

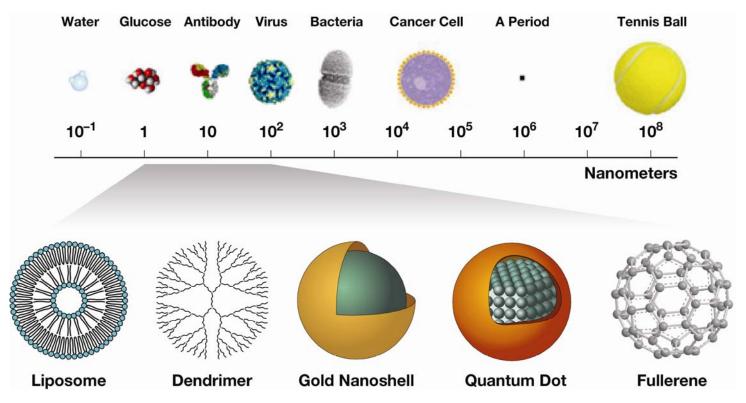
Characterization of Nanoparticles Intended for Cancer Therapeutics and Diagnostics

Scott McNeil, Ph.D.

Nanotech Characterization Laboratory

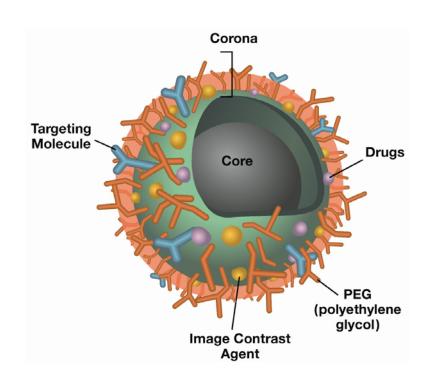
SAIC-Frederick

March 15, 2006



Definition

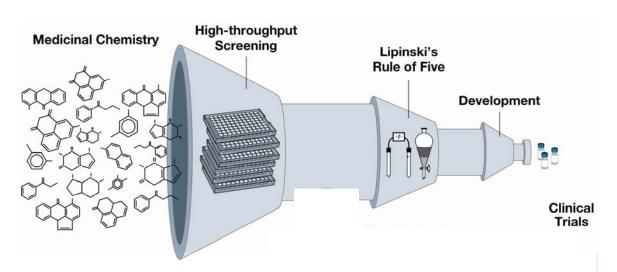
"Research and technology development at the atomic, molecular or macromolecular scale leading to the controlled creation and use of structures, devices and systems with a length scale of approximately 1 – 100 nanometers (nm)." (Source: National Nanotech Initiative)



Why Nano?

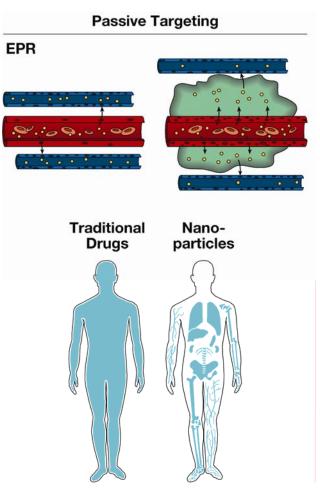
Therapeutic Benefits

- Solubility
 - Carrier for hydrophobic entities
- Multifunctional capability
- Active and passive targeting
 - Ligands; size exclusion
- Reduced toxicity



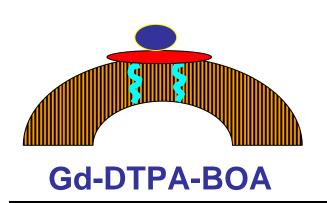
McNeil, (2005), J. Leuk. Biol., 78:585-594

Solubility


- Drug development
 - 3M compounds synthesized → 30 developed
 - Candidates assessed based on 'rule of 5'
 - Filter for 'chemical lead' and development
 - H-bonding, MW, partition coefficient

Targeting

- Passive Targeting
 - Enhanced Permeation and Retention (EPR)
 - Targeting of RES cancers
 - Size and surface chemistry
- Active Targeting
 - Surface chemistry allows functionalization w/ targeting molecules
 - Antibodies, Herceptin attached to QDs.
 - Folic acid attached to dendrimers
 - Carbohydrates attached to GNP & QDs.



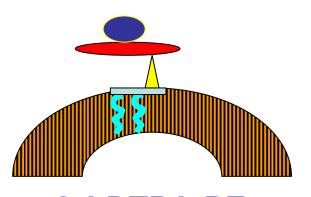

McNeil, (2005), J. Leuk. Biol., 78:585-594

Image Contrast Agents

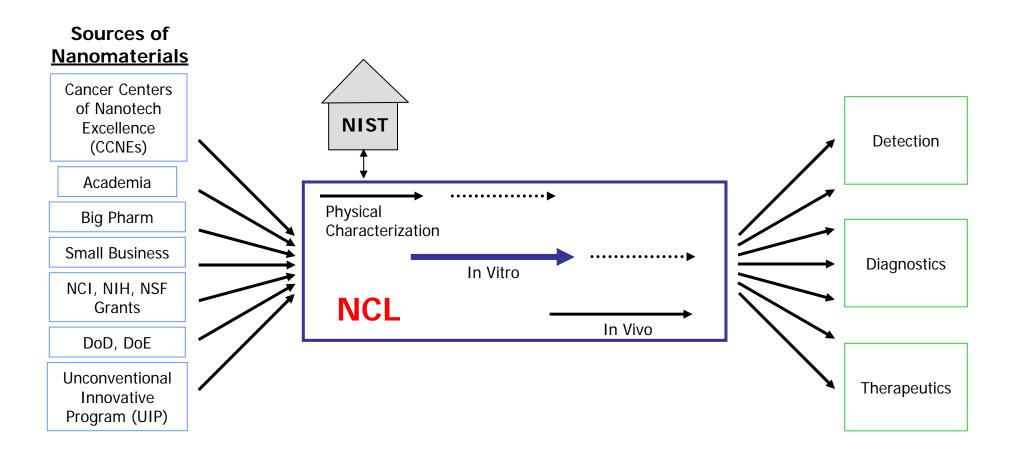
Dr. Greg Lanza, Washington University

Gd-DTPA-PE

Magnetic Field	Paramagnetic Chelate	lon-Based Relaxivity (s*mM) ⁻¹		Particle-Based Relaxivity (s*mM) ⁻¹	
		r ₁	r ₂	r ₁	r ₂
0.47 T	Gd-DTPA-BOA	21.3 ± 0.2	23.8 ± 0.3	1,210,000 ± 10,000	1,350,000 ± 20,000
	Gd-DTPA-PE	36.9 ± 0.5*	42.3 ± 0.6*	2,710,000 ± 40,000*	3,110,000 ± 50,000*
1.5 T	Gd-DTPA-BOA	17.7 ± 02	25.3 ± 0.6	1,010,000 ± 10,000	1,440,000 ± 30,000
	Gd-DTPA-PE	33.7 ± 07*	50 ± 2*	2,480,000 ± 50,000*	3,700,000 ± 100,000*
4.7 T	Gd-DTPA-BOA	9.7 ± 0.2	29.4 ± 0.3	549,000 ± 9,000	1,670,000 ± 20,000
	Gd-DTPA-PE	15.9 ± 0.1*	80.0 ± 0.7*	1,170,000 ± 6,000*	5,880,000 ± 50,000*

NCI Alliance for Nanotechnology in Cancer

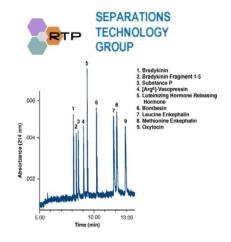
- Run by Office of Technology and Industrial Relations (OTIR)
 - Director: Dr. Greg Downing
 - Extramural Budget: \$144M over 5 years
 - •Launched on Sept 13th, 2004
 - •Website: http://nano.cancer.gov/
- •Consensus among cancer researchers that significant obstacles must be overcome in order to transition 'nano' to clinical realm
 - Critical lack of available standards
 - •1st principles characterization
 - Regulatory uncertainty

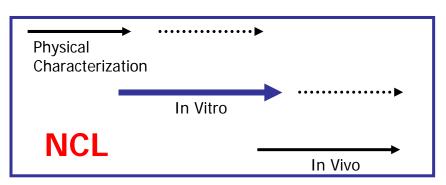


NCL Objectives

- Identify and characterize critical parameters related to nanomaterials' biocompatibility; structure-activity relationships.
- Establish and standardize an assay cascade for nanomaterial characterization.
- Examine the biological characteristics of multicomponent/combinatorial platforms.
- Engage and facilitate academic and industrial-based education and knowledge sharing.

NCL Concept of Operations


NCL conducts pre-clinical characterization in support of an Investigative New Drug (IND) submission to the FDA



NCL Facilities

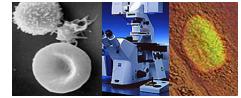
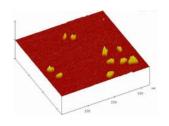
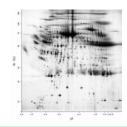


IMAGE ANALYSIS LABORATORY

Confocal and Electron Microscopy





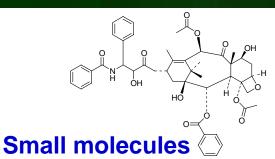
NCL Assay Cascade

Physical Characterization:

- Size
- Size distribution
- Molecular weight
- Morphology
- Surface area
- Porosity
- Solubility
- Surface charge density
- Purity
- Sterility
- Surface chemistry
- Stability

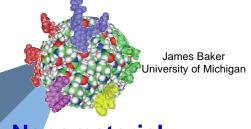
In Vitro:

- Binding
- Pharmacology
- Blood contact properties
- Cellular uptake
- Cytotoxicity



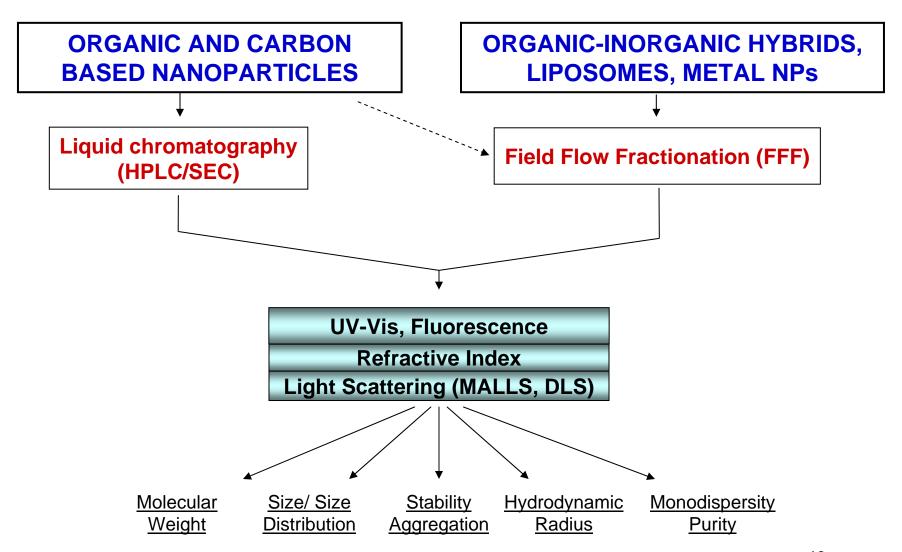
In Vivo:

- Absorption
- Pharmacokinetics
- Serum half-life
- Protein binding
- Tissue distribution
- Metabolism
- Excretion
- Safety


Core parameters to define physicochemical property of material

- Elemental analysis
- Mass
- NMR
- UV-Vis
- IR
- HPLC
- GC
- Polarimetry

- Physical properties
- Chemical properties
- Identification
- Quality
- Purity
- Stability


Nanomaterial

- Microscopy (AFM, TEM, SEM)
- Light scattering (Static, Dynamic)
- SEC, FFF
- Electrophoresis (CE, PAGE)
- Zeta sizer
- Fluorimetry

Same parameters – different/additional characterization methods

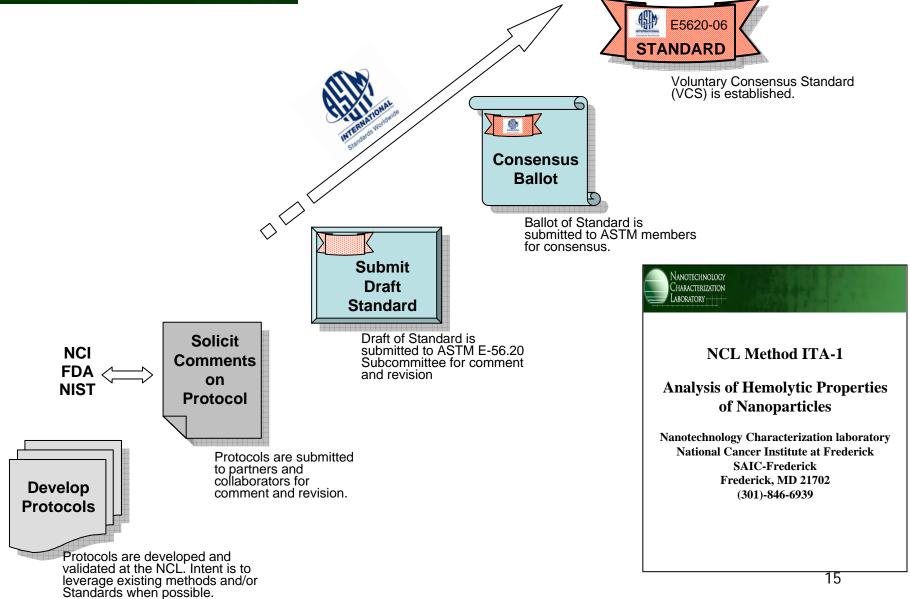
Flow mode analysis of Nanoparticles

In Vitro Cascade

In Vitro

- Sterility
 - Bacterial/Viral/Mycoplasma
 - Endotoxin
- Targeting
 - Cell Binding/Internalization
- Blood Contact Properties
 - Plasma Protein Binding
 - Hemolysis
 - Platelet Aggregation
 - Coagulation
 - Complement Activation
 - CFU-GM
 - Leukocyte Proliferation
 - Macrophage/Neutrophil Function
 - Cytotoxic Activity of NK Cells
- Toxicity
 - Phase I/II Enzyme Induction/Suppression
 - Oxidative Stress
 - Cytotoxicity (necrosis)
 - Cytotoxicity (apoptosis)
- Metabolic Stability

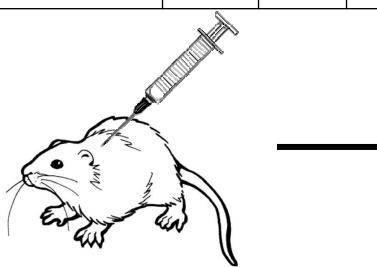
NCL Method ITA-1

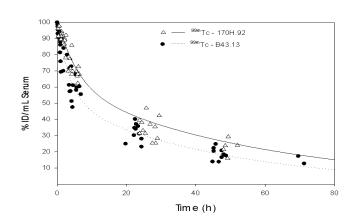

Analysis of Hemolytic Properties of Nanoparticles

Nanotechnology Characterization laboratory National Cancer Institute at Frederick SAIC-Frederick Frederick, MD 21702 (301)-846-6939

VCS informs regulatory agencies and promotes commercialization of nanotechnology for medical applications

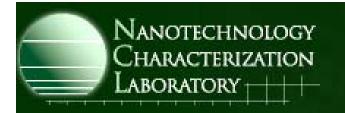
Industry, Academia, Government


In Vivo Pharmacokinetics

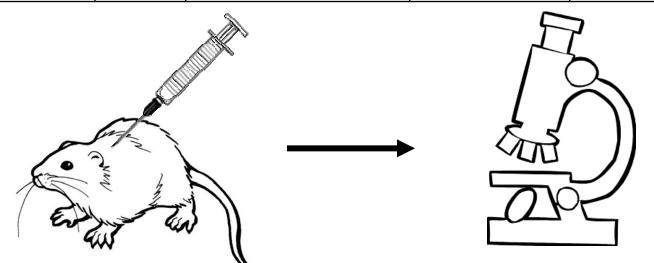

- Single/repeat-dose PK/TK/tissue distribution
- Clinical Tx cycle
 - -Schedule
 - -Duration
 - -Route
 - -Formulation
- Quantitation method
 - -radiolabeled nanoparticle (Scintillation)
 - -Imaging
 - -ELISA
- PK Parameters
 - -AUC, Cmax, CL, t ½, tmax

Based on FDA Pre-clinical Guidance

In Vivo Pharmacokinetics


Purpose	Duration	Time Point's	Groups	Tests	Comments
Plasma PK profile/ Tissue distribution (Liver, lungs, kidney, heart, spleen brain)	24 hrs	8	1X, 10X (5 F SD Rats/Tx)	scintillation counting of plasma and tissue samples (NCL)	Dosing, blood draws by Jugular catheter, cardiac puncture (final tp)

In Vivo Toxicology Studies


- Single/Repeat-Dose Acute/Subacute Toxicity
 - -Rats (determine STD10/NOAEL/Lethal dose)
- Clinical Tx Cycle
 - -Schedule
 - -Duration
 - -Route
 - -Formulation
- Endpoints monitored
 - -Hematology
 - -Clinical chemistry
 - -Gross pathology
 - -Histopathology
 - -Clinical signs

In Vivo Toxicology Studies

Dose Range-Finding Toxicity Study

Purpose	Duration	Groups	Tests	Comments
determine dose at which toxicity is observed	14 days	ctrl, 10X, 50X, 100X (5 M+F SD Rats/Tx)	Clinical chemistries, histopathology, pross pathology, clinical observation (PHL)	BW measured daily, euthanasia criteria (decrease in body weight ≥ 20%)

Brain

Comprehensive Toxicology

Histopathology

Pancreas Salivary gland

Lymph node Esophagus Parathyroid

Thyroid Trachea Adrenal

Pituitary Heart Kidney

Thymus Gall Bladder Liver

Spleen Lung Duodenum

Ileum Rectum Stomach

Cecum Colon Jejunum

Lymph node Epididymis Ovary

Prostate Seminal vesicle Testis

Urinary bladder Uterus Eye

Hardian gland Nasal Sections Femur

Femur Vertebra Spinal cord

Mammary gland Skin/Subcutis Tongue

Comprehensive Toxicology

Hematology

Erythrocyte count (RBC)

Hemoglobin (HGB)

Hematocrit (HCT)

Mean corpuscular volume (MCV)

Mean corpuscular hemoglobin (MCH)

Mean corpuscular hemoglobin concentration (MCHC)

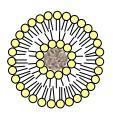
Platelet count (Plate)

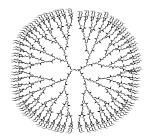
Reticulocyte count (RETIC)

Total leukocyte count (WBC)

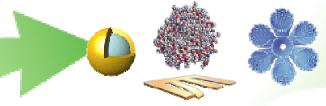

Differential leukocyte count

Nucleated red blood cell count




Nanoparticles by type for medical applications

- Organic Nanoparticles (e.g.: Polymers, Dendrimers)
- Inorganic Nanoparticles (e.g.: Iron oxide, gold nanoparticles)
- Organic/Inorganic hybrids (e.g.: Nanocomposites, core-shell type, Gd-chelates)
- Carbon based (e.g.: Functionalized fullerenes)
- Liposomes (e.g.: Functionalized, inclusion complexes)
- Biological nanoparticles (e.g.: Protein and peptide based nanoparticles with other biological components)


Environmental Aspects

Studies Applicable to Environmental Risk Assessment

- General Cytotoxicity Assays- determining concentrationresponse relationships.
- **Mechanistic Studies** Identifying apoptosis, oxidative stress and cytochrome P450 induction/suppression as potential mechanisms
- In Vivo Toxicology Studies- Identification of target organs
- **General ADME-** define t1/2, clearance mechanisms (i.e. metabolism, biliary excretion, renal clearance, etc.)

Summary

- Technology Centers of Excellence
- National Labs
- NCI Technology
- Development Programs

Clinical Applications

Protocols and Data

Nanotechnology Characterization Laboratory

NIST FDA

Questions/Comments

http://NCL.cancer.gov

Contact Info:

Scott E. McNeil

(301) 846-6939

ncl@ncifcrf.gov