLOCATE(MySizeFlag(NumFans))
 MyEnvrnFlag = .TRUE.
 MySizeFlag = .TRUE.

 MyOneTimeFlag = .false.

 END IF

 IF (.NOT. SysSizingCalc .AND. MySizeFlag(FanNum)) THEN

 CALL SizeFan(FanNum)
 ! Set the loop cycling flag
 IF (Fan(FanNum)%Control == 'ONOFF') THEN
 IF (CurSysNum > 0) THEN
 AirLoopControlInfo(CurSysNum)%CyclingFan = .TRUE.
 END IF
 END IF

 MySizeFlag(FanNum) = .FALSE.
 END IF

! Do the Begin Environment initializations
 IF (BeginEnvrnFlag .and. MyEnvrnFlag(FanNum)) THEN

 !For all Fan inlet nodes convert the Volume flow to a mass flow
 InNode = Fan(FanNum)%InletNodeNum
 OutNode = Fan(FanNum)%OutletNodeNum
 Fan(FanNum)%RhoAirStdInit = PsyRhoAirFnPbTdbW(StdBaroPress,20.0,0.0)

 !Change the Volume Flow Rates to Mass Flow Rates

 Fan(FanNum)%MaxAirMassFlowRate = Fan(FanNum)%MaxAirFlowRate * Fan(FanNum)%RhoAirStdInit
 Fan(FanNum)%MinAirMassFlowRate = Fan(FanNum)%MinAirFlowRate * Fan(FanNum)%RhoAirStdInit

GUIDE FOR MODULE DEVELOPERS 3BMODULE STRUCTURE

3/24/09 26

 !Init the Node Control variables
 Node(OutNode)%MassFlowRateMax = Fan(FanNum)%MaxAirMassFlowRate
 Node(OutNode)%MassFlowRateMin = Fan(FanNum)%MinAirMassFlowRate

 !Initialize all report variables to a known state at beginning of simulation
 Fan(FanNum)%FanPower = 0.0
 Fan(FanNum)%DeltaTemp = 0.0
 Fan(FanNum)%FanEnergy = 0.0

 MyEnvrnFlag(FanNum) = .FALSE.
 END IF

 IF (.not. BeginEnvrnFlag) THEN
 MyEnvrnFlag(FanNum) = .true.
 ENDIF

 ! Do the Begin Day initializations
 ! none

 ! Do the begin HVAC time step initializations
 ! none

 ! Do the following initializations (every time step): This should be the info from
 ! the previous components outlets or the node data in this section.

 ! Do a check and make sure that the max and min available(control) flow is
 ! between the physical max and min for the Fan while operating.

 InletNode = Fan(FanNum)%InletNodeNum
 OutletNode = Fan(FanNum)%OutletNodeNum

 Fan(FanNum)%MassFlowRateMaxAvail = MIN(Node(OutletNode)%MassFlowRateMax, &
 Node(InletNode)%MassFlowRateMaxAvail)
 Fan(FanNum)%MassFlowRateMinAvail = MIN(MAX(Node(OutletNode)%MassFlowRateMin, &
 Node(InletNode)%MassFlowRateMinAvail), &
 Node(InletNode)%MassFlowRateMaxAvail)

 ! Load the node data in this section for the component simulation
 !
 !First need to make sure that the massflowrate is between the max and min avail.
 IF (Fan(FanNum)%FanType .NE. 'ZONE EXHAUST FAN') THEN
 Fan(FanNum)%InletAirMassFlowRate = Min(Node(InletNode)%MassFlowRate, &
 Fan(FanNum)%MassFlowRateMaxAvail)
 Fan(FanNum)%InletAirMassFlowRate = Max(Fan(FanNum)%InletAirMassFlowRate, &
 Fan(FanNum)%MassFlowRateMinAvail)
 ELSE ! zone exhaust fans - always run at the max
 Fan(FanNum)%MassFlowRateMaxAvail = Fan(FanNum)%MaxAirMassFlowRate
 Fan(FanNum)%MassFlowRateMinAvail = 0.0
 Fan(FanNum)%InletAirMassFlowRate = Fan(FanNum)%MassFlowRateMaxAvail
 END IF

 !Then set the other conditions
 Fan(FanNum)%InletAirTemp = Node(InletNode)%Temp
 Fan(FanNum)%InletAirHumRat = Node(InletNode)%HumRat
 Fan(FanNum)%InletAirEnthalpy = Node(InletNode)%Enthalpy

 RETURN

END SUBROUTINE InitFan

SUBROUTINE SizeFan(FanNum)

 ! SUBROUTINE INFORMATION:
 ! AUTHOR Fred Buhl
 ! DATE WRITTEN September 2001
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:

GUIDE FOR MODULE DEVELOPERS 3BMODULE STRUCTURE

3/24/09 27

 ! This subroutine is for sizing Fan Components for which flow rates have not been
 ! specified in the input.

 ! METHODOLOGY EMPLOYED:
 ! Obtains flow rates from the zone or system sizing arrays.

 ! REFERENCES:
 ! na

 ! USE STATEMENTS:
 USE DataSizing

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 Integer, Intent(IN) :: FanNum

 ! SUBROUTINE PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS
 ! na

 ! DERIVED TYPE DEFINITIONS
 ! na

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:
 REAL :: FanMinAirFlowRate
 EXTERNAL ReportSizingOutput

 FanMinAirFlowRate = 0.0
 IF (Fan(FanNum)%MaxAirFlowRate == AutoSize) THEN

 IF (CurSysNum > 0) THEN

 CALL CheckSysSizing('FAN:'//TRIM(Fan(FanNum)%FanType)// ':' // TRIM(Fan(FanNum)%Control), &
 Fan(FanNum)%FanName)

 SELECT CASE(CurDuctType)
 CASE(Main)
 Fan(FanNum)%MaxAirFlowRate = FinalSysSizing(CurSysNum)%DesMainVolFlow
 FanMinAirFlowRate = CalcSysSizing(CurSysNum)%SysAirMinFlowRat *
CalcSysSizing(CurSysNum)%DesMainVolFlow
 CASE(Cooling)
 Fan(FanNum)%MaxAirFlowRate = FinalSysSizing(CurSysNum)%DesCoolVolFlow
 FanMinAirFlowRate = CalcSysSizing(CurSysNum)%SysAirMinFlowRat *
CalcSysSizing(CurSysNum)%DesCoolVolFlow
 CASE(Heating)
 Fan(FanNum)%MaxAirFlowRate = FinalSysSizing(CurSysNum)%DesHeatVolFlow
 FanMinAirFlowRate = CalcSysSizing(CurSysNum)%SysAirMinFlowRat *
CalcSysSizing(CurSysNum)%DesHeatVolFlow
 CASE(Other)
 Fan(FanNum)%MaxAirFlowRate = FinalSysSizing(CurSysNum)%DesMainVolFlow
 FanMinAirFlowRate = CalcSysSizing(CurSysNum)%SysAirMinFlowRat *
CalcSysSizing(CurSysNum)%DesMainVolFlow
 CASE DEFAULT
 Fan(FanNum)%MaxAirFlowRate = FinalSysSizing(CurSysNum)%DesMainVolFlow
 FanMinAirFlowRate = CalcSysSizing(CurSysNum)%SysAirMinFlowRat *
CalcSysSizing(CurSysNum)%DesMainVolFlow
 END SELECT

 ELSE IF (CurZoneEqNum > 0) THEN

 CALL CheckZoneSizing('FAN:' // TRIM(Fan(FanNum)%FanType) // ':' //
TRIM(Fan(FanNum)%Control), &
 Fan(FanNum)%FanName)
 IF (.NOT. ZoneHeatingOnlyFan) THEN
 Fan(FanNum)%MaxAirFlowRate = MAX(FinalZoneSizing(CurZoneEqNum)%DesCoolVolFlow, &
 FinalZoneSizing(CurZoneEqNum)%DesHeatVolFlow)
 ELSE
 Fan(FanNum)%MaxAirFlowRate = FinalZoneSizing(CurZoneEqNum)%DesHeatVolFlow

GUIDE FOR MODULE DEVELOPERS 3BMODULE STRUCTURE

3/24/09 28

 END IF

 END IF

 IF (Fan(FanNum)%MaxAirFlowRate < SmallAirVolFlow) THEN
 Fan(FanNum)%MaxAirFlowRate = 0.0
 END IF

 CALL ReportSizingOutput('FAN:' // TRIM(Fan(FanNum)%FanType) // ':' //
TRIM(Fan(FanNum)%Control), &
 Fan(FanNum)%FanName, 'Max Flow Rate [m3/s]',
Fan(FanNum)%MaxAirFlowRate)

 IF (Fan(FanNum)%Control == 'VARIABLEVOLUME') THEN
 CALL CheckSysSizing('FAN:' // TRIM(Fan(FanNum)%FanType) // ':' // TRIM(Fan(FanNum)%Control),
&
 Fan(FanNum)%FanName)
 Fan(FanNum)%MinAirFlowRate = FanMinAirFlowRate
 CALL ReportSizingOutput('FAN:' // TRIM(Fan(FanNum)%FanType) // ':' //
TRIM(Fan(FanNum)%Control), &
 Fan(FanNum)%FanName, 'Min Flow Rate [m3/s]',
Fan(FanNum)%MinAirFlowRate)
 END IF

 END IF

 RETURN

END SUBROUTINE SizeFan

! End Initialization Section of the Module
!**

! Begin Algorithm Section of the Module
!**
SUBROUTINE SimSimpleFan(FanNum)

 ! SUBROUTINE INFORMATION:
 ! AUTHOR Unknown
 ! DATE WRITTEN Unknown
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:
 ! This subroutine simulates the simple constant volume fan.

 ! METHODOLOGY EMPLOYED:
 ! Converts design pressure rise and efficiency into fan power and temperature rise
 ! Constant fan pressure rise is assumed.

 ! REFERENCES:
 ! ASHRAE HVAC 2 Toolkit, page 2-3 (FANSIM)

 ! USE STATEMENTS:
 ! na

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 Integer, Intent(IN) :: FanNum

 ! SUBROUTINE PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS
 ! na

 ! DERIVED TYPE DEFINITIONS
 ! na

GUIDE FOR MODULE DEVELOPERS 3BMODULE STRUCTURE

3/24/09 29

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:
 Real RhoAir
 Real DeltaPress ! [N/M^2]
 Real FanEff
 Real MassFlow ! [kg/sec]
 Real Tin ! [C]
 Real Win
 Real FanShaftPower ! power delivered to fan shaft
 Real PowerLossToAir ! fan and motor loss to air stream (watts)

 DeltaPress = Fan(FanNum)%DeltaPress
 FanEff = Fan(FanNum)%FanEff

 ! For a Constant Volume Simple Fan the Max Flow Rate is the Flow Rate for the fan
 Tin = Fan(FanNum)%InletAirTemp
 Win = Fan(FanNum)%InletAirHumRat
 RhoAir = Fan(FanNum)%RhoAirStdInit
 MassFlow = MIN(Fan(FanNum)%InletAirMassFlowRate,Fan(FanNum)%MaxAirMassFlowRate)
 MassFlow = MAX(MassFlow,Fan(FanNum)%MinAirMassFlowRate)
 !
 !Determine the Fan Schedule for the Time step
 If((GetCurrentScheduleValue(Fan(FanNum)%SchedPtr)>0.0 .and. Massflow>0.0 .or. TurnFansOn .and.
Massflow>0.0) &
 .and. .NOT.TurnFansOff) Then
 !Fan is operating
 Fan(FanNum)%FanPower = MassFlow*DeltaPress/(FanEff*RhoAir) ! total fan power
 FanShaftPower = Fan(FanNum)%MotEff * Fan(FanNum)%FanPower ! power delivered to shaft
 PowerLossToAir = FanShaftPower + (Fan(FanNum)%FanPower - FanShaftPower) *
Fan(FanNum)%MotInAirFrac
 Fan(FanNum)%OutletAirEnthalpy = Fan(FanNum)%InletAirEnthalpy + PowerLossToAir/MassFlow
 ! This fan does not change the moisture or Mass Flow across the component
 Fan(FanNum)%OutletAirHumRat = Fan(FanNum)%InletAirHumRat
 Fan(FanNum)%OutletAirMassFlowRate = MassFlow
 Fan(FanNum)%OutletAirTemp =
PsyTdbFnHW(Fan(FanNum)%OutletAirEnthalpy,Fan(FanNum)%OutletAirHumRat)

 Else
 !Fan is off and not operating no power consumed and mass flow rate.
 Fan(FanNum)%FanPower = 0.0
 FanShaftPower = 0.0
 PowerLossToAir = 0.0
 Fan(FanNum)%OutletAirMassFlowRate = 0.0
 Fan(FanNum)%OutletAirHumRat = Fan(FanNum)%InletAirHumRat
 Fan(FanNum)%OutletAirEnthalpy = Fan(FanNum)%InletAirEnthalpy
 Fan(FanNum)%OutletAirTemp = Fan(FanNum)%InletAirTemp
 ! Set the Control Flow variables to 0.0 flow when OFF.
 Fan(FanNum)%MassFlowRateMaxAvail = 0.0
 Fan(FanNum)%MassFlowRateMinAvail = 0.0

 End If

 RETURN
END SUBROUTINE SimSimpleFan

SUBROUTINE SimVariableVolumeFan(FanNum)

 ! SUBROUTINE INFORMATION:
 ! AUTHOR Unknown
 ! DATE WRITTEN Unknown
 ! MODIFIED Phil Haves
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:
 ! This subroutine simulates the simple variable volume fan.

 ! METHODOLOGY EMPLOYED:
 ! Converts design pressure rise and efficiency into fan power and temperature rise
 ! Constant fan pressure rise is assumed.
 ! Uses curves of fan power fraction vs. fan part load to determine fan power at
 ! off design conditions.

GUIDE FOR MODULE DEVELOPERS 3BMODULE STRUCTURE

3/24/09 30

 ! REFERENCES:
 ! ASHRAE HVAC 2 Toolkit, page 2-3 (FANSIM)

 ! USE STATEMENTS:
 ! na

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 Integer, Intent(IN) :: FanNum

 ! SUBROUTINE PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS
 ! na

 ! DERIVED TYPE DEFINITIONS
 ! na

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:
 Real RhoAir
 Real DeltaPress ! [N/M^2 = Pa]
 Real FanEff ! Total fan efficiency - combined efficiency of fan, drive train,
 ! motor and variable speed controller (if any)
 Real MassFlow ! [kg/sec]
 Real Tin ! [C]
 Real Win
 Real PartLoadFrac
 REAL MaxFlowFrac !Variable Volume Fan Max Flow Fraction [-]
 REAL MinFlowFrac !Variable Volume Fan Min Flow Fraction [-]
 REAL FlowFrac !Variable Volume Fan Flow Fraction [-]
 Real FanShaftPower ! power delivered to fan shaft
 Real PowerLossToAir ! fan and motor loss to air stream (watts)

! Simple Variable Volume Fan - default values from DOE-2
! Type of Fan Coeff1 Coeff2 Coeff3 Coeff4 Coeff5
! INLET VANE DAMPERS 0.35071223 0.30850535 -0.54137364 0.87198823 0.000
! DISCHARGE DAMPERS 0.37073425 0.97250253 -0.34240761 0.000 0.000
! VARIABLE SPEED MOTOR 0.0015302446 0.0052080574 1.1086242 -0.11635563 0.000

 DeltaPress = Fan(FanNum)%DeltaPress
 FanEff = Fan(FanNum)%FanEff

 Tin = Fan(FanNum)%InletAirTemp
 Win = Fan(FanNum)%InletAirHumRat
 RhoAir = Fan(FanNum)%RhoAirStdInit
 MassFlow = MIN(Fan(FanNum)%InletAirMassFlowRate,Fan(FanNum)%MaxAirMassFlowRate)
 ! MassFlow = MAX(MassFlow,Fan(FanNum)%MinAirMassFlowRate)

 ! Calculate and check limits on fraction of system flow
 MaxFlowFrac = 1.0
 ! MinFlowFrac is calculated from the ration of the volume flows and is non-dimensional
 MinFlowFrac = Fan(FanNum)%MinAirFlowRate/Fan(FanNum)%MaxAirFlowRate
 ! The actual flow fraction is calculated from MassFlow and the MaxVolumeFlow * AirDensity
 FlowFrac = MassFlow/(Fan(FanNum)%MaxAirMassFlowRate)

! Calculate the part Load Fraction (PH 7/13/03)

 FlowFrac = MAX(MinFlowFrac,MIN(FlowFrac,1.0)) ! limit flow fraction to allowed range

 PartLoadFrac=Fan(FanNum)%FanCoeff(1) + Fan(FanNum)%FanCoeff(2)*FlowFrac + &
 Fan(FanNum)%FanCoeff(3)*FlowFrac**2 + Fan(FanNum)%FanCoeff(4)*FlowFrac**3 + &
 Fan(FanNum)%FanCoeff(5)*FlowFrac**4

 !Determine the Fan Schedule for the Time step
 If((GetCurrentScheduleValue(Fan(FanNum)%SchedPtr)>0.0 .and. Massflow>0.0 .or. TurnFansOn .and.
Massflow>0.0) &
 .and. .NOT.TurnFansOff) Then

GUIDE FOR MODULE DEVELOPERS 3BMODULE STRUCTURE

3/24/09 31

 !Fan is operating - calculate power loss and enthalpy rise
! Fan(FanNum)%FanPower = PartLoadFrac*FullMassFlow*DeltaPress/(FanEff*RhoAir) ! total fan power
 Fan(FanNum)%FanPower = PartLoadFrac*Fan(FanNum)%MaxAirMassFlowRate*DeltaPress/(FanEff*RhoAir) !
total fan power (PH 7/13/03)
 FanShaftPower = Fan(FanNum)%MotEff * Fan(FanNum)%FanPower ! power delivered to shaft
 PowerLossToAir = FanShaftPower + (Fan(FanNum)%FanPower - FanShaftPower) *
Fan(FanNum)%MotInAirFrac
 Fan(FanNum)%OutletAirEnthalpy = Fan(FanNum)%InletAirEnthalpy + PowerLossToAir/MassFlow
 ! This fan does not change the moisture or Mass Flow across the component
 Fan(FanNum)%OutletAirHumRat = Fan(FanNum)%InletAirHumRat
 Fan(FanNum)%OutletAirMassFlowRate = MassFlow
 Fan(FanNum)%OutletAirTemp =
PsyTdbFnHW(Fan(FanNum)%OutletAirEnthalpy,Fan(FanNum)%OutletAirHumRat)
 Else
 !Fan is off and not operating no power consumed and mass flow rate.
 Fan(FanNum)%FanPower = 0.0
 FanShaftPower = 0.0
 PowerLossToAir = 0.0
 Fan(FanNum)%OutletAirMassFlowRate = 0.0
 Fan(FanNum)%OutletAirHumRat = Fan(FanNum)%InletAirHumRat
 Fan(FanNum)%OutletAirEnthalpy = Fan(FanNum)%InletAirEnthalpy
 Fan(FanNum)%OutletAirTemp = Fan(FanNum)%InletAirTemp
 ! Set the Control Flow variables to 0.0 flow when OFF.
 Fan(FanNum)%MassFlowRateMaxAvail = 0.0
 Fan(FanNum)%MassFlowRateMinAvail = 0.0
 End If

 RETURN
END SUBROUTINE SimVariableVolumeFan

SUBROUTINE SimOnOffFan(FanNum)

 ! SUBROUTINE INFORMATION:
 ! AUTHOR Unknown
 ! DATE WRITTEN Unknown
 ! MODIFIED Shirey, May 2001
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:
 ! This subroutine simulates the simple on/off fan.

 ! METHODOLOGY EMPLOYED:
 ! Converts design pressure rise and efficiency into fan power and temperature rise
 ! Constant fan pressure rise is assumed.
 ! Uses curves of fan power fraction vs. fan part load to determine fan power at
 ! off design conditions.
 ! Same as simple (constant volume) fan, except added part-load curve input

 ! REFERENCES:
 ! ASHRAE HVAC 2 Toolkit, page 2-3 (FANSIM)

 ! USE STATEMENTS:
 USE CurveManager, ONLY: CurveValue

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 Integer, Intent(IN) :: FanNum

 ! SUBROUTINE PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS
 ! na

 ! DERIVED TYPE DEFINITIONS
 ! na

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:
 Real RhoAir
 Real DeltaPress ! [N/M^2]

GUIDE FOR MODULE DEVELOPERS 3BMODULE STRUCTURE

3/24/09 32

 Real FanEff
 Real MassFlow ! [kg/sec]
 Real Tin ! [C]
 Real Win
 Real PartLoadRatio !Ratio of actual mass flow rate to max mass flow rate
 REAL FlowFrac !Actual Fan Flow Fraction = actual mass flow rate / max air mass flow
rate
 Real FanShaftPower ! power delivered to fan shaft
 Real PowerLossToAir ! fan and motor loss to air stream (watts)

 DeltaPress = Fan(FanNum)%DeltaPress
 FanEff = Fan(FanNum)%FanEff

 Tin = Fan(FanNum)%InletAirTemp
 Win = Fan(FanNum)%InletAirHumRat
 RhoAir = Fan(FanNum)%RhoAirStdInit
 MassFlow = MIN(Fan(FanNum)%InletAirMassFlowRate,Fan(FanNum)%MaxAirMassFlowRate)
 MassFlow = MAX(MassFlow,Fan(FanNum)%MinAirMassFlowRate)
 Fan(FanNum)%FanRuntimeFraction = 0.0

 ! The actual flow fraction is calculated from MassFlow and the MaxVolumeFlow * AirDensity
 FlowFrac = MassFlow/(Fan(FanNum)%MaxAirMassFlowRate)

 ! Calculate the part load ratio, can't be greater than 1
 PartLoadRatio= MIN(1.0,FlowFrac)
 ! Determine the Fan Schedule for the Time step
 IF((GetCurrentScheduleValue(Fan(FanNum)%SchedPtr)>0.0 .and. Massflow>0.0 .or. TurnFansOn .and.
Massflow>0.0) &
 .and. .NOT.TurnFansOff) THEN
 ! Fan is operating
 IF (OnOffFanPartLoadFraction <= 0.0) THEN
 CALL ShowWarningError('FAN:SIMPLE:ONOFF, OnOffFanPartLoadFraction <= 0.0, Reset to 1.0')
 OnOffFanPartLoadFraction = 1.0 ! avoid divide by zero or negative PLF
 END IF

 IF (OnOffFanPartLoadFraction < 0.7) THEN
 OnOffFanPartLoadFraction = 0.7 ! a warning message is already issued from the DX coils or
gas heating coil
 END IF
 ! Keep fan runtime fraction between 0.0 and 1.0
 Fan(FanNum)%FanRuntimeFraction = MAX(0.0,MIN(1.0,PartLoadRatio/OnOffFanPartLoadFraction))
 ! Fan(FanNum)%FanPower = MassFlow*DeltaPress/(FanEff*RhoAir*OnOffFanPartLoadFraction)! total
fan power
 Fan(FanNum)%FanPower =
Fan(FanNum)%MaxAirMassFlowRate*Fan(FanNum)%FanRuntimeFraction*DeltaPress/(FanEff*RhoAir)!total fan
power
 ! OnOffFanPartLoadFraction is passed via DataHVACGlobals from the cooling or heating coil that
is
 ! requesting the fan to operate in cycling fan/cycling coil mode
 OnOffFanPartLoadFraction = 1.0 ! reset to 1 in case other on/off fan is called without a part
load curve
 FanShaftPower = Fan(FanNum)%MotEff * Fan(FanNum)%FanPower ! power delivered to shaft
 PowerLossToAir = FanShaftPower + (Fan(FanNum)%FanPower - FanShaftPower) *
Fan(FanNum)%MotInAirFrac
 Fan(FanNum)%OutletAirEnthalpy = Fan(FanNum)%InletAirEnthalpy + PowerLossToAir/MassFlow
 ! This fan does not change the moisture or Mass Flow across the component
 Fan(FanNum)%OutletAirHumRat = Fan(FanNum)%InletAirHumRat
 Fan(FanNum)%OutletAirMassFlowRate = MassFlow
! Fan(FanNum)%OutletAirTemp = Tin + PowerLossToAir/(MassFlow*PsyCpAirFnWTdb(Win,Tin))
 Fan(FanNum)%OutletAirTemp =
PsyTdbFnHW(Fan(FanNum)%OutletAirEnthalpy,Fan(FanNum)%OutletAirHumRat)
 ELSE
 ! Fan is off and not operating no power consumed and mass flow rate.
 Fan(FanNum)%FanPower = 0.0
 FanShaftPower = 0.0
 PowerLossToAir = 0.0
 Fan(FanNum)%OutletAirMassFlowRate = 0.0
 Fan(FanNum)%OutletAirHumRat = Fan(FanNum)%InletAirHumRat
 Fan(FanNum)%OutletAirEnthalpy = Fan(FanNum)%InletAirEnthalpy
 Fan(FanNum)%OutletAirTemp = Fan(FanNum)%InletAirTemp
 ! Set the Control Flow variables to 0.0 flow when OFF.

GUIDE FOR MODULE DEVELOPERS 3BMODULE STRUCTURE

3/24/09 33

 Fan(FanNum)%MassFlowRateMaxAvail = 0.0
 Fan(FanNum)%MassFlowRateMinAvail = 0.0
 END IF

 RETURN
END SUBROUTINE SimOnOffFan

SUBROUTINE SimZoneExhaustFan(FanNum)

 ! SUBROUTINE INFORMATION:
 ! AUTHOR Fred Buhl
 ! DATE WRITTEN Jan 2000
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:
 ! This subroutine simulates the Zone Exhaust Fan

 ! METHODOLOGY EMPLOYED:
 ! Converts design pressure rise and efficiency into fan power and temperature rise
 ! Constant fan pressure rise is assumed.

 ! REFERENCES:
 ! ASHRAE HVAC 2 Toolkit, page 2-3 (FANSIM)

 ! USE STATEMENTS:
 ! na

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 Integer, Intent(IN) :: FanNum

 ! SUBROUTINE PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS
 ! na

 ! DERIVED TYPE DEFINITIONS
 ! na

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:
 Real RhoAir
 Real DeltaPress ! [N/M^2]
 Real FanEff
 Real MassFlow ! [kg/sec]
 Real Tin ! [C]
 Real Win
 Real PowerLossToAir ! fan and motor loss to air stream (watts)

 DeltaPress = Fan(FanNum)%DeltaPress
 FanEff = Fan(FanNum)%FanEff

 ! For a Constant Volume Simple Fan the Max Flow Rate is the Flow Rate for the fan
 Tin = Fan(FanNum)%InletAirTemp
 Win = Fan(FanNum)%InletAirHumRat
 RhoAir = Fan(FanNum)%RhoAirStdInit
 MassFlow = Fan(FanNum)%InletAirMassFlowRate
 !
 !Determine the Fan Schedule for the Time step
 If((GetCurrentScheduleValue(Fan(FanNum)%SchedPtr)>0.0 .or. TurnFansOn) &
 .and. .NOT.TurnFansOff) Then
 !Fan is operating
 Fan(FanNum)%FanPower = MassFlow*DeltaPress/(FanEff*RhoAir) ! total fan power
 PowerLossToAir = Fan(FanNum)%FanPower
 Fan(FanNum)%OutletAirEnthalpy = Fan(FanNum)%InletAirEnthalpy + PowerLossToAir/MassFlow
 ! This fan does not change the moisture or Mass Flow across the component
 Fan(FanNum)%OutletAirHumRat = Fan(FanNum)%InletAirHumRat
 Fan(FanNum)%OutletAirMassFlowRate = MassFlow

GUIDE FOR MODULE DEVELOPERS 3BMODULE STRUCTURE

3/24/09 34

 Fan(FanNum)%OutletAirTemp =
PsyTdbFnHW(Fan(FanNum)%OutletAirEnthalpy,Fan(FanNum)%OutletAirHumRat)

 Else
 !Fan is off and not operating no power consumed and mass flow rate.
 Fan(FanNum)%FanPower = 0.0
 PowerLossToAir = 0.0
 Fan(FanNum)%OutletAirMassFlowRate = 0.0
 Fan(FanNum)%OutletAirHumRat = Fan(FanNum)%InletAirHumRat
 Fan(FanNum)%OutletAirEnthalpy = Fan(FanNum)%InletAirEnthalpy
 Fan(FanNum)%OutletAirTemp = Fan(FanNum)%InletAirTemp
 ! Set the Control Flow variables to 0.0 flow when OFF.
 Fan(FanNum)%MassFlowRateMaxAvail = 0.0
 Fan(FanNum)%MassFlowRateMinAvail = 0.0
 Fan(FanNum)%InletAirMassFlowRate = 0.0

 End If

 RETURN
END SUBROUTINE SimZoneExhaustFan

! End Algorithm Section of the Module
! ***

! Beginning of Update subroutines for the Fan Module
! ***

SUBROUTINE UpdateFan(FanNum)

 ! SUBROUTINE INFORMATION:
 ! AUTHOR Richard Liesen
 ! DATE WRITTEN April 1998
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:
 ! This subroutine updates the fan outlet nodes.

 ! METHODOLOGY EMPLOYED:
 ! Data is moved from the fan data structure to the fan outlet nodes.

 ! REFERENCES:
 ! na

 ! USE STATEMENTS:
 ! na

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 Integer, Intent(IN) :: FanNum

 ! SUBROUTINE PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS
 ! na

 ! DERIVED TYPE DEFINITIONS
 ! na

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:
 Integer :: OutletNode
 Integer :: InletNode

 OutletNode = Fan(FanNum)%OutletNodeNum
 InletNode = Fan(FanNum)%InletNodeNum

 ! Set the outlet air nodes of the fan
 Node(OutletNode)%MassFlowRate = Fan(FanNum)%OutletAirMassFlowRate

GUIDE FOR MODULE DEVELOPERS 3BMODULE STRUCTURE

3/24/09 35

 Node(OutletNode)%Temp = Fan(FanNum)%OutletAirTemp
 Node(OutletNode)%HumRat = Fan(FanNum)%OutletAirHumRat
 Node(OutletNode)%Enthalpy = Fan(FanNum)%OutletAirEnthalpy
 ! Set the outlet nodes for properties that just pass through & not used
 Node(OutletNode)%Quality = Node(InletNode)%Quality
 Node(OutletNode)%Press = Node(InletNode)%Press

 ! Set the Node Flow Control Variables from the Fan Control Variables
 Node(OutletNode)%MassFlowRateMaxAvail = Fan(FanNum)%MassFlowRateMaxAvail
 Node(OutletNode)%MassFlowRateMinAvail = Fan(FanNum)%MassFlowRateMinAvail

 IF (Fan(FanNum)%FanType .EQ. 'ZONE EXHAUST FAN') THEN
 Node(InletNode)%MassFlowRate = Fan(FanNum)%InletAirMassFlowRate
 END IF

 RETURN
END Subroutine UpdateFan

! End of Update subroutines for the Fan Module
! ***

! Beginning of Reporting subroutines for the Fan Module
! ***

SUBROUTINE ReportFan(FanNum)

 ! SUBROUTINE INFORMATION:
 ! AUTHOR Richard Liesen
 ! DATE WRITTEN April 1998
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:
 ! This subroutine updates the report variables for the fans.

 ! METHODOLOGY EMPLOYED:
 ! na

 ! REFERENCES:
 ! na

 ! USE STATEMENTS:
 Use DataHVACGlobals, ONLY: TimeStepSys, FanElecPower

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 Integer, Intent(IN) :: FanNum

 ! SUBROUTINE PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS
 ! na

 ! DERIVED TYPE DEFINITIONS
 ! na

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:
 ! na

 Fan(FanNum)%FanEnergy=Fan(FanNum)%FanPower*TimeStepSys*3600
 Fan(FanNum)%DeltaTemp=Fan(FanNum)%OutletAirTemp - Fan(FanNum)%InletAirTemp
 FanElecPower = Fan(FanNum)%FanPower

 RETURN
END Subroutine ReportFan

! End of Reporting subroutines for the Fan Module
! ***

GUIDE FOR MODULE DEVELOPERS 3BMODULE STRUCTURE

3/24/09 36

! Beginning of Utility subroutines for the Fan Module
! ***
FUNCTION GetFanDesignVolumeFlowRate(FanType,FanName,ErrorsFound) RESULT(DesignVolumeFlowRate)

 ! FUNCTION INFORMATION:
 ! AUTHOR Linda Lawrie
 ! DATE WRITTEN February 2006
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS FUNCTION:
 ! This function looks up the design volume flow rate for the given fan and returns it.
If
 ! incorrect fan type or name is given, errorsfound is returned as true and value is
returned
 ! as negative.

 ! METHODOLOGY EMPLOYED:
 ! na

 ! REFERENCES:
 ! na

 ! USE STATEMENTS:
 USE InputProcessor, ONLY: FindItemInList

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! FUNCTION ARGUMENT DEFINITIONS:
 CHARACTER(len=*), INTENT(IN) :: FanType ! must match fan types in this module
 CHARACTER(len=*), INTENT(IN) :: FanName ! must match fan names for the fan type
 LOGICAL, INTENT(INOUT) :: ErrorsFound ! set to true if problem
 REAL :: DesignVolumeFlowRate ! returned flow rate of matched fan

 ! FUNCTION PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS:
 ! na

 ! DERIVED TYPE DEFINITIONS:
 ! na

 ! FUNCTION LOCAL VARIABLE DECLARATIONS:
 INTEGER :: WhichFan

 ! Obtains and Allocates fan related parameters from input file
 IF (GetFanInputFlag) THEN !First time subroutine has been entered
 CALL GetFanInput
 GetFanInputFlag=.false.
 End If

 WhichFan=FindItemInList(FanName,Fan%FanName,NumFans)
 IF (WhichFan /= 0) THEN
 DesignVolumeFlowRate=Fan(WhichFan)%MaxAirFlowRate
 ENDIF

 IF (WhichFan == 0) THEN
 CALL ShowSevereError('Could not find FanType="'//TRIM(FanType)//'" with
Name="'//TRIM(FanName)//'"')
 ErrorsFound=.true.
 DesignVolumeFlowRate=-1000.
 ENDIF

 RETURN

END FUNCTION GetFanDesignVolumeFlowRate

FUNCTION GetFanInletNode(FanType,FanName,ErrorsFound) RESULT(NodeNumber)

 ! FUNCTION INFORMATION:

GUIDE FOR MODULE DEVELOPERS 3BMODULE STRUCTURE

3/24/09 37

 ! AUTHOR Linda Lawrie
 ! DATE WRITTEN February 2006
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS FUNCTION:
 ! This function looks up the given fan and returns the inlet node. If
 ! incorrect fan type or name is given, errorsfound is returned as true and value is
returned
 ! as zero.

 ! METHODOLOGY EMPLOYED:
 ! na

 ! REFERENCES:
 ! na

 ! USE STATEMENTS:
 USE InputProcessor, ONLY: FindItemInList

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! FUNCTION ARGUMENT DEFINITIONS:
 CHARACTER(len=*), INTENT(IN) :: FanType ! must match fan types in this module
 CHARACTER(len=*), INTENT(IN) :: FanName ! must match fan names for the fan type
 LOGICAL, INTENT(INOUT) :: ErrorsFound ! set to true if problem
 INTEGER :: NodeNumber ! returned outlet node of matched fan

 ! FUNCTION PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS:
 ! na

 ! DERIVED TYPE DEFINITIONS:
 ! na

 ! FUNCTION LOCAL VARIABLE DECLARATIONS:
 INTEGER :: WhichFan

 ! Obtains and Allocates fan related parameters from input file
 IF (GetFanInputFlag) THEN !First time subroutine has been entered
 CALL GetFanInput
 GetFanInputFlag=.false.
 End If

 WhichFan=FindItemInList(FanName,Fan%FanName,NumFans)
 IF (WhichFan /= 0) THEN
 NodeNumber=Fan(WhichFan)%InletNodeNum
 ENDIF

 IF (WhichFan == 0) THEN
 CALL ShowSevereError('Could not find FanType="'//TRIM(FanType)//'" with
Name="'//TRIM(FanName)//'"')
 ErrorsFound=.true.
 NodeNumber=0
 ENDIF

 RETURN

END FUNCTION GetFanInletNode

FUNCTION GetFanOutletNode(FanType,FanName,ErrorsFound) RESULT(NodeNumber)

 ! FUNCTION INFORMATION:
 ! AUTHOR Linda Lawrie
 ! DATE WRITTEN February 2006
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS FUNCTION:

GUIDE FOR MODULE DEVELOPERS 3BMODULE STRUCTURE

3/24/09 38

 ! This function looks up the given fan and returns the outlet node. If
 ! incorrect fan type or name is given, errorsfound is returned as true and value is
returned
 ! as zero.

 ! METHODOLOGY EMPLOYED:
 ! na

 ! REFERENCES:
 ! na

 ! USE STATEMENTS:
 USE InputProcessor, ONLY: FindItemInList

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! FUNCTION ARGUMENT DEFINITIONS:
 CHARACTER(len=*), INTENT(IN) :: FanType ! must match fan types in this module
 CHARACTER(len=*), INTENT(IN) :: FanName ! must match fan names for the fan type
 LOGICAL, INTENT(INOUT) :: ErrorsFound ! set to true if problem
 INTEGER :: NodeNumber ! returned outlet node of matched fan

 ! FUNCTION PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS:
 ! na

 ! DERIVED TYPE DEFINITIONS:
 ! na

 ! FUNCTION LOCAL VARIABLE DECLARATIONS:
 INTEGER :: WhichFan

 ! Obtains and Allocates fan related parameters from input file
 IF (GetFanInputFlag) THEN !First time subroutine has been entered
 CALL GetFanInput
 GetFanInputFlag=.false.
 End If

 WhichFan=FindItemInList(FanName,Fan%FanName,NumFans)
 IF (WhichFan /= 0) THEN
 NodeNumber=Fan(WhichFan)%OutletNodeNum
 ENDIF

 IF (WhichFan == 0) THEN
 CALL ShowSevereError('Could not find FanType="'//TRIM(FanType)//'" with
Name="'//TRIM(FanName)//'"')
 ErrorsFound=.true.
 NodeNumber=0
 ENDIF

 RETURN

END FUNCTION GetFanOutletNode

! End of Utility subroutines for the Fan Module
! ***

! NOTICE
!
! Copyright © 1996-xxxx The Board of Trustees of the University of Illinois
! and The Regents of the University of California through Ernest Orlando Lawrence
! Berkeley National Laboratory. All rights reserved.
!
! Portions of the EnergyPlus software package have been developed and copyrighted
! by other individuals, companies and institutions. These portions have been
! incorporated into the EnergyPlus software package under license. For a complete
! list of contributors, see "Notice" located in EnergyPlus.f90.
!
! NOTICE: The U.S. Government is granted for itself and others acting on its

GUIDE FOR MODULE DEVELOPERS 3BMODULE STRUCTURE

3/24/09 39

! behalf a paid-up, nonexclusive, irrevocable, worldwide license in this data to
! reproduce, prepare derivative works, and perform publicly and display publicly.
! Beginning five (5) years after permission to assert copyright is granted,
! subject to two possible five year renewals, the U.S. Government is granted for
! itself and others acting on its behalf a paid-up, non-exclusive, irrevocable
! worldwide license in this data to reproduce, prepare derivative works,
! distribute copies to the public, perform publicly and display publicly, and to
! permit others to do so.
!
! TRADEMARKS: EnergyPlus is a trademark of the US Department of Energy.
!

End Module Fans

GUIDE FOR MODULE DEVELOPERS 4BHOW IT FITS TOGETHER

3/24/09 40

How it fits together

Although we have designed the EnergyPlus modules to be as independent as
possible, obviously they cannot be completely independent. How does an
EnergyPlus HVAC module fit in with the rest of the program? First, we will
show some subroutine calling trees that will display the overall program
structure.

Top Level Calling Tree

EnergyPlus

 ProcessInput (in InputProcessor)
 ManageSimulation (in SimulationManager)

 ManageWeather (in WeatherManager)
 ManageHeatBalance (in HeatBalanceManager)

 ManageSurfaceHeatBalance (in HeatBalanceSurfaceManager)
 ManageAirHeatBalance (in HeatBalanceAirManager)

 CalcHeatBalanceAir (in HeatBalanceAirManager)
 ManageHVAC (in HVACManager)

The HVAC part of EnergyPlus is divided into a number of simulation blocks.
At this point, there are blocks for the air system, the zone equipment, the
plant supply, the plant demand, the condenser supply, and the condenser
demand. There will be simulation blocks for waste heat supply and usage as
well as electricity and gas. Within each HVAC time step, the blocks are
simulated repeatedly until the conditions on each side of each block interface
match up. The following calling tree represents the high level HVAC
simulation structure. It is schematic – not all routines are shown.

High Level HVAC Calling Tree (schematic – not all routines are shown)

ManageHVAC (in HVACManager)

 ZoneAirUpdate(‘PREDICT’, . . .) (in HVACManager)
estimate the zone heating or cooling demand

 SimHVAC (in HVACManager)
 ManageSetPoints (in SetPointManager)
 SimSelectedEquipment (in HVACManager)

 ManageAirLoops (in SimAirServingZones)
 ManageZoneEquipment (in ZoneEquipmentManager)
 ManagePlantSupplySides (in PlantLoopSupplySideManager)
 ManagePlantDemandSides (in PlantdemandSideLoops)
 ManageCondSupplySides (in CondLoopManager)
 ManageCondenserDemandSides (in CondenserDemandSideLoops)

 ZoneAirUpdate(‘CORRECT’, . . .) (in HVACManager)

GUIDE FOR MODULE DEVELOPERS 4BHOW IT FITS TOGETHER

3/24/09 41

From the amount of heating and cooling actually provided by the HVAC system,
calculate the zone temperatures.

Each of the “Manage” routines has a different structure, since the simulation
to be performed is different in each case. We will show schematic calling
trees for several of the “Manage” routines.

Air System Calling Tree (schematic – not all routines are shown)

ManageAirLoops (in SimAirServingZones)

 GetAirPathData (in SimAirServingZones)
 InitAirLoops (in SimAirServingZones)
 SimAirLoops (in SimAirServingZones)

 SimAirLoopComponent (in SimAirServingZones)
 UpdateBranchConnections (in SimAirServingZones)

 ManageOutsideAirSystem (in MixedAir)
 SimOutsideAirSys (in MixedAir)

 SimOAController (in MixedAir)
 SimOAComponent (in Mixed Air)

 SimOAMixer (in MixedAir)
 SimulateFanComponents(in FanSimulation; file

HVACFanComponent)
 SimulateWaterCoilComponents (in WaterCoilSimulation; file

HVACWaterCoilComponent)
 SimHeatRecovery (in HeatRecovery)
 SimDesiccantDehumidifier (in DesiccantDehumidifiers)

 SimulateFanComponents (in FanSimulation; file HVACFanComponent)
 SimulateWaterCoilComponents (in WaterCoilSimulation; file

HVACWaterCoilComponent)
 SimulateHeatingCoilComponents (in HeatingCoils; file HVACHeatingCoils)
 SimDXCoolingSystem (in HVACDXSystem)
 SimFurnace (in Furnaces; file HVACFurnace)
 SimHumidifier (in Humidifiers)
 SimEvapCooler (in EvaporativeCoolers; file HVACEvapComponent)
 SimDesiccantDehumidifier (in DesiccantDehumidifiers)
 SimHeatRecovery (in HeatRecovery)

 ManageControllers (in Controllers)
 GetControllerInput (in Controllers)
 InitController (in Controllers)
 SimpleController (in Controllers)
 LimitController (in Controllers)
 UpdateController (in Controllers)
 Report Controller (in Controllers)

 ResolveSysFlow (in SimAirServingZones)
 UpdateHVACInterface (in HVACInterfaceManager)

 ReportAirLoops (in SimAirServingZones)

GUIDE FOR MODULE DEVELOPERS 4BHOW IT FITS TOGETHER

3/24/09 42

Plant Supply Calling Tree (schematic – not all routines are shown)

ManagePlantSupplySides (in PlantLoopSupplySideManager)

 GetLoopData (in PlantLoopSupplySideManager)
 SetLoopInitialConditions (in PlantLoopSupplySideManager)
 CalcLoopDemand (in PlantLoopSupplySideManager)
 ManagePlantLoopOperation (in PlantCondLoopOperation)
 DistributeLoad (in PlantLoopSupplySideManager)
 SimPlantEquip (in PlantLoopSupplySideManager)

 SimPipes (in Pipes; file PlantPipes)
 SimPumps (in Pumps; file PlantPumps)
 SimEngineDrivenChiller (in ChillerEngineDriven ; file PlantChillers)
 SimBLASTAbsorber (in ChillerAbsorption ; file PlantAbsorptionChillers)
 SimElectricChiller (in ChillerElectric ; file PlantChillers)
 SimGTChiller (in ChillerGasTurbine ; file PlantChillers)
 SimConstCOPChiller (in ChillerConstCOP; file PlantChillers)
 SimBLASTChiller (in ChillerBLAST ; file PlantChillers)
 SimOutsideCooling (in OutsideCoolingSources ; file

PlantOutsideCoolingSources)
 SimGasAbsorber (in ChillerGasAbsorption ; file PlantGasAbsorptionChiller)
 SimBoiler (in Boilers; file PlantBoilers)
 SimWaterHeater (in WaterHeaters ; file PlantWaterHeater)
 SimOutsideHeating (in OutsideHeatingSources; file

PlantOutsideHeatingSources)
 UpdateSplitter (in PlantLoopSupplySideManager)
 SolveFlowNetwork (in PlantLoopSupplySideManager)
 CalcLoopDemand (in PlantLoopSupplySideManager)
 SimPlantEquip (in PlantLoopSupplySideManager)
 UpdateSplitter
 UpdateMixer (in PlantLoopSupplySideManager)
 SimPlantEquip (in PlantLoopSupplySideManager)
 CheckLoopExitNodes (in PlantLoopSupplySideManager)
 UpdateHVACInterface (in HVACInterfaceManager)
 UpdateReportVars (in PlantLoopSupplySideManager)

Zone Equipment Calling Tree (schematic – not all routines are shown)

ManageZoneEquipment (in ZoneEquipmentManager)

 GetZoneEquipment (in ZoneEquipmentManager)
 InitZoneEquipment (in ZoneEquipmentManager)
 SimZoneEquioment (in ZoneEquipmentManager)

 SimAirLoopSplitter (in Splitters; file HVACSplitterComponent)
 SimAirZonePlenum (in ZonePlenum; file ZonePlenumComponent)
 SetZoneEquipSimOrder (in ZoneEquipmentManager)
 InitSystemOutputRequired (in ZoneEquipmentManager)
 ManageZoneAirLoopEquipment (in ZoneAirLoopEquipmentManager)

 GetZoneAirLoopEquipment (in ZoneAirLoopEquipmentManager)

GUIDE FOR MODULE DEVELOPERS 4BHOW IT FITS TOGETHER

3/24/09 43

 SimZoneAirLoopEquipment (in ZoneAirLoopEquipmentManager)
 SimulateDualDuct (in DualDuct; file HVACDualDuctSystem)

 GetDualDuctInput (in DualDuct; file HVACDualDuctSystem)
 InitDualDuct (in DualDuct; file HVACDualDuctSystem)
 SimDualDuctConstVol (in DualDuct; file HVACDualDuctSystem)
 SimDualDuctVarVol (in DualDuct; file HVACDualDuctSystem)
 UpdateDualDuct (in DualDuct; file HVACDualDuctSystem)
 ReportDualDuct (in DualDuct; file HVACDualDuctSystem)

 SimulateSingleDuct (in SingleDuct; file HVACSingleDuctSystem)
 GetSysInput (in SingleDuct; file HVACSingleDuctSystem)
 InitSys (in SingleDuct; file HVACSingleDuctSystem)
 SimConstVol (in SingleDuct; file HVACSingleDuctSystem)
 SimVAV (in SingleDuct; file HVACSingleDuctSystem)
 ReportSys (in SingleDuct; file HVACSingleDuctSystem)

 SimPIU (in PoweredInductionUnits)
 GetPIUs (in PoweredInductionUnits)
 InitPIUs (in PoweredInductionUnits)
 CalcSeriesPIU (in PoweredInductionUnits)
 CalcParallelPIU (in PoweredInductionUnits)
 ReportPIU (in PoweredInductionUnits)

 SimDirectAir (in DirectAirManager; file DirectAir)
 SimPurchasedAir (in PurchasedAirManager)
 SimWindowAC (in WindowAC)
 SimFanCoilUnit (in FanCoilUnits)
 SimUnitVentilator (in UnitVentilator)
 SimUnitHeater (in UnitHeater)
 SimBaseboard (in BaseboardRadiator)
 SimHighTempRadiantSystem (in HighTempRadiantSystem; file

RadiantSystemHighTemp)
 SimLowTempRadiantSystem (in LowTempRadiantSystem; file

RadiantSystemLowTemp)
 SimulateFanComponents (in Fans; file HVACFanComponent)
 SimHeatRecovery (in HeatRecovery)
 UpdateSystemOutputRequired (in ZoneEquipmentManager)
 SimAirLoopSplitter (in Splitters; file HVACSplitterComponent)
 SimAirZonePlenum (in ZonePlenum; file ZonePlenumComponent)
 CalcZoneMassBalance (in ZoneEquipmentManager)
 CalcZoneLeavingConditions (in ZoneEquipmentManager)
 SimReturnAirPath (in ReturnAirPathManager; file ReturnAirPath)

 SimAirMixer (in Mixers; HVACMixerComponent)
 SimAirZonePlenum (in ZonePlenum; file ZonePlenumComponent)

 RecordZoneEquipment (in ZoneEquipmentManager)
 ReportZoneEquipment (in ZoneEquipmentManager)

Inserting the New Module into the Program

Let us return to our example new module NewHVACComponent. Since the
module gets its own input and output, adding the NewHVACComponent
model to the program simply means adding a call to the driver routine
SimNewHVACComponent from the correct place in EnergyPlus. In the
simplest case, there is only one location from which the driver routine should

GUIDE FOR MODULE DEVELOPERS 4BHOW IT FITS TOGETHER

3/24/09 44

be called. In some cases, though, more than one HVAC simulation block will
need to use the new component model. SimulateWaterCoilComponents, for
instance, can be used in both zone equipment and air systems for heating,
reheating and cooling coils. In the air system simulation it is called from two
places: the main air system simulation, and the mixed air simulation – the
outside air duct might contain a separate cooling coil.
Let us assume that the NewHVACComponent will be part of the air system –
perhaps it is a solid desiccant wheel. Examining the air system calling tree
we see that SimAirLoopComponent is one routine that will invoke the new
component, and - if we want the component to possibly be in the outside air
stream – then SimOAComponent is the other routine that will need to call the
new component simulation. Generally, all that is involved is adding a new
CASE statement to a Fortran SELECT construct. For instance in
SimAirLoopComponent this would look like:
SELECT CASE(CompType_Num)

 CASE(OAMixer_Num) ! 'OUTSIDE AIR SYSTEM'
 CALL ManageOutsideAirSystem(…)

! Fan Types for the air sys simulation
 CASE(Fan_Simple_CV) ! 'FAN:SIMPLE:CONSTVOLUME'
 CALL SimulateFanComponents(…)

 CASE(Fan_Simple_VAV) ! 'FAN:SIMPLE:VARIABLEVOLUME'
 CALL SimulateFanComponents(…)

! Coil Types for the air sys simulation
! 'COIL:DX:COOLINGHEATEXCHANGERASSISTED'
 CASE(DXCoil_CoolingHXAsst)
 CALL SimHXAssistedCoolingCoil(…)
! 'COIL:WATER:COOLINGHEATEXCHANGERASSISTED'
CASE(WaterCoil_CoolingHXAsst)
 CALL SimHXAssistedCoolingCoil(…)
 CASE(WaterCoil_SimpleHeat) ! 'COIL:WATER:SIMPLEHEATING'
 CALL SimulateWaterCoilComponents(…)
 CASE(SteamCoil_AirHeat) ! 'COIL:STEAM:AIRHEATING'
 CALL SimulateSteamCoilComponents(…)
 CASE(WaterCoil_DetailedCool) ! 'COIL:WATER:DETAILEDFLATCOOLING'
 CALL SimulateWaterCoilComponents(…)
 CASE(WaterCoil_Cooling) ! 'COIL:WATER:COOLING'
 CALL SimulateWaterCoilComponents(…)
 CASE(Coil_ElectricHeat) ! 'COIL:ELECTRIC:HEATING'
 CALL SimulateHeatingCoilComponents(…)
 CASE(Coil_GasHeat) ! 'COIL:GAS:HEATING'
 CALL SimulateHeatingCoilComponents(…)
! Heat reclaim
 CASE(Coil_DeSuperHeat) ! 'COIL:DESUPERHEATER:HEATING'
 CALL SimulateHeatingCoilComponents(…)

 CASE(DXSystem) ! 'DXSYSTEM:AIRLOOP'
 CALL SimDXCoolingSystem(…)

 CASE(Furnace_UnitarySys) ! 'FURNACE:BLOWTHRU:HEATONLY',
 ! 'FURNACE:BLOWTHRU:HEATCOOL',
 ! 'UNITARYSYSTEM:BLOWTHRU:HEATONLY',
 ! 'UNITARYSYSTEM:BLOWTHRU:HEATCOOL'
 ! 'UNITARYSYSTEM:HEATPUMP:AIRTOAIR',
 ! 'UNITARYSYSTEM:HEATPUMP:WATERTOAIR'

GUIDE FOR MODULE DEVELOPERS 4BHOW IT FITS TOGETHER

3/24/09 45

 CALL SimFurnace(…)

! Humidifier Types for the air system simulation
 CASE(Humidifier) ! 'HUMIDIFIER:STEAM:ELECTRICAL'
 CALL SimHumidifier(…)

! Evap Cooler Types for the air system simulation
 CASE(EvapCooler) ! 'EVAPCOOLER:DIRECT:CELDEKPAD',
 ! 'EVAPCOOLER:INDIRECT:CELDEKPAD'
 ! 'EVAPCOOLER:INDIRECT:WETCOIL',
 ! 'EVAPCOOLER:INDIRECT:RDDSPECIAL'
 CALL SimEvapCooler(…)

! Desiccant Dehumidifier Types for the air system simulation
 CASE(Desiccant) ! 'DESICCANT DEHUMIDIFIER:SOLID'
 CALL SimDesiccantDehumidifier(…)

! Heat recovery
 CASE(HeatXchngr) ! 'HEAT EXCHANGER:AIR TO AIR:FLAT PLATE'
 CALL SimHeatRecovery(…)

! Ducts
 CASE(Duct) ! 'DUCT'
 CALL SimDuct(…)

! New HVAC Component
 CASE (NewHVACCompNum) ! ‘NEW HVAC COMPONENT’
 CALL SimNewHVACComponent(…)

 DEFAULT

END SELECT

The new code is italicized. Do the same thing in SimOAComponent and you
are done! Note that “NEW HVAC COMPONENT” is the class name
(keyword) for the new component in the IDD file. The class names are
converted to upper case in EnergyPlus, so the CASE statement must have
the class name in upper case. The actual class name on the IDD file would
probably be “New HVAC Component”.
If the new HVAC component is a piece of zone equipment – a cooled beam
system, for instance – then the zone equipment calling tree indicates that the
call to SimNewHVACComponent would be in SimZoneEquipment. If the new
component is a gas fired absorption chiller, the call would be in
SimPlantEquip.
In every case, since NewHVACComponent is a new module, a USE
statement must be added to the calling subroutine. For instance in
SimAirLoopComponent this would look like:
SUBROUTINE SimAirLoopComponent(CompType, CompName, FirstHVACIteration,
LastSim)

 ! SUBROUTINE INFORMATION
 ! AUTHOR: Russ Taylor, Dan Fisher, Fred Buhl
 ! DATE WRITTEN: Oct 1997
 ! MODIFIED: Dec 1997 Fred Buhl
 ! RE-ENGINEERED: This is new code, not reengineered

 ! PURPOSE OF THIS SUBROUTINE:

GUIDE FOR MODULE DEVELOPERS 4BHOW IT FITS TOGETHER

3/24/09 46

 ! Calls the individual air loop component simulation
routines

 ! METHODOLOGY EMPLOYED: None

 ! REFERENCES: None

 ! USE Statements
 USE Fans, Only:SimulateFanComponents
 USE WaterCoils, Only:SimulateWaterCoilComponents
 USE MixedAir, Only:ManageOutsideAirSystem
 USE NewHVACComponent, Only:SimNewHVACComponent

Changing existing code

It may be that your new module or your new feature impacts existing code. Should
that happen, follow the guidance in the Programming Standard about positioning of
“global data”. Likewise, any code written should follow the guidance outlined in the
Programming Standard.

Considerations for Legacy Codes

Those module developers who are adding to EnergyPlus’s capabilities by
adapting existing codes into the module structure should take special
considerations.
First and foremost, who owns the legacy code that you are adapting?
More on this is covered in Appendix C – Submissions and Check-ins.
One must be very careful when developing modules to be implemented
in the publicly-available version of EnergyPlus.
Legacy codes will typically come with their own input and output structures.
In adapting a legacy code to use with EnergyPlus, the module developer will
usually want to bypass these routines by embedding the code into
EnergyPlus and using input entirely from the IDD/IDF structure. During
original transition, you can consider doing a parallel effort of writing a simple
input file for the legacy code while testing results with your developing
EnergyPlus transition code.

Code Readability vs. Speed of Execution

Programmers throughout time have had to deal with speed of code execution
and it’s an ongoing concern. However, compilers are pretty smart these days
and, often, can produce speedier code for the hardware platform than the
programmer can when he or she uses “speed up” tips. The EnergyPlus
development team would rather the code be more “readable” to all than to try
to outwit the compilers for every platform. First and foremost, the code is the
true document of what EnergyPlus does – other documents will try to explain
algorithms and such but must really take a back seat to the code itself.
However, many people may read the code – as developers, we should try to
make it as readable at first glance as possible. For a true example from the
code and a general indication of preferred style, take the case of the zone
temperature update equation. In the Engineering Reference document, the
form is recognizable and usual:

GUIDE FOR MODULE DEVELOPERS 4BHOW IT FITS TOGETHER

3/24/09 47

2 3
inf supply

1 1 1

inf
1 1

3 1
3

2 3
11
6

surfacessl zones

surfaces zones

NN N
t t t t t tz

i i i si i p zi p sys p z z z
t i i i

z N N
z

i i p p sys
i i

C
Q h AT m C T m C T m C T T T T

tT
C

h A m C m C m C
t

δ δ δ

δ

δ

− − −
∞

= = =

= =

+ + + + − − + −
=

+ + + +

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑ ∑

∑ ∑
And, this equation appears in the code (ZoneTempPredictorCorrector
Module), as:

ZT(ZoneNum)= (CoefSumhat + CoefAirrat*(3.0*ZTM1(ZoneNum) - (3.0/2.0)*ZTM2(ZoneNum) &
 + (1./3.)* ZTM3(ZoneNum))) &
 / ((11.0/6.0)*CoefAirrat+CoefSumha)

Somewhat abbreviated here due to lack of page width but still recognizable
from the original. A better version would actually be:

ZT(ZoneNum)= (CoefSumhat - CoefAirrat*(-3.0*ZTM1(ZoneNum) + (3.0/2.0)*ZTM2(ZoneNum) &
 - (1./3.)* ZTM3(ZoneNum))) &
 / ((11.0/6.0)*CoefAirrat+CoefSumha)

Whereas the natural tendency of programming would lead to the less
readable:

ZT(ZoneNum)= (CoefSumhat + CoefAirrat*(3.0*ZTM1(ZoneNum) – 1.5*ZTM2(ZoneNum) + .333333*
ZTM3(ZoneNum))) &
 / (1.83333*CoefAirrat+CoefSumha)

The final version is a correct translation (more or less) from the
Engineering/usual representation but much harder to look at in code and
realize what is being represented.

Speed of Execution

A critical consideration in speed of execution is character string
comparisons. These are typically quite slow and should not be used in the
core routines (i.e. those that are executed every zone or hvac time step). An
alternative to string comparisons is to define module-level integer
parameters, equate a string to a parameter during the initial subroutine call
(e.g. GetInput), and then do integer comparisons through the remainder of
the calls to the module. Doing this does not deter readability, yet assists in
reducing execution time.
For example, in the module shown previously (Module Fans), the parameters
for fan types are set as Integers:
 !MODULE PARAMETER DEFINITIONS
INTEGER, PARAMETER :: FanType_SimpleConstVolume = 1
INTEGER, PARAMETER :: FanType_SimpleVAV = 2
INTEGER, PARAMETER :: FanType_SimpleOnOff = 3
INTEGER, PARAMETER :: FanType_ZoneExhaust = 4

During the GetInput, string types are shown (this is getting these objects):
 CALL GetObjectItem('FAN:SIMPLE:CONSTVOLUME', &
 SimpFanNum,AlphArray, &
 NumAlphas,NumArray,NumNums,IOSTAT)
 . . .
 Fan(FanNum)%FanName = AlphArray(1)
 Fan(FanNum)%FanType = 'SIMPLE'
 . . .
 Fan(FanNum)%Control = 'CONSTVOLUME'
 Fan(FanNum)%FanType_Num=FanType_SimpleConstVolume

Then, during the simulation the integer parameters are used:
 ! Calculate the Correct Fan Model with the current FanNum

GUIDE FOR MODULE DEVELOPERS 4BHOW IT FITS TOGETHER

3/24/09 48

 IF (Fan(FanNum)%FanType_Num == FanType_SimpleConstVolume) THEN
 Call SimSimpleFan(FanNum)
 Else IF (Fan(FanNum)%FanType_Num == FanType_SimpleVAV) THEN
 Call SimVariableVolumeFan(FanNum)
 Else If (Fan(FanNum)%FanType_Num == FanType_SimpleOnOff) THEN
 Call SimOnOffFan(FanNum)
 Else If (Fan(FanNum)%FanType_Num == FanType_ZoneExhaust) THEN
 Call SimZoneExhaustFan(FanNum)
 End If

This does not detract from code readability at all but execution is much
speedier with this versus the string comparisons.

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 49

EnergyPlus Services

EnergyPlus provides some standard services that make the developer’s task
much easier. The developer can concentrate on the new simulation
algorithm rather than have to deal with details of input file structure, writing
output, obtaining scheduled data, and accessing weather variables.

Utility Routines/Functions

EnergyPlus supplies an extensive set of routines to help module developers
get input, check values, get schedule values, get and check nodes. These
are summarized in the following table and in more detail in the following
sections. The table indicates the routine/function name, times of most likely
use, and the module (if applicable) that you must USE in the code in order to
make the routine available to you. Most of the items mentioned in this table
are of particular use in “GetInput” processing. A few later tables will highlight
similar functions/routines for simulation purposes.

Table 1. Table of Utility Functions

Routine/Function Name Use during Module
GetNumObjectsFound “GetInput” Processing InputProcessor
GetObjectItem “GetInput” Processing InputProcessor
GetObjectDefMaxArgs “GetInput” Processing InputProcessor
GetObjectItemNum “GetInput” Processing InputProcessor
FindItemInList “GetInput” Processing (best)

though some are currently
used in Simulation

InputProcessor

FindItem “GetInput” Processing InputProcessor
FindItemInSortedList “Special processing” – list

must be sorted.
InputProcessor

SameString “GetInput” Processing InputProcessor
VerifyName “GetInput” Processing InputProcessor
RangeCheck “GetInput” Processing InputProcessor
MakeUPPERCase “GetInput” Processing InputProcessor
GetOnlySingleNode “GetInput” Processing NodeInputManager
GetNodeNums “GetInput” Processing NodeInputManager
InitUniqueNodeCheck,
CheckUniqueNodes,
EndUniqueNodeCheck

“GetInput” Processing NodeInputManager

SetupCompSets “GetInput” Processing NodeInputManager
TestCompSets “GetInput” Processing NodeInputManager
GetNewUnitNumber (automatically retrieve an

available unit number)
EXTERNAL integer function

FindUnitNumber Find a unit number when you
know the name of the file

EXTERNAL integer function

FindNumberinList “GetInput” Processing/Init EXTERNAL integer function

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 50

Routine/Function Name Use during Module
processing

ValidateComponent “GetInput” Processing Subroutine CALL
CheckComponent “GetInput” Processing – like

ValidateComponent but
doesn’t generate error
message if failure

Subroutine CALL

CreateSysTimeIntervalString Simulation – Error Messages General
TrimSigDigits Simulation – Error Messages General
RoundSigDigits Simulation – Error Messages General
GetScheduleIndex “GetInput” Processing ScheduleManager
GetDayScheduleIndex “GetInput” Processing ScheduleManager
GetCurrentScheduleValue Simulation ScheduleManager
GetScheduleValuesForDay Simulation ScheduleManager
GetSingleDayScheduleValues Simulation/”GetInput” ScheduleManager
CheckScheduleValueMinMax “GetInput” Processing ScheduleManager
CheckScheduleValue “GetInput” Processing ScheduleManager
GetScheduleMinValue “GetInput” Processing ScheduleManager
GetScheduleMaxValue “GetInput” Processing ScheduleManager
LookUpScheduleValue Simulation ScheduleManager
CheckOutAirNodeNumber “GetInput” Processing OutAirNodeManager
GetCurveIndex “GetInput” Processing CurveManager
GetCurveCheck “GetInput” Processing CurveManager
GetCurveType “GetInput” Processing CurveManager
CurveValue Simulation CurveManager
SetupAndSort Sorting lists of character

values
SortAndStringUtilities

Input Services

The module InputProcessor processes the input data files (IDFs). It also
reads and parses the IDD file. The InputProcessor uses the definition lines in
the IDD as directives on how to process each input object in the IDF. The
InputProcessor also turns all alpha strings into all UPPER CASE. Currently,
it does nothing else to those strings – so the number of blanks in a string
must match what the calculational modules expect. The InputProcessor
processes all numeric strings into single precision real numbers. Special
characters, such as tabs, should not be included in the IDF.
The EnergyPlus module InputProcessor provides several routines -
generically called the “get” routines – that enable the developer to readily
access the data for a new module. These routines are made available by
including a “USE InputProcessor” statement in the module or in the routine
that will use the “get” routines. The GetFanInput subroutine in the example
illustrates some of the uses of the “get” routines.

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 51

InputProcessor

The following objects use public routines from the InputProcessor. To access
these, the code has:
Use InputProcessor, ONLY: <routine1>, <routine2>

Where the <routine> is one or more of the following:

GetNumObjectsFound

This function returns the number of objects in the input belonging to a
particular class. In other terms, it returns the number of instances in the input
of a particular component.

Example:
USE InputProcessor, ONLY: GetNumObjectsFound

NumVAVSys = GetNumObjectsFound('SINGLE DUCT:VAV:REHEAT')

Here NumVAVSys will contain the number of single duct VAV terminal units
in the input data file (IDF). SINGLE DUCT:VAV:REHEAT is the class name or
keyword defining VAV terminal unit input on the IDD file.

GetObjectItem

This subroutine is used to obtain the actual alphanumeric and numeric data
for a particular object.
Example:
USE InputProcessor, ONLY: GetNumObjectsFound, GetObjectNum

INTEGER :: SysNum
INTEGER :: SysIndex
INTEGER :: NumAlphas
INTEGER :: NumNums
INTEGER :: IOSTAT
REAL, DIMENSION(5) :: NumArray
LOGICAL, DIMENSION(5) :: NumBlank
CHARACTER(len=MaxNameLength), DIMENSION(8) :: AlphArray
.
! Flow
NumVAVSys = GetNumObjectsFound('SINGLE DUCT:VAV:REHEAT')
.
!Start Loading the System Input
DO SysIndex = 1, NumVAVSys
 CALL GetObjectItem('SINGLE DUCT:VAV:REHEAT’,SysIndex,AlphArray,&
 NumAlphas,NumArray,NumNums,IOSTAT,NumBlank)
 SysNum = SysIndex

 Sys(SysNum)%SysName = AlphArray(1)
 Sys(SysNum)%SysType = 'SINGLE DUCT:VAV:REHEAT'
 Sys(SysNum)%ReheatComp = AlphArray(6)
 Sys(SysNum)%ReheatName = AlphArray(7)

END DO ! end Number of Sys Loop END IF

Here GetObjectItem is called with inputs 'SINGLE DUCT:VAV:REHEAT' – the
class of object we want to input – and SysIndex – the index of the object on
the input file. If SysIndex is 3, the call to GetObjectItem will get the data for
the third VAV terminal unit on the input file. Output is returned in the

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 52

remaining arguments. AlphArray contains in order all the alphanumeric data
items for a single VAV terminal unit. NumArray contains all the numeric data
items. NumAlphas is the number of alphanumeric items read; NumNums is
the number of numeric data items read. IOSTAT is a status flag: -1 means
there was an error; +1 means the input was OK. AlphArray and NumArray
should be dimensioned to handle the largest expected input for the item.
NumBlank is an optional argument to the routine – it can be used to
determine if a numeric field was entered as “blank” rather than the filled value
of 0.0.

GetObjectDefMaxArgs

Extensible input techniques

While developers do their best to guess how many items are needed in an
object, users will often want to extend that object with far more fields than
were dreamed of. Using Allocatable arrays in Fortran usually makes this
feasible, the special \extensible field makes it possible.
Example:

USE InputProcessor, ONLY: GetObjectDefMaxArgs

CHARACTER(len=MaxNameLength), ALLOCATABLE, DIMENSION(:) :: Alphas
REAL, ALLOCATABLE, DIMENSION(:) :: Numbers

! You supply the object word, routine returns numargs, numalpha, numnumeric

CALL GetObjectDefMaxArgs(‘DAYSCHEDULE:INTERVAL’,NumArgs,NumAlpha,NumNumeric)

ALLOCATE(Alphas(NumAlpha))
ALLOCATE(Numbers(NumNumeric))

! Then, usual get calls…

Thus, you can determine how many arguments that the IDD has defined as
“maximum” for a given object.

GetObjectItemNum

GetObjectItem, described above, requires the input file index of the desired
object in order to get the object’s data. Sometimes this index may be
unknown, but the name of the object is known. GetObjectItemNum returns
the input file index given the class name and object name.

Example:
USE InputProcessor, ONLY: GetObjectItemNum

ListNum = GetObjectItemNum('CONTROLLER LIST',ControllerListName)

In the example, ListNum will contain the input file index of the
‘CONTROLLER LIST’ whose name is contained in the string variable
ControllerListName.

FindItemInList

This function looks up a string in a similar list of items and returns the index of
the item in the list, if found. It is case sensitive.

Example:
USE InputProcessor, ONLY: FindItemInList

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 53

SysNum = FindItemInList(CompName,Sys%SysName,NumSys)

CompName is the input string, Sys%SysName is the list of names to be
searched, and NumSys is the size of the list.

FindItem

Case insensitive version of the FindItemInList.
Example:
USE InputProcessor, ONLY: FindItem

SysNum = FindItem(CompName,Sys%SysName,NumSys)

CompName is the input string, Sys%SysName is the list of names to be
searched, and NumSys is the size of the list.

FindItemInSortedList

This function looks up a string in a sorted list of items and returns the index of
the item in the list, if found. It is case sensitive.

Example:
USE InputProcessor, ONLY: FindItemInSortedList

SysNum = FindItemInSortedList(CompName,Sys%SysName,NumSys)

CompName is the input string, Sys%SysName is the list of names to be
searched, and NumSys is the size of the list. See quick sort utility – most lists
are NOT sorted in EnergyPlus.

SameString

This function returns true if two strings are equal (case insensitively).
Example:
USE InputProcessor, ONLY: SameString

IF (SameString(InputRoughness,'VeryRough')) THEN
 Material(MaterNum)%Roughness=VeryRough
ENDIF

VerifyName

This subroutine checks that an object name is unique; that is, it hasn’t already
been used for the same class of object and the name is not blank.

Example:
USE InputProcessor, ONLY: VerifyName

CALL VerifyName(AlphArray(1),Fan%FanName, &
 FanNum-1,IsNotOK,IsBlank,'FAN:SIMPLE:CONSTVOLUME Name')

The first argument is the name to be checked, the second is the list of names
to search, the third argument is the number of entries in the list, the 4th
argument is set to TRUE if verification fails, the 5th argument is set to true if
the name is blank, and the last argument is part of the error message written
to the error file when verification fails.

RangeCheck

The routine RangeCheck can be used to produce a reasonable error
message to describe the situation in addition to setting the ErrorsFound

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 54

variable to true. Errors found can then be checked in the calling routine and
the program terminated if desired.

SUBROUTINE RangeCheck(ErrorsFound,WhatFieldString,WhatObjectString,ErrorLevel, &
 LowerBoundString,LowerBoundCondition,UpperBoundString,UpperBoundCondition)

It can be used in a variety of places when the \minimum and \maximum fields
will not work (e.g. different min/max dependent on some other field).

USE InputProcessor, ONLY: RangeCheck

ErrorsFound=.false.
CALL RangeCheck(ErrorsFound,'DryBulb Temperature','WeatherFile', &
 'SEVERE','> -70',(Drybulb>-70.),'< 70',(DryBulb <70.))
CALL RangeCheck(ErrorsFound,'DewPoint Temperature','WeatherFile', &
 'SEVERE','> -70',(Dewpoint>-70.),'< 70',(Dewpoint <70.))
CALL RangeCheck(ErrorsFound,'Relative Humidity','WeatherFile', &
 'SEVERE','> 0',(RelHum>=0.),'<= 110',(RelHum<=110.))

To examine one call:
The variable DryBulb is set to its value. In this case, it is coming from the
Weather File. The LowerBoundString is ‘> - 70’ and the
LowerBoundCondition is (DryBulb>-70.) [this expression will yield true or
false depending…]
The LowerBounds (LowerBoundString, LowerBoundCondition) are
optional as are the UpperBounds (UpperBoundString,
UpperBoundCondition). If we were only testing one set of ranges, the call
would look like:

Call RangeCheck(ErrorsFound,’DryBulb Temperature’,’WeatherFile’,’SEVERE’, &
 UpperBoundString=’< 70’, UpperBoundCondition=(DryBulb<70.))

ErrorLevel can be one of the usual Error levels:
WARNING – would be a simple warning message – the calling routine might
reset the value to be within bounds
SEVERE – a severe error. Usually the program would terminate if this is in a
“GetInput” routine. If during execution, the calling program could reset the
value but RangeCheck contains too many string comparisons to be called for
an execution problem.
FATAL – not likely to be used. You want to provide a context to the error and
if really a fatal type error, you’d like to execute the RangeCheck call and then
terminate from the calling program.
And the context for the message may be shown in the calling routine by
checking the value of ErrorsFound:

ErrFound=.false.
Call RangeCheck(ErrFound,'This field','SEVERE','<= 100',(Value<100.))
IF (ErrFound) THEN
 CALL ShowContinueError('Occurs in routine xyz')
 ErrorsFound=.true. ! for later termination
ENDIF

MakeUPPERCase

This function can be used to make sure an upper case string is being used.
(Note this is not needed when using “SameString”). Parameter 1 to the
function is the string to be upper cased:

USE InputProcessor, ONLY: MakeUPPERCase

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 55

UCString=MakeUPPERCase(‘lower string’)

Object Services

It is standard practice in EnergyPlus that only objects associated with a given
module be accessed from the input data file using a GetObjectItem function
call and that this type of function call only be executed during GetInput. For
example, the module HVACDXSystem would only access the object
DXSystem:AirLoop in the GetInput subroutine or the module
HVACFanComponent would only access the different fan objects as shown in
the example below. This programming standard requires that all modules be
“responsible” for specific objects and no other module accesses the input
data file for this specific object. Using this technique, maintenance of the
EnergyPlus modules is limited to specific areas of software as input data for
objects evolve for any reason.
Module HVACDXSystem - SUBROUTINE GetDXCoolingSystemInput:
 CALL GetObjectItem('DXSYSTEM:AIRLOOP',DXCoolSysNum,AlphArray,
&
 NumAlphas,NumArray,NumNums,IOSTAT)
Module HVACFanComponent – SUBROUTINE GetFanInput:
 CALL
GetObjectItem('FAN:SIMPLE:CONSTVOLUME',SimpFanNum,AlphArray, &
 NumAlphas,NumArray,NumNums,IOSTAT)
 CALL GetObjectItem('FAN:SIMPLE:VARIABLEVOLUME',VarVolFanNum,
&
 AlphArray,NumAlphas,NumArray,NumNums,IOSTAT)
 CALL GetObjectItem('ZONE EXHAUST FAN',ExhFanNum,AlphArray, &
 NumAlphas,NumArray,NumNums,IOSTAT)
 CALL GetObjectItem('FAN:SIMPLE:ONOFF',OnOffFanNum,AlphArray, &
 NumAlphas,NumArray,NumNums,IOSTAT)
If module developers were allowed to access the input data file for other
objects not related to a particular module, both the original module and the
alternate module would have to be corrected each time the object changed.
This poses a severe hazard for future development of EnergyPlus.
Module developers may at times require information for specific objects from
other modules. When this occurs, the Information is “mined” through function
or subroutine calls located in the other module. Existing function calls may be
used or added to EnergyPlus as needed. In this way, a module developer
could confirm that node information provided in a parent object matched the
node information specified for its children object. Other error checking may
also be performed in this manner. For example, if the module
HVACDXSystem needed to know the capacity of the DX cooling coil, a
function call to GetCoilCapacity in the DXCoil module would provide this
information. The function GetCoilCapacity would the “Get” the input from the
input data file if it has not already been accessed and provide the information
back to the calling module.

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 56

A variety of examples exist to aid the module developer in this area of
programming.

• DXCoil.f90:
FUNCTION GetCoilCapacity(CoilType,CoilName,ErrorsFound) RESULT(CoilCapacity)
FUNCTION GetMinOATCompressor(CoilType,CoilName,ErrorsFound) RESULT(MinOAT)
FUNCTION GetCoilInletNode(CoilType,CoilName,ErrorsFound) RESULT(NodeNumber)
FUNCTION GetCoilOutletNode(CoilType,CoilName,ErrorsFound) RESULT(NodeNumber)
FUNCTION GetSupplyAirFanOperatingMode(CoilType,CoilName,ErrorsFound) RESULT(OpMode)
FUNCTION GetCoilCondenserNode(CoilType,CoilName,ErrorsFound) RESULT(CondNode)
FUNCTION GetHPCoolingCoilIndex(HeatingCoilType, HeatingCoilName, HeatingCoilIndex)
 RESULT(DXCoolingCoilIndex)

• FanCoilUnits.f90:

INTEGER FUNCTION GetFanCoilZoneInletAirNode(FanCoilNum)
INTEGER FUNCTION GetFanCoilOutAirNode(FanCoilNum)
INTEGER FUNCTION GetFanCoilReturnAirNode(FanCoilNum)
INTEGER FUNCTION GetFanCoilMixedAirNode(FanCoilNum)

• HeatRecovery.f90:

FUNCTION GetSupplyInletNode(HXName,ErrorsFound)
FUNCTION GetSupplyOutletNode(HXName,ErrorsFound)
FUNCTION GetSecondaryInletNode(HXName,ErrorsFound)
FUNCTION GetSecondaryOutletNode(HXName,ErrorsFound)

• HVACFanComponent.f90:

FUNCTION GetFanDesignVolumeFlowRate(FanType,FanName,ErrorsFound) RESULT(DesignVolumeFlowRate
FUNCTION GetFanInletNode(FanType,FanName,ErrorsFound) RESULT(NodeNumber)
FUNCTION GetFanOutletNode(FanType,FanName,ErrorsFound) RESULT(NodeNumber)
SUBROUTINE GetFanVolFlow(FanIndex, FanVolFlow)
SUBROUTINE GetFanType(FanName,FanType,ErrorsFound,ThisObjectType)

• HVACHeatingCoils.f90:

FUNCTION GetCoilCapacity(CoilType,CoilName,ErrorsFound) RESULT(CoilCapacity)
FUNCTION GetCoilInletNode(CoilType,CoilName,ErrorsFound) RESULT(NodeNumber)
FUNCTION GetCoilOutletNode(CoilType,CoilName,ErrorsFound) RESULT(NodeNumber)
SUBROUTINE GetHeatingCoilIndex(HeatingCoilName,HeatingCoilIndex,ErrorsFound)

• HVACHXAssistedCoolingCoil.f90:

FUNCTION GetCoilCapacity(CoilType,CoilName,ErrorsFound) RESULT(CoilCapacity)
FUNCTION GetCoilInletNode(CoilType,CoilName,ErrorsFound) RESULT(NodeNumber)
FUNCTION GetCoilOutletNode(CoilType,CoilName,ErrorsFound) RESULT(NodeNumber)
FUNCTION GetHXDXCoilName(CoilType,CoilName,ErrorsFound) RESULT(DXCoilName)
FUNCTION GetCoilMaxWaterFlowRate(CoilType,CoilName,ErrorsFound) RESULT(MaxWaterFlowRate)

• HVACStandAloneERV.f90

FUNCTION GetSupplyAirFlowRate(ERVType,ERVCtrlName,ErrorsFound) RESULT(AirFlowRate)
FUNCTION GetSupplyAirInletNode(ERVType,ERVCtrlName,ErrorsFound) RESULT(AirInletNode)
FUNCTION GetExhaustAirInletNode(ERVType,ERVCtrlName,ErrorsFound) RESULT(AirInletNode)
INTEGER FUNCTION GetStandAloneERVOutAirNode(StandAloneERVNum)
INTEGER FUNCTION GetStandAloneERVZoneInletAirNode(StandAloneERVNum)
INTEGER FUNCTION GetStandAloneERVReturnAirNode(StandAloneERVNum)

• HVACSteamCoilComponent.f90:

FUNCTION GetCoilMaxWaterFlowRate(CoilType,CoilName,ErrorsFound) RESULT(MaxWaterFlowRate)

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 57

• HVACWaterCoilComponent.f90:
FUNCTION GetCoilMaxWaterFlowRate(CoilType,CoilName,ErrorsFound) RESULT(MaxWaterFlowRate)
FUNCTION GetCoilInletNode(CoilType,CoilName,ErrorsFound) RESULT(NodeNumber)
FUNCTION GetCoilOutletNode(CoilType,CoilName,ErrorsFound) RESULT(NodeNumber)

• HVACWaterToAir.f90:

FUNCTION GetCoilCapacity(CoilType,CoilName,ErrorsFound) RESULT(CoilCapacity)
FUNCTION GetCoilInletNode(CoilType,CoilName,ErrorsFound) RESULT(NodeNumber)
FUNCTION GetCoilCapacity(CoilType,CoilName,ErrorsFound) RESULT(CoilCapacity)
FUNCTION GetCoilInletNode(CoilType,CoilName,ErrorsFound) RESULT(NodeNumber)

• MixedAir.f90:

FUNCTION GetOAMixerNodeNumbers(OAMixerName,ErrorsFound) RESULT(OANodeNumbers)
FUNCTION GetNumOAMixers() RESULT(NumberOfOAMixers)
FUNCTION GetNumOAControllers() RESULT(NumberOfOAControllers)
FUNCTION GetOAMixerReliefNodeNumber(OAMixerNum) RESULT(ReliefNodeNumber)
FUNCTION GetOASystemNumber(OASysName) RESULT(OASysNumber)
FUNCTION GetOAMixerInletNodeNumber(OAMixerNumber) RESULT(OAMixerInletNodeNumber)
FUNCTION GetOAMixerReturnNodeNumber(OAMixerNumber) RESULT(OAMixerReturnNodeNumber)
FUNCTION GetOAMixerMixedNodeNumber(OAMixerNumber) RESULT(OAMixerMixedNodeNumber)

• PackagedTerminalHeatPump.f90:

INTEGER FUNCTION GetPTHPZoneInletAirNode(PTHPNum)
INTEGER FUNCTION GetPTHPOutAirNode(PTHPNum)
INTEGER FUNCTION GetPTHPReturnAirNode(PTHPNum)
INTEGER FUNCTION GetPTHPMixedAirNode(PTHPNum)

• PurchasedAirManager.f90:

FUNCTION GetPurchasedAirOutAirMassFlow(PurchAirNum) RESULT(OutAirMassFlow)

• SetpointManager.f90:

LOGICAL FUNCTION IsNodeOnSetPtManager(NodeNum,SetPtType)

• UnitVentilator.f90:

INTEGER FUNCTION GetUnitVentilatorOutAirNode(UnitVentNum)
INTEGER FUNCTION GetUnitVentilatorZoneInletAirNode(UnitVentNum)
INTEGER FUNCTION GetUnitVentilatorMixedAirNode(UnitVentNum)
INTEGER FUNCTION GetUnitVentilatorReturnAirNode(UnitVentNum)

• WindowAC.f90:

INTEGER FUNCTION GetWindowACZoneInletAirNode(WindACNum)
INTEGER FUNCTION GetWindowACOutAirNode(WindACNum)
INTEGER FUNCTION GetWindowACReturnAirNode(WindACNum)
INTEGER FUNCTION GetWindowACMixedAirNode(WindACNum)

These kinds of calls are highly encouraged so that data is mined from the
other modules rather than being declared public.
The function call for GetCoilCapacity in module DXCoil.f90 is shown below.
Note that the format for these function calls have the same format as other
subroutines throughout the EnergyPlus software. The example function
shown below is declared as a public routine in module DXCoils for use by
other modules through a USE statement.
Module DXCoils.f90:
PUBLIC GetCoilCapacity

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 58

FUNCTION GetCoilCapacity(CoilType,CoilName,ErrorsFound)
RESULT(CoilCapacity)

 ! FUNCTION INFORMATION:
 ! AUTHOR Linda Lawrie
 ! DATE WRITTEN February 2006
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS FUNCTION:
 ! This function looks up the coil capacity for the given
 ! coil and returns it. If incorrect coil type or name
 ! is given, errorsfound is returned as true and capacity
 ! is returned as negative.

 ! METHODOLOGY EMPLOYED:
 ! na

 ! REFERENCES:
 ! na

 ! USE STATEMENTS:
 USE InputProcessor, ONLY: FindItemInList

 IMPLICIT NONE ! Enforce explicit typing of all variables in
 ! this routine

 ! FUNCTION ARGUMENT DEFINITIONS:
 CHARACTER(len=*), INTENT(IN) :: CoilType ! must match coil
 ! types in this module
 CHARACTER(len=*), INTENT(IN) :: CoilName ! must match coil
 ! names for the coil type
 LOGICAL, INTENT(INOUT) :: ErrorsFound ! set to true if problem
 REAL :: CoilCapacity ! returned capacity of
 ! matched coil

 ! FUNCTION PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS:
 ! na

 ! DERIVED TYPE DEFINITIONS:
 ! na

 ! FUNCTION LOCAL VARIABLE DECLARATIONS:
 INTEGER :: WhichCoil

 ! Obtains and Allocates DXCoils
 IF (GetCoilsInputFlag) THEN
 CALL GetDXCoils
 GetCoilsInputFlag = .FALSE.
 END IF

 IF (CoilType == 'COIL:DX:HEATINGEMPIRICAL' .or. &
 CoilType == 'COIL:DX:COOLINGBYPASSFACTOREMPIRICAL') THEN
 WhichCoil=FindItemInList(CoilName,DXCoil%Name,NumDXCoils)
 IF (WhichCoil /= 0) THEN
 CoilCapacity=DXCoil(WhichCoil)%RatedTotCap(1)
 ENDIF
 ELSE
 WhichCoil=0
 ENDIF

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 59

 IF (WhichCoil == 0) THEN
 CALL ShowSevereError('Could not find CoilType="' &
 //TRIM(CoilType)//'" with Name="'//TRIM(CoilName)//'"')
 ErrorsFound=.true.
 CoilCapacity=-1000.
 ENDIF

 RETURN

END FUNCTION GetCoilCapacity

Note that the function name in one module can be the same as a function
name in a different module. In fact, for EnergyPlus this should be the case –
the module should use a generic name that is typical of its function. The
calling module should use a “local name” that better specifies the type of item
it is accessing. For example, if module HVACFurnace required node or
capacity information from identical functions contained in modules
HVACHeatingCoils and DXCoils, these function names could easily be
assigned more descriptive names in the HVACFurnace module as follows.
Module HVACFurnace.f90:
USE HeatingCoils, ONLY: GetHeatingCoilCapacity=>GetCoilCapacity,

GetHeatingCoilInletNode=>GetCoilInletNode
USE DXCoils, ONLY: GetDXCoilCapacity=>GetCoilCapacity,

GetDXCoilInletNode=>GetCoilInletNode

Branch & Node Checking and Services

BranchInputManager

For the most part, new modules do not use the BranchInputManager directly.
Branches are “gotten” at a high management level. The main routines that
might be used from the BranchInputManager are: NumBranchesInBranchList,
GetBranchList and GetBranchData. The BranchInputManager also houses
the Splitter and Mixer data: GetLoopSplitter and GetLoopMixer.

NumBranchesInBranchList

This routine is used to get the number of branches in a branch list name (so
that an appropriate array can be allocated).

INTEGER FUNCTION NumBranchesInBranchList(BranchListName)

An example of use:
=== Example ===
USE BranchInputManager, ONLY: NumBranchesInBranchList,. . .
. . .
PrimeAirSys(ASysNum)%NumBranches= &
 NumBranchesInBranchList(BranchListName)
IF (PrimeAirSys(ASysNum)%NumBranches.EQ.0) THEN
 CALL ShowSevereError('There must be at least 1 branch in system ' &
 //TRIM(PrimeAirSys(ASysNum)%Name))
 ErrorsFound=.true.
END IF
ALLOCATE(BranchNames(PrimeAirSys(ASysNum)%NumBranches))
BranchNames=' '

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 60

GetBranchList

This routine is used to get the names of the branches on a Loop.
SUBROUTINE GetBranchList(LoopName, BranchListName, NumBranchNames,
BranchNames, LoopType)
=== Example ===
USE BranchInputManager, ONLY: GetBranchList, . . .
. . .

(NumBranches from NumBranchesInBranchList)
! get the branch lists
CALL GetBranchList(PrimeAirSys(ASysNum)%Name,BranchListName, &
 PrimeAirSys(ASysNum)%NumBranches,BranchNames,'Air')
ALLOCATE(PrimeAirSys(ASysNum)%Branch(NumBranches))
.

The first argument is the loop name, the 2nd argument is the name of the
Branch List, the 3rd argument is an output: the number of branch names, the
4th argument is an output: the names of the branches in the list, the 5th
argument is the loop type.

GetBranchData

This routine is used to get pieces of data about a branch.
SUBROUTINE GetBranchData(LoopName, BranchName, BranchMaxFlow, NumComps,
CompType, CompName, CompCtrlType, CompInletNodeNames, CompInletNodeNums,
CompOutletNodeNames, CompOutletNodeNums, ErrorsFound)
=== Example ===
! Cycle through all of the branches and set up the branch data
DO BNum = 1,PrimeAirSys(ASysNum)%NumBranches
 PrimeAirSys(ASysNum)%Branch(BNum)%Name = BranchNames(BNum)
 NumBComps=NumCompsInBranch(BranchNames(BNum))

 ALLOCATE(CompTypes(NumBComps))
 CompTypes=' '
 ALLOCATE(CompNames(NumBComps))
 CompNames=' '
 ALLOCATE(CompCtrls(NumBComps))
 CompCtrls=' '
 ALLOCATE(InletNodeNames(NumBComps))
 InletNodeNames=' '
 ALLOCATE(InletNodeNumbers(NumBComps))
 InletNodeNumbers=0
 ALLOCATE(OutletNodeNames(NumBComps))
 OutletNodeNames=' '
 ALLOCATE(OutletNodeNumbers(NumBComps))
 OutletNodeNumbers=0

 CALL GetBranchData(PrimeAirSys(ASysNum)%Name, &
 BranchNames(BNum), &
 PrimeAirSys(ASysNum)%Branch(BNum)%MaxVolFlowRate, &
 NumBComps, &
 CompTypes,CompNames,CompCtrls, &
 InletNodeNames,InletNodeNumbers, &
 OutletNodeNames,OutletNodeNumbers,ErrorsFound)
 ALLOCATE &
 (PrimeAirSys(ASysNum)%Branch(BNum)%Comp(NumBComps))
 PrimeAirSys(ASysNum)%Branch(BNum)%TotalComponents = &
 NumBComps

 PrimeAirSys(ASysNum)%Branch(BNum)%TotalNodes = &
 NumBComps+1

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 61

 ALLOCATE (PrimeAirSys(ASysNum)%Branch(BNum)%NodeNum(NumBComps+1))
 PrimeAirSys(ASysNum)%Branch(BNum)%NodeNum(1) = &
 InletNodeNumbers(1)
 PrimeAirSys(ASysNum)%Branch(BNum)%DuctType = Main
 DO CNum = 1,PrimeAirSys(ASysNum)%Branch(BNum)%TotalComponents

 PrimeAirSys(ASysNum)%Branch(BNum)%Comp(CNum)%TypeOf = &
 CompTypes(CNum)
 PrimeAirSys(ASysNum)%Branch(BNum)%Comp(CNum)%Name = &
 = CompNames(CNum)
 PrimeAirSys(ASysNum)%Branch(BNum)%Comp(CNum)%Index = 0
 PrimeAirSys(ASysNum)%Branch(BNum)%Comp(CNum)%FlowCtrl= &
 CompCtrls(CNum)
 PrimeAirSys(ASysNum)%Branch(BNum)%Comp(CNum)%NodeNameIn=&
 InletNodeNames(CNum)
 PrimeAirSys(ASysNum)%Branch(BNum)%Comp(CNum)%NodeNumIn=&
 InletNodeNumbers(CNum)
 PrimeAirSys(ASysNum)%Branch(BNum)%Comp(CNum)%NodeNameOut=&
 OutletNodeNames(CNum)
 PrimeAirSys(ASysNum)%Branch(BNum)%Comp(CNum)%NodeNumOut= &
 OutletNodeNumbers(CNum)
 PrimeAirSys(ASysNum)%Branch(BNum)%NodeNum(CNum+1) = &
 OutletNodeNumbers(CNum)

NodeInputManager

The NodeInputManager is responsible for getting all the node names and
assigning each a number. Node names are learned in random order – which
can make validation difficult. Internally nodes are referenced as number and
should be integers in any data structure or reference. Two key routines are
used for obtaining node numbers: GetOnlySingleNode and GetNodeNums.

Node Information Arguments

Both routines need some extra information about the node as the number is
obtained.This information is used to support fluid property calculations, the
HVAC Diagram utility, and various diagnostic checks.

NodeFluidType

This argument defines the type of fluid at this node such as air or water. The
node fluid type is used for fluid property calculations and is reported in the list
of nodes in the bnd output file. Parameter definitions for this argument can
be found in DataLoopNode. As of version 1.3, the list of valid choices is:

 ! Valid Fluid Types for Nodes
 INTEGER, PARAMETER :: NodeType_Unknown = 0 ! 'blank'
 INTEGER, PARAMETER :: NodeType_Air = 1 ! 'Air'
 INTEGER, PARAMETER :: NodeType_Water = 2 ! 'Water'
 INTEGER, PARAMETER :: NodeType_Steam = 3 ! 'Steam'
 INTEGER, PARAMETER :: NodeType_Electric= 4 ! 'Electric'

 CHARACTER(len=*), PARAMETER, DIMENSION(0:4) :: ValidNodeFluidTypes= &
 (/'blank ', &
 'Air ', &
 'Water ', &
 'Steam ', &
 'Electric'/)
 INTEGER, PARAMETER :: NumValidNodeFluidTypes=4

Note that the argument passed in is an integer value – you can “USE
DataLoopNode” and use the above definitions (preferred over either defining
your own or passing in a number). In many cases, a component may not

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 62

know the fluid type. For example, most SET POINT MANAGERS are
applicable to both air and water nodes. In this case, NodeType_Unknown
should be used. It is assumed that for any given node, at least one object
referencing it will know the fluid type. Once a known fluid type is passed for a
given node, it cannot be changed. All references to the same node must
specify the same fluid type or unknown. When all input has been gotten, all
node fluid types should be known, but this is not being validated currently.

NodeObjectType

This is the type of object which is referencing the node (e.g. Chiller:Electric).
This information is used to generate the list of Parent and Non-Parent Node
Connections in the bnd output file. This list is used by the HVAC Diagram
utility.

NodeObjectName

This is the name of the object which is referencing the node (e.g. My Chiller).
This information is used to generate the list of Parent and Non-Parent Node
Connections in the bnd output file. This list is used by the HVAC Diagram
utility.

NodeConnectionType

Parameter definitions for this argument can be found in DataLoopNode. .As
of version 1.2.0, the current list of choices is:

 ! Valid Connection Types for Nodes
 CHARACTER(len=*), PARAMETER, DIMENSION(13) :: ValidConnectionTypes= &
 (/'Inlet ', &
 'Outlet ', &
 'Internal ', &
 'ZoneNode ', &
 'Sensor ', &
 'Actuator ', &
 'OutsideAir ', &
 'ReliefAir ', &
 'ZoneInlet ', &
 'ZoneReturn ', &
 'ZoneExhaust', &
 'Setpoint ', &
 'Electric '/)
 INTEGER, PARAMETER :: NumValidConnectionTypes=13

 INTEGER, PARAMETER :: NodeConnectionType_Inlet = 1
 INTEGER, PARAMETER :: NodeConnectionType_Outlet = 2
 INTEGER, PARAMETER :: NodeConnectionType_Internal = 3
 INTEGER, PARAMETER :: NodeConnectionType_ZoneNode = 4
 INTEGER, PARAMETER :: NodeConnectionType_Sensor = 5
 INTEGER, PARAMETER :: NodeConnectionType_Actuator = 6
 INTEGER, PARAMETER :: NodeConnectionType_OutsideAir = 7
 INTEGER, PARAMETER :: NodeConnectionType_ReliefAir = 8
 INTEGER, PARAMETER :: NodeConnectionType_ZoneInlet = 9
 INTEGER, PARAMETER :: NodeConnectionType_ZoneReturn = 10
 INTEGER, PARAMETER :: NodeConnectionType_ZoneExhaust = 11
 INTEGER, PARAMETER :: NodeConnectionType_Setpoint = 12
 INTEGER, PARAMETER :: NodeConnectionType_Electric = 13

This information is used to generate the list of Parent and Non-Parent Node
Connections in the bnd output file. This list is used by the HVAC Diagram
utility.
After all input has been gotten, node connection types are also validated in
CheckNodeConnections in NodeInputManager according to the following
rules. The rules are intended to catch user input errors without placing

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 63

unnecessary constraints on system configurations. The validation checks are
not exhaustive, so it is possible to pass all of the checks yet have a
misconnected simulation. The main goal here is to prevent dangling nodes
which do not behave as the user expects and can often go undetected
without scrutinizing detailed outputs.

 For any node which is used as an actuator, the same node must also be used at
least once as a node type which is not sensor or actuator or outsideair.

 For any node which is used as a setpoint, the same node must also be used at
least once as a node type which is not a setpoint or outsideair.

 Every ZoneInlet must appear as an outlet from something, otherwise it will do
nothing.

 Every ZoneExhaust must appear as an inlet to something, otherwise it will do
nothing.

 Every inlet node should match either an Outlet, ZoneReturn, ZoneExhaust,
ReliefAir, or OutsideAir node, with the following exceptions:

 If an InletNode's object is AIR PRIMARY LOOP, CONDENSER LOOP, or
PLANT LOOP, then skip the test.

 If an InletNode's object is not one of the above types, it is valid if the same
node name appears as an INLET to an AIR PRIMARY LOOP, CONDENSER
LOOP, or PLANT LOOP.

If a node fails any of the above tests, a severe error message is generated. If
a new module generates unexpected errors, check the node connection
types used by a similar module. If a given node is used in more than one way
by an object, it may be necessary to register the node more than once by
successive calls to GetOnlySingleNode or GetNodeNums with different
arguments in each call.
NodeConnectionType_OutsideAir is intended to specify nodes which are
connected to the outside air. For example, OUTSIDE AIR MIXER has an
Outside_Air_Stream_Node which is registered as
NodeConnectionType_Inlet, because it may have other components such as
a preheat coil between it and the outside air. Whichever node ultimately
connects to the outside air in this case will be registered as
NodeConnectionType_OutsideAir by an OUTSIDE AIR INLET NODE LIST
object.
Some types of equipment take in outside air directly without relying on
OUTSIDE AIR INLET NODE LIST to set the conditions on that node. For
example, UNIT VENTILATOR and chillers with air cooled condensers do not
require the use of an OUTSIDE AIR INLET NODE LIST. In these cases, the
component registers the outside air node directly as
NodeConnectionType_OutsideAir. Given that the use of outside air nodes is
not consistent throughout the code, it may be necessary at some point to
relax or alter the validation rules associated with outside air nodes to
accommodate a new type of module. Please consult with the team before
changing these rules.

NodeFluidStream

This is an integer indicating which fluid stream this node belongs to (1, 2, 3).
For components with a single fluid stream, such as a fan, set this to one for
the inlet and outlet nodes. For components with multiple fluid streams, such
as a water coil, matching inlets and outlets should use the same fluid stream

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 64

number. For example, the air inlet and air outlet would be stream 1, and the
water inlet and water outlet would be stream 2. This information is used to
generate the list of Parent and Non-Parent Node Connections in the bnd
output file. This list is used by the HVAC Diagram utility.

ObjectIsParent

True If the object is a parent object, false if not. Parameters are defined in
DataLoopNode. As of version 1.2.0, the current list of choices is:

 ! Valid IsParent Types for Node Connections
 LOGICAL, PARAMETER :: ObjectIsParent = .TRUE.
 LOGICAL, PARAMETER :: ObjectIsNotParent = .FALSE.

What is a parent object? A parent object is one which encloses and
references other objects. For example, FAN COIL UNIT:4 PIPE is a parent to
a fan, a heating coil, a cooling coil, and an outside air mixer. In most cases,
all nodes referenced by a parent object are duplicated in the non-parent
objects which are the components which ultimately act on the fluid stream.
From the perspective of the HVAC Diagram utility, every fluid loop must be a
continuous connection of non-parent objects and zones. In this example, the
nodes of the mixer, fan, coils, and zone form a complete loop. Some
components, such as UNIT VENTILATOR are part parent and part non-
parent. It is a parent to a fan, a heating coil, and a cooling coil, but it does not
reference an explicit outside air mixer. The mixer is an implied component
within the unit ventilator. In these cases, to facilitate drawing a loop in HVAC
Diagram, it is necessary to create a non-parent component to carry the fluid.
So, the unit ventilator uses the following approach as illustrated by the
comments and source code. Note that Alphas(3), the air inlet node, is
registered twice, once as an inlet to parent object UNIT VENTILATOR, and
once as an inlet to the implicit non-parent object UNIT VENTILATOR-OA
MIXER.

Excerpt from GetUnitVentilatorInput in UnitVentilator

 ! Main air nodes (except outside air node):
 ! For node connections, this object is both a parent and a non-parent, because the
 ! OA mixing box is not called out as a separate component, its nodes must be connected
 ! as ObjectIsNotParent. But for the fan and coils, the nodes are connected as
ObjectIsParent
 ! To support the diagramming tool, the unit ventilator inlet node must appear both as
 ! an inlet to the unit ventilator parent object and as an inlet to the implied
 ! non-parent OA mixing box within the unit ventilator.
 ! Because there is overlap between the nodes that are parent and non-parent, use a
different
 ! object type for the non parent nodes
 UnitVent(UnitVentNum)%AirInNode = &
 GetOnlySingleNode(Alphas(3),ErrorsFound,'UNIT VENTILATOR',Alphas(1), &
 NodeType_Air,NodeConnectionType_Inlet,1,ObjectIsParent)
 UnitVent(UnitVentNum)%AirInNode = &
 GetOnlySingleNode(Alphas(3),ErrorsFound,'UNIT VENTILATOR-OA MIXER',Alphas(1), &
 NodeType_Air,NodeConnectionType_Inlet,1,ObjectIsNotParent)

 UnitVent(UnitVentNum)%AirOutNode = &
 GetOnlySingleNode(Alphas(4),ErrorsFound,'UNIT VENTILATOR',Alphas(1), &
 NodeType_Air,NodeConnectionType_Outlet,1,ObjectIsParent)

 UnitVent(UnitVentNum)%FanOutletNode = &
 GetOnlySingleNode(Alphas(5),ErrorsFound,'UNIT VENTILATOR',Alphas(1), &
 NodeType_Air,NodeConnectionType_Internal,1,ObjectIsParent)

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 65

GetOnlySingleNode

This is used when only one node is expected as the input point. If this name
points to a NodeList, an appropriate error message will be issued and errFlag
(the second argument) will be set .true.

GetOnlySingleNode(NodeName,errFlag,NodeObjectType,NodeObjectName,NodeFluidType,NodeConnectionType,
NodeFluidStream,ObjectIsParent)

It is used:
Example:
USE NodeInputManager, ONLY: GetOnlySingleNode
. . .
! get inlet node number
Baseboard(BaseboardNum)%WaterInletNode = &
 GetOnlySingleNode(AlphArray(3),ErrorsFound, &
 'Baseboard Heater:Water:Convective',AlphArray(1), &
 NodeType_Water,NodeConnectionType_Inlet, &
 1,ObjectIsNotParent)
! get outlet node number
Baseboard(BaseboardNum)%WaterOutletNode = &
 GetOnlySingleNode(AlphArray(4),ErrorsFound, &
 'Baseboard Heater:Water:Convective',AlphArray(1), &
 NodeType_Water,NodeConnectionType_Outlet, &
 1,ObjectIsNotParent)

The first argument is the node name, the 2nd argument is the error flag
variable, the 3rd argument is the object type, the 4th argument is the object
name – the remainder arguments are as listed above.

GetNodeNums

This is used when more than one node is valid for an input. Like the
GetOnlySingleNode invocation, GetNodeNums needs the extra information
for a node:

SUBROUTINE GetNodeNums(Name,NumNodes,NodeNumbers,ErrorsFound, &
 NodeFluidType,NodeObjectType,NodeObjectName, &
 NodeConnectionType,NodeFluidStream,ObjectIsParent)
Example:
USE NodeInputManager, ONLY: GetNodeNums
. . .
CHARACTER(len=MaxNameLength), DIMENSION(4) :: AlphArray
INTEGER :: NumNodes
INTEGER, DIMENSION(25) :: NodeNums
.
! Get the supply nodes
ErrInList=.false.
CALL GetNodeNums(Names(8),NumNodes,NodeNums,ErrInList,NodeType_Air, &
 'AIR PRIMARY LOOP',PrimaryAirSystem(AirSysNum)%Name, &
 NodeConnectionType_Inlet,1,ObjectIsParent)
IF (ErrInList) THEN
 CALL ShowContinueError('Invalid Node Name or Node List in Air System=' &
 //TRIM(PrimaryAirSystem(AirSysNum)%Name))
 ErrorsFound=.true.
ENDIF
! Allow at most 3 supply nodes (for a 3 deck system)
IF (NumNodes > 3) THEN
 CALL ShowSevereError('Air System:Only 1st 3 Nodes will be used from:' &
 //TRIM(Names(8)))
 CALL ShowContinueError('Occurs in Air System='// &
 TRIM(PrimaryAirSystem(AirSysNum)%Name))
 ErrorsFound=.true.
ENDIF

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 66

IF (NumNodes.EQ.0) THEN
 CALL ShowSevereError('Air System:there must be at least 1 ‘// &
 ‘supply node in system '//TRIM(Names(1)))
 CALL ShowContinueError('Occurs in Air System='// &
 TRIM(PrimaryAirSystem(AirSysNum)%Name))
 ErrorsFound=.true.
END IF
.

The first argument is a node name or the name of a Node List, the 2nd
argument is the number of nodes in the Node List (1 for a single node), the
3rd argument is the output: a list of node numbers – these are followed by the
arguments shown above.

Unique Node Checking

A set of routines will allow you to use the NodeInputManager to check for
unique node names across a set of inputs. This is used currently in the
CONTROLLED ZONE EQUIP CONFIGURATION object where each zone
node mentioned must be unique. Three routines comprise the unique node
check: InitUniqueNodeCheck, CheckUniqueNodes, EndUniqueNodeCheck

InitUniqueNodeCheck

A call to this routine starts the collection and detection of unique/non-unique
nodes by the NodeInputManager:

USE NodeInputManager, ONLY: InitUniqueNodeCheck, CheckUniqueNodes, &
 EndUniqueNodeCheck
. . .
CALL InitUniqueNodeCheck(‘CONTROLLED ZONE EQUIP CONFIGURATION’)

The only argument is a simple string that will help with error messages that
may come from the NodeInputManager. Unique node checking can only be
done for one context (‘CONTROLLED ZONE EQUIP CONFIGURATION’) at
a time.

CheckUniqueNodes

SUBROUTINE CheckUniqueNodes(NodeTypes,CheckType,ErrorsFound, &
 CheckName,CheckNumber)

This is the routine called during the getting of the nodes. The CheckType
argument can be ‘Nodename’ or ‘NodeNumber’ and then pass in the
appropriate argument to CheckName or CheckNumber. CheckName and
CheckNumber are optional arguments – only the necessary one need be
supplied.
Argument 1, NodeTypes, is the type of node being looked for – this argument
is used for error messages within the NodeInput processing. Argument 2,
ErrorsFound, will be set to true of this node is not unique in the current
context.

Example:
 UniqueNodeError=.false.
 CALL CheckUniqueNodes('Zone Air Node','NodeName',UniqueNodeError, &
 CheckName=AlphArray(5))
 IF (UniqueNodeError) THEN
 CALL ShowContinueError('Occurs for Zone='//TRIM(AlphArray(1)))
 ErrorsFound=.true.
 ENDIF

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 67

EndUniqueNodeCheck

This routine terminates the unique node check – allows arrays to be
deallocated, etc.

CALL EndUniqueNodeCheck(‘CONTROLLED ZONE EQUIP CONFIGURATION’)

The only argument is the Context String – which must match the string given
in the InitUniqueNodeCheck routine.

SetUpCompSets and TestCompSet

SetUpCompSets and TestCompSet are used to develop a list of hierarchical
relationships between HVAC objects. The CompSet routines are housed in
the BranchInputManager. A list of component sets is built which contains the
following information:

Parent Object Type (Currently cannot be SPLITTER or MIXER)
Parent Object Name
Child Component Type (Currently cannot be SPLITTER or MIXER)
Child Component Name
Child Component InletNodeName
Child Component OutletNodeName
Node Description

Parent and child refer to a hierarchical relationship of two HVAC objects. For
example, a branch is the parent to a pump, and a fan coil is the parent to a
fan. The component sets do not include peer-to-peer connections such as a
splitter connected to a branch, or a zone supply air path connected to an air
loop.
The following rules apply to component sets:

• Each parent/child component set is unique. The same pair of
components should never appear in the component sets list more
than once.

• Each set of child component plus inlet and outlet nodes is unique.
• Each child component must have a parent component.
• A given component may appear in multiple component sets as a

parent component.
• A given component may appear in multiple component sets as a child

component only if there is a different set of inlet/outlet nodes. (This
was originally the intent, but some new components do not fit this rule
well and it may need to be relaxed.)

• If a given node name appears more than once as an inlet node, the
two components which use it must share a parent/child relationship.

• If a given node name appears more than once as an outlet node, the
two components which use it must share a parent/child relationship.

• After the program has read all the input data, there should be no
"UNDEFINED" values in the list of component sets.

When any of these rules are violated, a warning is issued indicating a
possible node connection error.

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 68

** Warning ** Potential Node Connection Error for object PIPE,
name=CW_BYPASS
 ** ~~~ ** Node Types are still UNDEFINED -- See Branch/Node
Details file for further information
 ** ~~~ ** Inlet Node : CW_BYPASS_INLET
 ** ~~~ ** Outlet Node: CW_BYPASS_OUTLET

The component sets are reported in the eplusout.bnd file:

! <Component Set>,<Component Set Count>,<Parent Object Type>,<Parent
Object Name>,<Component Type>,<Component Name>,<Inlet Node ID>,<Outlet
Node ID>,<Description>

 Component Set,1,BRANCH,COOLING SUPPLY INLET BRANCH,PUMP:VARIABLE
SPEED,CHW CIRC PUMP,CHW SUPPLY INLET NODE,CHW PUMP OUTLET NODE,Water
Nodes

Component Set,21,FAN COIL UNIT:4
PIPE,ZONE1FANCOIL,FAN:SIMPLE:CONSTVOLUME,ZONE1FANCOILFAN,ZONE1FANCOILOAMI
XEROUTLETNODE,ZONE1FANCOILFANOUTLETNODE,Air Nodes

SetUpCompSets

SetUpCompSets should be called any time a parent object such as a branch
or a compound object (e.g. furnace) references a child component which is
connected to it. If an object has more than one child component, then
SetUpCompSets is called once for each child.
SetUpCompSets first looks for the child component in the existing list of
component sets by looking for a matching component type and name. If it is
found, then the parent name and type are filled in. If the child component is
not found is the exisiting list, then a new component set is created.

SUBROUTINE
SetUpCompSets(ParentType,ParentName,CompType,CompName,InletNode,Outlet
Node,Description)

The arguments are:

ParentType Parent Object Type
ParentName Parent Object Name
CompType Child Component Type
CompName Child Component Name
InletNode Child Component Inlet Node Name
OutletNode Child Component Outlet Node Name
Description Description of nodes (optional)

For example, AirLoopHVAC:Unitary:Furnace:HeatOnly references a fan and
a heating coil:
AirLoopHVAC:Unitary:Furnace:HeatOnly,
 \memo identical to the AirLoopHVAC:UnitaryHeatOnly object
 \min-fields 14
 A1, \field Name
 \required-field
 \type alpha
 A2, \field Availability Schedule Name

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 69

 \required-field
 \type object-list
 \object-list ScheduleNames
 A3, \field Furnace Air Inlet Node Name
 \required-field
 \type alpha
 A4, \field Furnace Air Outlet Node Name
 \required-field
 \type alpha
 A5, \field Supply Air Fan Operating Mode Schedule Name
 \type object-list
 \object-list ScheduleNames
 \note A fan operating mode schedule value of 0 indicates
cycling fan mode (supply air
 \note fan cycles on and off in tandem with the heating coil).
 \note Any other schedule value indicates continuous fan mode
(supply air fan operates
 \note continuously regardless of heating coil operation).
 \note Leaving this schedule name blank will default to cycling
fan mode for the
 \note entire simulation period.
 N1, \field Maximum Supply Air Temperature
 \type real
 \units C
 \autosizable
 \default 80.0
 N2, \field Supply Air Flow Rate
 \required-field
 \type real
 \note This value should be > 0 and <= than the fan air flow
rate.
 \units m3/s
 \minimum> 0.0
 \autosizable
 A6, \field Controlling Zone or Thermostat Location
 \required-field
 \type object-list
 \object-list ZoneNames
 N3, \field Fraction of Supply Air Flow That Goes Through the
Controlling Zone
 \required-field
 \type real
 \minimum> 0.0
 \maximum 1.0
 \autosizable
 A7, \field Supply Fan Object Type
 \required-field
 \type choice
 \key Fan:OnOff
 \key Fan:ConstantVolume
 \note Fan:ConstantVolume only works with continuous fan
operating mode (i.e. fan
 \note operating mode schedule values are greater than 0).
 A8, \field Supply Fan Name
 \required-field
 \type object-list
 \object-list FansCVandOnOff
 A9 , \field Fan Placement
 \type choice
 \key BlowThrough
 \key DrawThrough
 \default BlowThrough
 A10, \field Heating Coil Object Type

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 70

 \required-field
 \type choice
 \key Coil:Heating:Gas
 \key Coil:Heating:Electric
 \note Only works with gas and electric coils
 A11; \field Heating Coil Name
 \required-field
 \type object-list
 \object-list HeatingCoilsGasElec

In this case, the furnace is the parent object to the fan and the heating coil.
To set up the component set for the furnace and its fan, the furnace type and
name, the fan type and name (A7 and A8), and the furnace/fan inlet and fan
outlet nodes (A3 and A9) are passed to SetUpCompSets:

Example:

USE BranchInputManager, ONLY: SetUpCompSets
. . .
CALL SetUpCompSets(
Furnace(FurnaceNum)%FurnaceType,Furnace(FurnaceNum)%Name,
AlphArray(7),AlphArray(8),AlphArray(3),AlphArray(9))

In some cases, the inlet or outlet node names may not be known by the
parent object. In this case, "UNDEFINED" is passed to SetUpCompSets.

Examples:

USE BranchInputManager, ONLY: SetUpCompSets
. . .
CALL SetUpCompSets(
Furnace(FurnaceNum)%FurnaceType,Furnace(FurnaceNum)%Name,
AlphArray(8),AlphArray(9),'UNDEFINED','UNDEFINED')

CALL SetUpCompSets(
Furnace(FurnaceNum)%FurnaceType,Furnace(FurnaceNum)%Name,
AlphArray(12),AlphArray(13),'UNDEFINED',AlphArray(4))

TestCompSet

TestCompSet should be called by every HVAC object which has a parent
object. A given object may be both a parent and a child. For example,
AirLoopHVAC:Unitary:Furnace:HeatOnly is a child to a branch and a
parent to a fan and coils.
TestCompSet first looks for the calling component in the existing list of
component sets by looking for a matching component type and name. If the
found compset has inlet and outlet nodes defined, then these must also
match. If a match is found, then any undefined node names are filled in and
the description string for the nodes is added. If the component is not found,
then a new component set is created with undefined parent object type and
name.

SUBROUTINE
TestCompSet(CompType,CompName,InletNode,OutletNode,Description)

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 71

The arguments are:
CompType Child Component Type
CompName Child Component Name
InletNode Child Component Inlet Node Name
OutletNode Child Component Outlet Node Name
Description Description of nodes

For example, AirLoopHVAC:Unitary:Furnace:HeatOnly is a child
component with inlet and outlet nodes:
AirLoopHVAC:Unitary:Furnace:HeatOnly,
 \memo identical to the AirLoopHVAC:UnitaryHeatOnly object
 \min-fields 14
 A1, \field Name
 \required-field
 \type alpha
 A2, \field Availability Schedule Name
 \required-field
 \type object-list
 \object-list ScheduleNames
 A3, \field Furnace Air Inlet Node Name
 \required-field
 \type alpha
 A4, \field Furnace Air Outlet Node Name
 \required-field
 \type alpha

To register the component set for the furnace (as a child component), the
furnace type and name, and the furnace inlet and outlet nodes (A3 and A4)
along with a node descriptor are passed to TestCompSets:

Example:

USE BranchInputManager, ONLY: TestCompSet

CALL TestCompSet (Furnace(FurnaceNum)%FurnaceType,AlphArray(1), &
 AlphArray(3),AlphArray(4),'Air Nodes')

CheckOutAirNodeNumber

Outside Air Nodes are special nodes connected to the outside environment.
With the introduction of the Site Atmospheric Variation parameters, it
becomes important to know whether the node name (e.g. Condenser Inlet
Node on Air Cooled Chillers) is a legitimate outside air node or not.
CheckOutAirNodeNumber allows you to determine if an entered node is, in
fact, a proper outside air node.

Declaration:
FUNCTION CheckOutAirNodeNumber(NodeNumber) RESULT(Okay)
Example:
USE OutAirNodeManager, ONLY: CheckOutAirNodeNumber
DXCoil(DXCoilNum)%CondenserInletNodeNum(1) = &

GetOnlySingleNode(Alphas(11),
ErrorsFound,ThisObjectType,DXCoil(DXCoilNum)%Name, &
NodeType_Air,NodeConnectionType_OutsideAirReference,1,
ObjectIsNotParent)

IF (.not. CheckOutAirNodeNumber(
DXCoil(DXCoilNum)%CondenserInletNodeNum(1))) THEN

 CALL ShowSevereError(TRIM(ThisObjectType)//',

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 72

 "'//TRIM(DXCoil(DXCoilNum)%Name)//&
'" Condenser Air Inlet Node Name not valid Outdoor Air Node = '//&
TRIM(Alphas(11)))

 CALL ShowContinueError(&
'...does not appear in an OUTSIDE AIR INLET NODE LIST or as an OUTSIDE
AIR NODE.')
 ErrorsFound=.true.
END IF

Note that GetOnlySingleNode is used to get the proper node number, then
the node number is used in the outside air node verification.

CheckAndAddAirNodeNumber

Should you feel really nice about your users (or more likely be updating older
code that may have allowed blanks in places that are properly outside air
nodes), you can use the CheckAndAddAirNodeNumber routine to not only
check to see if it is an outside air node but also add it at the same time.

Declaration:
SUBROUTINE CheckAndAddAirNodeNumber(NodeNumber,Okay)
USE OutAirNodeManager, ONLY: CheckAndAddAirNodeNumber
Example:
ElectricChiller(ChillerNum)%CondInletNodeNum = &
 GetOnlySingleNode(AlphArray(5),ErrorsFound, &
 'Chiller:Electric',AlphArray(1), NodeType_Air, &
 NodeConnectionType_OutsideAirReference, 2, ObjectIsNotParent)
CALL CheckAndAddAirNodeNumber(&

ElectricChiller(ChillerNum)%CondInletNodeNum, &
Okay)

IF (.not. Okay) THEN
 CALL ShowWarningError('Chiller:Electric, Adding Outside Air Node='// &

AlphArray(5)))
ENDIF

Note that here “not Okay” is not an error condition but rather the opportunity
to notify the user that you are adding an air node.

Schedule Services

Schedules are widely used in specifying input for building simulation
programs. For instance heat gains from lighting, equipment and occupancy
are usually specified using schedules. Schedules are used to indicate when
equipment is on or off. Schedules are also used to specify zone and system
set points. EnergyPlus uses schedules in all these ways and provides
services that make using schedules very easy for the developer.
Schedules are specified in a three level hierarchy in EnergyPlus input.
Day Schedules (IDD Objects: Schedule:Day:Hourly, Schedule:Day:Interval,
Schedule:Day:List)
Week Schedules (IDD Objects: Schedule:Week:Daily,
Schedule:Week:Compact)
Annual Schedules (IDD Objects: Schedule:Year, Schedule:Compact,
Schedule:File)
In addition, a ScheduleTypeLimits object can specify certain limits on the
schedules. This is a mostly optional input but can be used effectively. (That
is, if your examples include it, users will probably use it too.)
An example from an input (IDF) file:

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 73

 ScheduleTypeLimits,
 Fraction, !- ScheduleType Name
 0.0 : 1.0, !- range
 CONTINUOUS; !- Numeric Type

 ScheduleTypeLimits,
 On/Off, !- ScheduleType Name
 0:1, !- range
 DISCRETE; !- Numeric Type

! Schedule Constant
 SCHEDULE:COMPACT,
 Constant,
 on/off,
 Through: 12/31,
 For: AllDays,
 Until: 24:00, 1.0;

! Schedule Daytime Ventilation
 SCHEDULE:COMPACT,
 Daytime Ventilation,
 Fraction,
 Through: 12/31,
 For: Weekdays SummerDesignDay,
 Until: 08:00, 0.0,
 Until: 18:00, 1.0,
 Until: 24:00, 0.0,
 For: Weekends WinterDesignDay,
 Until: 10:00, 0.0,
 Until: 16:00, 1.0,
 Until: 24:00, 0.0,
 For: Holidays AllOtherDays,
 Until: 24:00, 0.0;

! Schedule Intermittent
 SCHEDULE:COMPACT,
 Intermittent,
 Fraction,
 Through: 12/31,
 For: AllDays,
 Until: 08:00, 0.0,
 Until: 18:00, 1.0,
 Until: 24:00, 0.0;

The day schedule elements assign numbers that span a full day (24 hours).
The week schedule elements indicate which day schedules are applicable to
each day of the week plus holiday and some special days. Schedule
elements indicate which week schedules are applicable to various periods of
the year. Both day schedules and schedules reference a schedule type. A
schedule type is characterized by a range (e.g. 0 to 1) and whether it is
continuous (can assume any value) or discrete (can assume integer values
only). The following routines from the ScheduleManager module enable the
developer to use schedules in a simulation.

GetScheduleIndex

This function takes a schedule name as input and returns an internal pointer
to the schedule. Schedule values will always be accessed via the pointer not
the name during the simulation for reasons of efficiency. This function should
be called once for each schedule during the input phase and the returned
value stored in the appropriate data structure.

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 74

Example:
USE ScheduleManager, ONLY: GetScheduleIndex
. . .
Baseboard(BaseboardNum)%SchedPtr = GetScheduleIndex(AlphArray(2))

Here the schedule pointer for the schedule name contained in AlphArray(2) is
stored in the baseboard data structure for later use. If a 0 is returned, this is
not a valid schedule. Objects should also typically check for “blank”
schedules.

GetDayScheduleIndex

This function takes a “day schedule” name as input and returns an internal
pointer to the schedule. Day schedule values will always be accessed via the
pointer not the name during the simulation for reasons of efficiency. This
function should be called once for each schedule during the input phase and
the returned value stored in the appropriate data structure.

Example:
USE ScheduleManager, ONLY: GetDayScheduleIndex
. . .
DesDayInput(EnvrnNum)%RelHumSchPtr=GetDayScheduleIndex(DDNames(4))

Here the day schedule pointer for the day schedule name contained in
DDNames(4) is stored in the design day data structure for later use. If a 0 is
returned, this is not a valid day schedule. Objects should also typically check
for “blank” schedules.

CheckScheduleValueMinMax

Since you can’t always rely on a user to input the ScheduleType, the
ScheduleManager can be used to check the minimum and/or maximum
values for a schedule.
LOGICAL FUNCTION CheckScheduleValueMinMax(ScheduleIndex, &
 MinString,Minimum,MaxString,Maximum)

The pair of specifications (MinString, Minimum) and (MaxString, Maximum) is
optional -- only one set need be given.
Examples from the code:

USE ScheduleManager, ONLY: CheckScheduleValueMinMax
. . .
IF (.NOT. CheckScheduleValueMinMax(ScheduleIndex,'>=',0.,'<=',1.)) THEN
 CALL ShowSevereError('SET POINT MANAGER:SINGLE ZONE MIN HUM, humidity..’)
 CALL ShowContinueError('Error found in schedule ='//TRIM(Alphas(3)))
 CALL ShowContinueError('set point values must be (>=0., <=1.)')
 ErrorsFound=.true.
END IF

CheckScheduleValue

There are times when the “CheckScheduleValueMinMax” will not be sufficient
to verify proper values. A good example is the “control type” schedules –
valid values might be 0 through 4, but just checking the min/max will not tell
you if it contains a specific value (say, 3). This function allows you to check
the entire schedule for a specific value – this will be more useful for discrete
schedules than for schedule types of a continuous nature but can be used for
both.
LOGICAL FUNCTION CheckScheduleValue(ScheduleIndex,Value)

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 75

Example of use:
 IF (CheckScheduleValue(CTIndex,REAL(SingleHeatingSetPoint))) THEN

Here, the CTIndex is a schedule index for the Control Type schedules.
SingleHeatingSetPoint is an integer value for that control type.
“CheckScheduleValue” is used to determine if the schedule does, in fact,
contain that value.

GetScheduleMinValue

There are times when you don’t necessarily want to issue an error message
but might like to find out what the minimum value of a given schedule is. For
example, if the schedule allowed for >1 multipliers on a given input.
FUNCTION GetScheduleMinValue(ScheduleIndex) RESULT(MinimumValue)

Example of use:
USE ScheduleManager, ONLY: GetScheduleMinValue
. . .
Value=GetScheduleMinValue(ScheduleIndex)

The only argument needed is the ScheduleIndex for the schedule. Note that
all schedule values are stored as real numbers – if you have a
discrete/integer valued schedule, you may wish to do some special checking
of the min value.

GetScheduleMaxValue

There are times when you don’t necessarily want to issue an error message
but might like to find out what the maximum value of a given schedule is. For
example, if the schedule allowed for >1 multipliers on a given input.
FUNCTION GetScheduleMaxValue(ScheduleIndex) RESULT(MaximumValue)

Example of use:
USE ScheduleManager, ONLY: GetScheduleMaxValue
. . .
Value=GetScheduleMaxValue(ScheduleIndex)

The only argument needed is the ScheduleIndex for the schedule. Note that
all schedule values are stored as real numbers – if you have a
discrete/integer valued schedule, you may wish to do some special checking
of the min value.

GetCurrentScheduleValue

This function returns the current schedule value for the current day and time,
given the schedule pointer as input.
REAL FUNCTION GetCurrentScheduleValue(ScheduleIndex)

Example of use:
USE ScheduleManager, ONLY: GetCurrentScheduleValue
. . .
CloUnit = GetCurrentScheduleValue(People(PeopleNum)%ClothingPtr)

Notice that the developer doesn’t have to keep track of hour of the day, day
of the month, or month. The program does all of that. The only input needed
is the pointer to the schedule.

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 76

GetScheduleValuesForDay

This function returns the schedule values for a specific day, given the
schedule index as input.
SUBROUTINE GetScheduleValuesForDay(ScheduleIndex,DayValues,JDay)

Example of use:
 ALLOCATE(SVals1(24,NumOfTimeStepInHour))
 SVals1=0.0
 ...
 DO JDay=1,366
 CALL GetScheduleValuesForDay(CrossMixing(Loop)%SchedPtr, &
 SVals1,JDay)
 IF (.not. ANY(SVals1>0.0)) CYCLE
 ...
 END DO

GetSingleDayScheduleValues

This function returns the schedule values for a specific day schedule (used in
Design Day input, for example).
SUBROUTINE GetSingleDayScheduleValues(DayScheduleIndex,DayValues)

Example of use:
 ALLOCATE (DDRelHumValues(TotDesDays,24,NumOfTimeStepInHour))
 DDRelHumValues=0.0
 ...
 CALL GetSingleDayScheduleValues(DesDayInput(EnvrnNum)%RelHumSchPtr, &
 DDRelHumValues(EnvrnNum,:,:))

LookUpScheduleValue

This function can be used to look up a schedule value for the current time or
optionally for any specific hour, timestep, day of year.
REAL FUNCTION LookUpScheduleValue(ScheduleIndex, ThisHour,
ThisTimeStep, ThisDayOfYear)
...
 ! FUNCTION ARGUMENT DEFINITIONS:
 INTEGER ScheduleIndex
 INTEGER, OPTIONAL :: ThisHour
 INTEGER, OPTIONAL :: ThisTimeStep
 INTEGER, OPTIONAL :: ThisDayOfYear

Example of use:

SchValue=LookUpScheduleValue(Surface(SNR)%SchedShadowSurfIndex,IHOUR,TS)

Data Services

For the most part, modules are independent and only need the data they
have within or USE from other modules. Occasionally, this may take on more
complicated needs such as accessing “real-time” values for meters and/or
custom meters or current report variable names/values.. Meter names are
standard; you may have to use user input to get custom meter names.

Global variable: MetersHaveBeenInitialized

Meters are a bit peculiar and aren’t fully set until the first run through the first
time step of the HVAC simulation. Therefore, there is a global variable

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 77

“MetersHaveBeenInitialized” which is set to true after meters have been set
up. If you have a call to your routine that must use meter values as part of
the simulation, you must use this variable before your items can be set.

Example:
…
If (MetersHaveBeenInitialized) CALL ManageDemand

Only the first time step will be missed in your routine and that time step will be
part of “warming up” the simulation, so there is minimal impact due to this
limitation.

GetMeterIndex

You use the GetMeterIndex to check if a meter is valid for a particular
simulation or if the user has entered a custom meter of that name. You use
the index returned in later calls to get the value of the meter. Returns 0 if
there is no meter of that name.

Example:
INTEGER, EXTERNAL :: GetMeterIndex
…
thismeter=GetMeterIndex(‘Electricity:Facility’)

GetVariableKeyCountAndType

This subroutine returns the variable type (real, integer, meter, etc.) (varType)
whether it is an averaged or summed variable (varAvgSum), whether it is a
zone or HVAC time step (varStepType), and the number of keynames for a
given report variable or report meter name (varName). The variable type
(varType) and number of keys (numKeys) are used when calling subroutine
GetVariableKeys to obtain a list of the keynames for a particular variable and
a corresponding list of indexes. An INTERFACE statement exists in the
module OPInterfaces.

Declaration:
SUBROUTINE GetVariableKeyCountandType(varName, numKeys, varType, &
 varAvgSum, varStepType, varUnits)
Example:
USE OPInterfaces, ONLY: GetVariableKeyCountAndType
 ! call the key count function but only need count during this pass
 CALL GetVariableKeyCountandType(AlphArray(fldIndex), &
 KeyCount,TypeVar,AvgSumVar,StepTypeVar,UnitsVar)
 ALLOCATE(NamesOfKeys(KeyCount))
 ALLOCATE(IndexesForKeyVar(KeyCount))

GetVariableKeys

This subroutine returns a list of keynames and indexes associated with a
particular report variable or report meter name (varName). This routine
assumes that the variable type (real, integer, meter, etc.) may be determined
by calling GetVariableKeyCountandType. The variable type and index can
then be used with function GetInternalVariableValue to to retrieve the current
value of a particular variable/keyname combination. An INTERFACE
statement exists in the module OPInterfaces.

Declaration:
SUBROUTINE GetVariableKeys(varName,varType,keyNames,keyVarIndexes)

Example:
USE OPInterfaces, ONLY: GetVariableKeys
CALL GetVariableKeys(AlphArray(fldIndex), TypeVar, NamesOfKeys, &

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 78

 IndexesForKeyVar)
! See earlier GetVariableKeyCountandType as well.

GetCurrentMeterValue

You use the GetCurrentMeterValue to obtain the value of a meter at its last
“reported value” (timestep). Note that all meters are reported on the zone
time step. Returns 0.0 if the MeterNumber passed is <=0.

Example:
INTEGER, EXTERNAL :: GetCurrentMeterValue
…
thismetervalue=GetCurrentMeterValue(ElecFacilityMtrIndex)

GetInstantMeterValue

You use the GetInstantMeterValue to get a component of a meter’s value by
index type. The values returned are “raw” (that is, not weighted by time step
values). In these calls, 1 is a zone time step index, 2 is a system time step
index.

Example:
INTEGER, EXTERNAL :: GetInstantMeterValue
…
FuelType%ElecFacility = &
GetInstantMeterValue(FuelType%ElecFacilityIndex,1)*FracTimeStepZone + &

GetInstantMeterValue(FuelType%ElecFacilityIndex,2)

GetInternalVariableValue

This function returns the current value of the Internal Variable assigned to the
varType and keyVarIndex. Values may be accessed for real and integer
report variables and meter variables. The variable type (varType) may be
determined by calling subroutine and GetVariableKeyCountandType. The
index (keyVarIndex) may be determined by calling subroutine
GetVariableKeys. To use, there is an INTERFACE statement in
DataGlobals.f90

Example:
USE DataGlobals, ONLY: GetInternalVariableValue

 curValue = GetInternalVariableValue(curTypeOfVar,curVarNum)

Other Useful Utilities

GetNewUnitNumber

Rather than attempt to keep track of all open files and distribute this list to
everyone, we have chosen to use a routine that does this operation. If you
need to have a scratch file (perhaps when porting legacy code into
EnergyPlus modules), you can use the GetNewUnitNumber function to
determine a logical file number for the OPEN and READ/WRITE commands.
The function works by looking at all open assigned files and returning a
number that isn't being used. This implies that you will OPEN the unit
immediately after calling the function (and you should!).

Example:
INTEGER, EXTERNAL :: GetNewUnitNumber
…
myunit=GetNewUnitNumber()

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 79

OPEN(Unit=myunit,File=’myscratch’)

FindUnitNumber

If you want to find out a unit number for a file you think is already open, you
can use the FindUnitNumber function. For example, rather than creating a
new unit for debug output, you could latch onto the same unit as currently
used for the “eplusout.dbg” file.

Example:
INTEGER, EXTERNAL :: FindUnitNumber
…
myunit=FindUnitNumber(‘eplusout.dbg’)

If that file is already opened, it will get back the unit number it is currently
assigned to. If it is not opened or does not exist, it will go ahead, get a unit
number, and OPEN the file. (Should not be used for Direct Access or Binary
files!)

FindNumberinList

Sometimes you would like to find a number in a list. This is applicable to
integers only (e.g. Index numbers of some item).

Example:
INTEGER, EXTERNAL :: FindNumberInList
…
MatchingCooledZoneNum = &
 FindNumberinList(CtrlZoneNum, &
 AirToZoneNodeInfo(AirLoopNum)%CoolCtrlZoneNums,NumZonesCooled)

The location/index in the array AirToZoneNodeInfo%CoolCtrlZoneNums will
be returned if it finds the number in the array. If 0 is returned, it did not find
that number in the list.

ValidateComponent

Many objects specify a component type as well as a component name. Or,
an object might have only a component name. The ValidateComponent
routine will allow for objects outside the scope of a current “GetInput” routine
to verify that the specific component does exist in the input file.
SUBROUTINE ValidateComponent(CompType,CompName,IsNotOK,CallString)

CompType, CompName are the typical nomenclature for “Component Type”
(e.g. Fan:Simple:OnOff) and “Component Name” (e.g. “my fan” – user
specified). IsNotOk is a logical from the calling program that is set to true
when the component is not on the input file. CallString should specify the
calling object – so that an appropriate error message can be issued.

Example:
 ! No USE needed – straightforward routine in GeneralRoutines
 CALL ValidateComponent(Furnace(FurnaceNum)%FanType, &
 Furnace(FurnaceNum)%FanName,IsNotOK, &
 'Furnace:BlowThru:HeatOnly')
 IF (IsNotOK) THEN
 CALL ShowContinueError('In Furnace='// &
 TRIM(Furnace(FurnaceNum)%Name))
 ErrorsFound=.true.
 ENDIF

Note that in the example, the FanType is entered by the user. This allows for
ultimate flexibility though the example could also include appropriate fan

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 80

types that are inherent to the code (an acceptable, if somewhat inflexible,
practice).

CheckComponent

This routine is exactly like ValidateComponent but doesn’t generate an error
message. It could be used instead of ValidateComponent and you could use
the “IsNoOK” to generate your own error message. However, the intended
use is for checking out different components when you don’t have the
component type as a field for the object. Thus, you can easily check if there
is an object (component type) with the name entered in your field.
SUBROUTINE CheckComponent(CompType,CompName,IsNotOK)

CompType, CompName are the typical nomenclature for “Component Type”
(e.g. Fan:OnOff) and “Component Name” (e.g. “my fan” – user specified).
IsNotOk is a logical from the calling program that is set to true when the
component is not on the input file.

Example:
 ! No USE needed – straightforward routine in GeneralRoutines
 CALL CheckComponent('Furnace:BlowThru:HeatOnly', &
 FurnaceRefName,IsNotOK)
 IF (IsNotOK) THEN
 CALL CheckComponent('Furnace:BlowThru:HeatCool', &
 FurnaceRefName,IsNotOK)
 . . . more checks on IsNotOK

 ELSE
 FurnaceType='Furnace:BlowThru:HeatOnly'

 ENDIF
. . .

Note that in the example, the FurnaceRefName is entered by the user. And
this module knows what kind of components it might be.

CreateSysTimeIntervalString

A very important part of EnergyPlus simulation is to be able to alert the user
to problems during the simulation. The CreateSysTimeIntervalString will help
do that though a better use is the ShowContinueErrorTimeStamp routine.
The routine has no argument – a string is returned. The example below also
illustrates the preferred method of counting how many times an error is
produced and not printing each occurrence.

Example:
USE General, ONLY: CreateSysTimeInterval

!The warning message will be suppressed during the warm up days.
If (.NOT.WarmUpFlag) Then
 ErrCount = ErrCount + 1
 IF (ErrCount < 15) THEN
 CALL ShowWarningError('SimAirLoops: Max iterations exceeded for '// &
 TRIM(PrimaryAirSystem(AirLoopNum)%Name)//', at '// &
 TRIM(EnvironmentName)//', '//TRIM(CurMnDy)//' '// &
 TRIM(CreateSysTimeIntervalString()))
 ELSE
 IF (MOD(ErrCount,50) == 0) THEN
 WRITE(CharErrOut,*) ErrCount
 CharErrOut=ADJUSTL(CharErrOut)
 CALL ShowWarningError ('SimAirLoops: Exceeding max iterations’// &
 ‘ continues...'//CharErrOut)
 ENDIF

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 81

 ENDIF
End If

TrimSigDigits

Along with error messages to alert the user, oftentimes you’d like to include
values that are in error. You can use what some of the examples have
shown – Write(string,*) value but that will produce many digits in real
numbers. The TrimSigDigits routine will allow for easy modification to a set of
digits. Note that there are two flavors (INTERFACE statement in module
General) so that you can easily get the string value of an integer.
FUNCTION TrimSigDigits(RealValue,SigDigits) RESULT(OutputString)

And
FUNCTION TrimSigDigits(IntegerValue) RESULT(OutputString)

As seen in the following example of use in code, a real value is passed in as
argument 1 and the number of digits desired is passed in as argument 2.
Note that the routine will preserve any “E+xx” outputs when a value like
.000000004 might be passed in.

USE General, ONLY: TrimSigDigits
. . .
CALL ShowWarningError('COIL:Water:DetailedFlatCooling in Coil ='// &
 TRIM(WaterCoil(coilNum)%Name))
CALL ShowContinueError('Air Flow Rate Velocity has greatly exceeded ‘// &
 ‘upper design guildelines of ~2.5 m/s')
CALL ShowContinueError('Air MassFlowRate[kg/s]='// &
 TRIM(TrimSigDigits(AirMassFlow,6)))

AirVelocity=AirMassFlow*AirDensity/WaterCoil(CoilNum)%MinAirFlowArea
CALL ShowContinueError('Air Face Velocity[m/s]='// &
 TRIM(TrimSigDigits(AirVelocity,6)))
CALL ShowContinueError('Approximate MassFlowRate limit for Face ‘// &
 Area[kg/s]='// &
TRIM(TrimSigDigits(2.5*WaterCoil(CoilNum)%MinAirFlowArea/AirDensity,6)))
CALL ShowContinueError('COIL:Water:DetailedFlatCooling could be ‘// &
 ‘resized/autosized to handle capacity')
CoilWarningOnceFlag(CoilNum) = .False.

RoundSigDigits

Similar to TrimSigDigits, the RoundSigDigits function may be used when you
want to “round” the output string – perhaps for reporting and/or error
messages. Note that there are two flavors (INTERFACE statement in module
General) so that you can easily get the string value of an integer.
FUNCTION RoundSigDigits(RealValue,SigDigits) RESULT(OutputString)

And
FUNCTION RoundSigDigits(IntgerValue) RESULT(OutputString)

As seen in the following example of use in code, a real value is passed in as
argument 1 and the number of digits desired is passed in as argument 2.
Note that the routine will preserve any “E+xx” outputs when a value like
.000000004 might be passed in.

USE General, ONLY: RoundSigDigits
. . .
 LatOut=RoundSigDigits(Latitude,2)
 LongOut=RoundSigDigits(Longitude,2)
 TZOut=RoundSigDigits(TimeZoneNumber,2)

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 82

 NumOut=RoundSigDigits(Elevation,2)
 PressOut=RoundSigDigits(StdBaroPress,0)
 Write(OutputFileInits,LocFormat) Trim(LocationTitle),TRIM(LatOut), &
 TRIM(LongOut), &
 TRIM(TZOut), &
 TRIM(NumOut), &
 TRIM(PressOut)

SafeDivide

SafeDivide can be used when you might not be sure that the denominator in
a divide will not be zero.
FUNCTION SafeDivide(a, b) RESULT (c)

USE General, ONLY: SafeDivide
. . .
Result=SafeDivide(A,B)

SetupAndSort

SetupAndSort can be called to order/sort a character array. A companion
index array goes along with it so that one does not have to supply an entire
derived type to be sorted. This companion array is then used to point to the
proper element of such structures.
SUBROUTINE SetupAndSort(CharacterList, iCharacterList)

USE SortAndStringUtilities, ONLY: SetupAndSort
. . .
A use:
ALLOCATE(iCharacterList(number of entries))
Do item=1,number of entries
 iCharacterList(item)=item
end do

! routine sorts this array and its companion
CALL SetUpAndSort(CharacterList,iCharacterList)

Do item=1,number of entries
 ! iCharacterList now points to actual structure
 Write(output,*) Structure(iCharacterList(item))%Name
enddo

Error Messages

Three error message routines are provided for the developer, indicating three
different levels of error severity: ShowFatalError, ShowSevereError, and
ShowWarningError. Each takes a string as an argument. The string is printed
out as the message body on the file “eplusout.err”. There are two additional
optional arguments, which are file unit numbers on which the message will
also be printed. ShowFatalError causes the program to immediately abort.
Two other error messages can be used to help make the error file more
readable: ShowContinueError and ShowContinueErrorTimeStamp. Finally,
another similar ShowMessage call can be used to display an informative
string to the error file (eplusout.err).
As indicated, all of the “show” error calls look the same:
SUBROUTINE <ErrorMessageCall>(ErrorMessage,OutUnit1,OutUnit2)

Or
SUBROUTINE ShowWarningError(ErrorMessage,OutUnit1,OutUnit2)

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 83

SUBROUTINE ShowSevereError(ErrorMessage,OutUnit1,OutUnit2)
SUBROUTINE ShowFatalError(ErrorMessage,OutUnit1,OutUnit2)
SUBROUTINE ShowContinueError(ErrorMessage,OutUnit1,OutUnit2)
SUBROUTINE ShowContinueErrorTimeStamp(ErrorMessage,OutUnit1,OutUnit2)
SUBROUTINE ShowMessage(Message,OutUnit1,OutUnit2)

Mostly, you would never use either of the optional “OutUnit” arguments. One
use might be if you were, in addition to the normal EnergyPlus output files,
writing your own output file that would be processed separately.
Format of the error messages should be such that it makes it easy for the
developer or user to realize the context of the error. Obviously, it is usually
easier for the developer as he/she can search the code for the error string,
but hard for many users. Current suggested format is to include the Module
Name and/or the Routine name. This is particularly useful when two or more
places in the code have the same main error string but may mean different
things: where one might be in a Plant Loop context and the other in a
Condenser Loop context, for example.
Due to the optional parameters, Interface statements are set in DataGlobals
and you must enter USE statements defining which of the error calls you wish
to use.

Example:
USE DataGlobals, ONLY: ShowSevereError
. . .
IF (Construct(ConstrNum)%LayerPoint(Layer) == 0) THEN
 CALL ShowSevereError(‘Did not find matching material for construct ‘ &
 //TRIM(Construct(ConstrNum)%Name)// &
 ‘, missing material = ‘ &
 //TRIM(ConstructAlphas(Layer)))
 ErrorsFound=.true.
ENDIF

This code segment will produce (with proper conditions) the message onto
the error file:

** Warning ** Did not find matching material for construct XYZ, missing
material = ABC

The ShowContinueError is used in conjunction with either ShowSevereError
or ShowWarningError. The “~~~” characters represent the continuation:

** Warning ** The total number of floors, walls, roofs and internal mass
surfaces in Zone ZONE ONE
** ~~~ ** is < 6. This may cause an inaccurate zone heat balance
calculation.
** Warning ** No floor exists in Zone=ZONE ONE
** Warning ** Surfaces in Zone="ZONE ONE" do not define an enclosure.
** ~~~ ** Number of surfaces is <= 4 in this zone. View factor
reciprocity forced

The ShowContinueError is particularly useful with some of the previous
routines that, in addition to signaling an error, produce their own error
message. For example, see the example code in the ValidateComponent
excerpt above. Note that no ShowContinueError should be used with the
ShowFatalError as it immediately terminates the program. Instead, a Severe-
Continue-Fatal sequence should be used.
Each GetInput routine is responsible for verifying its input. Rather than
terminating with the first illegal value, however, it is better to have an
“ErrorsFound” logical that gets set to true for error conditions during the main

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 84

routine processing and terminates at the end of the GetInput routine. Of
course during simulation, conditions should also be checked and terminated if
necessary. Try to give the user as much information as possible with the set
of error routine calls.
Quite a complex message can be constructed using concatenation. These
routines can also be used to output numeric fields by writing the numeric
variables to a string variable, although this isn’t very convenient.
A good use of the ContinueErrorTimeStamp as well as “counting” errors is
shown below:

 IF(OutDryBulbTemp .LT. 0.0) THEN
 CINErrCount1=CINErrCount1+1
 IF (CINErrCount1 < 15) THEN
 CALL ShowWarningError('ElectricChillerModel:Air Cooled ‘// &
 ‘Condenser Inlet Temperature below 0C')
 CALL ShowContinueErrorTimeStamp('OutDoor Dry Bulb='// &
 TRIM(RoundSigDigits(OutDryBulbTemp,2)//','))
 ELSE
 IF (MOD(CINErrCount1,50) == 0) THEN
 WRITE(CINCharErrOut,*) CINErrCount1
 CINCharErrOut=ADJUSTL(CINCharErrOut)
 CALL ShowWarningError('ElectricChillerModel:Air Cooled‘// &
 ‘ Condenser Inlet Temperature below 0C continues...' &
 //CINCharErrOut)
 ENDIF
 ENDIF
 ENDIF

Recurring Error Handling

One method of showing recurring errors is shown in the previous few
paragraphs with the illustration of counting the number of times the error
occurs, printing the first few times and then only printing every x times (e.g.
100) that it occurs after that.
In addition to that method, three routines will help you automate the task.
These routines rely on the error message being displayed and can also keep
track of values (min/max/sum) (and units thereof). And an error message
index (pointer to the message in the recurring error structure) that is stored in
your data structure is used.

SUBROUTINE ShowRecurringSevereErrorAtEnd(Message,MsgIndex,ReportMaxOf,ReportMinOf,ReportSumOf, &
 ReportMaxUnits,ReportMinUnits,ReportSumUnits)
SUBROUTINE ShowRecurringWarningErrorAtEnd(Message,MsgIndex,ReportMaxOf,ReportMinOf,ReportSumOf, &
 ReportMaxUnits,ReportMinUnits,ReportSumUnits)
SUBROUTINE ShowRecurringContinueErrorAtEnd(Message,MsgIndex,ReportMaxOf,ReportMinOf,ReportSumOf, &
 ReportMaxUnits,ReportMinUnits,ReportSumUnits)

The first two parameters (Message, MsgIndex) are required. The remaining
six arguments (ReportMaxOf, ReportMinOf, ReportSumOf, ReportMaxUnits,
ReportMinUnits, ReportSumUnits) are optional. To illustrate, we re-write the
above call using the recurring error routines. (Note that we still do the first
few counted because we are using the TimeStamp routine).

 IF(OutDryBulbTemp .LT. 0.0) THEN
 CINErrCount1=CINErrCount1+1
 IF (CINErrCount1 < 15) THEN
 CALL ShowWarningError('ElectricChillerModel:Air Cooled ‘// &
 ‘Condenser Inlet Temperature below 0C')

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 85

 CALL ShowContinueErrorTimeStamp('OutDoor Dry Bulb='// &
 TRIM(RoundSigDigits(OutDryBulbTemp,2)//','))
 ELSE
 CALL ShowRecurringWarningErrorAtEnd(&
 'ElectricChillerModel:Air Cooled‘// &
 ‘ Condenser Inlet Temperature below 0C continues...',
 ElectricChiller(ChillerNum)%ErrCount1)
 ENDIF
 ENDIF

Illustrations of use of these calls is seen in the PurchasedAir modules, DXCoil
modules and others.
Another example is seen in the Dessicant routines:

 IF (Node(DesicDehum(DesicDehumNum)%RegenAirInNode)%MassFlowRate .NE. &
 RegenAirMassFlowRate) THEN
 ! Initialize standard air density
 IF (MyOneTimeFlag) THEN
 RhoAirStdInit = PsyRhoAirFnPbTdbW(StdBaroPress,20.0,0.0)
 ENDIF
 CALL ShowRecurringSevereErrorAtEnd(&
 'Improper flow delivered by desiccant regen fan - RESULTS INVALID!
 Check regen fan capacity and schedule.', &
 DesicDehum(DesicDehumNum)%RegenFanErrorIndex1)
 CALL ShowRecurringContinueErrorAtEnd(&
 TRIM(DesicDehum(DesicDehumNum)%DehumType)//'='// &
 TRIM(DesicDehum(DesicDehumNum)%Name), &
 DesicDehum(DesicDehumNum)%RegenFanErrorIndex2)
 RhoAirStdInit = PsyRhoAirFnPbTdbW(StdBaroPress,20.0,0.0)
 CALL ShowRecurringContinueErrorAtEnd(&
 TRIM('Flow requested [m3/s] from '// &
 DesicDehum(DesicDehumNum)%RegenFanType)//'='// &
 TRIM(DesicDehum(DesicDehumNum)%RegenFanName), &
 DesicDehum(DesicDehumNum)%RegenFanErrorIndex3, &
 ReportMaxOf=(RegenAirMassFlowRate / RhoAirStdInit))
 CALL ShowRecurringContinueErrorAtEnd(&
 'Flow request varied from delivered by [m3/s]', &
 DesicDehum(DesicDehumNum)%RegenFanErrorIndex4, &
 ReportMaxOf=((RegenAirMassFlowRate -
Node(DesicDehum(DesicDehumNum)%RegenAirInNode)%MassFlowRate)/ RhoAirStdInit), &
 ReportMinOf=((RegenAirMassFlowRate -
Node(DesicDehum(DesicDehumNum)%RegenAirInNode)%MassFlowRate)/ RhoAirStdInit))
 ENDIF

Display Strings

Two display routines are useful for displaying to the “run” log the progress of
the simulation. Since EnergyPlus usually runs as a “console” mode
application, users may monitor progress of the simulation. Thus, at times it is
useful to have messages displayed there. These should be minimal in
number though can be used effectively during debugging of new modules.
 subroutine DisplayString(String)
 subroutine DisplayNumberandString(Number,String)

The “String” parameters are normal strings. The “Number” parameter must
be an integer.

Performance Curve Services

Some HVAC equipment models in EnergyPlus use performance curves.
These are polynomials in one or two independent variables that are used to

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 86

modify rated equipment performance for performance at the current, off-rated
conditions. Most often the curves are functions of temperature – entering
wetbulb and outside drybulb, for instance – or of the part load fraction.
EnergyPlus provides services to input, store, and retrieve curve data and to
evaluate curves given values of the independent variables. There are 3 curve
objects: CURVE:QUADRATIC, CURVE:CUBIC, and CURVE:BIQUADRATIC.

GetCurveIndex

This function takes a curve name as input and returns an internal pointer to
the curve. Curve values will always be accessed via the pointer not the name
during the simulation for reasons of efficiency. This function is usually called
once for each curve during the input phase.
USE CurveManage, ONLY: GetCurveIndex
. . .
DXCoil(DXCoilNum)%CCapFTemp = GetCurveIndex(Alphas(5))
 IF (DXCoil(DXCoilNum)%CCapFTemp .EQ. 0) THEN
 CALL ShowSevereError('COIL:DX:BF-Empirical not found=’ &
 //TRIM(Alphas(5)))
 ErrorsFound = .TRUE.
 END IF

GetCurveCheck

This function uses a curve name as well as an error indicator and object
name to “get” a curve index and perform error checking in one call. The
calling routine will need to check the value of the error flag and perform
appropriate action.
FUNCTION GetCurveCheck(alph, errFlag, ObjName) &
 RESULT (GetCurveCheckOut)

The curve index (as in GetCurveIndex) is the result. Curve values will always
be accessed via the pointer not the name during the simulation for reasons of
efficiency. This function would be called during an input phase for an object.
USE CurveManager, ONLY: GetCurveCheck
...
GasAbsorber(AbsorberNum)%CoolCapFTCurve = &
 GetCurveCheck(AlphArray(8), ErrorsFound, ChillerName)
GasAbsorber(AbsorberNum)%FuelCoolFTCurve = &
 GetCurveCheck(AlphArray(9), ErrorsFound, ChillerName)

GetCurveType

This function will tell the calling routine what the “curve type” that was input.
This function may be useful if your module does different calculations
depending on a curve type (i.e. cubic vs quadratic) or if it should not use a
specific curve type. This function would be called during input phase for an
object.
CHARACTER(len=20) FUNCTION GetCurveType (CurveIndex)

Example of use:
USE CurveManager, ONLY: GetCurveIndex, GetCurveType
…
SELECT CASE(GetCurveType(DXCoil(DXCoilNum)%CCapFTemp))

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 87

CurveValue

This function takes the curves index and one or two independent variables as
input and returns the curve value.
USE CurveManage, ONLY: CurveValue
. . .
! Get total capacity modifying factor (function of temperature)
! for off-rated conditions
50 TotCapTempModFac = CurveValue(DXCoil(DXCoilNum)%CCapFTemp,
 InletAirWetbulbC, &
 OutDryBulbTemp)

Fluid Property Services

Fluid property routines have been implemented within EnergyPlus with the
goal of making the specification of new fluids relatively easy for the user and
(starting with version 1.2.1) not require the user to specify data for the most
common loop fluids. Common refrigerants are listed within an extensive
Reference Data Set (RDS) that is provided with the EnergyPlus program.
Fluids in EnergyPlus are broken into two categories: refrigerants and glycols.
This relates back to the amount of information needed to determine the
properties of the various fluid types inside the program. The decision to
define or use one class of fluids or another relates back to whether or not one
expects the fluid to change phase (liquid and/or vapor) or remain a liquid.
When a developer feels that a fluid may change phase, all code should
access the Refrigerant class of fluid property routines. When the developer is
certain that the fluid will remain a liquid and wishes to abide by that
assumption (generally, this is the case for most larger loops), all code from
such modules should access the Glycol class of fluid property routines. Each
of these classes will be described in separate sections below since each
class has different subroutine access to the main module.
Internally, both the refrigerant and glycol classes of fluids use “table lookup”
and interpolation to find the appropriate value of a fluid property. No curve
fits are done internally and the interpolation search routines are currently not
optimized (no interval halving or special fast searching techniques are used
to find the values).
HOWEVER, if values out of range (too low or too high) are passed to the
routines, the value returned is a valid value at the lowest or highest
(respectively) input parameter (that was passed in out of range).

Using Fluid Property Routines in EnergyPlus Modules

The routines are contained within a single module: FluidProperties.f90
Developers can use the routines anywhere inside EnergyPlus through the
following USE statement:
USE FluidProperties
Access to this module may be limited by expanding this line of code with the
ONLY designator.

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 88

Fluid Properties Functions for Refrigerant Class Fluids

In EnergyPlus, a refrigerant fluid is capable of being either in the liquid or
vapor phase. Due to this definition, data must be available for both of these
regions in order for the program to accurately calculate the various fluid
properties. There are eight possible functions that may be used to obtain
refrigerant data using the Fluid Properties module. They include:

GetSatPressureRefrig(Refrigerant,Temperature,RefrigIndex,calledfrom)
GetSatTemperatureRefrig (Refrigerant,Pressure,RefrigIndex,calledfrom)
GetSatEnthalpyRefrig (Refrigerant,Temperature,Quality,RefrigIndex,calledfrom)
GetSatDensityRefrig (Refrigerant,Temperature,Quality,RefrigIndex,calledfrom)
GetSatSpecificHeatRefrig (Refrigerant,Temperature,Quality,RefrigIndex,calledfrom)
GetSupHeatEnthalpyRefrig (Refrigerant,Temperature,Pressure,RefrigIndex,calledfrom)
GetSupHeatPressureRefrig (Refrigerant,Temperature,Enthalpy,RefrigIndex,calledfrom)
GetSupHeatDensityRefrig (Refrigerant,Temperature,Pressure,RefrigIndex,calledfrom)

While most of the variables passed into the routine are self-explanatory, the
three variables that are common to each of these functions are Refrigerant,
RefrigIndex and calledfrom. Refrigerant in this case is the character string
name of the refrigerant in question as listed in the input file using the
FluidNames object. This must be passed into the function to identify the fluid
being referenced. RefrigIndex is an internal variable. On the first call to the
fluid property routine, it is zero. All of the fluid property routines are set-up to
find a non-zero index in the local fluid property data structure that
corresponds to this refrigerant name. Since finding the proper fluid from the
fluid name each and every time is computationally slow, the index allows the
code to quickly find the right data without doing an inordinate number of string
comparisons. Thus, module developers should store the RefrigIndex in their
own local data structure in addition to the refrigerant name. calledfrom is a
string variable passed to the routine so that error messages coming from the
above functions can give a better context for errors when they happen.
Units for these other variables in these function calls are: Joules per kilogram
for enthalpy, degrees Celsius for temperature, Pascals for pressure,
kilograms per cubic meter for density, and Joules per kilogram-degree
Celsius for specific heat. Quality and concentration are dimensionless
fractions. All variables are considered input variables.
Module developers should use the functions listed above to first determine
whether they are in the saturated region or the superheated region. The
GetSatPressureRefrig and GetSatTemperatureRefrig functions should assist
the users in determining whether they are in or beyond the saturated region.
Once this is determined, the developer can call the appropriate function to
obtain the quantity of interest: in the saturated region this includes the
enthalpy, density, or specific heat; in the superheated region this includes the
enthalpy, pressure, or density.

Reference Data Set (RDS) Values for Refrigerant Class Fluids

The data for refrigerants that are included in the reference data set that
comes with EnergyPlus are as follows (temperatures in Celsius, pressure in
MegaPascals):

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 89

Table 2. Regions for Fluid Properties

Refrigerant Sat. Temp
range {C}

Super Temp
range* {C}

Super Pressure
range* {Pa}

R11 -110 to 198 -110 to 255 6.8 to 1.6E6
R11(specheat) -110 to 190
R12 -157 to 112 -156 to 169 .3 to 1.6E7
R12(specheat) -157 to 104
R22 -157 to 96 -157 to 153 0.4 to 1.7E7
R22(specheat) -157 to 88
R123 -107 to 184 -106 to 240 4.9 to 1.5E7
R134a -103 to 101 -103 to 158 400 to 1.6E7
R404a -72 to 72 -72 to 72 2.3E4 to 3.7E6
R410a -72 to 69 -72 to 69 3.1E4 to 4.7E6
R507a -72 to 69 -72 to 69 2.5E4 to 3.6E6
NH3 -77 to 132 -77 to 189 6.3E3 to 2.2E7
NH3(specheat) -73 to 124
Steam 0 to 370 0 to 500 610 to 4.0E8
Steam(specheat) 0 to 370
*Obviously data for all temperatures at all pressures isn't loaded. The entire
range of pressures given above will work, but the temperature range for a
given pressure will be some subset of the Super Temp range shown above.
Subcooled region actually only returns h(f) or the saturated liquid value at the
temperature you input.

Fluid Property Data and Expanding the Refrigerants Available to EnergyPlus

The Fluid Property routines have been reengineered to allow other users to
add refrigerants to the input file without having to make any changes to the
program code. The only requirement on input is that in order to add a new
refrigerant, a user must enter a full set of data. The exact definition of a full
set of data is given below.
As with all EnergyPlus input, the fluid properties data has both an input data
description and a reference data set that must show up in the input file. All of
the “standard” refrigerants listed above must show up in the in.idf file for it to
be available to the rest of the simulation. Below is the description of the input
data description syntax for the fluid properties entries.
The first syntax item lists all of the fluids present in an input file and
categorizes them as either a refrigerant (such as R11, R12, etc.) or a glycol
(such as ethylene glycol, propylene glycol, etc.). A refrigerant or glycol must
be in this list in order to be used as a valid fluid in other loops in the input file.

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 90

FluidProperties:Names,
 \unique-object
 \extensible:2 repeat last two fields
 \memo list of potential fluid names/types in the input file, maximum of ten
 A1, \field Fluid 1 Name
 \type alpha
 A2, \field Fluid 1 Type
 \type choice
 \key Refrigerant
 \key Glycol
 A3, \field Fluid 2 Name
 \type alpha
 A4, \field Fluid 2 Type
 \type choice
 \key Refrigerant
 \key Glycol
 A5, \field Fluid 3 Name
 \type alpha
 A6, \field Fluid 3 Type
 \type choice
 \key Refrigerant
 \key Glycol

An example of this statement in an input data file is:
FluidProperties:Names,
 R11, REFRIGERANT,
 R12, REFRIGERANT,
 R22, REFRIGERANT,
 NH3, REFRIGERANT,
 Steam, REFRIGERANT,
 NewGlycol, GLYCOL,
 SuperGlycol, GLYCOL;

All fluid properties vary with temperature. As a result, the following syntax
allows the user to list the temperatures at which the data points are valid.
Since in many cases, the temperatures will be similar, this provides a more
compact input structure and avoids listing the temperatures multiple times.
The name associated with the temperature list is the piece of information that
will allow the actual fluid property data statements to refer back to or link to
the temperatures. Up to 250 points may be entered with this syntax and
temperatures must be entered in ascending order. Units for the temperatures
are degrees Celsius. The same temperature list may be used by more than
one refrigerant.

FluidProperties:Temperatures,
 \memo property values for fluid properties
 \memo list of up to 250 temperatures, note that number of property values must match the
number of properties
 \memo in other words, there must be a one-to-one correspondence between the property values
in this list and
 \memo the actual properties list in other syntax
 \memo degrees C (for all temperature inputs)
 \format FluidProperty
 A1, \field Name
 \type alpha
 N1, \field Temperature 1
 \type real
 \units C
< same thing repeated over and over again>
 N250; \field Temperature 250
 \type real

An example of this statement in an input data file is:

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 91

FluidProperties:Temperatures,
 R11Temperatures,
 -70,-65,-60,-55,-50,-45,-40,-35,-30,-25,-20,-15,-10,-5,0,2,4,6,8,10,12,14,16,18,
 20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,55,60,65,70,75,80,85,90,95,100,
 105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,198;

Property data for the saturated region is entered with the following syntax.
Before the actual data is entered, this line of input must identify the refrigerant
the data is to be associated with, what the data represents (choice of one of
three keywords), the phase of the data (either fluid or gas), and the
temperature list reference that links each data point with a temperature.

FluidProperties:Saturated,
 \memo fluid properties for the saturated region
 \format FluidProperty
 A1, \field Name
 \reference FluidNames
 A2, \field Fluid Property Type
 \note Enthalpy Units are J/kg
 \note Density Units are kg/m3
 \note SpecificHeat Units are J/kg-K
 \note Pressure Units are Pa
 \type choice
 \key Enthalpy ! Units are J/kg
 \key Density ! Units are kg/m3
 \key SpecificHeat ! Units are J/kg-K
 \key Pressure ! Units are Pa
 A3, \field Fluid Phase
 \note Fluid=saturated fluid
 \note FluidGas=difference between saturated fluid and saturated vapor
 \type choice
 \key Fluid ! saturated fluid
 \key FluidGas ! saturated vapor
 A4, \field Temperature Values Name
 \note Enter the name of a FluidProperties:Temperatures object.
 \reference FluidPropertyTemperatures
 N1, \field Property Value 1
 \type real
 N2, \field Property Value 2
 \type real
< same thing repeated over and over again>
 N250; \field Property Value 250
 \type real

An example of this statement in an input data file is:
FluidProperties:Saturated,
 R11,ENTHALPY,FLUID,R11Temperatures, ! Enthalpy in J/kg
 153580,154600,156310,158580,161300,164380,167740,171330,175100,179020,183060,
 187190,191400,195680,200000,201740,203490,205240,207000,208770,210530,212310,
 214080,215870,217650,219860,221230,223030,224830,226630,228860,230250,232060,
 233860,235700,237520,239350,241180,243010,246350,249450,254080,258730,263480,
 268110,272860,277000,282410,287240,292120,297030,302000,307090,312080,317210,
 322400,327670,333020,338460,344010,349680,355500,361480,367690,374100,381060,
 388850,397280,426300;

The format of the data for the superheated region is almost identical to that of
the saturated region with one addition—a pressure. The pressure is listed
before the rest of the data and has units of Pa.

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 92

FluidProperties:Superheated,
 \memo fluid properties for the superheated region
 \format FluidProperty
 A1, \field Fluid Name
 \reference FluidNames
 A2, \field Fluid Property Type
 \note Enthalpy Units are J/kg
 \note Density Units are kg/m3
 \type choice
 \key Enthalpy ! Units are J/kg
 \key Density ! Units are kg/m3
 A3, \field Temperature Values Name
 \note Enter the name of a FluidProperties:Temperatures object.
 \reference FluidPropertyTemperatures
 N1, \field Pressure
 \note pressure for this list of properties
 \type real
 \units Pa
 \minimum> 0.0
 N2, \field Property Value 1
 \type real
 N3, \field Property Value 2
 \type real
< same thing repeated over and over again>
 N250; \field Property Value 250
 \type real

An example of this statement in an input data file is:
FluidProperties:Superheated,
 R11,DENSITY,SuperR11Temperatures, ! Density in kg/m^3
 62000., !Pressure = 62000Pa
 0,0,0,0,0,0,0,0.0139,0.0134,0.0129,0.0124,0.012,0.0116,0.0112,0.0109,0.0105,
 0.0102,0.0099,0.0097,0.0094,0.0092,0.0089,0,0,0,0,0,0,0,0,0,0;

Fluid Properties Functions for Glycol Class Fluids

In EnergyPlus, a glycol fluid is assumed to remain in the liquid phase. As a
result, data is only required for fluids in the liquid state. There are four
possible functions that may be used to obtain glycol data using the Fluid
Properties module. These correspond to the fluid property of interest and
include:

GetSpecificHeatGlycol (Glycol,Temperature,GlycolIndex,calledfrom)
GetConductivityGlycol (Glycol,Temperature,GlycolIndex,calledfrom)
GetDensityGlycol (Glycol,Temperature,GlycolIndex,calledfrom)
GetViscosityGlycol (Glycol,Temperature,GlycolIndex,calledfrom)

All of these functions are used in exactly the same way. The module
developer should send the glycol name (as listed in the GlycolConcentrations
object in the input file) to the routine and the GlycolIndex (sent as 0 the first
time and then set by the fluid property routine; see RefrigIndex discussion
above). The calledfrom parameter is also used as discussed in the
Refrigerant parameter discussion above. In addition, the functions require the
temperature of the glycol in degrees Celsius.

Default Values for Glycol Class Fluids

There are default values for specific heat, density, conductivity, and viscosity
for Water, Ethylene Glycol, and Propylene Glycol. This means that if users
accept the values as published in the ASHRAE Handbook of Fundamentals,
then the only information the user must include in their input file is a
description of the concentration of glycol used (via the GlycolConcentrations
object). If water is used in a loop, the user does not need to enter anything

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 93

other than WATER as the fluid type in the appropriate input syntax. Data for
various concentrations of these three default fluids encompasses the range
over with these fluids and their combinations are in the liquid phase (-35 to
125 degrees Celsius). When the glycol combination in question is indeed a
fluid, the functions will return the appropriate value for the parameter in
question. If the glycol is either a solid or vapor, the routine will return a zero
value. Units for the different properties are: Joules per kilogram-Kelvin for
specific heat, Pascal-seconds for viscosity, Watts per meter-Kelvin for
conductivity, and kilograms per cubic meter for density. In contrast to the
refrigerant data which is included in the RDS and must be copied into the
user input file if it is to be used, the glycol default data has been hardwired
into EnergyPlus and does not need to be entered into the input file.

Fluid Property Data and Expanding the Glycols Available to EnergyPlus

The format of the data for the glycols is almost identical to that of the
superheated region for refrigerants with one exception—concentration
replaces pressure. The concentration is listed before the rest of the data and
is dimensionless.

FluidProperties:Concentration,
 \memo fluid properties for water/other fluid mixtures
 \format FluidProperty
 A1, \field Fluid Name
 \reference FluidNames
 \note should not be any of the defaults (Water, EthyleneGlycol, or PropyleneGlycol)
 A2, \field Fluid Property Type
 \note Density Units are kg/m3
 \note SpecificHeat Units are J/kg-K
 \note Conductivity Units are W/m-K
 \note Viscosity Units are N-s/m2
 \type choice
 \key Density ! Units are kg/m3
 \key SpecificHeat ! Units are J/kg-K
 \key Conductivity ! Units are W/m-K
 \key Viscosity ! Units are N-s/m2
 A3, \field Temperature Values Name
 \note Enter the name of a FluidProperties:Temperatures object.
 \reference FluidPropertyTemperatures
 N1, \field Concentration
 \note Glycol concentration for this list of properties entered as a fraction
 \type real
 \units dimensionless
 \minimum 0.0
 \maximum 1.0
 N2, \field Property Value 1
 \type real
 N3, \field Property Value 2
 \type real
< same thing repeated over and over again>
 N250; \field Property Value 250
 \type real

An example of this statement in an input data file is:
FluidProperties:Concentration,
 MyPropyleneGlycol,SPECIFICHEAT ,GlycolTemperatures, ! Specific heat in J/kg-K
 0.8, ! Concentration
 2572,2600,2627,2655,2683,2710,2738,2766,2793,2821,2849,2876,2904,2931,2959,
 2987,3014,3042,3070,3097,3125,3153,3180,3208,3236,3263,3291,3319,3346,3374,
 3402,3429,3457;

The above input syntax is used to define data for a particular new fluid
beyond the default glycol fluids. It would be repeated at other appropriate
concentration values, if necessary, to define the fluid. It should be noted that

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 94

in order to enter a fluid, the user must specify all four of the properties:
conductivity, specific heat, viscosity, and density.
In addition to specifying the raw data for a new glycol, the user must list the
fluid in the FluidNames object and then specify the concentration in the
GlycolConcentrations object as shown below:

FluidProperties:Names,
 MyPropyleneGlycol, GLYCOL;
GlycolConcentrations,
 MyPropyleneGlycol, GLYCOL;

The IDD description for the FluidProperties:GlycolConcentrations object is
given below:

FluidProperties:GlycolConcentrations,
 \unique-object
 \memo list of glycols and what concentration they are, maximum of ten
 A1, \field Fluid 1 Name
 \type alpha
 \reference GlycolConcentrations
 A2, \field Glycol 1 Name
 \type choice
 \key EthyleneGlycol
 \key PropyleneGlycol
 \memo or UserDefined Fluid (must show up as a glycol in FluidProperties:Names list)
 N1, \field Glycol 1 Concentration
 \type real
 \minimum 0.0
 \maximum 1.0
 A3, \field Fluid 2 Name
 \type alpha
 A4, \field Glycol 2 Name
 \type choice
 \key EthyleneGlycol
 \key PropyleneGlycol
 \memo or UserDefined Fluid (must show up as a glycol in FluidProperties:Names list)
 N2, \field Glycol 2 Concentration
 \type real
 \minimum 0.0
 \maximum 1.0
< . . . repeated up to 10 times . . .>
 A19, \field Fluid 10 Name
 \type alpha
 A20, \field Glycol 10 Name
 \type choice
 \key EthyleneGlycol
 \key PropyleneGlycol
 \memo or UserDefined Fluid (must show up as a glycol in FluidProperties:Names list)
 N10; \field Glycol 10 Concentration
 \type real
 \minimum 0.0
 \maximum 1.0

An example of how this would be used in an actual IDF is:
FluidProperties:GlycolConcentrations,
 MyProGly80Percent, !- fluid name 1
 MyPropyleneGlycol, !- glycol name 1
 0.8,
 EthGly30Percent, !- fluid name 2
 EthyleneGlycol, !- glycol name 2
 0.3; !- concentration 2

The key relationship in this syntax is how FluidNames relates to
GlycolConcentrations and how to have modules access through the proper
name. FluidNames are used to define raw data, whether for refrigerants or
glycols. With a glycol, it is not enough to define raw data since this does not
necessarily define the actual concentration of glycol being used. Thus, the

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 95

GlycolConcentrations object is needed. It defines a name for the actual
glycol and then refers back to the FluidNames (first fluid listed in the above
example) or to one of the default glycol fluids (second fluid listed in the above
example). It is critical that module developers refer to the “fluid name” listed
in the GlycolConcentrations object. This is the name used inside the fluid
property module to access the proper data. Note that when the
GlycolConcentrations object is read in during execution that the module will
interpolate down from a two-dimensional array of data (variation on
temperature and concentration) to a one-dimensional array of data (with
temperature as the only independent variable, concentration of a glycol fluid
on any loop is assumed to be constant). This means that only the
temperature (along with the glycol fluid name and index) must be passed into
the fluid property module and also saves execution time since only a one-
dimensional interpolation is needed.

Weather Services

All weather data (including SizingPeriod:DesignDay and Site:Location
validation) are processed by the WeatherManager module. The
SimulationManager invokes the WeatherManager at the proper times to
retrieve data. The WeatherManager will retrieve the proper data for the
current timestep/hour/day/month from the proper data source (design day
definition, weather data file). The WeatherManager puts weather-type data
(outside dry bulb, outside wet bulb, humidity, barometric pressure) into the
DataEnvironment global data area. There is no need for other modules to
call the WeatherManager directly. However, if there is some weather-type
data that is needed and not provided in the DataEnvironment global area,
contact us.

Global Data: Flags and Parameters

Global data is used sparsely in EnergyPlus, according to our goals and
programming standards. Data-only modules should be used to share data,
usually across a limited number of other modules. Two critical data-only
modules have been used:
DataGlobals – contains truly global data (such as number of zones, current
hour, simulation status flags, interface statements to error and output
routines)
DataEnvironment – contains weather data that is global (such as current
outdoor dry-bulb temperature, barometric pressure, etc.)
As an example of a limited data-only module, DataSurfaces contains data
that is used in the modules that reference surfaces e.g., shadowing
calculations, heat balance calculations.
Module excerpts in this document show uses of these data-only modules.

Parameters

Constants that might be useful throughout the program are defined as Fortran
parameters in the DataGlobals data module. Examples include PI, PiOvr2,
DegToRadians, and MaxNameLength. DataHVACGlobals contains

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 96

parameters that might be useful anywhere in the HVAC simulation. Some
examples are SmallTempDiff and SmallMassFlow that can be used for
preventing divide by zero errors. The full set of global parameters can be
obtained by examining the modules DataGlobals and DataHVACGlobals.

Simulation Flags

A number of logical flags (variables that are either true or false) are used
throughout EnergyPlus. These flags are normally used to indicate the start or
end of a time or simulation period. The following shows a complete list.

In DataGlobals:

BeginSimFlag
Set to true until the actual simulation has begun, set to false after first
heat balance time step.

BeginFullSimFlag
Set to true until a full simulation begins (as opposed to a sizing
simulation); set to false after the first heat balance time step of the full
simulation.

EndSimFlag
Normally false, but set to true at the end of the simulation (last heat
balance time step of last hour of last day of last environment).

WarmupFlag

Set to true during the warmup portion of a simulation; otherwise false.
BeginEnvrnFlag

Set to true at the start of each environment (design day or run period), set
to false after first heat balance time step in environment. This flag should
be used for beginning of environment initializations in most HVAC
components. See the example module for correct usage.

EndEnvrnFlag
Normally false, but set to true at the end of each environment (last heat
balance time step of last hour of last day of environment).

BeginDayFlag
Set to true at the start of each day, set to false after first heat balance
time step in day.

EndDayFlag
Normally false, but set to true at the end of each day (last heat balance
time step of last hour of day).

BeginHourFlag
Set to true at the start of each hour, set to false after first heat balance
time step in hour.

EndHourFlag
Normally false, but set to true at the end of each hour (last heat balance
time step of hour)

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 97

BeginTimeStepFlag
Set to true at the start of each heat balance time step, set to false after
first HVAC step in the heat balance time step.

In DataHVACGlobals:
FirstTimeStepSysFlag

Set to true at the start of the first HVAC time step within each heat
balance time step, false at the end of the HVAC time step. In other
words, this flag is true during the first HVAC time step in a heat balance
time step, and is false otherwise.

In Subroutine SimHVAC:
FirstHVACIteration

True when HVAC solution technique on first iteration, false otherwise.
Passed as a subroutine argument into the HVAC equipment simulation
driver routines.

The most commonly used logical flag in the HVAC simulation is
FirstHVACIteration that is passed around as an argument among the HVAC
simulation subroutines. The HVAC simulation is solved iteratively each HVAC
time step. FirstHVACIteration is true for the first iteration in each time step
and false for the remaining iterations.
Finally, each developer must define and set a “GetInput” flag to make sure
input data is read in only once. In the example module Fans the GetInput flag
is GetInputFlag; the new developer can follow this example in using such a
flag.

Psychrometric services

EnergyPlus has a full complement of psychrometric functions. All the routines
are Fortran functions returning a single precision real value. All arguments
and results are in SI units.

Note that each of the psychrometric routines has a “calledfrom” optional parameter – this has
been implemented in some of the calling routines and is useful when errors are detected during
simulation for support personnel to figure out where the psych routine is called from.

The Names for the different Psychrometric Routines are based on the
following self-explanatory format; the different variables used in the Psych
Routine taxonomy are as follows.

• H = Enthalpy
• W= Humidity Ratio
• Rh= Relative Humidity
• V= Specific Volume
• Rhov= Vapor Density of Air
• Hfg = Latent energy (heat of vaporization for moist air)
• Hg= Enthalpy of gaseous moisture
• Pb= Barometric Pressure
• Twb=Temperature Wet Bulb
• Twd= Temperature Dry Bulb
• Tdp= Temperature Dew Point

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 98

• Tsat and Psat= Saturation Temperature and Saturation Pressure
• Psy## Fn ## = Psy {## is a Function of ##}
• Note: Each of the two capital alphabets together have different meaning
 Eg: {Psy ## Fn HW}= {Psy ## Function of Enthalpy and Humidity Ratio}

PsyRhoAirFnPbTdbW (Pb,Tdb,W,calledfrom)

Returns the density of air in kilograms per cubic meter as a function of
barometric pressure [Pb] (in Pascals), dry bulb temperature [Tdb] (in Celsius),
and humidity ratio [W] (kilograms of water per kilogram of dry air).

PsyCpAirFnWTdb (W,Tdb,calledfrom)

Returns the specific heat of air in Joules per kilogram degree Celsius as a
function of humidity ratio [W] (kilograms of water per kilogram of dry air) and
dry bulb temperature [Tdb] (Celsius).

PsyHfgAirFnWTdb (W,Tdb,calledfrom)

Returns the Latent energy of air [Hfg](Joules per kilogram) as a function of
humidity ratio [W] (kilograms of water per kilogram of dry air) and dry bulb
temperature [Tdb] (Celsius). It calculates hg and then hf and the difference is
Hfg.

PsyHgAirFnWTdb (W,Tdb,calledfrom)

Returns the specific enthalpy of the moisture as a gas in the air in Joules per
kilogram as a function of humidity ratio [W] (kilograms of water per kilogram
of dry air) and dry bulb temperature [Tdb] (Celsius).

PsyTdpFnTdbTwbPb (Tdb,Twb,Pb,calledfrom)

Returns the dew point temperature in Celsius as a function of dry bulb
temperature [Tdb] (Celsius), wet bulb temperature [Twb] (Celsius), and
barometric pressure [Pb] (Pascals).

PsyTdpFnWPb (W,Pb,calledfrom)

Returns the dew point temperature in Celsius as a function of humidity ratio
[W] (kilograms of water per kilogram of dry air) and barometric pressure [Pb]
(Pascals).

PsyHFnTdbW (Tdb,W,calledfrom)

Returns the specific enthalpy of air in Joules per kilogram as a function of dry
bulb temperature [Tdb] (Celsius) and humidity ratio [W] (kilograms of water
per kilogram of dry air).

PsyHFnTdbRhPb (Tdb,Rh,Pb,calledfrom)

Returns the specific enthalpy of air in Joules per kilogram as a function of dry
bulb temperature [Tdb] (Celsius), relative humidity [Rh] (fraction), and
barometric pressure [Pb] (Pascals).

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 99

PsyTdbFnHW (H,W,calledfrom)

Returns the air temperature in Celsius as a function of air specific enthalpy
[H] (Joules per kilogram) and humidity ratio [W] (kilograms of water per
kilogram of dry air).

PsyRhovFnTdbRh (Tdb,Rh,calledfrom)

Returns the Vapor Density in air [RhoVapor](kilograms of water per cubic
meter of air) as a function of dry bulb temperature [Tdb](Celcius), Relative
Humidity [Rh] (fraction).

PsyRhovFnTdbWP (Tdb,W,Pb,calledfrom)

Returns the Vapor Density in air [RhoVapor](kilograms of water per cubic
meter of air) as a function of dry bulb temperature [Tdb](Celcius), humidity
ratio [W] (kilograms of water per kilogram of dry air) and barometric pressure
[Pb] (Pascals).

PsyRhFnTdbRhov (Tdb,Rhov,calledfrom)

Returns the Relative Humidity [Rh] (fraction) in air as a function of dry bulb
temperature [Tdb] (Celcius) and Vapor Density in air [RhoVapor](kilograms of
water per cubic meter of air).

PsyRhFnTdbWPb (Tdb,W,Pb,calledfrom)

Returns the relative humifity (fraction) as a function of of dry bulb temperature
[Tdb] (Celsius), humidity ratio [W] (kilograms of water per kilogram of dry air)
and barometric pressure [Pb] (Pascals).

PsyTwbFnTdbWPb (Tdb,W,Pb,calledfrom)

Returns the air wet bulb temperatute in Celsius as a function of dry bulb
temperature [Tdb] (Celsius), humidity ratio [W] (kilograms of water per
kilogram of dry air) and barometric pressure [Pb] (Pascals).

PsyVFnTdbWPb (Tdb,W,Pb,calledfrom)

Returns the specific volume in cubic meters per kilogram as a function of dry
bulb temperature [Tdb] (Celsius), humidity ratio [W] (kilograms of water per
kilogram of dry air) and barometric pressure [Pb] (Pascals).

PsyWFnTdpPb (Tdp,Pb,calledfrom)

Returns the humidity ratio in kilograms of water per kilogram of dry air as a
function of the dew point temperature [Tdp] (Celsius) and barometric
pressure [Pb] (Pascals).

PsyWFnTdbH (Tdb,H,calledfrom)

Returns the humidity ratio in kilograms of water per kilogram of dry air as a
function of dry bulb temperature [Tdb] (Celsius) and air specific enthalpy [H]
(Joules per kilogram).

PsyWFnTdbTwbPb (Tdb,Twb,Pb,calledfrom)

Returns the humidity ratio in kilograms of water per kilogram of dry air as a
function of dry bulb temperature [Tdb] (Celsius), wet bulb temperature [Twb]
(Celsius), and barometric pressure [Pb] (Pascals).

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 100

PsyWFnTdbRhPb (Tdb,Rh,Pb,calledfrom)

Returns the humidity ratio in kilograms of water per kilogram of dry air as a
function of dry bulb temperature [Tdb] (Celsius), relative humidity [RH]
(fraction), and barometric pressure [Pb] (Pascals).

PsyPsatFnTemp (T,calledfrom)

Returns the saturation pressure in Pascals as a function of the air saturation
temperature [T] (Celsius).

PsyTsatFnHPb (H,Pb,calledfrom)

Returns the air saturation temperature in Celsius as a function of air specific
enthalpy [H] (Joules per kilogram) and barometric pressure [Pb] (Pascals).

PsyTsatFnPb (P,calledfrom)

Returns the air saturation temperature in Celsius as a function of saturation
pressure [P] (Pascals).

CPCW (Temp,calledfrom)

Returns Specific heat capacity (Joule/kilogram/kelvin) for chilled water as
function of temperature [T] (Celsius).

CPHW (Temp,calledfrom)

Returns Specific heat capacity (Joule/kilogram/kelvin) for hot water as
function of temperature [T] (Celsius).

CVHW (Temp,calledfrom)

Returns Specific heat capacity (Joule/kilogram/kelvin) for hot water at
constant volume as function of temperature [T] (Celsius).

RhoH2O (Temp,calledfrom)

Returns density of water (kg/m3) as function of Temperature [T] (Celsius).

Tabular Output Utilities

Several utility routines are available to help generate tabular reports. To
create tabular reports, the developer needs to create a routine called
something like WriteTabularX. The WriteTabularX routine should appear in
SimulationManger between the OpenOutputTabularFile and
CloseOutputTabularFile calls. The WriteTabularX routine should make use of
several utilities described below. The “USE” statement reference
OutputReportTabular module. Good example of how to use this facility are in
the OutputReportTabular file and the EconomicTariff file.

WriteReportHeaders(reportName,objectName,averageOrSum)

Where reportName is the name that you want the report to be called and the
objectName is the name of the object that appears after the “For: “ for each
instance of the report. The averageOrSum flag when set to SUM adds the
phrase “per second” after the reportName.

GUIDE FOR MODULE DEVELOPERS 5BENERGYPLUS SERVICES

3/24/09 101

WriteSubtitle(subtitle)

Where the subtitle is a string that usually appears before a specific table. This
is useful if the report includes multiple tables.

WriteTable(body,rowLabels,columnLabels,widthColumn)

The WriteTable routine actually generates the tables that appear in the
tabular output file (CSV, HTML, or TXT). The rowLabels and columnLables
are both one dimensional string arrays that contain the appropriate labels. If
the column labels strings include the vertical bar symbol “|” then when
creating a text report, the labels will be split between lines at the vertical bar.
For HTML and CSV output, the vertical bar symbols are removed prior to
display.
The body array is a two dimensional array (row,column order) containing the
cells in the body of the table. It must be strings so conversion utilities such as
RealToStr should be used to convert from numeric values.
WidthColumn is a one dimensional integer array containing the column
widths for use only with the fixed width text output option.

GUIDE FOR MODULE DEVELOPERS 6BHVAC NETWORK

3/24/09 102

HVAC Network

Branches, Connectors, and Nodes

In EnergyPlus, the HVAC system and plant form a network (technically, a
graph). The individual pieces of equipment – the fans, coils, chillers, etc. –
are connected together by air ducts and fluid pipes. In EnergyPlus
nomenclature, the air and fluid circuits are called loops. Specifying how an
individual system and plant are connected is done in the EnergyPlus input
(IDF) file. The overall structure of the network is defined with Branch and
Connector objects. The detail is filled with components and their inlet and
outlet nodes. A Branch consists of one or more components arranged
sequentially along a pipe or duct. A Connector specifies how three or more
branches are connected through a Splitter or Mixer. Nodes connect
components along a branch: the outlet node of one component is the inlet
node of the next downstream component. The nodes represent conditions at
a point on a loop. Each component has one or more inlet and outlet nodes,
depending on how many loops it interacts with. A fan, for instance, has one
inlet node and one outlet node, since it interacts with a single air loop. A
water coil will have 2 inlet and 2 outlet nodes, since it interacts with an air and
a fluid loop. Figure 1 shows a diagram of an EnergyPlus HVAC input.

Zone 3

Zone 2

Zone 1

16

19

22

Mixing
Damper

Mixing
Damper

Mixing
Damper

Purchased
Heating

30

29

50

31

Plant Supply Side
Cooling Loop

34

36 37 35

38 39

Chiller # 2

CW Pump

3 Splitter

3 Mixer

49

Purchased
Cooling

Cooling Tower

2 Split-
Cond

2 Mix-
Cond

Cond Pump

40
48

41 42 43 44

45
46

47

Cond Supply Side Loop

Cond Demand Side Loop

Chiller #1

40

51

3 Zone Dual Duct System

Bypass

B
ypass

B
ypass

1
24

2

4

7

6

11

8

12

9

13

10

14

15

18

21

17

20

23

3

5

Supply Fan

32

33

25

28

R
et

ur
n

A
ir

M
ix

er

H
ot A

ir S
plitter

C
old A

ir S
plitter

Plant Supply Side
Heating Loop

Plant Demand Side
Cooling Loop

26
27

P
lant D

em
and S

ide
H

eating Loop

Supply Air Splitter
("Look Ahead")

CC

HC

Figure 1. HVAC Input Diagram

As an illustration of how such a network is built up on the IDF, here is the
section of the IDF that describes the supply fan, splitter, and heating and
cooling coil section of the dual duct air system.

GUIDE FOR MODULE DEVELOPERS 6BHVAC NETWORK

3/24/09 103

BranchList,
 Dual Duct Air Loop Branches, !- Name
 Air Loop Main Branch, !- Branch 1 Name
 Heating Coil Air Sys Branch, !- Branch 2 Name
 Cooling Coil Air Sys Branch; !- Branch 3 Name

ConnectorList,
 Dual Duct Connectors, !- Name
 Connector:Splitter, !- Connector 1 Object Type
 DualDuctAirSplitter; !- Connector 1 Name

NodeList,
 Zone Equipment Inlet Node List, !- Name
 Main Hot Air Inlet, !- Node 1 Name
 Main Cold Air Inlet; !- Node 2 Name

NodeList,
 Air Loop Outlet Node List, !- Name
 Heating Coil Outlet Node,!- Node 1 Name
 Cooling Coil Outlet Node;!- Node 2 Name

Branch,
 Air Loop Main Branch, !- Name
 autosize, !- Maximum Flow Rate {m3/s}
 Fan:ConstantVolume, !- Component 1 Object Type
 Supply Fan 1, !- Component 1 Name
 Supply Fan Inlet Node, !- Component 1 Inlet Node Name
 Supply Fan Outlet Node, !- Component 1 Outlet Node Name
 PASSIVE; !- Component 1 Branch Control Type

Branch,
 Heating Coil Air Sys Branch, !- Name
 autosize, !- Maximum Flow Rate {m3/s}
 Coil:Heating:Water, !- Component 1 Object Type
 Main Heating Coil, !- Component 1 Name
 Heating Coil Inlet Node, !- Component 1 Inlet Node Name
 Heating Coil Outlet Node,!- Component 1 Outlet Node Name
 ACTIVE; !- Component 1 Branch Control Type

Branch,
 Cooling Coil Air Sys Branch, !- Name
 autosize, !- Maximum Flow Rate {m3/s}
 Coil:Cooling:Water, !- Component 1 Object Type
 Simple Cooling Coil, !- Component 1 Name
 Cooling Coil Inlet Node, !- Component 1 Inlet Node Name
 Cooling Coil Outlet Node,!- Component 1 Outlet Node Name
 ACTIVE; !- Component 1 Branch Control Type

Connector:Splitter,
 DualDuctAirSplitter, !- Name
 Air Loop Main Branch, !- Inlet Branch Name
 Heating Coil Air Sys Branch, !- Outlet Branch 1 Name
 Cooling Coil Air Sys Branch; !- Outlet Branch 2 Name

Fan:ConstantVolume,
 Supply Fan 1, !- Name
 FanAndCoilAvailSched, !- Availability Schedule Name
 0.7, !- Fan Efficiency
 600.0, !- Pressure Rise {Pa}
 autosize, !- Maximum Flow Rate {m3/s}
 0.9, !- Motor Efficiency
 1.0, !- Motor In Airstream Fraction
 Supply Fan Inlet Node, !- Fan Inlet Node Name

GUIDE FOR MODULE DEVELOPERS 6BHVAC NETWORK

3/24/09 104

 Supply Fan Outlet Node; !- Fan Outlet Node Name

Coil:Cooling:Water,
 Simple Cooling Coil, !- Name
 CoolingCoilAvailSched, !- Availability Schedule Name
 autosize, !- Design Water Flow Rate {m3/s}
 autosize, !- Design Air Flow Rate {m3/s}
 autosize, !- Design Inlet Water Temperature {C}
 autosize, !- Design Inlet Air Temperature {C}
 autosize, !- Design Outlet Air Temperature {C}
 autosize, !- Design Inlet Air Humidity Ratio {kg-H2O/kg-air}
 autosize, !- Design Outlet Air Humidity Ratio {kg-H2O/kg-air}
 Cooling Coil Water Inlet Node, !- Water Inlet Node Name
 Cooling Coil Water Outlet Node, !- Water Outlet Node Name
 Cooling Coil Inlet Node, !- Air Inlet Node Name
 Cooling Coil Outlet Node,!- Air Outlet Node Name
 SimpleAnalysis, !- Type of Analysis
 CrossFlow; !- Heat Exchanger Configuration

AirLoopHVAC:ZoneSplitter,
 ZoneColdAirSupplySplitter, !- Name
 Main Cold Air Inlet, !- Inlet Node Name
 Zone 1 Dual Duct Cold Inlet, !- Outlet 1 Node Name
 Zone 2 Dual Duct Cold Inlet, !- Outlet 2 Node Name
 Zone 3 Dual Duct Cold Inlet; !- Outlet 3 Node Name

AirLoopHVAC:ZoneSplitter,
 ZoneHotAirSupplySplitter,!- Name
 Main Hot Air Inlet, !- Inlet Node Name
 Zone 1 Dual Duct Hot Inlet, !- Outlet 1 Node Name
 Zone 2 Dual Duct Hot Inlet, !- Outlet 2 Node Name
 Zone 3 Dual Duct Hot Inlet; !- Outlet 3 Node Name

AirLoopHVAC:ZoneMixer,
 ZoneReturnAirMixer, !- Name
 Return Air Mixer Outlet, !- Outlet Node Name
 Zone 1 Outlet Node, !- Inlet 1 Node Name
 Zone 2 Outlet Node, !- Inlet 2 Node Name
 Zone 3 Outlet Node; !- Inlet 3 Node Name

Coil:Heating:Water,
 Main Heating Coil, !- Name
 FanAndCoilAvailSched, !- Availability Schedule Name
 autosize, !- U-Factor Times Area Value {W/K}
 autosize, !- Maximum Water Flow Rate {m3/s}
 Heating Coil Water Inlet,!- Water Inlet Node Name
 Heating Coil Water Outlet, !- Water Outlet Node Name
 Heating Coil Inlet Node, !- Air Inlet Node Name
 Heating Coil Outlet Node,!- Air Outlet Node Name
 UFactorTimesAreaAndDesignWaterFlowRate, !- Performance Input
Method
 autosize, !- Nominal Capacity {W}
 82.2, !- Design Inlet Water Temperature {C}
 16.6, !- Design Inlet Air Temperature {C}
 71.1, !- Design Outlet Water Temperature {C}
 32.2; !- Design Outlet Air Temperature {C}

Controller:WaterCoil,
 Main Cooling Coil Controller, !- Name
 Temperature, !- Control Variable
 Reverse, !- Action
 FLOW, !- Actuator Variable
 Cooling Coil Outlet Node,!- Sensor Node Name

GUIDE FOR MODULE DEVELOPERS 6BHVAC NETWORK

3/24/09 105

 Cooling Coil Water Inlet Node, !- Actuator Node Name
 0.001, !- Controller Convergence Tolerance {deltaC}
 autosize, !- Maximum Actuated Flow {m3/s}
 0.0; !- Minimum Actuated Flow {m3/s}

Controller:WaterCoil,
 Main Heating Coil Controller, !- Name
 Temperature, !- Control Variable
 Normal, !- Action
 FLOW, !- Actuator Variable
 Heating Coil Outlet Node,!- Sensor Node Name
 Heating Coil Water Inlet,!- Actuator Node Name
 0.01, !- Controller Convergence Tolerance {deltaC}
 autosize, !- Maximum Actuated Flow {m3/s}
 0.0; !- Minimum Actuated Flow {m3/s}

Obviously, the creation of such a system/plant network description is best
handled by a graphical user interface (GUI). However, for testing purposes a
developer may have to create the input for a component by hand and insert it
into an existing IDF. Then the developer must be careful to choose unique
names for the branches and nodes and make sure the entire network makes
physical sense.

Nodes in the simulation

In the EnergyPlus data structure, the nodes are where each component
model gets its input and where it places its output. The module
DataLoopNode contains all the node related data. In particular, the array
Node contains the state variables and mass flows for all the nodes in the
problem being simulated.

 ! Valid Fluid Types for Nodes
 INTEGER, PARAMETER :: NodeType_Unknown = 0 ! 'blank'
 INTEGER, PARAMETER :: NodeType_Air = 1 ! 'Air'
 INTEGER, PARAMETER :: NodeType_Water = 2 ! 'Water'
 INTEGER, PARAMETER :: NodeType_Steam = 3 ! 'Steam'
 INTEGER, PARAMETER :: NodeType_Electric= 4 ! 'Electric'

GUIDE FOR MODULE DEVELOPERS 6BHVAC NETWORK

3/24/09 106

 TYPE NodeData
 INTEGER :: FluidType = 0 ! must be one of the valid parameters
 INTEGER :: FluidIndex = 0 ! For Fluid Properties
 REAL(r64):: Temp = 0.0 ! {C}
 REAL(r64):: TempMin = 0.0 ! {C}
 REAL(r64):: TempMax = 0.0 ! {C}
 REAL(r64):: TempSetPoint = SensedNodeFlagValue ! {C}
 REAL(r64):: MassFlowRate = 0.0 ! {kg/s}
 REAL(r64):: MassFlowRateMin = 0.0 ! {kg/s}
 REAL(r64):: MassFlowRateMax = 0.0 ! {kg/s}
 REAL(r64):: MassFlowRateMinAvail = 0.0 ! {kg/s}
 REAL(r64):: MassFlowRateMaxAvail = 0.0 ! {kg/s}
 REAL(r64):: MassFlowRateSetPoint = 0.0 ! {kg/s}
 REAL(r64):: Quality = 0.0 ! {0.0-1.0 vapor fraction/percent}
 REAL(r64):: Press = 0.0 ! {Pa}
 REAL(r64):: Enthalpy = 0.0 ! {J/kg}
 REAL(r64):: HumRat = 0.0 ! {}
 REAL(r64):: HumRatMin = SensedNodeFlagValue ! {}
 REAL(r64):: HumRatMax = SensedNodeFlagValue ! {}
 REAL(r64):: HumRatSetPoint = SensedNodeFlagValue ! {}
 REAL(r64):: TempSetPointHi = 0.0 ! {C}
 REAL(r64):: TempSetPointLo = 0.0 ! {C}
 REAL(r64):: Height = -1.0 ! {m}
 ! Following are for Outside Air Nodes "read only"
 REAL(r64):: OutAirDryBulb = 0.0 ! {C}
 REAL(r64):: OutAirWetBulb = 0.0 ! {C}
 END TYPE NodeData

 TYPE MoreNodeData
 REAL(r64):: RelHumidity = 0.0 ! {%}
 REAL(r64):: ReportEnthalpy = 0.0 ! specific enthalpy calculated at the HVAC timestep [J/kg]
 REAL(r64):: VolFlowRate = 0.0 ! volume flow rate [m3/s]
 REAL(r64):: WetbulbTemp = 0.0 ! wetbulb temperature [C]
 END TYPE MoreNodeData
TYPE (NodeData), ALLOCATABLE, DIMENSION(:) :: Node !dim to num nodes in SimHVAC
 TYPE (NodeData) :: DefaultNodeValues= &
 NodeData(0, & ! FluidType
 0, & ! FluidIndex
 0.0, & ! Temp {C}
 0.0, & ! TempMin {C}
 0.0, & ! TempMax {C}
 SensedNodeFlagValue, & ! TempSetPoint {C}
 0.0, & ! MassFlowRate {kg/s}
 0.0, & ! MassFlowRateMin {kg/s}
 0.0, & ! MassFlowRateMax {kg/s}
 0.0, & ! MassFlowRateMinAvail {kg/s}
 0.0, & ! MassFlowRateMaxAvail {kg/s}
 0.0, & ! MassFlowRateSetPoint {kg/s}
 0.0, & ! Quality {0.0-1.0 vapor fraction/percent}
 0.0, & ! Press {Pa} REAL ::
 0.0, & ! Enthalpy {J/kg}
 0.0, & ! HumRat {}
 SensedNodeFlagValue, & ! HumRatMin {}
 SensedNodeFlagValue, & ! HumRatMax {}
 SensedNodeFlagValue, & ! HumRatSetPoint {}
 0.0, & ! TempSetPointHi {C}
 0.0, & ! TempSetPointLo {C}
 -1.0, & ! Height {m}
 0.0, & ! OutAirDryBulb {C}
 0.0) ! OutAirWetBulb {C}

 TYPE (MoreNodeData), ALLOCATABLE, DIMENSION(:) :: MoreNodeInfo

In our example module NewHVACComponent, the subroutine
InitNewHVACComponent is responsible for obtaining the input data from the
inlet node(s) and putting it into the component data structure for use in
CalcNewHVACComponent. Then UpdateNewHVACComponent takes the
calculated data and moves it to the outlet nodes for use by other

GUIDE FOR MODULE DEVELOPERS 6BHVAC NETWORK

3/24/09 107

components. EnergyPlus component models are assumed to be direct
models: inlets are input to the calculation and outlets are output from the
calculations.

Getting Nodes

Data Flow in an HVAC Component Module

The data in an EnergyPlus HVAC component module resides in three places.
1. The component inlet nodes – this is where the data input to the model resides.
2. The component internal data structure(s) – one or more arrays of data structures

which contain all the data needed for the component simulation. This includes data
from the input file, data from the inlet nodes, and any schedule values. In addition,
these data structure(s) store the results of the calculation.

3. The component outlet nodes – data is moved from the internal data structure(s) to
the outlet nodes at the completion of each component simulation.

The data flows from the inlet nodes into the component internal data
structure(s) and then into the outlet nodes. Let us see how this works in our
example module Fans.
At the start of the module, the component internal data structure is defined.

TYPE FanEquipConditions
 CHARACTER(len=MaxNameLength) :: FanName ! Name of the fan
 CHARACTER(len=MaxNameLength) :: FanType ! Type of Fan ie. Simple, Vane axial, Centrifugal, etc.
 CHARACTER(len=MaxNameLength) :: Schedule ! Fan Operation Schedule
 CHARACTER(len=MaxNameLength) :: Control ! ie. Const Vol, Variable Vol
 Integer :: SchedPtr ! Pointer to the correct schedule
 REAL(r64) :: InletAirMassFlowRate !MassFlow through the Fan being Simulated [kg/Sec]
 REAL(r64) :: OutletAirMassFlowRate
 REAL(r64) :: MaxAirFlowRate !Max Specified Volume Flow Rate of Fan [m^3/sec]
 REAL(r64) :: MinAirFlowRate !Min Specified Volume Flow Rate of Fan [m^3/sec]
 REAL(r64) :: MaxAirMassFlowRate ! Max flow rate of fan in kg/sec
 REAL(r64) :: MinAirMassFlowRate ! Min flow rate of fan in kg/sec
 REAL(r64) :: InletAirTemp
 REAL(r64) :: OutletAirTemp
 REAL(r64) :: InletAirHumRat
 REAL(r64) :: OutletAirHumRat
 REAL(r64) :: InletAirEnthalpy
 REAL(r64) :: OutletAirEnthalpy
 REAL(r64) :: FanPower !Power of the Fan being Simulated [kW]
 REAL(r64) :: FanEnergy !Fan energy in [kJ]
 REAL(r64) :: DeltaTemp !Temp Rise across the Fan [C]
 REAL(r64) :: DeltaPress !Delta Pressure Across the Fan [N/M^2]
 REAL(r64) :: FanEff !Fan total efficiency; motor and mechanical
 REAL(r64) :: MotEff !Fan motor efficiency
 REAL(r64) :: MotInAirFrac !Fraction of motor heat entering air stream
 REAL(r64), Dimension(5):: FanCoeff !Fan Part Load Coefficients to match fan type
 ! Mass Flow Rate Control Variables
 REAL(r64) :: MassFlowRateMaxAvail
 REAL(r64) :: MassFlowRateMinAvail
 INTEGER :: InletNodeNum
 INTEGER :: OutletNodeNum
 END TYPE FanEquipConditions

!MODULE VARIABLE DECLARATIONS:
 INTEGER :: NumFans ! The Number of Fans found in the Input
 TYPE (FanEquipConditions), ALLOCATABLE, DIMENSION(:) :: Fan

In this case, there is only one structure that stores all of the fan data. We
could have chosen to divide this rather large structure up into separate

GUIDE FOR MODULE DEVELOPERS 6BHVAC NETWORK

3/24/09 108

structures – one for input file data, one for inlet data, and one for outlet data,
for instance. Note that in Fortran 90 structures are called defined type. The
TYPE – END TYPE construct defines a new data structure. Then an
allocatable array Fan of the defined type is created. This one-dimensional
array will contain an entry for each fan in the problem.
The internal data array is allocated (sized) in the “GetInput” routine
GetFanInput.

NumSimpFan = GetNumObjectsFound('FAN:SIMPLE:CONSTVOLUME')
 NumVarVolFan = GetNumObjectsFound('FAN:SIMPLE:VARIABLEVOLUME')
 NumOnOff = GetNumObjectsFound('FAN:SIMPLE:ONOFF')
 NumZoneExhFan = GetNumObjectsFound('ZONE EXHAUST FAN')
 NumFans = NumSimpFan + NumVarVolFan + NumZoneExhFan+NumOnOff
 IF (NumFans.GT.0) ALLOCATE(Fan(NumFans))

The remainder of the “GetInput” routine moves input file data into the Fan
array. The “Init” routine transfers data from the inlet nodes into the same
array in preparation for performing the calculation.

 ! Load the node data in this section for the component simulation
 !
 !First need to make sure that the massflowrate is between the max and min avail.
 IF (Fan(FanNum)%FanType .NE. 'ZONE EXHAUST FAN') THEN
 Fan(FanNum)%InletAirMassFlowRate = Min(Node(InletNode)%MassFlowRate, &
 Fan(FanNum)%MassFlowRateMaxAvail)
 Fan(FanNum)%InletAirMassFlowRate = Max(Fan(FanNum)%InletAirMassFlowRate, &
 Fan(FanNum)%MassFlowRateMinAvail)
 ELSE ! zone exhaust fans - always run at the max
 Fan(FanNum)%MassFlowRateMaxAvail = Fan(FanNum)%MaxAirMassFlowRate
 Fan(FanNum)%MassFlowRateMinAvail = 0.0
 Fan(FanNum)%InletAirMassFlowRate = Fan(FanNum)%MassFlowRateMaxAvail
 END IF

 !Then set the other conditions
 Fan(FanNum)%InletAirTemp = Node(InletNode)%Temp
 Fan(FanNum)%InletAirHumRat = Node(InletNode)%HumRat
 Fan(FanNum)%InletAirEnthalpy = Node(InletNode)%Enthalpy

The “Calc” routines do the actual component simulation. All the data they
need has been stored in the internal data array ready to be used. The results
of the calculation are, in this case, stored in the same array. The “Calc”
routine always does pure calculation/simulation – it never retrieves or stores
data.

GUIDE FOR MODULE DEVELOPERS 6BHVAC NETWORK

3/24/09 109

DeltaPress = Fan(FanNum)%DeltaPress
 FanEff = Fan(FanNum)%FanEff

 ! For a Constant Volume Simple Fan the Max Flow Rate is the Flow Rate for the fan
 Tin = Fan(FanNum)%InletAirTemp
 Win = Fan(FanNum)%InletAirHumRat
 RhoAir = Fan(FanNum)%RhoAirStdInit
 MassFlow = MIN(Fan(FanNum)%InletAirMassFlowRate,Fan(FanNum)%MaxAirMassFlowRate)
 MassFlow = MAX(MassFlow,Fan(FanNum)%MinAirMassFlowRate)
 !
 !Determine the Fan Schedule for the Time step
 If((GetCurrentScheduleValue(Fan(FanNum)%SchedPtr)>0.0 .and. Massflow>0.0 .or. TurnFansOn .and.
Massflow>0.0) &
 .and. .NOT.TurnFansOff) Then
 !Fan is operating
 Fan(FanNum)%FanPower = MassFlow*DeltaPress/(FanEff*RhoAir) ! total fan power
 FanShaftPower = Fan(FanNum)%MotEff * Fan(FanNum)%FanPower ! power delivered to shaft
 PowerLossToAir = FanShaftPower + (Fan(FanNum)%FanPower - FanShaftPower) * &
 Fan(FanNum)%MotInAirFrac
 Fan(FanNum)%OutletAirEnthalpy = Fan(FanNum)%InletAirEnthalpy + PowerLossToAir/MassFlow
 ! This fan does not change the moisture or Mass Flow across the component
 Fan(FanNum)%OutletAirHumRat = Fan(FanNum)%InletAirHumRat
 Fan(FanNum)%OutletAirMassFlowRate = MassFlow
 Fan(FanNum)%OutletAirTemp = PsyTdbFnHW
(Fan(FanNum)%OutletAirEnthalpy,Fan(FanNum)%OutletAirHumRat)

 Else
 !Fan is off and not operating no power consumed and mass flow rate.
 Fan(FanNum)%FanPower = 0.0
 FanShaftPower = 0.0
 PowerLossToAir = 0.0
 Fan(FanNum)%OutletAirMassFlowRate = 0.0
 Fan(FanNum)%OutletAirHumRat = Fan(FanNum)%InletAirHumRat
 Fan(FanNum)%OutletAirEnthalpy = Fan(FanNum)%InletAirEnthalpy
 Fan(FanNum)%OutletAirTemp = Fan(FanNum)%InletAirTemp
 ! Set the Control Flow variables to 0.0 flow when OFF.
 Fan(FanNum)%MassFlowRateMaxAvail = 0.0
 Fan(FanNum)%MassFlowRateMinAvail = 0.0

 End If

Finally, the “Update” routine (UpdateFan) moves the results from the internal
data array into the outlet node(s).

 OutletNode = Fan(FanNum)%OutletNodeNum
 InletNode = Fan(FanNum)%InletNodeNum

 ! Set the outlet air nodes of the fan
 Node(OutletNode)%MassFlowRate = Fan(FanNum)%OutletAirMassFlowRate
 Node(OutletNode)%Temp = Fan(FanNum)%OutletAirTemp
 Node(OutletNode)%HumRat = Fan(FanNum)%OutletAirHumRat
 Node(OutletNode)%Enthalpy = Fan(FanNum)%OutletAirEnthalpy
 ! Set the outlet nodes for properties that just pass through & not used
 Node(OutletNode)%Quality = Node(InletNode)%Quality
 Node(OutletNode)%Press = Node(InletNode)%Press

 ! Set the Node Flow Control Variables from the Fan Control Variables
 Node(OutletNode)%MassFlowRateMaxAvail = Fan(FanNum)%MassFlowRateMaxAvail
 Node(OutletNode)%MassFlowRateMinAvail = Fan(FanNum)%MassFlowRateMinAvail

Certain data items must always be transferred from inlet nodes to outlet
nodes even if the data item is unaltered by the component model. The data
items that must be transferred are:

1. Temp
2. HumRat

GUIDE FOR MODULE DEVELOPERS 6BHVAC NETWORK

3/24/09 110

3. Enthalpy
4. Press
5. MassFlowRate
6. MassFlowRateMaxAvail
7. MassFlowRateMinAvail

Node Mass Flow Variables

The node mass flow variables merit a little more discussion. Five mass flow
variables are defined at each node. They are: MassFlowRate,
MassFlowRateMin, MassFlowRateMax, MassFlowRateMinAvail and
MassFlowRateMaxAvail. These variables hold loop mass flow rate
information according to the following definitions.

• MassFlowRate – this node variable holds the simulation mass flow rate for the
current timestep. The component simulation retrieves this mass flow rate from its
inlet node (“Init” routine) and uses it as the initial mass flow rate in the simulation.
The component simulation may or may not change the mass flow rate. In any case, it
writes the value out to the exit node in the “Update” routine. If the component model
is on the demand side of a plant loop and includes some sort of integral controller
that modulates flow rates (i.e. calculates flow rate), then the component model
should set the value for MassFlowRate on both the inlet and the outlet. The value for
MassFlowRate on the inlet node is used to communicate flow requests to the plant
solver. The remaining four variables serve as limits to MassFlowRate.

• MassFlowRateMax, MassFlowRateMin – These node variables hold the maximum
possible and the minimum allowable flow rates for a particular component. As such,
they represent the “hardware limit” on the flow rate for the component. By
convention, these variables are stored at the component outlet node. Since
components share their nodes (the outlet node of one component is the inlet node of
the next component), the protocol must be strictly followed. These variables are set
by each component at the beginning of the simulation and are never reset thereafter.

• MassFlowRateMaxAvail, MassFlowRateMinAvail – these node variables represent
the loop maximum and minimum flow rate for the current configuration of the loop on
which the component resides. If for whatever reason the plant is configured so that
(because of continuity) a component cannot receive all the flow it has requested (or
will get more than it has requested), then these variables carry important flow
information from the plant flow solver back to the component models. The
component model interacts with these variables differently depending on where the
simulation is in terms of system iterations. At the beginning of a system time step
(FirstHVACIteration = .true.), the component models should reset the values for
MassFlowRateMaxAvail and MassFlowRateMinAvail, typically to the hardware limits.
Later on during subsequent iterations (FirstHVACIteration = .false.) the component
model should read the current loop min/max available flow rate from its inlet node
(“Init” routine) and use these limits to constrain MassFlowRate. All components
should also honor the hardware limits and change the max/min available values so
that they lie within the max/min flow rate range for the component. The component
model also writes the updated min/max available flow rate to its outlet node
(“Update” routine).

GUIDE FOR MODULE DEVELOPERS 6BHVAC NETWORK

3/24/09 111

During the first HVAC iteration, the component simulation needs to reset
values for MassFlowRateMinAvail and MassFlowRateMaxAvail. Often this
done by the component’s companion controller (see Subroutine
ControlCompOutput or input object Controller:Simple). If the component
does not repeatedly set these, then they are likely to get ratcheted down to
zero at some point by the plant solver.
After the first HVAC iteration, the component simulation retrieves
MassFlowRate, MassFlowRateMinAvail, and MassFlowRateMaxAvail along
with other node variables from its input node prior to the simulation of the
component. The flow rate must be checked and if necessary adjusted prior to
the simulation: the MassFlowRate must be bounded by
MassFlowRateMaxAvail and MassFlowRateMinAvail, which in turn must be
bounded by MassFlowRateMax and MassFlowRateMin for the component.
The following steps should be followed in the initialization stage of the
component simulation.

a) Compare the MassFlowRateMinAvail and MassFlowRateMaxAvail retrieved
from the input node with the MassFlowRateMin and MassFlowRateMax for
your component. If either of the retrieved values is out of bounds, replace that
value with either the Max or Min for the component.

b) Compare the MassFlowRate retrieved from the inlet node with the
MassFlowRateMinAvail and MassFlowRateMaxAvail. If MassFlowRate is not
bounded by MassFlowRateMinAvail and MassFlowRateMaxAvail, reset
MassFlowRate to the nearest boundary value.
If the component model calculates MassFlowRate, it must be bounded by
MassFlowRateMin and MassFlowRateMax. Following the component
simulation, the MassFlowRate and the bounding MassFlowRateMinAvail and
MassFlowRateMaxAvail should be written to the outlet node along with the
other updated loop variables.

GUIDE FOR MODULE DEVELOPERS 7BOUTPUT

3/24/09 112

Output

There are several output files available in EnergyPlus. As you can see in
Appendix A, DataGlobals contains OutputFileStandard, OutputFileInits, and
OutputFileDebug.
OutputFileDebug is initialized very early in the EnergyPlus execution and is
available for any debugging output the developer might need.
OutputFileInits is intended for “one-time” outputs. If the value is calculated or
entered and should be echoed to output, this file is the place for it. The
structure is similar to the IDD/IDF structure in that there is a “definition” line
followed by the data being reported. Since the data may be produced in
several places during the simulation, the actual file looks a bit hodge-podge
but can be easily imported into a spreadsheet program and grouped.
OutputFileStandard is the reporting variable output file from EnergyPlus. You
can read more details from the Guide for Interface Developers document and
in the Input Output Reference document. OutputFileMeters is a similar file to
contain meter (only) output. Meter values also may appear in the
OutputFileStandard file. Only values that change during the simulation should
be output to these files. They are automaticallly included by the
SetupOutputVariable calls.

How Do I Output My Variables?

Module developers are responsible for “setting” up the variables that will
appear in the OutputFileStandard.
To do this is very simple. All you need to do is place a simple call to
SetupOutputVariable into your module for each variable to be available for
reporting. This call should be done only once for each Variable/KeyedValue
pair (see below). For HVAC and Plant components, this call is usually at the
end of the “GetInput” subroutine. See the example module for an illustration
of this. Other calls in the simulation routines will invoke the EnergyPlus
OutputProcessor automatically at the proper time to have the data appear in
the OutputFileStandard.
For you the call is:
Call SetupOutputVariable(VariableName,ActualVariable, &
 IndexTypeKey, VariableTypeKey,KeyedValue,ReportFreq &
 ResourceTypeKey,EndUseKey,GroupKey)

Interface statements allow for the same call to be used for either real or
integer “ActualVariable” variables. A few examples from EnergyPlus and
then we will define the arguments:
CALL SetupOutputVariable('Outdoor Dry Bulb [C]', &
 OutDryBulbTemp,'Zone', &
 'Average','Environment')

CALL SetupOutputVariable('Mean Air Temperature[C]', &
 ZnRpt(Loop)%MeanAirTemp,'Zone', &
 'State',Zone(Loop)%Name)

CALL SetupOutputVariable('Fan Coil Heating Energy[J]', &
 FanCoil(FanCoilNum)%HeatEnergy,'System', &

GUIDE FOR MODULE DEVELOPERS 7BOUTPUT

3/24/09 113

 'Sum',FanCoil(FanCoilNum)%Name)

CALL SetupOutputVariable('Humidifier Electric Consumption[J]',
 Humidifier(HumNum)%ElecUseEnergy, &
 'System','Sum', &
 Humidifier(HumNum)%Name,&
 ResourceTypeKey='ELECTRICITY',&
 EndUseKey = 'HUMIDIFIER',&
 GroupKey = 'System')

Table 3. SetupOutputVariable Arguments

SetupOutput
Variable

Arguments

Description

VariableName String name of variable, units should be included in []. If no
units, use []

ActualVariable This should be the actual variable that will store the value.
The OutputProcessor sets up a pointer to this variable, so it
will need to be a SAVEd variable if in a local routine. As noted
in examples, can be a simple variable or part of an
array/derived type.

IndexTypeKey When this variable has its proper value. ‘Zone’ is used for
variables that will have value on the global timestep (alias
“HeatBalance”). ‘HVAC’ is used for variables that will have
values calculated on the variable system timesteps (alias
“System”, “Plant”)

VariableTypeKey Two kinds of variables are produced. ‘State’ or ‘Average’ are
values that are instantaneous at the timestep (zone air
temperature, outdoor weather conditions). ‘NonState’ or ‘Sum’
are values which need to be summed for a period (energy).

KeyedValue Every variable to be reported needs to have an associated
keyed value. Zone Air Temperature is available for each
Zone, thus the keyed value is the Zone Name.

ReportFreq This optional argument should only be used during debugging
of your module but it is provided for the developers so that
these variables would always show up in the OutputFile. (All
other variables must be requested by the user).

ResourceTypeKey Meter Resource Type; an optional argument used for including
the variable in a meter. The meter resource type can be
'Electricity', ‘Gas’, ‘Coal’, ‘FuelOil#1’, ‘FuelOil#2’, ‘Propane’,
‘Water’, or ‘EnergyTransfer’.

EndUseKey Meter End Use Key; an optional argument used when the
variable is included in a meter. The end use keys can be:
'InteriorLights’, 'ExteriorLights', 'Heating', ‘Cooling’, 'DHW',
'Cogeneration', 'ExteriorEquipment', 'ZoneSource',
'PurchasedHotWater', 'PurchasedChilledWater', 'Fans',
'HeatingCoils', 'CoolingCoils', 'Pumps', 'Chillers', 'Boilers',
'Baseboard', 'HeatRejection', 'Humidifier', 'HeatRecovery' or
‘Refrigeration’.

EndUseSubKey Meter End Use Subcategory Key; an optional argument to
further divide a particular End Use. This key is user-defined in
the input object and can be any string, e.g., 'Task Lights', 'Exit

GUIDE FOR MODULE DEVELOPERS 7BOUTPUT

3/24/09 114

Lights', 'Landscape Lights', 'Computers', or 'Fax Machines'.
GroupKey Meter Super Group Key; an optional argument used when the

variable is included in a meter. The group key denotes
whether the variable belongs to the building, system, or
plant.The choices are: 'Building', 'HVAC' or 'Plant'.

As described in the Input Output Reference, not all variables may be
available in any particular simulation. Only those variables that will have
values generated will be available for reporting. In the IDF, you can include a
“Output:VariableDictionary,regular;” command that will produce the
eplusout.rdd file containing all the variables with their IndexTypeKeys. This
list can be used to tailor the requests for values in the OutputFileStandard.
This variable dictionary is separated into two pieces: regular reporting
variables and meter variables. It can also be sorted by name (ascending).

Output Variable Dos and Don’ts

For general output variables there aren’t many rules. For meter output
variables there are quite a few. Here are some tips to keep you out of trouble.

What Variables Should I Output?

The choice of variables to output is really up to the developer. Since variables
don’t appear on the output file unless requested by the user in the IDF input
file, it is better to “SetUp” too many rather than too few. For an HVAC
component one should generally output the heating and cooling outputs of
the component both in terms of energy and power. Energy is always output in
Joules, power in Watts. If there is humidification or dehumidification both total
and sensible cooling should be reported. Any electricity or fuel consumed by
a component should be reported out, again both in terms of energy (Joules)
and power (Watts). For HVAC components in most cases reporting inlet and
outlet temperatures and humidities is unnecessary since these quantities can
be obtained from the system node outputs.

Output Variable Naming Conventions

We have tried to obtain some consistency in variable names by defining
some naming conventions. The heating and/or cooling output is always
reported as:

<component-type> Heating Rate[W]
<component-type> Heating Energy[J]
<component-type> Total Cooling Rate[W]
<component-type> Total Cooling Energy[W]
<component-type> Sensible Cooling Rate[W]
<component-type> Sensible Cooling Energy[J]

Fuel and electricity consumption is reported as:
<component-type> Electric Power[W]
<component-type> Electric Consumption[J]
<component-type> Gas Consumption Rate[W]
<component-type> Gas Consumption[J]

Water addition is reported as:
<component-type> Water Consumption Rate[m3/s]
<component-type> Water Consumption[m3]

GUIDE FOR MODULE DEVELOPERS 7BOUTPUT

3/24/09 115

Units are always strictly SI and no abbreviations are allowed in the variable
name. <component-type> is the type of component. It should not be the
actual object class name from the IDD file, but rather one step of generality
above this. For example for fancoils we have:

Fan Coil Total Cooling Energy[J]

Here <component-type> is “Fan Coil”, not FAN COIL UNIT:4 PIPE.

What are Meters?

In EnergyPlus meters are an additional output reporting capability. A meter is
a way of grouping similar output variables. Meters are output variables just
like ordinary output variables except that they sum or average a collection of
ordinary output variables. In EnergyPlus the meter variables serve two
purposes.

1. Providing output of fuel and electricity consumption by end use categories and at the
system plant, building and facility level.

2. Providing a way of summing heating or cooling outputs for a category of
components. The resource type EnergyTransfer is used for this purpose. An
example would be reporting out the sum of the heating energy from all the heating
coils in a system.

How Do I Create A Meter?

Meter output variables are created at the same time and in the same manner
as ordinary output variables. SetupOutputVariable is called but the optional
arguments ResourceTypeKey, EndUseKey, and GroupKey must be used in
addition to the usual arguments. For example, in the electric steam humidifier
module
CALL SetupOutputVariable('Humidifier Electric Consumption[J]', &
 Humidifier(HumNum)%ElecUseEnergy, 'System','Sum', &
 Humidifier(HumNum)%Name)

creates an output variable labeled 'Humidifier Electric Consumption[J]' with
the value of Humidifier(HumNum)%ElecUseEnergy.

CALL SetupOutputVariable('Humidifier Electric Consumption[J]', &
 Humidifier(HumNum)%ElecUseEnergy, 'System','Sum', &
 Humidifier(HumNum)%Name, &
 ResourceTypeKey='ELECTRICITY',EndUseKey = 'HUMIDIFIER', &
 GroupKey = 'System')

Creates the same output variable but in addition creates a meter output
variable Humidifier:Electricity [J]. This variable will contain the sum of all the
electricity consumption of the humidifiers in the system. In addition, this
electrical consumption will be added into the meter variables Electricity:HVAC
[J] and Electricity:Facility [J].

Rules for Meter Variables

There are a number of rules developers must follow in order to account for all
electricity and fuel consumption as well as to prevent consumables from
being double counted.

 Electricity and fuel meters must always be defined at the simple
component level. Some EnergyPlus components are compound
components: they are built up from simple components. Examples are fan

GUIDE FOR MODULE DEVELOPERS 7BOUTPUT

3/24/09 116

coils (composed of heating coils, cooling coils, and fans), terminal units
etc. Some example simple components are heating and cooling coils,
fans, humidifiers etc. Electricity and fuel consumption should always be
metered at the simple component level and never at the compound
component level. This prevents double counting of the fuel or energy
consumption.

 A variable should be metered once only. This means a variable can be
assigned to only one resource type and to only one end use category.

 Energy Transfer should be metered in the same way as fuel or electricity
use. Energy Transfer meters should only be defined for simple
components and should be assigned the same end use category as the
fuel or electricity consumption.

 All fuel and electricity consumption must be put in some (one) meter.
 Use Energy Transfer judiciously; if in doubt, leave it out.

GUIDE FOR MODULE DEVELOPERS 8BRUNNING/TESTING ENERGYPLUS – FOR DEVELOPERS

3/24/09 117

Running/Testing EnergyPlus – for Developers

Any item mentioned in this section is available at no charge to collaborative
or other developers – the documentation, however, may be rudimentary and
use of the procedures require some knowledge of command line (Windows)
or Linux scripts.
EnergyPlus is rigorously tested during each release cycle and prior to each
release. Details on some of the test suites that have been used can be seen
at:
http://www.eere.energy.gov/buildings/energyplus/testing.html
Equally important is the testing done by each developer during feature
development or changes. For example, on the core development team,
developers are charged with executing the entire test suite (≥230 files) for
their checkins. In addition, one of the core development team does run the
entire test suite with each checkin and compares those results to previous
results. Unexpected changes, and certainly crashes, should NOT occur.
Since most modules being developed are aimed at the HVAC or plant
features, there is a standard 5-zone template geometry that can be used.
This should form the basis of any new additions. The old 3-zone model
should not be used. Of course, you may develop your own model.
Developers are also charged with making sure their input file runs an entire
weather year, has minimal errors (including max simulation errors) and
results compare exactly when design days (preferably winter-summer vs
summer-winter) are reversed in consecutive runs (also known as
ReverseDD). To assist in ReverseDD testing, each input file should have a
“Run Control” object as well as (at least) two design days (winter-summer /
summer-winter as the first two).
Input files should report Zone Air temperatures (Zone Mean Air Temperature
or Zone/Sys Air Temperature) as well as meters such as electricity and gas (if
applicable). Of course, reporting features being implemented should be done
as well. These variables will help identify files that have proper “ReverseDD”
requirements (failures usually indicate some initialization problems).
Developers should try to minimize output file size – if you are running a full
annual simulation (as required by your feature), you should NOT report
variables at the timestep level.
To compare results, we have a python script (Mathdiff) that is run on the .csv
files. It will report (by default) differences <=.001 or <=.5% as “within range”
and outside those limits as “differences”. If they are exactly the same (from
the .csv precision limits), they will be reported as such.
Developers in the core development team use several methods for running
the entire test suite.

 One method uses a list of input file names along with an indication of the proper
weather file. A program reads this file and produces several batch files which
help with not only running the file but comparing them to previous results,
building the “composite error” (the .err files from each file run), and other utility
features. (The same file can be used in Linux testing)

 Another method uses a batch file with options that will allow running old vs. new
exes as well as somewhat automating the reverse dd testing.

http://www.eere.energy.gov/buildings/energyplus/testing.html�

GUIDE FOR MODULE DEVELOPERS 8BRUNNING/TESTING ENERGYPLUS – FOR DEVELOPERS

3/24/09 118

 Still another method uses a simple batch procedure to “run” all files in a folder.
 Finally, EP-Launch and “groups” can be used.

To facilitate testing, Environment Variables “values” have been implemented
in EnergyPlus and/or script files. To use, one uses the “Set” command and
the value as indicated. Environment variable value testing is inherent in
F2003 compliant compilers; for others we have written a set of routines that
can either be modified or used directly.

DDOnly: Design Days Only

Setting to “yes” will cause EnergyPlus to set Run Control option (regardless
of whether there is a Run Control object in the input file) for Do the Design
Day Simulation to “yes” and Do the Weather File Simulation to “no”. (Uses
logical variable DDOnly in module DataSystemVariables).
Set DDOnly=yes

FullAnnualRun: Full Annual simulation

Setting to “yes” will cause EnergyPlus to set Run Control option (regardless
of whether there is a Run Control object in the input file) for Do the Weather
File Simulation to “yes”. Scripts should use a weather file when this
environment variable is set. (Uses logical variable FullAnnualRun in module
DataSystemVariables).
Set FullAnnualRun=yes
And appropriate changes to script files

NoWeatherFile: Do not use weatherfile even if indicated

Setting to “yes” doesn’t cause EnergyPlus to do anything but can be used in
the scripts to not copy a weather file even when indicated.
Set NoWeatherFile=yes
And appropriate changes to script files

ReverseDD: Reverse Design Days during run

Setting to “yes” causes the first two design days requested in the input file to
be reversed during EnergyPlus execution. (Uses logical variable ReverseDD
in module DataSystemVariables). For proper comparisons to original order, a
program such as ReverseDDInCSV or ReverseDDInESO must be run or
hand edited.
Set ReverseDD=yes
And appropriate changes to script files

MinReportFrequency: Set minimum reporting frequency for outputs

Some developers persist in reporting at the timestep or detailed level even if
their runs are full annual runs. This is really burdensome on developers that
try to run the full test suite for checking changes. The MinReportFrequency
environment variable allows EnergyPlus to report at a higher/less frequent
level that still allows for changes to be checked (though differences may
require more frequent reporting to track down). EnergyPlus reads this
environment variable and sets reporting frequency appropriately.
Set MinReportFrequency=daily

GUIDE FOR MODULE DEVELOPERS 8BRUNNING/TESTING ENERGYPLUS – FOR DEVELOPERS

3/24/09 119

The standard frequencies accepted by EnergyPlus must be used: detail,
timestep, hourly, daily, monthly, runperiod, environment, annual. In addition, if
this environment variable is used, the following will show in the .eio file:

! <Minimum Reporting Frequency (overriding input value)>, Value, Input Value
 Minimum Reporting Frequency, !Daily [Value,Min,Hour,Minute,Max,Hour,Minute],DAILY

ReportDuringWarmup: Cause reporting during warmup

Setting to “yes” causes reporting (Output:Variable, Output:Meter) to be
reporting during the warmup days at the start of each environment. (Uses
logical variable ReportDuringWarmup in module DataSystemVariables).
Set ReportDuringWarmup=yes

Caution: Environment Variables

Some combinations will cause fatal errors from EnergyPlus – DDOnly and
FullAnnualRun, for example. FullAnnualRun and NoWeatherFile won’t
cause fatal errors from EnergyPlus but probably should from the script files.
We welcome any suggestions for future environment variables.

Air Loop Simulation

To facilitate comparing the runtime performance of various solution
techniques for the air loop simulation a mechanism to track runtime statistics
has been implemented in EnergyPlus. To facilitate debugging the air loop
simulation a tracing mechanism operating either at the air loop-level or at the
controller-level has been implemented in EnergyPlus. To use, one uses the
“Set” command and the value as indicated.

TRACK_AIRLOOP: Runtime performance tracker for air loop simulation

Setting to “yes” will cause EnergyPlus to track the performance of the air loop
simulation at runtime and dump the results in a file named
“statistics.HVACControllers.csv” upon ending the simulation. (Uses logical
variable TrackAirLoopEnvFlag in module DataSystemVariables).
Set TRACK_AIRLOOP=yes

TRACE_AIRLOOP: Air loop simulation tracer

Setting to “yes” will cause EnergyPlus to write to a trace file named
“controller.<Air Loop Name>.csv” the converged solutions of all controllers
defined on each air loop, at each HVAC iteration. (Uses logical variable
TraceAirLoopEnvFlag in module DataSystemVariables).
Set TRACE_AIRLOOP=yes

TRACE_HVACCONTROLLER: Individual HVAC controller tracer

Setting to “yes” will cause EnergyPlus to write to a trace file named
“controller.<Controller Name>.csv” a detailed description of each controller
iteration at each HVAC iteration. (Uses logical variable
TraceControllerEnvFlag in module DataSystemVariables).
Set TRACE_HVACCONTROLLER=yes

GUIDE FOR MODULE DEVELOPERS 9BQUICK PROCEDURE OUTLINE FOR MAKING CODE CHANGES TO ENERGYPLUS

3/24/09 120

Quick Procedure Outline For Making Code Changes to EnergyPlus

Some of the steps in this section are primarily applicable to developers who
are part of the “EnergyPlus Team”. However, these steps should also be
followed as you develop a module or other piece to submit to the EnergyPlus
Team for inclusion in an EnergyPlus release.
1. Write a New Feature Proposal (often called NFP) for discussion at a bi-

weekly conference call. Based on that discussion, update the NFP. Out
of team developers: use the NFP format to help formulate your
submission documentation to the EnergyPlus Team. The NFP format is
shown in Appendix F.

2. Get the relevant files for your development. Team developers can check
out files from StarTeam.

a. Energy+.idd and Featurechanges.csv are in the ‘Release’ Folder.
This folder also contains the “Rules” spreadsheet and “Report
Variables” files.

b. ExampleFiles.xls, ExampleFilesDoc.txt, and baseline or relevant
IDF files from ‘Test Files - Utilities\InternalTests\InputFiles‘

c. F90 files from the ‘SourceCode’ folder.
d. Documents (InputOutputReference.doc,

EngineeringReference.doc, OutputDetailsAndExamples.doc, etc.)
from the ‘External Documentation\Documentation Sources’ folder.

3. Following proper procedures (e.g., Object naming conventions are
specified earlier in this document) make your object changes to the
Energy+.idd and relevant IDF files. If your IDD modifications make
changes for existing objects, you must determine if you need to add to the
“Rules” spreadsheet so that the transition program can be made for
existing IDF files. Likewise, if you change existing report variable names,
you must update the “Report Variables” file. Note that the
ExampleFiles.xls has some guidance on the contents of new test suite
files. Create or change existing IDF files for your feature.

4. Make code changes to F90 files for subroutines, GetInput, Sim, Report or
create your own module following the Programming Standards and
Programming Templates. Programming Templates are available in
Appendix D. Programming Standards is a separate document.

5. Compile and run in debug mode to track errors.
6. Test making sample runs; review summary and time step reports to

identify issues. Test many features of your module even if you are not
including all in the Test Suite IDF file. Go back to Step 4 as necessary.
Note some of the issues in the “Important Rules for Developers”.

7. When complete, run full test suite to make sure there are no crashes or
unexpected changes in other files.

8. Run Reverse DD for your featured files – making sure the results exactly
match.

9. Update relevant portions of documents: InputOutputReference.doc,
EngineeringReference.doc, OutputDetailsAndExamples.doc, etc. Only

GUIDE FOR MODULE DEVELOPERS 9BQUICK PROCEDURE OUTLINE FOR MAKING CODE CHANGES TO ENERGYPLUS

3/24/09 121

excerpted portions of the document should be sent forward for review and
final inclusion in the whole document. Depending on the changes, it may
be better to “track changes” in the document or give instructions for
inclusion in the whole document. Send these documents up the review
chain as appropriate. Appendix C also has some information about
formatting documents.

10. Procedure on checking in files changes from time to time. Currently, all
source code files are kept locked and your code may go through another
reivew before you are allowed to check in. Follow procedures in
Appendix B as well about submitting your feature – many parts are
repeated in this section.

11. Check in modified or new files. If changes have been made to the original
checked out file, you must carefully merge your changes into the file –
this also may necessitate you repeating your test runs. Usually, your
featurechanges modification will be very simple and be the last line in that
file.

12. Send email to the team notifying them of the new feature/changed
feature/defect fix and what files were changed/added/etc.

13. Incorporate any feedback after checkin.
14. Use Appendix G to submit information, if applicable, about your feature.

GUIDE FOR MODULE DEVELOPERS 10BIMPORTANT RULES FOR MODULE DEVELOPERS

3/24/09 122

Important Rules for Module Developers

1. INITIALIZE!!!!! INITIALIZE either fully or "invalidly" when you ALLOCATE the
array/derived type. Two items have been set up to help you: BigNumber and
DBigNumber are in DataGlobals. They get initialized before anything happens in
the main routine (EnergyPlus). An invalid initialization can use one of these,
appropriately (i.e. set and test for “BigNumber”). Another example of “invalid”
initialization is a value that shouldn’t be legal for the item (-999).

2. Warning errors during "get input" should only be used when program termination
is not required (this is rare). Each GetInput routine should be structured so that
errors detected (such as an invalid schedule name which currently is just a
warning) cause a fatal error after all the input for that item/module/etc is gotten.
(See HBManager, BaseboardRadiator, others) In addition, don't make
GetInputFlag a module variable. Make it as "local" as possible. Look at
BaseboardRadiator for an example.

3. Error messages during simulation should be semi-intelligent. No one wants to
see 5,000 messages saying "this flow invalid". If the error condition might
happen a lot (especially during debugging), count each occurrence and only put
out a message every 50 or so. It is better to use the “Recurring Error Handling”
routines. (See examples of both above in the Error Messages section). Also, if
you are putting the same message in two modules, identify the error message
with some designation. For Example,

 CALL ShowWarningError ('SimRoutinename: this condition happened again')
will help everyone track it down. Use the ShowContinueErrorTimeStamp so the
time/date/environment of occurrence is known, as appropriate for the condition.

4. Use the templates for documentation! Modules, subroutines, functions templates
all have been checked into StarTeam. Use them. Put INTENTs on your
Subroutine Arguments. Document variables.

5. Add “meter” variables as appropriate! If your module uses fuel or
electricity and that energy is not accounted for by other components (i.e.
pumps, coils, chillers, etc), then you need to report it onto a “meter”.

6. Avoid the use of string comparisons in subroutines other than GetInput.
Check string comparisons in the GetInput subroutines and assign an
integer parameter for comparisons elsewhere in the module. Character
strings in structures are not allowed (except for name of object) – any
exceptions must be approved. Schedule names, curve object names, and
child object types MUST all be referenced by an integer. Existing code
must be changed as you change any of the code within a module.

7. If you are submitting code for insertion in the public version of EnergyPlus,
make sure that the proper “Grant-Back” procedure has been followed so
that the correct attributions of code authorship are given as well as
permission to use this code in publicly available software is assured. (see
Appendix G, Code/Module Contribution Questionnaire – also available
separately)

GUIDE FOR MODULE DEVELOPERS 11BAPPENDIX A. DATAGLOBALS AND DATAENVIRONMENTS MODULES

3/24/09 123

Appendix A. DataGlobals and DataEnvironments Modules

Rather than include the code of the DataGlobals and DataEnvironments
modules, they will be described here.

DataGlobals

DataGlobals contains parameters, variables, Interface descriptors that could
be used by every part of the program. For example, this is where the
“MaxNameLength” (maximum name length (characters) of objects. All other
pieces of the code that need this will need to
USE DataGlobals

and, if that’s the only piece it needs, can say
USE DataGlobals, ONLY: MaxNameLength

Interface specifications for the ShowError routines are here because there
are optional parameters in these routines. Then,
USE DataGlobals, ONLY: ShowWarningError, ShowFatalError

can be used safely from any routine. Constants such as Pi (π), Degrees To
Radians, and Number of Seconds in Hour are also stored there. Remember
that we suggest compiling EnergyPlus in double precision and these
constants (as should all constants) are representative of double precision
(even if someone were to compile in single precision).
Finally, the interface specifications for the Setup Report Variables is
contained in this module. The interface allows for a single call for
accomplishing that while actually forking to call several different routines
based on the type of data being used.

DataEnvironment

DataEnvironment is intended to address global environmental variables (such
as current outdoor temperature, barometric pressure, and so forth). It is also
extends the concept of a “data only” module a bit to encompass a few
functions that calculate values for the site atmospheric variation concept.

GUIDE FOR MODULE DEVELOPERS 12BAPPENDIX B. SUBMISSIONS AND CHECK-INS

3/24/09 124

Appendix B. Submissions and Check-ins

There are two methods by which new modules are entered into the
EnergyPlus (publicly available) program.

 Checkin: Part of the core development team may create or modify an
existing module. As we use a configuration management system – this is
called a check in.

Note --- to save people grief and rework effort and to work toward
consistency in approach, new features or changes to existing features
must be proposed in a documented way for discussion during one of
the bi-weekly conference calls.

 Submission: When someone outside the core development team
submits a module or modification of an existing module for inclusion, this
is termed a submission.

Submissions are subjected to the same kind of scrutiny as team
checkins and usually will require rework by the submitter. We
welcome outside developers to send their ideas as early documents for
comment with the understanding that revising does not guarantee
automatic inclusion. See the proposed feature outline document in
Appendix F and/or the “doc” file in the Documents for Developers Zip
file.
Both kinds of inclusions need to follow the checklist procedure for new
inclusions:

 Source Code Rules
Shall follow programming standard
Shall follow F90/95 or later standards (use “allocatable” for allocatable

structures within Derived Types)
Shall follow the Template standards (documentation, naming conventions)
Shall follow the guidelines shown in this document
All items shall be directly initialized (exception: derived type elements may be

staticly initialized)
There shall be no “unused” variables. If you put in a variable that you “might

use later” – comment it out and comment it to be used later.
No Tabs in source code!!!
Lines shall be less than 133 characters in length. (Some compilers allow

longer lines without warning).
Suggest using F95 standards checking during compiles -- you may use the

compiler option to generate warnings for non-standard code.
Permission to use the code shall be supplied -- written, even email, is

required. LBNL is monitoring this aspect – so a grant-back letter
can also be obtained from them.

 Energy+.IDD rules
Standard Units shall be used (SI only on Input)

GUIDE FOR MODULE DEVELOPERS 12BAPPENDIX B. SUBMISSIONS AND CHECK-INS

3/24/09 125

Show units with the \units field. Supply \ip-units only if your input would
require it (see comments at top of the Energy+.idd).

Use \minimum and \maximum
The first field following the object name should contain “name” as part of the

field name
Use \default, \min-fields and \required-field appropriately
Object changes during minor releases (x.x.xxx) should not change fields in

the middle – only at the end
Surface objects may not add further fields to the end (the end is reserved for

vertices and extension to the current limits)
Note that changes in the Energy+.idd will require a “transition” rule change in

the Rules Spreadsheet file (Rules…xls). Likewise, changes in report
variable names must be documented in the “report variables” change file
that is a companion to the Rules spreadsheet.

 Testing
Shall run the full test suite for all new features and unless you are absolutely,

positively sure that your change will not impact other parts of the code.
We have a python script that can compare between two run versions
(using the .csv files output from ReadVarsESO).

If you need a script, look under StarTeam…Test Files>ScriptMaker. Other
scripts are mentioned in the section on “Running EnergyPlus for
Developers” (Module Developer’s Guide).

If you modify objects, you must change all test suite files that are impacted by
your object modifications.

 New Features need a new example file
You must create a new input file for your changes—input files shall include

appropriate internal documentation! (Test files have a document template
as well see Appendix E. Test File Documentation). Some features may
be appropriately added to an existing file but documentation must be
updated.

You must fill out a line in the “ExampleFiles.xls” spreadsheet for your new
input file.

You must run a full annual run with your test file even if that is not the
configuration that ends up in the internal test suite. Annual runs have
been known to fail – obviously, your input file should not.

You must try to minimize the number of errors shown in the eplusout.err file
for your files.

Reverse DD Compliance Test: You must run a test that reverses a run of two
environments (design days) and make sure that the results (when you
also reverse the results files) are identical. (Identical means exactly the
same.) Several scripts and automated programs to accomplish this feat
are available.

 Documentation (must be included at the same time as code!!!)
A document template is available for use – only the styles in that document

should be used. (Microsoft™ Word is our standard word processing
software).

GUIDE FOR MODULE DEVELOPERS 12BAPPENDIX B. SUBMISSIONS AND CHECK-INS

3/24/09 126

Equations – limited in IORef, necessary in Engineering Doc – limit the
number of “references” though. You can use standard Equation
formatting from Microsoft™ Word or Mathtype™ is an acceptable
alternate.

Figures – Though AutoShapes may draw nice pictures, they are not often
“captionable” without undue editing. Please make figures into Jpegs or
GIFs. Use “insert caption” (below the figure) so that auto-numbering of
figures is used (these will transfer automatically to EnergyPlus
documents).

Tables – use “insert caption” (above the table) so that auto-numbering of
figures is used (these will transfer automatically to EnergyPlus
documents).

Cross-References – limit your “insert cross references”. You should highlight
these so that “editing” from your inclusion is more obvious – use a
different color to help them stand out.

IORef – See the InputOutputReference document for indications of what is
included.

Eng Ref – New modules shall include an engineering document reference.
See the Engineering Reference for indications of typical writeups.

Output Details and Examples – this can help illustrate your changes. Any
new files must be detailed in here. Likewise, changes to the .eio file must
be described.

 FeatureChanges.csv
Every change to source code, example files, datsets, utilities (any change

other than documentation) must include a line in the “featurechanges.csv”
file.

 Checked in?
A courtesy message to the EnergyPlus team should be done for each check

in, with details of files checked in, etc. Save one of the emails you have
received if you don’t know how many to send it to.

 Defect fixing?
If you fix a defect or “fix” a suggested change (CR), you should mark it “fixed”

in StarTeam and the responsibility should automatically change back to
the author of the CR. If you fix your own CR, assign it to someone else
for verification.

If you fix a defect or “fix” a suggested change, you should provide a “synopsis
for users” (on the “Custom” tab in the CR edit dialog) so that when we
release the version with your fix, we can provide something descriptive for
the users.

 If a defect has a workaround, you should enter this in the “Workaround” field
(on the “Solution” tab) to inform users until the fix is released in a public
version.

 Rules…xls
If a transition rule will be needed (or a deleted / obsolete / renamed object is

needed) – a line (or more) in this spreadsheet must be used. See
example rules files from previous releases. If in doubt, put something in.

GUIDE FOR MODULE DEVELOPERS 12BAPPENDIX B. SUBMISSIONS AND CHECK-INS

3/24/09 127

 ReportVariables…csv
If you change the name of a report variable, the transition program for release

can automatically transition older input files IF you put the old and new
names into this file.

If you delete a report variable, that detail should go in this file. Note that you
must consult others on the core development team before deleting a
reported variable.

GUIDE FOR MODULE DEVELOPERS 13BAPPENDIX C. DOCUMENTATION SPECIFICS

3/24/09 128

Appendix C. Documentation Specifics

Documents that module developers will typically be updating or changing are
the: Input Output Reference, Engineering Documentation, and Output Details
and Examples. You may, of course, note revisions to other documents.
All of the EnergyPlus documentation follows a Word™ template – report.dot.
This template takes care of many of the nuances of formatting so that the
documents all retain the same “look and feel”. The template itself will contain
examples for the IORef and Engineering Documentation.
General guidelines:

 Don’t get fancy with formatting. No extra “enters” are needed to space
the paragraphs.

 Submit your pictures as pictures (jpeg, tif, gif). This will allow you to
“insert captions” below them and have them automatically numbered.
(This also allows them to be re-numbered once inside the EnergyPlus
documents). Don’t use Text boxes.

 Likewise, use an “insert caption” on tables.
 Table captions go above the table. Figure captions go below.
 If you want to reference a table or figure in your text, use “insert cross

reference” and select table or figure as appropriate. Usually, just use the
“label and number” option.

 Body Text is the expected style for most text. DO NOT put object names
in a different font (such as Courier) or as a different size though you may
bold them for emphasis.

 Headings are used judiciously to help separate text.
 Object names (IOReference) are Heading 3.
 Each field must be described and shown as Heading 4 followed by the

description. Form should be “Field: <field Name>”. (Exception: if your
object has a repeating set of fields – you may describe the initial field set
in detail such as is done for the branch specifications fields in the Branch
object).

 Each object’s IDD must be shown and use the format “IDD Definition”.
 An excerpt IDF using the object must be shown.
 Output variables for the object must be shown (heading 4) with a heading

3 <object name> Output variables preceding.
 Equations may be inserted using the Microsoft™ Equation Editor.

Internally we use software called “MathType” – that also may be used for
Equations. It is not desirable to number every equation. If you want to
reference the equations, of course, you will need to number them – it is
best to number them in plain text and then we can edit them into the rest
of the documents.

 Each Engineering Reference section should contain a “References”
section and should be formatted in author style (not numbered).

Example References:

GUIDE FOR MODULE DEVELOPERS 13BAPPENDIX C. DOCUMENTATION SPECIFICS

3/24/09 129

ASHRAE. 1993. 1993 ASHRAE Handbook – Fundamentals. Atlanta: American
Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc.
Chapman, A. J. 1984. Heat Transfer, 4th Edition, New York: Macmillan Publishing
Company.
Lienhard, J. H. 1981. A Heat Transfer Textbook, Englewood Cliffs, N.J.: Prentice-
Hall, Inc.
McClellan, T. M., and C. O. Pedersen. 1997. Investigation of Outside Heat Balance
Models for Use in a Heat Balance Cooling Load Calculation. ASHRAE Transactions,
Vol. 103, Part 2, pp. 469-484.
Walton, G. N. 1983. Thermal Analysis Research Program Reference Manual.
NBSSIR 83-2655. National Bureau of Standards.

GUIDE FOR MODULE DEVELOPERS 14BAPPENDIX D. MODULE, SUBROUTINE, FUNCTION TEMPLATES

3/24/09 130

Appendix D. Module, Subroutine, Function Templates

The following module template can and should be used to create new
modules. Following the module template are subroutine and function
templates. You should be able to copy the template for your own use (or you
can get a plain text version).

MODULE <module_name>

 ! Module containing the routines dealing with the <module_name>

 ! MODULE INFORMATION:
 ! AUTHOR <author>
 ! DATE WRITTEN <date_written>
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS MODULE:
 ! <description>

 ! METHODOLOGY EMPLOYED:
 ! <description>

 ! REFERENCES:
 ! na

 ! OTHER NOTES:
 ! na

 ! USE STATEMENTS:
 ! <use statements for data only modules>
USE DataGlobals, ONLY: ShowWarningError, ShowSevereError, ShowFatalError, &
 MaxNameLength, ...

 ! <use statements for access to subroutines in other modules>

IMPLICIT NONE ! Enforce explicit typing of all variables

PRIVATE ! Everything private unless explicitly made public

 ! MODULE PARAMETER DEFINITIONS:
 ! na

 ! DERIVED TYPE DEFINITIONS:
 ! na

 ! MODULE VARIABLE DECLARATIONS:
 ! na

GUIDE FOR MODULE DEVELOPERS 14BAPPENDIX D. MODULE, SUBROUTINE, FUNCTION TEMPLATES

3/24/09 131

 ! SUBROUTINE SPECIFICATIONS FOR MODULE:
 ! Driver/Manager Routines
PUBLIC Sim<module_name>

 ! Get Input routines for module
PRIVATE Get<module_name>

 ! Initialization routines for module
PRIVATE Init<module_name>
PRIVATE Size<module_name>

 ! Algorithms/Calculation routines for the module
PRIVATE Calc<module_name>

 ! Update routines to check convergence and update nodes
PRIVATE Update<module_name>

 ! Reporting routines for module
PRIVATE Report<module_name>

 ! Utility routines for module
! these would be public such as:
! PUBLIC Get<module>InletNode
! PUBLIC Get<module>OutletNode

CONTAINS

SUBROUTINE Sim<module_name>

 ! SUBROUTINE INFORMATION:
 ! AUTHOR <author>
 ! DATE WRITTEN <date_written>
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:
 ! <description>

 ! METHODOLOGY EMPLOYED:
 ! <description>

 ! REFERENCES:
 ! na

 ! USE STATEMENTS:
 ! na

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 ! na

 ! SUBROUTINE PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS:
 ! na

 ! DERIVED TYPE DEFINITIONS:
 ! na

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:
 LOGICAL,SAVE :: GetInputFlag = .true. ! First time, input is "gotten"

 IF (GetInputFlag) THEN
 CALL Get<module_name>Input
 GetInputFlag=.false.
 ENDIF

 <... insert any necessary code here>

GUIDE FOR MODULE DEVELOPERS 14BAPPENDIX D. MODULE, SUBROUTINE, FUNCTION TEMPLATES

3/24/09 132

 CALL Init<module_name>(Args)

 CALL Calc<module_name>(Args)

 CALL Update<module_name>(Args)

 CALL Report<module_name>(Args)

 RETURN

END SUBROUTINE Sim<module_name>

SUBROUTINE Get<module_name>Input

 ! SUBROUTINE INFORMATION:
 ! AUTHOR <author>
 ! DATE WRITTEN <date_written>
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:
 ! <description>

 ! METHODOLOGY EMPLOYED:
 ! <description>

 ! REFERENCES:
 ! na

 ! USE STATEMENTS:
 USE InputProcessor, ONLY: GetNumObjectsFound, GetObjectItem ! might also use FindItemInList
 USE DataIPShortCuts

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 ! na

 ! SUBROUTINE PARAMETER DEFINITIONS:
 CHARACTER(len=*), PARAMETER :: RoutineName='PutRoutineNameHere'
 CHARACTER(len=*), PARAMETER :: CurrentModuleObject='GetModuleObject'

 ! INTERFACE BLOCK SPECIFICATIONS:
 ! na

 ! DERIVED TYPE DEFINITIONS:
 ! na

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:
 INTEGER :: Item ! Item to be "gotten"
 ! Instead of below, use Variables in IPShortCuts
! CHARACTER(len=MaxNameLength), &
! DIMENSION(x) :: Alphas ! Alpha items for object
! REAL, DIMENSION(y) :: Numbers ! Numeric items for object
 INTEGER :: NumAlphas ! Number of Alphas for each GetObjectItem call
 INTEGER :: NumNumbers ! Number of Numbers for each GetObjectItem call
 INTEGER :: IOStatus ! Used in GetObjectItem
 LOGICAL :: ErrorsFound=.false. ! Set to true if errors in input, fatal
at end of routine

 <NumItems>=GetNumObjectsFound(CurrentModuleObject)
 DO Item=1,<NumItems>
 CALL GetObjectItem(CurrentModuleObject,Item,cAlphaArgs,NumAlphas, &
 rNumericArgs,NumNumbers,IOStatus, &
 AlphaBlank=lAlphaFieldBlanks,NumBlank=lNumericFieldBlanks, &
 AlphaFieldnames=cAlphaFieldNames,NumericFieldNames=cNumericFieldNames)
 <process, noting errors>
 ! Errors should be formatted as (alpha 1 should hold the name of the object)
 CALL ShowSevereError(RoutineName//':'//CurrentModuleObject//'="'//trim(cAlphaArgs(1)))// &
 '", invalid '//trim(cAlphaFieldNames(x))//'="'//trim(cAlphaArgs(x))//'" <condition>.')
 ! likewise for numeric fields

GUIDE FOR MODULE DEVELOPERS 14BAPPENDIX D. MODULE, SUBROUTINE, FUNCTION TEMPLATES

3/24/09 133

 ENDDO

 <SetupOutputVariables here...>

 IF (ErrorsFound) THEN
 CALL ShowFatalError(RoutineName//':'//CurrentModuleObject//': Errors found in input.')
 ENDIF

 RETURN

END SUBROUTINE Get<module_name>Input

SUBROUTINE Init<module_name>

 ! SUBROUTINE INFORMATION:
 ! AUTHOR <author>
 ! DATE WRITTEN <date_written>
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:
 ! <description>

 ! METHODOLOGY EMPLOYED:
 ! <description>

 ! REFERENCES:
 ! na

 ! USE STATEMENTS:
 ! na

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 ! na

 ! SUBROUTINE PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS
 ! na

 ! DERIVED TYPE DEFINITIONS
 ! na

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:
 ! na

 RETURN

END SUBROUTINE Init<module_name>

SUBROUTINE Size<module_name>

 ! SUBROUTINE INFORMATION:
 ! AUTHOR <author>
 ! DATE WRITTEN <date_written>
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:
 ! <description>

 ! METHODOLOGY EMPLOYED:
 ! <description>

 ! REFERENCES:
 ! na

GUIDE FOR MODULE DEVELOPERS 14BAPPENDIX D. MODULE, SUBROUTINE, FUNCTION TEMPLATES

3/24/09 134

 ! USE STATEMENTS:
 ! na

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 ! na

 ! SUBROUTINE PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS
 ! na

 ! DERIVED TYPE DEFINITIONS
 ! na

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:
 ! na

 RETURN

END SUBROUTINE Size<module_name>

SUBROUTINE Calc<module_name>

 ! SUBROUTINE INFORMATION:
 ! AUTHOR <author>
 ! DATE WRITTEN <date_written>
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:
 ! <description>

 ! METHODOLOGY EMPLOYED:
 ! <description>

 ! REFERENCES:
 ! na

 ! USE STATEMENTS:
 ! na

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 ! na

 ! SUBROUTINE PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS:
 ! na

 ! DERIVED TYPE DEFINITIONS:
 ! na

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:
 ! na

 RETURN

END SUBROUTINE Calc<module_name>

SUBROUTINE Update<module_name>

 ! SUBROUTINE INFORMATION:
 ! AUTHOR <author>
 ! DATE WRITTEN <date_written>
 ! MODIFIED na

GUIDE FOR MODULE DEVELOPERS 14BAPPENDIX D. MODULE, SUBROUTINE, FUNCTION TEMPLATES

3/24/09 135

 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:
 ! <description>

 ! METHODOLOGY EMPLOYED:
 ! <description>

 ! REFERENCES:
 ! na

 ! USE STATEMENTS:
 ! na

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 ! na

 ! SUBROUTINE PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS:
 ! na

 ! DERIVED TYPE DEFINITIONS:
 ! na

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:
 ! na

 RETURN

END SUBROUTINE Update<module_name>

SUBROUTINE Report<module_name>

 ! SUBROUTINE INFORMATION:
 ! AUTHOR <author>
 ! DATE WRITTEN <date_written>
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:
 ! <description>

 ! METHODOLOGY EMPLOYED:
 ! <description>

 ! REFERENCES:
 ! na

 ! USE STATEMENTS:
 ! na

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 ! na

 ! SUBROUTINE PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS:
 ! na

 ! DERIVED TYPE DEFINITIONS:
 ! na

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:
 ! na

GUIDE FOR MODULE DEVELOPERS 14BAPPENDIX D. MODULE, SUBROUTINE, FUNCTION TEMPLATES

3/24/09 136

 ! <this routine is typically needed only for those cases where you must transform the internal
data to a reportable form>

 RETURN

END SUBROUTINE Report<module_name>

!===================== Utility/Other routines for module.
! Insert as appropriate

! Insert Standard Copyright Notice here.

END MODULE <module_name>

The Subroutine Template:

SUBROUTINE <name>

 ! SUBROUTINE INFORMATION:
 ! AUTHOR <author>
 ! DATE WRITTEN <date_written>
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:
 ! This subroutine needs a description.

 ! METHODOLOGY EMPLOYED:
 ! Needs description, as appropriate.

 ! REFERENCES:
 ! na

 ! USE STATEMENTS:
 ! na

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 ! na

 ! SUBROUTINE PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS
 ! na

 ! DERIVED TYPE DEFINITIONS
 ! na

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:
 ! na

 RETURN

END SUBROUTINE <name>

And the Function Template:

GUIDE FOR MODULE DEVELOPERS 14BAPPENDIX D. MODULE, SUBROUTINE, FUNCTION TEMPLATES

3/24/09 137

<type> FUNCTION <name>

 ! FUNCTION INFORMATION:
 ! AUTHOR <author>
 ! DATE WRITTEN <date_written>
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS FUNCTION:
 ! This function needs a description.

 ! METHODOLOGY EMPLOYED:
 ! Needs description, as appropriate.

 ! REFERENCES:
 ! na

 ! USE STATEMENTS:
 ! na

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! FUNCTION ARGUMENT DEFINITIONS:
 ! na

 ! FUNCTION PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS
 ! na

 ! DERIVED TYPE DEFINITIONS
 ! na

 ! FUNCTION LOCAL VARIABLE DECLARATIONS:
 ! na

 RETURN

END FUNCTION <name>

GUIDE FOR MODULE DEVELOPERS 15BAPPENDIX E. TEST FILE DOCUMENTATION

3/24/09 138

Appendix E. Test File Documentation

Each test file, whether released to the public or not, should be a best practice
model and documented (comments at the top of the file) following the
guidelines below. The document template file is also included with each
installation in the “ExampleFiles” folder – ExampleFilesDoc.txt

! <name of file>
! Basic file description: <specify number of zones, stories in building, etc>
! Highlights: <Purpose of this example file>
! Simulation Location/Run: <location information, design days, run periods>
! Location:
! Design Days (should have SummerDesignDay,WinterDesignDay designations):
! Run Period (Weather File):
! Run Control (should include this):
!
! Building: <more details about building. metric units, if also english enclose in []{} or ()>
! Floor Area:
! Number of Stories:
!
! Zone Description Details:
! Internal gains description: <lighting level, equipment, number of occupants, infiltration,
daylighting, etc>
! Interzone Surfaces:
! Internal Mass:
! People:
! Lights:
! Windows:
! Detached Shading:
! Daylight:
! Natural Ventilation :
! Compact Schedules (preferred):
! Solar Distribution:

!
! HVAC: <HVAC description and plant supply, as appropriate>
! Purchased Air:
! Zonal Equipment:
! Central Air Handling Equipment:
! System Equipment Autosize:
! Purchased Cooling:
! Purchased Heating:
! Coils:
! Pumps:
! Boilers:
! Chillers:
! Towers:
!
! Results: <how are results reported>
! Standard Reports:
! Timestep or Hourly Variables:
! Time bins Report:
! HTML Report:
! Environmental Emissions:
! Utility Tariffs:

Most of the example files have completed their documentation requirements
and include plan views of the building. Our naming convention uses an
underscore (_) as the first character of an input file “not for publication”.

GUIDE FOR MODULE DEVELOPERS 16BAPPENDIX F. NEW OR CHANGED PROPOSAL FEATURE TEMPLATE

3/24/09 139

Appendix F. New or Changed Proposal Feature Template

<TITLE>
<organization>

<Date(s), Original, Revision, etc>
Justification for Feature Update:
<Required>
Conference Call Conclusions:
<Optional – note date of conference call where talked about>
Other Conference Call Topics (not in scope of current proposal):
<Optional>
Overview:
<Include Description of Feature and references>
Approach:
Testing/Validation/Data Source(s):
<required>
IO Ref (draft):
<required>
IDD Object (New):
<include as appropriate>
IDD Object(s) (Revised):
<include as appropriate>
Proposed Report Variables:
Proposed additions to Meters:
EngRef (draft):
<required>
Example File and Transition changes:
As needed.
Other documents:
As needed.

Appendix G. Questionnaire for Code Contributions

Rev070403

 ENERGYPLUS™
 QUESTIONNAIRE FOR CODE CONTRIBUTIONS

The EnergyPlus™ building energy simulation computer program has been developed jointly by the University of Illinois at Urbana-
Champaign and Lawrence Berkeley National Laboratory (Berkeley Lab) under funding from the U.S. Department of Energy.
Berkeley Lab has the sole authority to administer the licensing of EnergyPlus™ software.

To ensure the long-term viability of EnergyPlus, any proposed contributions must be made with “no strings attached” – that is, at a
minimum, with royalty-free, non-exclusive, unlimited rights for Berkeley Lab to use, copy, modify, prepare derivative works, and
distribute any contributions (both source code and executables), and to permit others to do so. Exceptions to this policy are made
only in extraordinary circumstances, on a case-by-case basis, and only by Berkeley Lab’s Technology Transfer Dept.

This Questionnaire is intended to aid in our management of contributions to the EnergyPlus code base and to flag any intellectual
property or licensing issues that may need to be resolved. EnergyPlus is a team effort! We appreciate your cooperation!

THIS FORM MUST BE FILLED OUT COMPLETELY FOR US TO CONSIDER YOUR CONTRIBUTION – THANKS!

Company/Institution (“Contributor”):

Name of responsible Contributor employee:

Title or position:

Department (if applicable):

Address:

City / State / Postal Code / Country:

Tel: Fax:

E-Mail: Web: http://

Who is your contact on the EnergyPlus Development Team? (or “None”)

 I have attached a brief description of my contribution (subroutine(s), module(s), library/ies, etc.). (THIS IS REQUIRED)

 Yes No Don’t Know -- Do you have an active E+ Collaborative Developer License Agreement in place?
 If ‘yes’, is your contribution a user interface? Yes No
A. AUTHORSHIP

1. For the code you are submitting, did you or your fellow employees write every line of code? Before answering “yes,” you should
actually contact your fellow employees to confirm that they did not use any code written by others,(e.g., “public domain code,” “open
source code,” etc.).
 Yes No (If you don’t know, then find out.)

2. For the code you are submitting, was any written by a contractor or consultant?
 Yes No (If you don’t know, then find out.) Not applicable (i.e., I answered ‘yes’ to question #1)

2(a) Have you confirmed that the funding/contract document with such contractor/consultant grants you or your institution the
necessary rights to provide a royalty-free unlimited license to your contributions to Lawrence Berkeley National Laboratory?
(Note: if you are in an academic/research institution, you should confirm this with your contracts & grants office or your
technology transfer office). If the answer is “No,” then such rights must be secured in writing before we can consider such
code for incorporation into EnergyPlus.

 Yes No (If you don’t know, then find out.)

Rev070403

2(b) Did the contractors/consultants include any code that they did not actually write themselves? Before answering “yes,” you

should confirm with them that they did not use any code written by others (e.g., “public domain code,” “open source code,”
etc.).

 Yes No (If you don’t know, then find out.)

3. For ANY code that was not actually written by you, your fellow employees or a contractor/consultant, do you know the portions of
the code written by others (i.e., the name of the subroutine, module, library, etc.)?
 Yes No Don’t know Not applicable (no third party code included)

 If “yes,” please list all third party code here (if more than two pieces of third party code, attach separate sheets for each):

 Name of Third Party Code #1:
 Copyright notice None Printed out and attached
 Written license agreement covering the code None Printed out and attached
 If there is no written license agreement covering the code, then please attach on a separate sheet, any helpful background and

contact information to aid in tracking down a proper written license agreement. Also, please note, that with rare exception,
code that people consider to be “in the public domain” is almost never actually legally in the public domain.

 Name of Third Party Code #2:
 Copyright notice None Printed out and attached
 Written license agreement covering the code None Printed out and attached
 If there is no written license agreement covering the code, then please attach on a separate sheet, any helpful background and

contact information to aid in tracking down a proper written license agreement.

B. FUNDING

1. For the code you are submitting, was your contribution funded under a Berkeley Lab R&D Subcontract?
 Yes No Don’t know

2. For other funding sources, have you confirmed that the funding document (if any) grants you or your institution the necessary rights
to provide a royalty-free unlimited license to your contributions to Lawrence Berkeley National Laboratory? (Note: for employees of
academic or research institutions, you should confirm this with your contracts & grants office or your technology transfer office). If the
answer is “No,” then you do not have the necessary rights to such code and we cannot accept such code for consideration of
incorporation into EnergyPlus.
 Yes No I funded this myself I don’t know the funding source

To the best of my knowledge, all of the above is complete and correct. If there are any extenuating or
exceptional circumstances regarding any of the above, I have attached a sheet to this form explaining same.

Signed: ___________________________________

Printed Name: ___________________________________

Date: ___________________________________

Please submit the completed and signed form via FAX or, if scanned, via e-mail to BOTH:

Linda Lawrie Pamela Seidenman, Technology Transfer Dept., Berkeley Lab
Fax: (425) 491-0472 Fax: 510-486-6457
E-Mail: Linda@FortLawrie.com E-Mail: psseidenman@lbl.gov

Thank you very much for your cooperation from the EnergyPlus Team!

mailto:Linda@FortLawrie.com�
mailto:psseidenman@lbl.gov�

	Introduction
	Modules in EnergyPlus
	What is a module anyway?
	Program Modules
	Data Only Modules

	What is a module developer?

	Input Concepts
	Input Data Dictionary
	Data Dictionary Naming Conventions
	Class (Object) Names
	Field Names
	Choice Names

	Input Data File
	Input Considerations
	Advanced Input Considerations
	DataSets

	Module Structure
	Module Outline
	Module Example

	How it fits together
	Top Level Calling Tree
	High Level HVAC Calling Tree (schematic – not all routines are shown)
	Air System Calling Tree (schematic – not all routines are shown)
	Plant Supply Calling Tree (schematic – not all routines are shown)
	Zone Equipment Calling Tree (schematic – not all routines are shown)
	Inserting the New Module into the Program
	Changing existing code
	Considerations for Legacy Codes
	Code Readability vs. Speed of Execution
	Speed of Execution

	EnergyPlus Services
	Utility Routines/Functions
	Input Services
	InputProcessor
	GetNumObjectsFound
	GetObjectItem
	GetObjectDefMaxArgs
	GetObjectItemNum
	FindItemInList
	FindItem
	FindItemInSortedList
	SameString
	VerifyName
	RangeCheck
	MakeUPPERCase

	Object Services
	Branch & Node Checking and Services
	BranchInputManager
	NumBranchesInBranchList
	GetBranchList
	GetBranchData
	NodeInputManager
	Node Information Arguments
	GetOnlySingleNode
	GetNodeNums
	Unique Node Checking
	InitUniqueNodeCheck
	CheckUniqueNodes
	EndUniqueNodeCheck
	SetUpCompSets and TestCompSet
	CheckOutAirNodeNumber
	CheckAndAddAirNodeNumber

	Schedule Services
	GetScheduleIndex
	GetDayScheduleIndex
	CheckScheduleValueMinMax
	CheckScheduleValue
	GetScheduleMinValue
	GetScheduleMaxValue
	GetCurrentScheduleValue
	GetScheduleValuesForDay
	GetSingleDayScheduleValues
	LookUpScheduleValue

	Data Services
	Global variable: MetersHaveBeenInitialized
	GetMeterIndex
	GetVariableKeyCountAndType
	GetVariableKeys
	GetCurrentMeterValue
	GetInstantMeterValue
	GetInternalVariableValue

	Other Useful Utilities
	GetNewUnitNumber
	FindUnitNumber
	FindNumberinList
	ValidateComponent
	CheckComponent
	CreateSysTimeIntervalString
	TrimSigDigits
	RoundSigDigits
	SafeDivide
	SetupAndSort

	Error Messages
	Recurring Error Handling

	Display Strings
	Performance Curve Services
	GetCurveIndex
	GetCurveCheck
	GetCurveType
	CurveValue

	Fluid Property Services
	Using Fluid Property Routines in EnergyPlus Modules
	Fluid Properties Functions for Refrigerant Class Fluids
	Reference Data Set (RDS) Values for Refrigerant Class Fluids
	Fluid Property Data and Expanding the Refrigerants Available to EnergyPlus
	Fluid Properties Functions for Glycol Class Fluids
	Default Values for Glycol Class Fluids
	Fluid Property Data and Expanding the Glycols Available to EnergyPlus

	Weather Services
	Global Data: Flags and Parameters
	Parameters
	Simulation Flags

	Psychrometric services
	PsyRhoAirFnPbTdbW (Pb,Tdb,W,calledfrom)
	PsyCpAirFnWTdb (W,Tdb,calledfrom)
	PsyHfgAirFnWTdb (W,Tdb,calledfrom)
	PsyHgAirFnWTdb (W,Tdb,calledfrom)
	PsyTdpFnTdbTwbPb (Tdb,Twb,Pb,calledfrom)
	PsyTdpFnWPb (W,Pb,calledfrom)
	PsyHFnTdbW (Tdb,W,calledfrom)
	PsyHFnTdbRhPb (Tdb,Rh,Pb,calledfrom)
	PsyTdbFnHW (H,W,calledfrom)
	PsyRhovFnTdbRh (Tdb,Rh,calledfrom)
	PsyRhovFnTdbWP (Tdb,W,Pb,calledfrom)
	PsyRhFnTdbRhov (Tdb,Rhov,calledfrom)
	PsyRhFnTdbWPb (Tdb,W,Pb,calledfrom)
	PsyTwbFnTdbWPb (Tdb,W,Pb,calledfrom)
	PsyVFnTdbWPb (Tdb,W,Pb,calledfrom)
	PsyWFnTdpPb (Tdp,Pb,calledfrom)
	PsyWFnTdbH (Tdb,H,calledfrom)
	PsyWFnTdbTwbPb (Tdb,Twb,Pb,calledfrom)
	PsyWFnTdbRhPb (Tdb,Rh,Pb,calledfrom)
	PsyPsatFnTemp (T,calledfrom)
	PsyTsatFnHPb (H,Pb,calledfrom)
	PsyTsatFnPb (P,calledfrom)
	CPCW (Temp,calledfrom)
	CPHW (Temp,calledfrom)
	CVHW (Temp,calledfrom)
	RhoH2O (Temp,calledfrom)

	Tabular Output Utilities
	WriteReportHeaders(reportName,objectName,averageOrSum)
	WriteSubtitle(subtitle)
	WriteTable(body,rowLabels,columnLabels,widthColumn)

	HVAC Network
	Branches, Connectors, and Nodes
	Nodes in the simulation
	Getting Nodes
	Data Flow in an HVAC Component Module
	Node Mass Flow Variables

	Output
	How Do I Output My Variables?
	Output Variable Dos and Don’ts
	What Variables Should I Output?
	Output Variable Naming Conventions
	What are Meters?
	How Do I Create A Meter?
	Rules for Meter Variables

	Running/Testing EnergyPlus – for Developers
	Air Loop Simulation

	Quick Procedure Outline For Making Code Changes to EnergyPlus
	Important Rules for Module Developers
	Appendix A. DataGlobals and DataEnvironments Modules
	DataGlobals
	DataEnvironment

	Appendix B. Submissions and Check-ins
	Appendix C. Documentation Specifics
	Appendix D. Module, Subroutine, Function Templates
	Appendix E. Test File Documentation
	Appendix F. New or Changed Proposal Feature Template
	Appendix G. Questionaire for Developers
	Return to Developer Main Menu
	Return to Document Main Menu

