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PART 4. STATISTICAL METHODS AND MODELS 1225 

 1226 

Statistical methods and models play a key role in the interpretation and synthesis of observed 1227 

climate data and the predictions of numerical climate models. Important advances have been 1228 

made in the development and application of both frequentist and Bayesian statistical approaches 1229 

and, as noted previously, the methods yield similar results when either an uninformed prior is 1230 

used for the Bayesian analysis or a very large dataset is available for estimation. Recent reviews 1231 

of statistical methods for climate assessment are summarized, including procedures for trend 1232 

detection, assessing model fit, downscaling, and data-model assimilation. Methods for 1233 

hypothesis testing and model selection are presented, and emerging issues in statistical methods 1234 

development are considered. 1235 

 1236 

Levine and Berliner (1999) review statistical methods for detecting and attributing climate 1237 

change signals in the face of high natural variations in the weather and climate, focusing on 1238 

"fingerprint" methods designed to maximize the signal-to-noise ratio in an observed climatic 1239 

dataset (Hasselmann, 1979; 1993). The climate change detection problem is framed in terms of 1240 

statistical hypothesis testing and the fingerprint method is shown to be analogous to stepwise 1241 

regression of the observed data (e.g., temperature) against the hypothesized input signals (carbon 1242 

dioxide concentrations, aerosols, etc.). Explanatory variables are added to the model until their 1243 

coefficients are no longer statistically significant. The formulation and interpretation of the 1244 

hypothesis test is complicated considerably by the complex spatial and temporal correlation 1245 

structure of the dependent and explanatory variables, and Levine and Berliner discuss various 1246 

approaches for addressing these concerns. The selection of the best filter for isolating a climate 1247 
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change signal within the natural climate record is shown to be equivalent to the determination of 1248 

an optimal (most powerful) statistical test of hypothesis. 1249 

 1250 

Solow (2003) reviews various statistical models used in atmospheric and climate science, 1251 

including methods for:  1252 

• fitting multivariate spatial-time series models, using methods such as principal 1253 

component analysis (PCA) to consider spatial covariance, and predictive oscillation 1254 

patterns (PROPS) analysis and maximum covariance analysis (MCA) for addressing both 1255 

spatial and temporal variations (Kooperberg and O’Sullivan, 1996; Salim et al., 2005);  1256 

• identifying trends in the rate of occurrence of extreme events given only a partially 1257 

observed historical record (Solow and Moore, 2000, 2002);  1258 

• downscaling GCM model predictions to estimate climate variables at finer temporal and 1259 

spatial resolution (Berliner et al., 1999; Berliner, 2003);  1260 

• assessing the goodness of fit of GCMs to observed data (McAvaney et al., 2001), where 1261 

goodness-of-fit is often measured by the ability of the model to reproduce the observed 1262 

climate variability (Levine and Berliner, 1999; Bell et al., 2000); and  1263 

• data assimilation methods that combine model projections with the observed data for 1264 

improved overall prediction (Daley, 1997), including multi-model assimilation methods 1265 

(Stephenson et al., 2005) and extended Kalman filter procedures that also provide for 1266 

model parameter estimation (Evensen and van Leeuwen, 2000; Annan, 2005; Annan et 1267 

al., 2005). 1268 

 1269 
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Zwiers and von Storch (2004) also review the role of statistics in climate research, focusing on 1270 

statistical methods for identifying the dynamics of the climate system and implications for data 1271 

collection, forecasting, and climate change detection. The authors argue that empirical models 1272 

for the spatiotemporal features of the climate record should be associated with plausible physical 1273 

models and interpretations for the system dynamics. Statistical assessments of data homogeneity 1274 

are noted as essential when evaluating long-term records where measurement methods, local 1275 

processes, and other non-climate influences are liable to result in gradual or abrupt changes in 1276 

the data record (Vincent, 1998; Lund and Reeves, 2002). Statistical procedures are reviewed for 1277 

assessing the potential predictability and accuracy of future weather and climate forecasts, 1278 

including those based on the data-model assimilation methods described above. Zwiers and 1279 

Storch offer that for the critical tasks of determining the inherent (irreducible) uncertainty in 1280 

climate predictions vs. the potential value of learning from better data and models, Bayesian 1281 

statistical methods are often better suited than are frequentist approaches.  1282 

 1283 

Methods for Hypothesis and Model Testing 1284 

A well-established measure in classical statistics for comparing competing models (or 1285 

hypotheses) is the likelihood ratio (LR), which follows from the common use of the maximum 1286 

likelihood estimate for parameter estimation. For two competing models M1 and M2, the LR is 1287 

the ratio of the likelihood or maximum probability of the observed data under M1 divided by the 1288 

likelihood of the observed data under M2, with large values of the likelihood ratio indicating 1289 

support for M1. Solow and Moore (2000) applied the LR test to look for evidence of a trend in a 1290 

partially incomplete hurricane record, using a Poisson distribution for the number of hurricanes 1291 

in a year with a constant sighting probability over the incomplete record period. The existence of 1292 
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such a trend could indicate warming in the North Atlantic Basin, but based on their analysis, 1293 

little evidence was apparent. In cases such as that above in which the LR tests models with the 1294 

same parameterization and simple hypotheses are of interest, the LR is equivalent to the Bayes 1295 

Factor, which is the ratio of the posterior odds of M1 to the prior odds of M1. That is, the Bayes 1296 

Factor represents the odds of favoring M1 over M2 based solely on the data, and thus the 1297 

magnitude of the Bayes Factor is often used as a measure of evidence in favor of M1.  1298 

 1299 

An approximation to the log of the Bayes Factor for large sample sizes, Schwarz’s Bayesian 1300 

Information Criterion or BIC, is often used as a model-fitting criterion when selecting among all 1301 

possible subset models. The BIC allows models to be evaluated in terms of a lack of fit 1302 

component (a function of the sample size and mean squared error) and a penalty term for the 1303 

number of parameters in a model. The BIC differs from the well-known Akaike’s Information 1304 

Criterion (AIC) only in the penalty for the number of included model terms. Another related 1305 

model selection statistic is Mallow’s Cp (Laud and Ibrahim, 1995). Karl et al. (1996) utilize the 1306 

BIC to select among ARMA models for climate change, finding that the Climate Extremes Index 1307 

(CEI) and the United States Greenhouse Climate Response Index (GCRI) increased abruptly 1308 

during the 1970s.  1309 

 1310 

Model uncertainty can also be addressed by aggregating the results of competing models into a 1311 

single analysis. For instance, in the next section we report an estimate of climate sensitivity 1312 

(Andronova and Schlesinger, 2001) made by simulating the observed hemispheric-mean near-1313 

surface temperature changes since 1856 with a simple climate/ocean model forced radiatively by 1314 

greenhouse gases, sulfate aerosols and solar-irradiance variations. A number of other 1315 
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investigators have used models together with historical climate data and other evidence to 1316 

develop probability distributions for climate sensitivity or bound estimates of climate sensitivity 1317 

or other variables. Several additional efforts of this sort are discussed below in Section 5. An 1318 

increasing number of these studies have begun to employ Bayesian statistical methods (e.g., 1319 

Epstein, 1985; Berliner et al., 2000; Katz, 2002; Tebaldi et al., 2004, 2005). 1320 

 1321 

As noted in Katz (2002) and Goldstein (2006), Bayesian methods bring a number of conceptual 1322 

and computational advantages when characterizing uncertainty for complex systems such as 1323 

those encountered in climate assessment. Bayesian methods are particularly well suited for 1324 

problems where experts differ in their scientific assessment of critical processes and parameter 1325 

values in ways that cannot, as yet, be resolved by the observational record. Comparisons across 1326 

experts not only help to characterize current uncertainty, but help to identify the type and amount 1327 

of further data collection likely to lead to resolution of these differences. Bayesian methods also 1328 

adapt well to situations where hierarchical modeling is needed, such as where model parameters 1329 

for particular regions, locations, or times can be viewed as being sampled from a more-general 1330 

(e.g., global) distribution of parameter values (Wilke et al., 1998). Bayesian methods are also 1331 

used for uncertainty analysis of large computational models, where statistical models that 1332 

emulate the complex, multidimensional model input-output relationship are learned and updated 1333 

as more numerical experiments are conducted (Kennedy and O’Hagan, 2001; Fuentes et al., 1334 

2003; Kennedy et al., 2006; Goldstein and Rougier, 2006). In addition, Bayesian formulations 1335 

allow the predictions from multiple models to be averaged or weighted in accordance with their 1336 

consistency with the historical climate data (Wintle et al., 2003; Tebaldi et al., 2004, 2005; 1337 

Raftery et al., 2005; Katz and Ehrendorfer, 2006; Min and Hense, 2006). 1338 
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 1339 

Regardless of whether frequentist or Bayesian statistical methods are used, the presence of 1340 

uncertainty in model parameters and the models themselves calls for extensive sensitivity 1341 

analysis of results to model assumptions. In the Bayesian context, Berger (1994) reviews 1342 

developments in the study of the sensitivity of Bayesian answers to uncertain inputs, known as 1343 

robust Bayesian analysis. Results from Bayesian modeling with informed priors should be 1344 

compared to results generated from priors incorporating more uncertainty, such as flat-tailed 1345 

distributions, non-informative and partially informative priors. Sensitivity analysis on the 1346 

likelihood function and the prior by consideration of both non-parametric and parametric classes 1347 

is often called for when experts differ in their interpretation of an experiment or a measured 1348 

indicator. For example, Berliner et al. (2000) employ Bayesian robustness techniques in the 1349 

context of a Bayesian fingerprinting methodology for assessment of anthropogenic impacts on 1350 

climate by examining the range of posterior inference as prior inputs are varied. Of note, Berliner 1351 

et al. also compare their results to those from a classical hypothesis testing approach, 1352 

emphasizing the conservatism of the Bayesian method that results through more attention to the 1353 

broader role and impact of uncertainty. 1354 

  1355 

Emerging Methods and Applications 1356 

While the suite of tools for statistical evaluation of climate data and models has grown 1357 

considerably in the last two decades, new applications, hypotheses, and datasets continue to 1358 

expand the need for new approaches. For example, more sophisticated tests of hypothesis can be 1359 

made by testing probability distributions for uncertain parameters, rather than single nominal 1360 

values (Kheshgi and White, 2001). While much of the methods development to date has focused 1361 
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on atmospheric-oceanic applications, statistical methods are also being developed to address the 1362 

special features of downstream datasets, such as streamflow (Allen and Ingram, 2002; 1363 

Koutsoyiannis, 2003; Kallache et al., 2005) and species abundance (Austin, 2002; Parmesan and 1364 

Yohe, 2003).  1365 

 1366 

As models become increasingly sophisticated, requiring more spatial and temporal inputs and 1367 

parameters, new methods will be needed to allow our limited datasets to keep up with the 1368 

requirements of these models. Two recent examples are of note. Edwards and Marsh (2005) 1369 

present a "simplified climate model" with a "fully 3-D, frictional geostrophic ocean component, 1370 

an Energy and Moisture Balance atmosphere, and a dynamic and thermodynamic sea-ice model. 1371 

. . representing a first attempt at tuning a 3-D climate model by a strictly defined procedure."  1372 

While estimates of overturning and ocean heat transport are "well reproduced", "model 1373 

parameters were only weakly constrained by the data."  Jones et al. (2006) present an integrated 1374 

climate-carbon cycle model to assess the implications of carbon cycle feedback considering 1375 

parameter and model structure uncertainty. While the authors find that the observational record 1376 

significantly constrains permissible emissions, the observed data (in this case also) "proves to be 1377 

insufficient to tightly constrain carbon cycle processes or future feedback strength with 1378 

implication for climate-carbon cycle model evaluation."  Improved data collection, modeling 1379 

capabilities, and statistical methods must clearly all be developed concomitantly to allow 1380 

uncertainties to be addressed effectively. 1381 
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 1382 

Box 4.1:  Predicting Rainfall: An Illustration of Frequentist and Bayesian Approaches 1383 
Consider how we use probability theory in weather prediction. We have a vast storehouse of observations of 1384 
temperature, humidity, cloud cover, wind speed and direction, and atmospheric pressure for a given location. These 1385 
allow the construction of a classic or frequentist table of probabilities showing the observed probability of rainfall, 1386 
given particular conditions. This underscores the fact that observations of a stable system permit the construction of 1387 
powerful predictive models, even if underlying physical processes are not known fully. 1388 
  1389 
So long as the same underlying conditions prevail, the predictive model based on historical weather will remain 1390 
powerful. However, if an underlying factor does change, the predictive power of the model will fall and the missing 1391 
explanatory variables will have to be discovered. For example, if an underlying condition for cloud stability and 1392 
formation of rainfall change because of reduced air pollution that cause the concentration of cloud condensation 1393 
nuclei (CCN) to decline, the historic observations will not provide as powerful a prediction of rainfall as before. 1394 
Under such conditions it is useful to consider a Bayesian approach in which cloud condensation nuclei are 1395 
considered a potential additional explanatory variable. We can start with the old model, then modify its probability 1396 
of rainfall, given different concentrations of cloud condensation nuclei. With each observation, our prior estimates 1397 
of rainfall will be modified eventually leading to a new more powerful model, this time inclusive of the new 1398 
explanatory variable.  1399 
 1400 
Ideally, we want the full distribution of rainfall in a location. This has proven difficult to do, using the frequentist 1401 
method, especially when we focus on high impact events such as extreme droughts and floods. These occur too 1402 
infrequently for us to use a large body of observations so we must  "assume" a probability distribution for such 1403 
events in order to predict their probability of occurrence. While it may be informed by basic science, there is no 1404 
objective method defining the appropriate probability distribution function. What we choose to use is subjective.  1405 
Furthermore, the determinants of rainfall have been more numerous than once believed, often varying dramatically 1406 
even on a decadal scale. For example, in the mid twentieth century, it was thought possible to characterize the 1407 
rainfall in any location from thirty years of observations. This approach used the meteorological data for the period: 1408 
1931 to 1960 to define the climate norm around the earth. By the mid-80s however, it was clear that that thirty-year 1409 
period did not provide an adequate basis for predicting rainfall in the subsequent years. In short, we learned that 1410 
there is no "representative" sample of data in the classical sense. What we have is an evolving condition where tele-1411 
connections such as El Nino Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO), as well as air 1412 
pollution and other factors determine cloud formation, stability and rainfall.  1413 
 1414 
As we gain experience with the complex of processes leading to precipitation, we also develop a sense of humility 1415 
about the incomplete state of our knowledge. This is where the subjectivity in Bayesian statistics comes to the fore. 1416 
It states explicitly that our predictions are contingent on our current state of knowledge and that knowledge will be 1417 
evolving with new observations. 1418 
 1419 
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