

Services and Components Based Architectures
A Strategic Guide for Implementing Distributed and Reusable

 Components and Services in the Federal Government

Version 3.5 Chapter 1: Executive Strategy
Last Updated: January 31st, 2006

Architecture and Infrastructure Committee,
Federal Chief Information Officers Council

January 2006

Services and Components Based Architectures Version 3.5

 Page ii

The Federal CIO Council Architecture and Infrastructure Committee

Components Subcommittee

In collaboration with the

Federal Enterprise Architecture Program Management Office

and

The Industry Advisory Council

Present:

Services and Components Based Architectures
Version 3.5: January 2006

Services and Components-Based Architectures Version 3.5

 Page iii

Contributors
In alphabetical order:

• James Benson, AIC Contractor Support

• Richard von Bostel, OMB Contractor Support

• L. Reynolds Cahoon, National Archives & Records Administration

• Nathaniel A.F. Clark, AIC Contractor Support

• Josiah Cushing, AIC Contractor Support

• Bobby Jones, *Department of Homeland Security / Federal Emergency Management
Agency

• Karen Kaye, Nuclear Regulatory Commission

• David R. Mayo, Industry Advisory Council/Everware

• Marion A. Royal, General Services Administration

• Adam Schwartz, Office of Management and Budget

• James W. Smith, Office of Management and Budget

* Services and Components Based Architectures Committee Leader

Services and Components Based Architectures Version 3.5

 Page iv

Executive Summary
This document serves as an “Executive Strategy” for planning and implementing modern
information technology (IT) architectures within the Federal Government. The specific
architecture it describes, Services and Components Based Architecture (SCBA), leverages
the Federal Enterprise Architecture (FEA) and builds upon the concepts, principles, and
benefits of Service Oriented Architecture (SOA) – an architecture designed to maximize the
reuse of components and services and one of the most promising and widely accepted
architectural approaches to-date. SCBA represents a practical, results-oriented, approach
to modernizing enterprises. It is intended to help organizations reduce long-term costs,
improve quality of service, improve information sharing, and help achieve a vision of flexible
business processes supported by customer-focused applications, which can be altered in a
matter of days instead of months. SCBA builds upon traditional SOA principles in three ways:

• it is tightly integrated with the Federal Enterprise Architecture,
• it provides a description of what the architecture is (a collection of services designed

and implemented to achieve an organization’s mission), and
• it identifies the organizational, cultural, and process elements, as well as

technological elements, that need to exist for these architectures to be successful.

The most important aspect of SCBA is its focus on reuse of services and components – better
referred to as Service Components. Service Components are information technology assets
that perform useful business functions through a well-defined interface. The main
advantage of Service Components is that they enable practical reuse of assets both within
and across organizations. Service components are superior to traditional software
components in the following ways:

• one copy of the Service Component may be shared among all consumers,
eliminating the need to manage and support multiple versions on different servers,

• the Service Component can be used by consumers on any technical platform (via a
standard interface) eliminating the need for platform-specific versions, and

• the asset can evolve and improve without requiring consumers to modify their
business processes or interfaces, since changes to the internal implementation of the
component can be made without affecting the interface.

Despite its emphasis on services, SCBA still accommodates the concept of component
reuse. Specifically, component reuse is necessary for those situations where cross-agency
service sharing is not possible due to regulatory or security restrictions. Finally, SCBA
emphasizes changes both in technology and in the following areas:

• Policies: the organization needs to alter its policies to support reusing assets from any
source, and set specific, measurable goals for levels of reuse.

• Strategies: the organization needs to move from strategies that are narrowly focused
on programs to ones focused on producing and integrating reusable services across
the entire Federal government.

• Processes: the organization’s software development and capital planning processes
need to be altered to make looking for opportunities for reuse a core task.

• Culture: the organization’s culture needs to change through a combination of
executive recognition and incentive programs that strongly reward reuse.

• Governance: the organization’s IT governance processes need to change to take
into account that a service may be used by multiple organizations, not just local
users, and put appropriate service level agreements in place.

This document is the first in a series of chapters that fully describe SCBA. Later chapters will
further detail its technical and process characteristics and are described in Appendix B.

Services and Components-Based Architectures Version 3.5

 Page v

Document Replaces or Supersedes
This document is intended to replace the “Service Component-Based Architectures, Version
2.0” specification. This version of the document contains only the first of nine chapters that
will fully describe SCBA. It describes a ready-to-implement strategy for implementing these
architectures and explains their advantages. Later chapters will provide detailed
descriptions of the technologies and processes that enable these architectures. Further
details are provided in the “Intended Audience” section.

Services and Components Based Architectures Version 3.5

 Page vi

Intended Audience
This document is intended for individuals in various roles in government organizations. It is
relevant to any individual interested in making better use of Federal system and process
assets, but it specifically addresses the interests of:

• CIOs, CTOs, and other Executives – interested in innovative approaches to improve
performance, reduce cost, and enable flexibility of their organization’s information
systems.

• Functional / Business Line Managers – focused on fielding systems that best support
their mission and business needs and achieve the highest return on their IT
investments.

• Capital Planners – responsible for defining and funding Service Components, using IT
Exhibit 300s to support capital planning and investment control (CPIC). These
documents target Federal projects or programs that may benefit from cross-agency
collaboration and the reuse of agency assets.

• Enterprise Architects – responsible for the definition and target planning of an
Agency’s Enterprise Architecture, working with a variety of architectural
implementations (e.g., SOAs; FEA reference models; intergovernmental architectures,
such as the National Association of CIO’s Enterprise Architecture Development Tool-
Kit, etc.).

• System and Solution Architects – responsible for building and assembling Service
Components that leverage existing capital assets, business services, and data across
the government and industry.

• System and Process Engineers – tasked with implementing reusable services and
modifying systems and processes to be reusable by others.

Given the differing focus areas of these individuals, SCBA has been organized into distinct
chapters. Each chapter is specifically targeted at the needs and concerns of a sub-set of
the overall audience. “Appendix B: Chapter Guide” describes each of these chapters and
their intended audience.

Services and Components-Based Architectures Version 3.5

 Page vii

Table of Contents
Contributors .. iii
Executive Summary...iv
Document Replaces or Supersedes... v
Intended Audience...vi
Table of Contents ...vii
Index of Figures .. ix
1 Introduction... 1

1.1 Overview ... 1
1.2 Background... 1
1.3 The Future of Government.. 2
1.4 The Value Proposition .. 3
1.5 Current Initiatives and How They Support This Vision.. 4

2 Services, Components and Architecture... 6
2.1 The Evolution of Systems Development – Increasing Abstraction.. 6
2.2 Components and Services ... 7

2.2.1 Components .. 7
2.2.2 Services ... 8

2.3 The Role of Architecture ... 9
3 What Needs to Change.. 10

3.1 Strategic Changes ... 10
3.2 Policy and Organizational Process Changes .. 10

4 Enabling Reuse of Services and Components .. 14
4.1 Processes and Policies for Reuse ... 14
4.2 Design for Reuse... 15
4.3 Tools for Reuse – Registries, Repositories, and the SRM .. 16
4.4 A Reuse Infrastructure – The Enterprise Service Bus – Example ... 16
4.5 A Culture of Reuse ... 17
4.6 Governance and Responsibility Issues.. 18

5 Implementation Strategies ... 20
5.1 Top-Down .. 20
5.2 Bottom-Up ... 20
5.3 Middle-Out .. 20
5.4 Choosing a Strategy .. 21

6 Getting Started... 22

Services and Components Based Architectures Version 3.5

 Page viii

6.1 Implementation Framework ... 22
6.2 Specific Steps for Getting Started ... 23

6.2.1 Establish Basic Environment ... 24
6.2.2 Establish Enterprise Service Bus Example – ESB ... 24
6.2.3 Migrate Systems to SCBA ... 24

6.3 Case Studies.. 25
7 Conclusion .. 26
Appendix A: Glossary.. 27
Appendix B: Chapter Guide.. 35

Chapter 1 – Executive Strategy ... 35
Chapter 2 – Business Imperatives (SRM/CPIC/EA Integration).. 35
Chapter 3 – Foundational Framework (SOA, SOA Strategy) .. 36
Chapter 4 – Service Component Governance .. 36
Chapter 5 – Solution Architecture ... 36
Chapter 6 – Component-Based Development .. 36
Chapter 7 – Service Production, Discovery and Consumption.. 36
Chapter 8 – Using Government-Wide Profiles and Lines of Business.. 37
Chapter 9 – Finding and Publishing Components: Registries, Repositories, and COIs.............. 37
Appendices .. 37

Appendix C: Reuse Quotient Examples... 38
Example 1 – Project both Using and Producing Service Components ... 38
Example 2 – Project Exists Solely as a Service Component... 38
Example 3 – Project Repackages Functionality as a Service Component 39

Appendix D: Case Studies.. 41
Case Study 1 – Authentication Service Component (ASC).. 41
Case Study 2 – Housing and Urban Development (HUD) Electronic Case Binder........................ 41
Case Study 3 – Department of Labor, Business Rules Engine ... 41

Services and Components-Based Architectures Version 3.5

 Page ix

Index of Figures
Figure 1 - The Federal Enterprise Architecture Reference Models .. 1
Figure 2 - Evolution of Software Reuse ... 7
Figure 3 - Illustration of Component-Based Reuse ... 8
Figure 4 - Differences between Services and Components... 8
Figure 5 - Illustration of Service-Based Reuse .. 9
Figure 7 - Enterprise Service Bus (ESB)... 17
Figure 8 – SCBA “Getting Starting” Approaches .. 24
Figure 9 - Chapter Guide ... 35
Figure 10 - Project Reuse Quotient at Project Delivery.. 38
Figure 11 - Project Reuse Quotient When New Component Reused ... 38
Figure 12 - Project Reuse Quotient at New Service Component Creation.. 38
Figure 13 - Project Reuse Quotient after New Service Component Reused 39
Figure 14 - Project Reuse Quotient Before Modification to Be Service component 39
Figure 15 - Project Reuse Quotient After Modification to Be Service component 39
Figure 16 - Project Reuse Quotient Project Reuse Quotient After Business Process Reused............ 39

Services and Components-Based Architectures Version 3.5

 Page 1-1

1 Introduction

1.1 Overview
To facilitate efforts to transform the Federal government into one that is citizen-centered,
results-oriented, and market-based, the Office of Management and Budget (OMB) has
developed the Federal Enterprise Architecture (FEA). The FEA is a business-based framework
for government-wide improvement. As illustrated in Figure 1, it takes the form of a collection
of interrelated “reference models” designed to facilitate the identification of duplicative
investments, gaps, and opportunities for collaboration within and across Federal agencies.

Figure 1 - The Federal Enterprise Architecture Reference Models

This document, developed by the Components Subcommittee of the Federal CIO Council
Architecture and Infrastructure Committee (AIC), seeks to complement the FEA by acting as
a practical guide for how to realize the benefits of business and software agility through the
integration of Service Oriented Architecture (SOA) and Component-based architecture. It
specifically corresponds to the FEA Service Component Reference Model (SRM), and
provides an executable strategy, describing the organizational, cultural, process,
technological, and systems changes needed to realize the benefit and outcome of the FEA
and the SRM.

1.2 Background
In July 2002, the Federal Enterprise Architecture Program Management Office (FEA-PMO)
released the Component-Based Architecture (CBA) Specification Version 1.0 to help the
government understand the concepts behind re-usable components and their association
and linkages to the Federal Enterprise Architecture (FEA) and newly formed e-Government
initiatives. This document was the first step in helping the government understand the
importance of re-usability and identified a suite of specifications, architectural frameworks,
and interoperability guidelines that led to the creation of the FEA SRM and Technical
Reference (TRM) models.

In February 2004, the Architecture and Infrastructure Committee (AIC) – in coordination with
the FEA-PMO and the Industry Advisory Council (IAC) refreshed the CBA specification and
released a document titled “Service Component-Based Architectures, Version 2.0”. This
document built upon the CBA specification by expanding on the importance and value
proposition of re-usability, explaining its alignment to the FEA, and creating a technical
foundation to support government-wide improvement.

Services and Components Based Architectures Version 3.5

 Page 1-2

Today the AIC is engaged in an activity to update the Service Component-Based
Architecture specification in order to reflect both the evolution of the FEA and new
technologies and architectural frameworks that have emerged and rapidly gained
mainstream adoption. It is a further goal to alter the presentation of this architecture into a
format that is simple, actionable, and provides tailored feedback to readers in roles varying
from executives to developers.

1.3 The Future of Government
Over the last 25 years, information technology (IT) has had a tremendous influence on how
large organizations operate. It has acted as both a “conduit” allowing disparate processes
to interconnect and as an “enabler” allowing both new and old business processes to
operate at never before seen speeds, scales, and efficiencies. The Federal government has
been a particular beneficiary of IT, with almost all agencies implementing systems that have
improved their ability to execute internal business processes. The evolution to an “e-
enabled” government has progressed to the point where business processes not supported
by IT systems are rare, and IT departments focus more on system improvements than new
implementations.

The Federal Government is now advancing to the next stage of the “e-government”
evolution in two ways:

• moving from government-centricity to customer-centricity, and
• moving from rigid business processes to agile business processes.

Today many government IT systems are traditional, pre-IT business processes translated into
an IT format. Further, they focus only on the needs of the particular agency or program they
are intended to support. The move to customer-centricity recognizes that in the view of
citizens the Federal government is a single organization. At the discretion of the citizen,

information given to one agency should be
made available to all. If a process is e-
enabled at one agency then it should be e-
enabled at all agencies. While statutes and
regulations do limit how much information
can be shared – these limits are not
common, and the potential benefits in
improved speed and quality of service are
substantial. The vision of customer-centricity
is for no citizen to have to go to more than
one location to accomplish a task or have

to enter data twice.

The increased speed and scale of IT-enabled processes has been met with a proportional
increase in the demand to modify processes to meet changing conditions. IT has
accelerated the speed at which citizens, businesses, and organizations both operate and
change. As more integrated government solutions evolve, citizens' expectations of
government services rise. Government needs to be able to respond at an equivalently
accelerated rate. Currently, most business processes cannot be altered without extensive
alterations to the IT systems that enable them. These alterations are both time consuming
and expensive, often taking months to complete. The vision of agile business processes is
that changes to existing business processes will only take days to execute.

The fundamental shift that will allow these visions to be realized is a move to Service
Component-Based Architecture (SCBA). Today, the IT industry has generally accepted
Service Oriented Architecture (SOA) as the most promising architectural approach to-date.

“The federal government can secure greater
services at lower costs through electronic
government (E-Government) and can meet
high public demand for E-Government
services. The goal is to champion citizen-
centered electronic government that will
result in a major improvement in the federal
government’s value to the citizen.”

The President’s Management Agenda

Services and Components-Based Architectures Version 3.5

 Page 1-3

SCBA complements traditional SOA approaches and is designed to provide an optimal,
long-term service-oriented approach aligned with the FEA that recognizes the value of
component-based service delivery. SCBA builds upon SOA in three key ways:

• it is tightly integrated with the Federal Enterprise Architecture,
• it provides a description of what the architecture is (a collection of services designed

and implemented to achieve an organization’s mission), and
• it identifies the organizational, cultural, and process elements, as well as

technological elements, that need to exist for these architectures to be successful.

SCBA also treats business processes and the IT systems in the same way, allowing both to be
reused across organizations. In order for a business process or technical system to be a
“Service Component,” and thus participate in the overall architecture, it must offer a well-
defined interface with well-defined functionality. These two characteristics represent the
minimum criteria needed for a business process or technical system to be reused. Service
Components are intended be a subset of the “components” defined in the FEA SRM. The
SRM does not require rigorous interface or functionality descriptions, only systems and
processes with these descriptions are both SRM Components and SCBA Service
Components. SCBA attempts to realize the potential of the SRM by requiring that business
processes and IT systems be designed or modified to make them easy to reuse. Later
sections of this document will describe SCBA in further detail.

1.4 The Value Proposition
Successful SCBAs will greatly enhance Federal agencies’ ability to accomplish their
fundamental mission of serving customers (e.g., citizens, other agencies, other levels of
government, and industries). SCBA, through its focus on both reuse and on the flexible
composition of Service Components into
specific solutions, delivers the vision of
agile business processes by reducing the
cost and time needed to make business
process changes. As business processes
change, the services supporting them
can be evolved or replaced. Since
business processes and IT systems can
be reused across organizations, costs for
development and maintenance of
similar systems at multiple agencies do
not need to be replicated. SCBA also
helps to achieve the customer-centricity
vision by focusing on the modeling of
both data and business processes from
a customer point of view. As an
example, SCBA could potentially speed
a government response to a major natural disaster. New benefits programs could be more
quickly deployed by reusing processes and IT services that support existing benefits
administration programs. Business processes and supporting IT systems could be more
quickly adapted to meet needs encountered personnel in the field.

Experience with component-based architectures has shown that reuse can be successful
when the reuse efforts focus on large-scale components in a collaborative environment that
includes system owners, capital planners, business leaders, and enterprise architects. SCBA
focuses on exactly this type of reuse.

“The President's Management Agenda and the
E-Government Act of 2002 identify the overall
goals for implementing E-Government: to
better perform government services, and at
lower cost. This SCBA paper lays out an
approach that can be used to help
accomplish both. While agencies are not
required to use the approach described in this
document, a services and components-based
approach is an essential piece of an agency's
target architecture. As such, SCBA is included
as a criteria in version 2.0 of the EA Assessment
used by FEA PMO to evaluate federal agency
EAs in 2006."

Dick Burk
Dir., Federal Enterprise Architecture Program, OMB

Services and Components Based Architectures Version 3.5

 Page 1-4

1.5 Current Initiatives and How They Support This Vision
SCBA is directly supported by many major current Federal initiatives. These include:

• Capital Planning and Investment Control (CPIC) and eCPIC: The OMB CPIC process
requires all Federal proposed IT projects be centrally evaluated and approved. Each
of these business cases should be evaluated to ensure that they are not duplicative,
and to look for reuse opportunities. Many agency business cases are accessible and
searchable through the eCPIC system. It specifically supports SCBA by providing a
mechanism by which initiatives can be evaluated to discover if they are duplicative
to other, pre-existing Service Components. eCPIC can be accessed at:
http://www.ecpic.gov/.

• Core.gov: The "Component Organization and Registration Environment," or

"Core.gov," is the central system for registering Service Components across the
Federal government. It provides a mechanism for the discovery of pre-existing
Service Components, publication of new ones, and collaboration over their use.
CORE.gov also incorporates a vetted submission process for reviewing and
approving components. It supports SCBA by facilitating Service Component
discovery. Core.gov can be accessed at: https://www.core.gov/

• e-Government Act of 2002: The goal of the e-Government Act of 2002 is to enhance

the management and promotion of electronic Government services and processes.
It establishes a broad framework of measures that require using Internet-based
information technology to enhance citizen access to Government information and
services. A copy of this act is available at http://thomas.loc.gov/cgi-
bin/query/z?c107:H.R.2458.ENR:

• FEA Assessment 2.0: The Federal Enterprise Architecture Program Management

Office (FEAPMO) has created version 2.0 of the federal EA Assessment Framework.
This framework serves as the basis for EA maturity assessments performed by OMB. It
helps OMB and agencies assess how well EA programs guide and inform IT
investments in support of agency strategic objectives. SCBA is related to several
specific criteria in the framework’s capability areas and outlines an approach that
can be used to achieve the outcomes identified in the assessment. The assessment
criterion with the most obvious relationship is 'Service Component Architecture'
(section 1.3.4 in the assessment), within the 'Completion' area. The higher levels of
maturity (levels 4 and 5) for this criterion require outcomes that are addressed by
SCBA. These specifically require: 1) the existence of a target Service Component
architecture, 2) that agency SDLC and CPIC processes address the standardization
and reuse of components, 3) that Service Components are monitored, and 4) that
Service Component reuse be measured. A copy of the FEA Assessment is available
at http://www.whitehouse.gov/omb/egov/a-2-EAAssessment.html.

• Federal Enterprise Architecture (FEA): The FEA is a business-driven framework
designed to facilitate government-wide improvement. It provides a framework to
categorize and classify IT investments to support the identification and discovery of
re-usable assets. The five FEA reference models (BRM, SRM, DRM, PRM, TRM) directly
support the development of a service-oriented architecture. More information on
the FEA is available at: http://www.egov.gov

• Federal Enterprise Architecture Management System (FEAMS): is a web-enabled

system that provides agencies with access to government-wide initiatives aligned to
the FEA. The objective of FEAMS is to promote sharing of information about

Services and Components-Based Architectures Version 3.5

 Page 1-5

approved IT investments among federal agencies to identify opportunities for cross-
agency collaboration and reuse. More information on FEAMS is available at:
http://www.feams.gov

• FirstGov: FirstGov is an enterprise portal that provides a common web interface for

the discovery of all Federal citizen-centric IT systems and services. FirstGov directly
implements the vision of customer-centricity and is a very public example of reuse in
action. FirstGov can be accessed at: http://www.firstgov.gov/

• Presidents Management Agenda (PMA): The President’s e-Government Strategy has

identified several high return government-wide initiatives to integrate agency
operations and information technology investments. The goal of these initiatives is to
eliminate redundant systems and significantly improve the government’s quality of
service. SCBA directly supports these goals. A copy of the PMA is available at
http://www.whitehouse.gov/omb/budintegration/pma_index.html.

Services and Components Based Architectures Version 3.5

 Page 1-6

2 Services, Components and Architecture
To achieve the vision described in the previous section, significant business, process and
technology changes are required. In this section, we present an overview of the basic
concepts that provide the foundation for these changes. In some ways, the changes are
profound; in other ways, the changes are part of a natural evolution.

2.1 The Evolution of Systems Development – Increasing Abstraction
Since the beginning of software systems development, progress has been measured in terms
of increasing levels of abstraction. The concept of abstraction is similar to that of modeling
in that it presents a simplified view of something – depicting only the relevant aspects and
ignoring unimportant detail. However, in abstraction, there is a conscious effort to generalize
as you simplify, resulting in solutions applicable to a broader scope than the problem
analyzed and more suitable for reuse in similar problem spaces across a broader range of
domains. The concrete result of abstraction in software development is a reduction in the
number of “lines of code” required to accomplish a given task – each line of code
accomplishes a greater amount of work. For each major advance in software
development, a significant decrease in the lines of code was achieved.

Figure 2 shows the evolution of reuse in software development. From the 1970s through the
1980s software development progressed from “machine language” to assembly language,
to higher level, compiled languages (known as 3rd generation languages) to 4th generation
languages and CASE tools (computer assisted software engineering), the level of abstraction
increased dramatically. These gains were due to abstraction applied within the languages
and tools used to develop software, thereby resulting in order-of-magnitude increases in
software developer productivity.

In the mid-90s, an additional development emerged: component based development
(CBD). CBD takes the concept of abstraction in a new direction. Rather than reducing lines
of code, CBD separates various aspects of the functionality into isolated units that can be
produced and managed independently of the other aspects. This again allows a developer
or consumer of the functionality to deal with one aspect at a time – ignoring the other
aspects. In a component-based architecture the various aspects are organized into layers,
most commonly: presentation, orchestration, business logic, data management, security,
and infrastructure.

Service-oriented architecture represents a generalization of the component model by
dealing directly with what is offered, rather than how it is packaged. The tiered architecture
enables components to be easily incorporated in solution architectures. The evolution of
services standards (e.g., WSDL, UDDI, and SOAP) and the maturity of distributed computing
architectures (e.g., Java Enterprise Edition and .Net) have enabled "single-copy reuse" via
shared services. Thus, SOA is a tiered framework that empowers solution developers to
employ abstraction techniques, at all architectural tiers, without having to struggle with
many of the interoperability and multiple implementation challenges faced by previous
generations of reuse proponents. The future of software development will likely consist of
complete assembly of applications from services and components – often referred to as
“true software manufacturing.”

Services and Components-Based Architectures Version 3.5

 Page 1-7

Figure 2 - Evolution of Reuse in Software Development

2.2 Components and Services
Most mature industries eventually evolve to a component-oriented paradigm. For example,
the automobile industry uses components (also known as modules or assemblies) to
manufacture cars. In fact, the final production stage is known as “assembly.” In the housing
construction industry, the same phenomenon is present: roofs are created from trusses;
window and door assemblies are pre-manufactured and installed on site. Even the personal
computer (PC) hardware industry relies on a component approach, which permits the
upgrading of individual pieces of the PC without affecting the rest of the computer. The
component approach is effective and efficient – both from the design and production
perspective as well as the consumption perspective. For example, it is usually more efficient
to design an engine management component for many car models than to design a new
one for each model. In addition, assembling components to produce cars is more efficient
than handcrafting automobiles.

2.2.1 Components
The software industry has tried to emulate this approach, but until recently the industry
standards to enable it did not exist. About a decade ago, the component based
development (CBD) movement began to create standards to apply in specific cases, but
the standards were not sufficiently broad to enable widespread adoption of the approach.
More recently, the technology and standards have matured to the point that CBD is a viable
and common way to develop software applications in the commercial world.

Software components are units of software that provide business or technical functionality.
These units are independently deployable; that is, they are self-contained and can be
deployed virtually anywhere on the network. Business components execute business logic,
enforce business rules, and manage corporate data. Technical components provide the
platform or infrastructure capabilities that the business components rely on such as
messaging, error handling, security, etc.

Software components are the reusable building blocks for application development. A
software component typically consists of: (1) a specification (process and data model
representing the user or consumer’s view) that defines what the component does, (2) an
implementation which is the internal design for the component, (3) an executable (run-time)
module that gets deployed, (4) one or more interfaces that provide access to the
component’s functionality. The key concept behind components is that the implementation
is hidden behind the interface – the consumer of the component does not need to know the
details of the implementation to exploit the capabilities offered. Thus, in general

Services and Components Based Architectures Version 3.5

 Page 1-8

components are an approach to provisioning capabilities that are highly flexible.
Component-based reuse is illustrated in Figure 3.

Figure 3 - Illustration of Component-Based Reuse

Application A
eAuthentication

Component Application B
eAuthentication

Component

Application C
eAuthentication

Component

eAuthentication
Data Source

2.2.2 Services
Services are focused on satisfying business or technical requirements based on a
provider/consumer model. Services represent a broader concept than components. They are
the activities executed in response to a request (or an event) in order to deliver some result.
Both concepts employ the notion of an interface that defines the set of activities (or services)
offered. However, whereas all components offer functionality as services, not all services are
implemented as components. Figure 4 illustrates the distinction between services and
components – services are driven from business requirements, whereas components are a
method of providing services. For example, one way to implement a service is to put an
interface on some legacy functionality. The legacy system may be very unstructured (and not
divided into independent components), yet the interface may offer the services required by
other and new applications. As discussed in the roadmap section below, creating interfaces to
access services from legacy systems is one common way to begin to implement an SOA.

Figure 4 - Differences between Services and Components

Services and components enable reuse, although with slightly different twists. Components
are typically designed to be redeployed or integrated into multiple different applications. In
fact, commercial-off-the-shelf (COTS) components are typically licensed to be embedded in
applications. Reuse is achieved by producing multiple instances of the component and
building them into applications. Services can be exploited in this way, but also offer the
possibility of shared-services – running a single instance of a service that can be called by
other applications across the network, as shown in Figure 5.

Business
Process

Requirements
Services Components

Solution
Delivery

Life Cycle

Consumption Provisioning

Services and Components-Based Architectures Version 3.5

 Page 1-9

An important additional concept is service discovery, or the ability to find (either manually
at design-time or automatically at run-time) and access existing services. Many
technologies exist today that enable this, and a coordinated strategy for identifying and
categorizing services across the enterprise is critical. In the Federal government, the FEA
provides the first step in implementing this strategy. Since services may be thought of as an
abstraction of components, it is not too difficult to consider them both when describing
reusable government-wide assets.

Figure 5 - Illustration of Service-Based Reuse

Application A

Application B

Application C

eAuthentication
Data Source

eAuthentication
Service

2.3 The Role of Architecture
There are many approaches to architecture. One approach that has generated a great
deal of recent industry attention and business benefit is SOA. Although there is some
confusion about what exactly SOA is, the main thing to keep in focus is that SOA is
architecture. That is, SOA is an architectural approach to understanding and modeling a
business, as well as an approach to implementing the capabilities to satisfy the business
requirements. SOA is a layered architecture with services defined at the
business/application-specific, common business capabilities, infrastructure, and platform
levels. This layered approach allows services to be consumed in multiple contexts and allows
services to consume lower level services. This layered architecture provides the greatest
potential for reuse and flexibility. The ability to manage service dependencies by using the
layered approach is critical to achieving agility for service-based applications. The
applications that are created using the SOA approach are often referred to as “composite
applications” – they are assembled, or composed, from services and the services can be
replaced to change the characteristics of the application. This is conceptually similar to the
reuse of identical parts by automobile-manufacturers across several car-models.

Note that SOA is often confused with web services. Web services represent one popular
implementation approach for services, but not the only approach. Web services will be
discussed in more detail in "Chapter 8 – Service Production, Discovery, and Consumption."

Services and Components Based Architectures Version 3.5

 Page 1-10

3 What Needs to Change
To fully embrace the goals and objectives of Service Component reuse, several strategies
and supporting departmental programs need to evolve. Reuse needs to be built into every
facet of the system development and integration processes. These include Enterprise
Architecture, Portfolio Management, Performance Management, Capital Planning, and
Cyber Security. Without these changes, missions and programs will continue to struggle to
discover re-usable Service Components and negate the ultimate value proposition. This
document briefly describes several areas that need to change and evolve.

3.1 Strategic Changes
First and foremost, organizations need to rethink architecture efforts to include Enterprise
Architecture (EA) in the context of reuse and enabling processes and services within the
Federal government. Future architectures need to be actionable, discoverable, and
consumable while driving efficiency, cost reduction, ROI and the elimination of duplicative
systems. This strategy corresponds with OMB direction and is one of the primary reasons the
FEA was developed. Reuse should be considered as an overarching strategy as opposed to
the outcome of an effective architecture, solution, or product. Creating and embracing
such a strategy will require organizations to make the following specific changes:

• redesign business and transaction models so that they are based on collaborating
services instead of silo applications,

• accommodate reuse both within and outside the immediate organization,
• embrace cross-organization collaboration (vs. enabling duplication),
• remove the barriers that create stove-pipes and build a culture that rewards and

motivates reuse,
• strive to achieve true assembly by eliminating as much custom coding as possible in

the development and deployment of applications, and
• create and leverage architectural patterns that offer the “best of breed” Service

Components.

This strategy will require organizations to balance a top-down (Strategic) and bottom-up
(Technical) approach that blends and integrates business and process demands with the
availability of re-usable components, services, and IT in general. Organizations should
consider how Service Components are produced and how they can ultimately be
discovered and consumed – as well as what service-level agreements will be required to
support their use. Finally, it is important to remember that SOA’s are not produced by a
specific vendor, hardware, or software product. Re-usable strategies embrace standards
and interoperability, and are founded on the concept of “loosely” coupled services that
increase the agility and flexibility of IT.

3.2 Policy and Organizational Process Changes
To support an overarching reuse strategy, organizations will need to evolve their traditional
investment, architecture, and systems development processes. Some of these processes are
listed below along with brief recommendations as to change concepts and industry
patterns:

Acquisition and Procurement Process – enabling the reuse of Service Components should
stimulate changes to acquisition and procurement processes in several areas. First, incentive
programs should be created to encourage vendors and contractors to produce reusable
Service Components. Service Components provide a mechanism to take advantage of
existing shared-cost savings incentives programs, but these programs should be modified to
make this explicit. They should be further modified to indicate that cross-vendor

Services and Components-Based Architectures Version 3.5

 Page 1-11

collaboration on the production and use of Service Components provides a mechanism for
further shared cost savings benefits (i.e., through “win-win-win” based incentives). Second,
RFI, RFP, or RFQ processes should change to embrace reuse (e.g., by integrating reuse
concepts into questionnaires and decision criteria). Possible questions to add to decision
criteria include:

• Does a vendor or contractor’s technical approach embrace re-usability?
• Can the requirements for this project support any other organizations?
• Will the outcome result in new Service Components that can be registered in

Core.Gov?

Third, incentive programs should also be put in place to reward government program
managers who succeed in encouraging reuse through Service Component based
acquisition. Finally, procurement guidelines for vendor or contractor organizational conflict
of interest should be reviewed relative to future procurements that may be required to
leverage a Service Component that had been previously produced and registered as a
reusable Service Component.

Capital Planning and Investment Control (CPIC) – traditional CPIC processes require
organizations to select, control, and evaluate an investment. While these processes are still
valid when embracing a reuse strategy, they will need to be supplemented with discovery

and Service Level Agreement (SLA)
management functions. For instance,
prior to the select and control processes,
organizations will need to discover what
components and services are available
within and outside the enterprise. Doing
so will require changes to investment
processes so that investment managers
can better assess the applicability of a
service or component relative to the
demands of the program or mission.
Moreover, key new questions should be
asked: can these services be consumed
by my business process? What is the
service level agreement that governs its
use and reliability? What is the net
benefit of leveraging a service as
opposed to building my own? Control
and evaluate process will need to
evaluate these SLAs to ensure they meet
the existing demand of the process and
are prepared to scale in the event of
growth or expansion.

Solution Development Life Cycle (SDLC)
– traditional SDLC processes were
created to manage and govern the life-
cycle of major systems development.
They begin with the system requirements

and end with the retirement or sun-setting of the system or application. This life-cycle is
typically managed within the bounds of a specific organization and does not extend outside
the immediate domain. Future SDLCs will need to embrace the discovery of services or
components relative to the requirements and demands of the business need. This step will

Service components in the DHS Enterprise
Architecture

The Homeland Security EA incorporates a set of
business service definitions (component
capabilities) as part of the Target Architecture.
These Service Components are derived in a top-
down manner by clustering the elements in the
target business and data architectures based on
their interaction. This is possible because the
business and data architectures are identified using
a technique known as “parallel decomposition.”

The EA Service Components are reusable building
blocks for the development of “composite
applications” – combinations of capabilities specific
to an individual user role. The Service Components
are assigned to portfolios so that the development
or provisioning of the services can be managed on
behalf of the entire Department. The result is a set of
Service Components within an adaptable
architecture. The benefit of this approach is that
the applications that support business processes
can easily be modified to reflect changes in the
business processes themselves. In addition, the
Service Components can be reused by programs
across the Department, resulting in better
interoperability, consistency, and cost savings.

Services and Components Based Architectures Version 3.5

 Page 1-12

likely occur prior to the design and development activities to enable developers to
incorporate Service Components into the design of the system, as opposed to adding them
on at the end of implementation. Further, when developing or planning to reuse
components or services, a Service Component life cycle will be required that allows an
organization to effectively plan reuse, develop reusable assets, publish the components or
services to a local or government-wide registry and manage them relative to the defined
SLA and consumption patterns. Finally, in order to avoid interrupting dependant processes
and systems, services require robust processes governing ongoing maintenance and
change management. It is especially important to track who the users of service are in order
to gather requirements and perspectives for modifications and fixes.

Enterprise Architecture (EA) – the SCBA strategy will influence virtually all layers of the EA with
the greatest impacts on the Application and Technology layers. While baseline (as-is)
architectures will not be significantly affected, organizations need to ensure that their target
architectures reflect a service-based approach. Traditionally, EAs are a collection or
repository of interrelated layers of business processes, applications, business information, and
technical data. EAs include layers describing producers of services (e.g., business
processes), and linkages into government-wide registries (e.g., FEAMS) that publish this
information. Going forward, architectural elements should be tightly integrated into capital
planning and economic processes so that true EA analytics can be performed on the
viability and feasibility of reuse, as well as the costs and benefits of doing so. Best practice
frameworks will emerge (e.g., CRM, PRM, and other Service Components in the FEA-SRM)
and will be overlaid on existing EAs to assess gaps, redundancy in applications, and
interoperability issues and constraints. Finally, although it is critical to have an overall target
architecture, it is equally critical that organizations have an actionable and realistic transition
strategy, complete with a sequencing plan.

Governance – the production, discovery, and consumption of services and components will
require new policies and processes that promote and ensure compliance with reuse, service
level agreements, security, and interoperability standards. Organizations will need to publish
proposal processes and standards by which industry can adapt to the changing dynamics
of an agile business. Design conventions must emphasize interoperability, standards
compliance, and review processes. Coupled with CPIC, organizations will need to assess
whether components and services are already in existence before starting development
programs. Finally, business process registries will emerge and governance procedures will
guide the posting, use and attributes of consumable components and services.

IT Tasking – traditional IT tasking is system centric, generally awarding Systems Development,
Systems Redesign, and Systems Maintenance tasks to contractors. This is a fundamental
driver for the "stove-pipe" architectures observed today throughout federal government
architectures. To enable SCBA, agencies will have to transform their IT tasking from a system-
centric to a component-centric model. To fully realize the enterprise-wide potential of SCBA,
organizations will need to establish teams that are responsible for providing services to
multiple applications. This component-based tasking model will require agencies recognize
the value of separating traditional systems tasking into at least two types: one for establishing
“Component Service Provider” teams and another for establishing “Application Assembly
teams.” Providers would then focus on consolidating data and existing systems into
enterprise components that offer all the services required by the Application Assembly teams
as they work to automate business processes.

Cyber Security – security processes focus on ensuring the validity, timeliness, and distribution
of information, and on authenticating and authorizing users. SCBA complicates these tasks
by distributing information over a greater number of systems, and potentially exposing
information to an inter-agency user population. Security processes, policies, and

Services and Components-Based Architectures Version 3.5

 Page 1-13

infrastructure will need to support these changes. Security techniques such as "chains-of-
authority," distributed user-authentication systems, shared credentials, and information-use
policies can all be used to ensure security in service-oriented systems.

By combining strategic, policy, and organizational changes with architectures that are
designed for reuse, the vision of agile and citizen-centric business processes can be realized.
SCBA is such an architecture.

Services and Components Based Architectures Version 3.5

 Page 1-14

Example – Project Reuse Quotient
It is a best practice to collect metrics to track and control
process performance. In a similar manner, the degree to which
a project reuses components may be measured and controlled
by a “reuse metric.” This simple metric is defined in Figure 6.
Values close to zero represent low reuse; values equal to one or
above represent high reuse. Reuse quotients below a threshold
should trigger additional project reviews. The metrics serves the
dual goals of tracking the organization’s progress towards
greater reuse, and driving desired behaviors.

Figure 6 - Project Reuse Quotient

This metric purposefully neglects many factors that can affect
reuse levels, such as uniqueness of requirements, mission
criticality, and the scope of services. Accounting for these
factors would lead to an overly complex metric, which would
detract from this measure being easy-to-compute, track, and
use. Projects that have low reuse levels for good reasons should
simply note those reasons when submitting their reuse quotient.
Not all projects should have a high reuse quotient – the specific
program and mission goals involved must be taken into account
when setting goals and targets. See Appendix C for several
examples of how to compute reuse quotients.

4 Enabling Reuse of Services and Components
Achieving successful reuse involves more than simply architecting systems a certain way. It
involves integrating reuse into all aspects of how an enterprise operates. Successful reuse
programs share many common characteristics, and these are incorporated into SCBA.
These characteristics are grouped into five categories:

• culture that actively encourages and rewards reuse,
• designs for processes and systems that assume they will be reused,
• tools that enable the discovery and tracking of reusable assets,
• infrastructure that supports sharing of reusable assets, and
• processes and policies to ensure reusable assets are harvested, shared, and reused.

Each of these are further expanded and explained in the following sections, as well as issues
commonly encountered when executing reuse strategies.

4.1 Processes and Policies for Reuse
All mature organizations have a documented system or solution development process,
commonly referred to as a "System Development Lifecycle (SDLC)" that governs how systems
are created and modified. Whatever form of SDLC or software development methodology

that exists within an
organization (waterfall,
Rational Unified Process
(RUP), Agile, Extreme, other)
reuse should be examined
during each phase. During
proposal phases, the entire
process or system should be
compared against other
existing processes and
solutions to determine what
Service Components might
be reused in the solution.
During the architecture and
design phases, any Service
Components being newly
developed should be
reviewed to ensure they take
potential reuse into account.
During implementation, any
modifications planned to a
reused Service Component
should be done in such a
way as to make them easy to
republish to all other users of
the Service Component.
During maintenance phases,
any reused Service
Components should be
reviewed to determine if

updated versions of those Service Components have been published, and consideration
should be given to incorporating those updates.

Services and Components-Based Architectures Version 3.5

 Page 1-15

During all phases, decision makers should challenge any decision to develop new processes
or systems. New systems and processes will always need to be developed, and the decision
to do so is often well justified. However, virtually all processes and systems have elements
that have been developed before.

Finally, a process for tracking and supporting other organizations that are utilizing Service
Components should be put into place.

4.2 Design for Reuse
Industry research has documented that designing an asset so that it can be easily reused
usually adds up to 50%† to its overall cost. Research also shows that successful reuse can
save a project 25-30% in its development costs‡. Given these economics, even if a Service
Component is reused only a few times, the return on this investment is realized. Designing for
wide-scale reuse involves five basic principles:

• generalizing functionality for broader applicability,
• creating well defined interfaces,
• loose-coupling,
• ensuring well documented functionality, and
• using cross-platform technologies (if developing a system).

For a system or process to be reused, well-defined interfaces are critical. All systems and
processes have various “entry” and “exit” points. A well-defined interface encapsulates one

set of these entry and exit points into a
format that can be easily understood and
accessed by a third party. This involves
making sure that the data, steps needed
to access some functionality are
documented, and a mechanism for
initiating an action is exposed in an
accessible way.

Closely connected with this, a consumer
can only realistically reuse a system or
process if what the system or process does
is well documented. SCBA calls for all
Service Components to provide written
documentation that describes what
functionality the Service Component
offers, a basic summary of how it
accomplishes that functionality (process
flow, algorithm, etc), and exposure of all
internal details (such as source-code –
where not feasible for legal or security
reasons). This documentation should be
publicly available via a web site, kept
under version control, and should be

easily accessible from the same system that publishes the existence of Service Component.

† Measuring Software Reuse, Jeffrey S. Poulin, 1996

‡ “Asset Based Software Engineering” Charles M. Stack, Flashline, Inc.

The GovBenefits Rules Engine – An Example
of Design for Reuse

While creating the “GovBenefits” benefits search
system in 2003, the Department of Labor had
specific requirements to ensure that the “rules”
that determine whether a user is a candidate for
a particular benefit be easily changeable. The
development team responded to the
requirement by creating a generic “rules engine”
that allowed a wide variety of business rules to be
expressed. The development team went further,
though, by designing the rules engine as a
reusable component. This investment paid off
when, in 2004, the Department of Energy created
the “GovLoans” system, which reused this
functionality. This reuse saved the Department
and its partner agencies an estimated 50% on the
overall development costs of the system.

More information on GovBenefits and GovLoans
can be found at http://www.govbenefits.gov and
http://www.govloans.gov.

Services and Components Based Architectures Version 3.5

 Page 1-16

If the Service Component being designed is an IT system, its interfaces should be packaged
in way that is accessible via multiple technical architectures. A proliferation of technical
architectures exists today, and will probably exist for the near to distant future. However, a
key recent development is the penetration and acceptance of technologies, specifically
web services, which allow functionality to be easily exposed and consumed. While
technologies such as “Remote Procedure Call (RPC)” and “Common Object Request Broker
Architecture (CORBA)” have existed for many years, the availability of web services on
virtually all computing platforms, combined with many tools facilitating there use, finally
make practical the concept of reuse across architectures.

Finally, Service Components should also be designed in such a way as to allow for easy re-
configuration of its behavior to suit specific users. For IT systems, this usually entails allowing
parameters that will reasonably vary from consumer to consumer (e.g., interest rates, tax
levels, security permissions) to be changed easily (e.g., through API calls).

4.3 Tools for Reuse – Registries, Repositories, and the SRM
To reuse something, a consumer must know that it exists. Registries are databases that allow
a potential Service Component consumer to search known Service Components and review
the functionality that they offer. Repositories are alternate tools that offer the search
capabilities of registries, but go further by actually containing copies of the Service
Components themselves. Due to the difficulty in designing a repository that can account for
all the various forms a Service Component can take, registries are a best practice for most
industry reuse efforts. Core.gov is the Federal Service Component registry, and is where all
SCBA Service Components may be registered.

The SRM is another important tool for helping to discover components. It is a business-
function independent framework for classifying Service Components across the federal
government. It divides all Service Components into commonly defined “service domain,”
“service type,” and “component” categories. These categories indicate the capabilities
that the Service Component offers. All federal agencies are required to align their EAs to the
SRM, making it a powerful tool for discovering reuse opportunities. The EAs of all Federal
Agencies can be searched via FEAMS, providing a mechanism for finding potential
consumers or sources of Service Components and search mechanisms exist within Core.Gov
to find SRM mapped Service Components that have been registered and approved.

4.4 A Reuse Infrastructure – The Enterprise Service Bus – Example
Fundamentally, a SCBA is a collection of loosely coupled Service Components collaborating
to accomplish business objectives. “Loosely coupled” means that the Service Components
can be individually modified without affecting the functionality of the services that they
expose to other Service Components. This is a critical characteristic core to accomplishing
the vision of agile business processes. It allows elements not only to be reused but also to
evolve over time without breaking.

The Service Components collaborate by exchanging information primarily via asynchronous
messages. Asynchronous messaging is a mature and highly scalable technology that exists
on almost all technology platforms. Where a SCBA is different from traditional Message
Orient Middleware (MOM) is the existence of an Enterprise Service Bus, or “ESB”. An ESB is
similar to a MOM broker, but takes on the additional responsibility of translating, routing, and
delivering messages from service to service. These additional steps place these
responsibilities outside the scope of the Service Components, and further the goal of
keeping all Service Components loosely coupled. The role of the ESB in SCBA is shown in
Figure 7.

Services and Components-Based Architectures Version 3.5

 Page 1-17

Figure 7 - Enterprise Service Bus (ESB)

While an ESB may seem relevant only to technical components – it is also critical to the reuse
of processes. All Service Components, whether technical or business, need to establish well-
defined interfaces. The ESB is the mechanism by which these interfaces are exposed.

4.5 A Culture of Reuse
The final, and most important, aspect of all successful reuse programs is a culture that
actively encourages and rewards reuse. Processes, tools, and design create the basics of an
environment that allows reuse. However, reuse efforts will only succeed if an organization’s
culture is transformed such that “reuse” is the first thought individuals have when faced with
a problem. Beyond setting up the basic processes and tools, a reuse culture has two main
requirements:

• senior leadership support, and
• a rewards system.

Senior leaders must champion reuse by expecting that assets be reused, recognizing
projects and individuals that successfully reuse assets or publish them, and by making reuse a
priority. Rewarding individuals and projects who successfully publish Service Components or
have high reuse rates helps to accelerate this cultural change. A common commercial
technique for accomplishing this is to set up a monetary reward for Service Component
producers that pays a bonus to the producer every time their Service Component is
successfully reused. A parallel reward for projects with a high reuse quotient is another
common technique. While a monetary award may not be a feasible option in a
government setting, a rewards system of some type can be created. Finally, all of the
elements of the reuse program must be communicated to all stakeholders through a
communications plan.

Service Component AService Component A Service Component BService Component B Service Component NService Component N

A
synchronous
M

essage

A
synchronous
M

essage

A
synchronous
M

essage

Enterprise Service Bus (ESB)Enterprise Service Bus (ESB)

Service
Discovery

Message
Translation

Message
Routing

Message
Delivery

Services and Components Based Architectures Version 3.5

 Page 1-18

4.6 Governance and Responsibility Issues
Individuals have many common questions when considering reusing an asset from another
organization. These issues can be addressed by documenting the commitments that the
Service Component producer has made. Creating documents, called service level
agreements (SLAs), should be a core part of the component publication process.

Common questions, and how they are addressed by SLAs, are indicated in Table 1.

Table 1 - Common Questions Around Reuse

REUSE QUESTIONS RESPONSES

“How do I know that a Service
Component will continue to be
supported?”

All Service Components should have an SLA that specifically
documents the support commitments that a Service
Component provider has agreed to. Additionally, several
best practices should be used in these agreements to help
ensure ongoing support:

• cost-sharing arrangements between the consuming
and providing organizations help to ensure resources
are allocated on an ongoing basis,

• provisions to grant “ownership” of the Service
Component to the consumers if the sponsor is unable
to meet the commitments indicated in the SLA,

• if the Service Component is an IT system, publication of
the source-code for the Service Component to the
consumer, so that (failing other options) the consuming
organization could support the Service Component
itself.

“What do I do if I need
modifications?”

This is another area that should be covered by the Service
Component’s SLA. Two general models exist for handling
modifications:

• Central Control: under this model the Service
Component provider makes all modifications, and the
SLA documents the general schedule and procedure
for requesting modification. A best practice is to have
special procedures for handling emergency changes.
This model provides clear lines of authority and easy to
follow procedures for modifications, but can be slow.

• Open Source: under this model the Service Component
provider or any consumer can make a modification to
the Service Component, and then have that update
appear in the next tested release of the Service
Component. This model is less structured, but can be
much more rapid and responsive to the needs of the
consumers.

Services and Components-Based Architectures Version 3.5

 Page 1-19

REUSE QUESTIONS RESPONSES

“Am I allowed to use this in my
organization?”

This question is partially answered by the Service
Component’s SLA, and partially answered by the potential
consumer’s organization. The SLA should document any
restrictions that exist on reusing this component in other
organizations. The consumer’s organization should clearly
document in its reuse policy any restrictions that exist within
the organization, and any procedures necessary to getting
approval to reuse something.

“Are there any fees associated
with using this?”

The SLA for the Service Component should clearly
document any fees associated with use of the Service
Component. Additionally, if the consumer plans to use the
Service Component on a large scale, discussions should be
held between the consumer and provider to determine if
any impacts to the provider’s cost structure will occur.

“This Service Component contains
COTS software – does its license
agreement allow me to use it?”

The SLA for the Service Component should clearly define
any restrictions stemming from commercial license
agreements. When a Service Component is offered for
general use consideration should be given to renegotiating
license agreements to facilitate cross-department and
cross-agency use.

“Can’t I just write this myself? It’ll
be quicker and less problematic,
and besides, my requirements are
unique.”

Industry research has proven the value of reusing quality
assets over re-creating them. The value derived from this
reuse is proportional to the size and scope of what is being
reused.

In addition, although all organizations have different
requirements, these differences are usually small enough
that either adapting the requirements to what is available,
or making small modifications to the Service Component is
a superior solution to developing something new. In
addition, if the Service Component is modified the
advantages of these improvements can be potentially
extended to all users.

"Who is responsible for funding the
service component?"

The SLA for the service component should clearly lay out
the responsibilities for funding maintenance and support
costs. Larger scale reuse is best supported by cost-sharing
schemes, and smaller scale by allocations.

Services and Components Based Architectures Version 3.5

 Page 1-20

5 Implementation Strategies
Many possible strategies exist for implementing an SCBA – the following sections describe
some of the most common approaches. Implementation strategies can be grouped
according to their starting point: top-down, bottom-up, and middle-out. These three
approaches are not mutually exclusive and each will provide different benefits to different
SCBA stakeholders.

5.1 Top-Down
The “Top-Down” implementation strategy involves approaching SCBA from the master
blueprint of the organization – the Enterprise Architecture. This approach provides the
greatest long-term benefits because it takes a holistic view of the business processes and
services required by the organization. By developing the EA from a services perspective or
analyzing an existing EA at the BRM, SRM, and DRM levels to determine potential areas for
reuse and interoperability, the organization can begin to identify Service Components that
can be provided to meet a variety of requirements.

All elements that are in supporting roles and not reused should be the organization’s top
targets for reuse. Each of these elements should be intensively reviewed to determine if
equivalent elements are offered by other organizations. Elements that are core to the
mission of the organization should likewise be reviewed to determine if they are potential
candidates for reuse by other organizations, or if better alternatives exist within other
organizations. Based on these reviews, the target architecture of the organization should be
modified to replace appropriate elements with reused Service Components from other
organizations. Additionally, plans should be made to modify elements that can potentially
be reused into full reusable Service Components. Over time, reusable elements identified in
the EA should be consolidated into Service Components.

5.2 Bottom-Up
The “Bottom-Up” strategy involves creating a collection of reusable Service Components
that can be leveraged across the organization. In some cases, this will involve identifying
services offered by external organizations; in other cases, it will involve creating Service
Components from scratch or “fronting” existing functionality with an interface to create a
Service Component. The result of this approach is to build a repository of reusable Service
Components available to solution developers. This approach has the advantage of quick
execution (creation of common Service Components can begin immediately), although
without a well thought-out plan, the solution development projects may not be able to
exploit these services.

5.3 Middle-Out
The “Middle-Out” approach is systems-oriented. It involves adding Service
Componentization and examples such as the Enterprise Service Bus (ESB) integration tasks to
work ongoing or already scheduled for systems or processes. This “organic” approach allows
all elements in an organization to be modified as per the normal course of maintenance and
enhancements, and avoids special projects or capital investments (thus keeping
incremental costs low). The bottom-up approach can also be directed at reusable
functionality found in legacy systems that are still relevant to the organization, but which use
technical architectures different from the organization’s target enterprise architecture. The
technical gap between these systems and the target architecture can be bridged by the
cross-platform advantages of an SCBA. The middle-out approach has the additional

Services and Components-Based Architectures Version 3.5

 Page 1-21

advantage of gradually building organizational support for the architecture by allowing
small pilot projects to pioneer the involved techniques and technologies.

5.4 Choosing a Strategy
It is impractical for all systems and processes in an enterprise to be migrated to an SCBA
simultaneously – and so it is recommended that organizations move them in “waves.” Given
the natural alignment between SCBA and IT systems, it is best to start this migration with a
selected group of IT systems that are already undergoing modifications, or for which there is
a significant reuse demand. Alternately, “deep dives” can be done for high-priority business
lines that offer the most chance for benefit and optimization.

These approaches, while not mutually exclusive, are targeted at helping agencies
implement a SCBA. Each approach provides agencies with a "starting point" that should be
balanced with the maturity of technologies and processes within the agency. For instance,
agencies who embrace SCBA from a strategic perspective will likely choose a "Top-Down"
approach and bundle it into their EA and CPIC processes. Others, who elect to create ad-
hoc components and services for a specific business process, will follow the "Bottom-Up"
approach. Those who are interested in blending each of these approaches will likely choose
a "Middle-Out" approach. The “right” approach to choose is dependant on the conditions
within the agency.

Services and Components Based Architectures Version 3.5

 Page 1-22

6 Getting Started
Achieving the objectives of the service-oriented architecture approach is more of a journey
than a destination. Because of the pervasive changes required in thinking about software
applications and in the solution life cycle, it is important to set achievable goals for the short,
medium, and long term. In the early stages, the foundation must be laid and momentum
established that would carry over into the subsequent stages. This section addresses the
roadmap for service-based architectures and recommends some initial steps that can assist
in getting started§.

6.1 Implementation Framework
Several areas or work streams must be considered and kept in balance to make effective
progress in implementing an SCBA:

• Planning and management,
• Architecture (includes security),
• Infrastructure,
• Process, and
• Projects.

Planning and management - deals with determining the overall strategy for SCBA,
establishing the policies for coordinating the multiple activities and organizations involved,
creating the funding mechanisms for cross-program services, and implementing the
monitoring and reporting schemes to enable the services environment.

The architecture stream is concerned with developing the overall, layered service model,
defining the security framework, adopting architectural and design patterns, establishing the
set of semantics, and implementing the governance structure and guidelines.

The infrastructure stream is responsible for the technical platform that the service-based
applications rest on, including, the hosting platform, middleware for interoperability and
translation, workflow and business process management, development environment and
tools, and the asset management repositories and directories.

The process stream deals with the reuse initiative and the revisions necessary in the solutions
development life cycle (SDLC) to enable SCBA. The SDLC must be modified to incorporate
the “twin-track” development paradigm (recognizing that provisioning services and
assembling services into application solutions are two distinct process paths). It also
addresses business integration (services as business products), the certification and
publishing of services, the security and trust process, and the development of acquisition
guidelines and templates (language to incorporate into procurements that specifies a
services implantation).

The projects stream is responsible for the overall project master plan and the development of
service based project plan templates, project-scoping guidelines, guidelines for service
acquisition/provisioning decisions, and for the overall successful execution of the project.
The master project plan should describe the series of sub-projects that will help transition to
SCBA. Standard project types include service harvesting from legacy systems, provisioning
technical components and enterprise level services, and assembling services into
capabilities to meet business requirements.

§ This section borrows from the CBDi Forum report: “Web Services Roadmap: Guiding the Transition to Web Service
and SOA,” 2003.

Services and Components-Based Architectures Version 3.5

 Page 1-23

Table 2 presents a recommended set of activities for agencies to consider as they begin to
implement service and component architectures. All of these activities are important, but
some may be omitted based on the implementation approach selected (e.g., a “bottom-
up” approach may omit several activities in the “Planning and Management” stream).

Table 2 - "Getting Started" Strategies for SOA Areas

SOA STREAM RECOMMENDED STEPS FOR GETTING STARTED

Planning and
Management

• Establish overarching strategy to implement SCBA (based on federated
management)

• Define enterprise policies to guide programs/projects to provision and
consume services and assemble solutions

• Fund development of initial common services
• Establish governance activities, roles and responsibilities
• Establish metrics to measure the performance of all other streams
• Define roles and responsibilities and training requirements
• Include SCBA in target EA, and lay out SCBA project in the EA transition

strategy and sequencing plan

Architecture • Establish layered services model with phasing of common services
• Define security framework
• Establish initial governance structure

Infrastructure • Implement hosting platform and middleware services
• Establish repository/directory for asset management

Process • Update the SDLC to reflect services paradigm
• Establish reuse program (including incentives & rewards)
• Establish service certification and publishing process
• Develop acquisition guidelines and templates

Projects • Define series of 100-day projects to provision services and deliver
solutions

• Develop template project plans and scoping guidelines

As discussed above, what is important is to recognize that several areas must be evolved
simultaneously – a managed approach will accelerate the achievement of SCBA objectives
and produce measurable results.

6.2 Specific Steps for Getting Started
Several specific possible approaches exist for getting started with SCBA. These are illustrated
in, Figure 8 and described in the following sections.

Services and Components Based Architectures Version 3.5

 Page 1-24

Figure 8 – SCBA “Getting Starting” Approaches

6.2.1 Establish Basic Environment
Implementation of a SCBA is dependant on first ensuring that the organization has the basic
environment for SCBA described in section 4. This includes:

• senior leadership support,
• common, documented SDLC is used,
• integrating reuse reviews into the SDLC,
• tracking the reuse quotients of all projects,
• reuse policies and rewards program, and
• Service Component SLA process.

These are best accomplished by appointment of a “SCBA champion.” This individual should
report directly to the CIO, CTO or Chief Architect of the organization, and be charged with
establishing this environment in a given period of time.

6.2.2 Establish Enterprise Service Bus (ESB) – Example
After establishment of the environment, the process of modifying the architecture of existing
systems into an SCBA can begin. One approach is to establish an ESB, and to create
organization-wide standards requiring use of the ESB for new system development. When
using an ESB approach, a single ESB needs to be established by the organization to realize
an SCBA.

6.2.3 Migrate Systems to SCBA
The final goal after establishment of the environment is increasing the reuse quotients (see
page 1-12) of all processes and systems, and their integration into the ESB. Increasing reuse
quotients largely involves repacking potentially reusable systems and processes as Service
Components, and in taking advantage of existing Service Components.

Repackaging system functionality as Service Components is usually a straightforward IT
exercise, and involves the following steps:

• identifying what functionality is potentially of use to others,
• making sure that functionality is exposed through some interface,
• creating documentation describing the Service Component’s functionality, and
• registering the Service Component in Core.gov.

Services and Components-Based Architectures Version 3.5

 Page 1-25

Integration into the ESB and reuse can be greatly facilitated by exposing the interface to the
Service Component using web services technology. Web services technologies are a
collection of technologies that allow services to expose interfaces in ways that are
discoverable, network accessible, and cross-platform. By exposing interfaces in this way,
they will be usable in the widest variety of environments.

Repackaging processes as Service Components follows a similar procedure, but the
exposed interface may or may not be technology based. In fact, the processes may be
expressed using modeling tools.

Finally, integrate individual Service Components into the organization’s ESB. In most cases,
system interactions that had taken place via other technologies can be directly translated
to the ESB format. Process interactions without technology interfaces can also be moved to
the ESB by creating small “adapter” systems that allow those involved in the process to
exchange information using the ESB.

6.3 Case Studies
Examples often provide the best education on how to initiate new programs. Several
examples of successful reuse are given in Appendix D: Case Studies.

Services and Components Based Architectures Version 3.5

 Page 1-26

7 Conclusion
SCBA is a powerful architecture that combines the inter-organizational reuse of CBA, the
cross-organization reuse of the FEA, and the agility of SOA. Implementation of SCBA is
enabled by recent technological and architectural advancements that are rapidly gaining
industry acceptance, and are a practical approach to achieving the dual visions of agile
business processes and citizen centricity.

Government leaders should use the resources and guidance provided by the CIO Council,
FEA, and other government-wide efforts, as well as their own agency resources, to establish
service component reuse programs in their agencies. Service and component reuse
reduces costs and increases service quality when implemented effectively. Service
orientation takes reuse further by enabling business processes to be changed rapidly to
adapt to changing needs.

Further chapters in SCBA will provide further details on how to establish such programs (see
“Appendix B: Chapter Guide” for a list of these chapters).

Services and Components-Based Architectures Version 3.5

 Page 1-27

Appendix A: Glossary
Term Source Definition

Abstraction IEEE, 1983 A view of a problem that extracts the essential
information relevant to a particular purpose and ignores
the remainder of the information.

Application
Programmable
Interface (API)

Webopedia A set of routines, protocols, and tools for building
software applications. A good API makes it easier to
develop a program by providing all the building blocks.
A programmer puts the blocks together.

Architecture SCBA v2 Representation of the structure of a system that
describes the constituents of the system and how they
interact with each other.

Architecture,
Application

SCBA v2 Representation of an application and its parts, their inter-
relationships and functions.

Architecture,
Component

SCBA v2 Internal structure of a component described in terms of
partitioning and relationships between individual internal
units.

Certification A formal process for making certain that an individual is
qualified in terms of particular knowledge or skills, or that
and IT system or business process meets certain criteria.

Within the context of the FEA this refers to process buy
which a system or business process is identified as an
SCBA Service Component and listed in Core.gov.

Component SCBA v2 Independently deployable unit of software that exposes
its functionality through a set of services accessed via
well-defined interfaces. A component is based on a
component standard, is described by a specification,
and has an implementation. Components can be
assembled to create applications or larger-grained
components.

Component Based
Architecture (CBA)

CAF Glossary An architecture process that enables the design of
enterprise solutions using pre-manufactured
components. The focus of the architecture may be a
specific project or the entire enterprise. This architecture
provides a plan of what needs to be built and an
overview of what has been built already.

Component Based
Development
(CBD)

 Approach to software development that consists of
producing or acquiring components for assembly into
applications.

Component,
Business

IAC
Succeeding,
CAF Glossary

Component that offers business related services –
applying business rules and accessing business data.

Component, COTS A component supplied by a commercial vendor. See
“COTS”.

Services and Components Based Architectures Version 3.5

 Page 1-28

Term Source Definition

Component,
Enterprise

IAC
Succeeding

A large-grain business component. Typically consume
smaller grained components. Examples include
Customer Management, Case Tracking, etc.

Component,
Infrastructure

SCBA v2, CAF
Glossary

A technical component that provides application
functionality not related to traditional business
functionality (finance, accounting, human resources,
etc.), such as error/message handling, audit trails, or
security.

Component,
Notional

SCBA v2, CAF
Glossary

Set of services packaged into a component, derived
from requirements definition. A “desired” component,
prior to implementation.

Component, SRM Service
Component
Reference
Model, Version
1.0

A self-contained business process or service with
predetermined functionality that may be exposed
through a business or technology interface.

Component,
Technical

SCBA v2 Independently deployable unit of software that exposes
its functionality through a set of automated services
accessed via well-defined interfaces. A component is
based on a component standard, is described by a
specification, and has an implementation. Components
can be assembled to create applications or larger-
grained components.

Consumption,
Service

 The process of interfacing with an utilizing the
functionality of, and or providing functionality to, another
Service Component.

COTS Whatis.com COTS (commercial off-the-shelf) describes ready-made
products that can easily be obtained. The term is
sometimes used in military procurement specifications.

Coupling Coupling is a measure of the level of interdependency
between two components. “Loose Coupling” (low
interdependence) is good, as it maximizes system
flexibility. “Tight coupling” (high interdependence) is
bad, as it restricts system flexibility.

Design by
Contract

Meyer,
Bertrand (1997),
Object
Oriented
Software
Construction,
Prentice Hall,
Englewood
Cliffs, NJ, ISBN
0136291554

Design by Contract views the relationship between a
class and its clients as a formal agreement, expressing
each party’s rights and obligations. This precise and
largely immutable definition of every module’s claims
and responsibilities is seen as vital to developing large
software systems.

Services and Components-Based Architectures Version 3.5

 Page 1-29

Term Source Definition

Design Pattern See “Pattern”

Directory A type of database that stores information in a
hierarchical format.

Encapsulation SCBA v2 Hiding implementation details within a component so
that an implementation is not dependent on those
details.

Enterprise Service
Bus (ESB)

Bitpipe.com An enterprise integration architecture that allows
incremental integration driven by business requirements,
not technology limitations.

Enterprise
Architecture

CAF Glossary (A) means—‘‘(i) a strategic information asset base,
which defines the mission; ‘‘(ii) the information necessary
to perform the mission; ‘‘(iii) the technologies necessary
to perform the mission; and ‘‘(iv) the transitional
processes for implementing new technologies in
response to changing mission needs; and ‘‘(B) includes—
‘‘(i) a baseline architecture; ‘‘(ii) a target architecture;
and ‘‘(iii) a sequencing plan;

Extensibility SCBA v2 Ability to extend the capability of a component so that it
handles additional needs of a particular implementation.

Factoring The process of dividing a IT solution down into the
fundamental Service Components that will comprise that
solution.

FEA See "Federal Enterprise Architecture"

Federal Enterprise
Architecture

www.egov.gov
, FEA PMO
Action Plan

The Federal Enterprise Architecture is an Office of
Management and Budget initiative to comply with the
Clinger-Cohen Act and provide a common
methodology for information technology acquisition in
the U. S. federal government. It is designed to ease
sharing of information and resources across federal
agencies, reduce costs, and improve citizen services.

The FEA consists of a set of interrelated reference models
designed to facilitate cross-agency analysis and the
identification of duplicative investments, gaps, and
opportunities for collaboration within and across
agencies. These include the Performance Reference
Model, the Business Reference Model, the Service
Component Reference Model, the Data Reference
Model, and the Technical Reference Model.

Framework CAF Glossary A logical structure for classifying and organizing complex
information.

Services and Components Based Architectures Version 3.5

 Page 1-30

Term Source Definition

Gap-Fit Analysis SCBA, CAF
Glossary

1) Examination of components within the context of
requirements and to make a determination as to the
suitability of the component.
2) The difference between projected outcomes and
desired outcomes

Granularity The size of the service or component under
consideration. The term generally refers to the level of
detail or abstraction of the service.

Harvesting (1) The process of evaluating and organizations
businesses processes and IT assets in an effort to discover
Service Components

(2) The process of repacking of useful business
functionality as a Service Component

Intellectual
Property

SCBA v2 A product of the intellect that has commercial value,
including copy-righted property such as literary or artistic
works, and ideational property, such as patents,
appellations of origin, business methods, and industrial
processes.

Interface,
Component or
Service

SCBA v2 Mechanism by which a component describes what it
does and provides access to its services. This is important
because it represents the “contract” between the
supplier of services and the consumer of the services.

Legacy System CAF Glossary
v0

An automated system built with older technology that
may be unstructured, lacking in modularity,
documentation and even source code.

Model Driven
Architecture
(MDA)

OMG MDA
Guide 1.0.1

An approach to IT system specification that separates
the specification of functionality from the specification of
the implementation of that functionality on a specific
technology platform.

Loose Coupling Skyway
Software

Loose coupling is a key attribute of SOA solutions, in that
it means there are minimal dependencies among
services and this allows the quick assembly of different
business solutions from different combinations of business
services from a variety of systems.

Pattern Whatis.com In software development, a pattern (or design pattern) is
a written document that describes a general solution to
a design problem that recurs repeatedly in many
projects. Software designers adapt the pattern solution
to their specific project. Patterns use a formal approach
to describing a design problem, its proposed solution,
and any other factors that might affect the problem or
the solution. A successful pattern should have
established itself as leading to a good solution in three
previous projects or situations.

Services and Components-Based Architectures Version 3.5

 Page 1-31

Term Source Definition

Pattern, e-Business A pattern that focuses on an e-business problem.

Post Conditions Meyer,
Bertrand (1997),
Object-
Oriented
Software
Construction,
Prentice Hall,
Englewood
Cliffs, NJ, ISBN
0136291554

A post condition states the properties that the routine
guarantees when it returns.

A post condition guarantees that the routine will yield a
state satisfying certain properties, assuming it has been
called with the precondition satisfied.

The post condition puts onus on the class: it specifies the
conditions that must be ensured by the routine on return.
It is a benefit for the client and an obligation for the
supplier.

Pre Condition Meyer,
Bertrand (1997),
Object-
Oriented
Software
Construction,
Prentice Hall,
Englewood
Cliffs, NJ, ISBN
0136291554

A precondition states the properties that must hold
whenever the routine is called.

A precondition applies to all calls of the routine, both
from within the class and from clients. A correct system
will never execute a call in a state that does not satisfy
the precondition of the called routine.

The precondition places onus on the client: it defines the
conditions where a call is legitimate. It is an obligation for
the client and a benefit for the supplier.

Provisioning Services
Provisioning
Markup
Language
Specification

The automation of all the steps required to manage
(setup, amend, and revoke) user or system access
entitlements or data relative to electronically published
services.

Registry A database providing information describing and
categorizing objects, but which does not contain the
objects themselves. Registries usually provide information
as to how to access the object they describe.

Repository A storage mechanism; typically a storage and retrieval
mechanism for components and service information.

Repository,
Component

CAF Glossary Application designed to store component specifications
and implementations. Provides facilities to efficiently
search for and retrieve components for evaluation
against desired component specifications.

Repository,
Architecture

CAF Glossary
(TEAF)

An information system used to store and access
architectural information, relationships among the
information elements, and work products

Reuse SCBA v2 Any use of a preexisting software artifact (component,
specification, etc). in a context different from that in
which it was created.

Services and Components Based Architectures Version 3.5

 Page 1-32

Term Source Definition

SCBA See "Service Component Based Architecture"

SDLC See "System Development Lifecyle."

Service SCBA v2, CAF
Glossary

Discrete unit of functionality that can be requested
(provided a set of preconditions is met), performs one or
more operations (typically applying business rules and
accessing a database), and returns a set of results to the
requester. Completion of a service always leaves
business and data integrity intact.

Service
Component

SCBA v2 A self-contained business process or service with
predetermined and well-defined functionality that may
be exposed through a well defined and documented
business or technology interface.

Well-designed Service Components are “loosely
coupled” and collaborate primarily by exchanging
messages.

Service
Component Based
Architecture

 Services and Components Based Architecture (SCBA)
leverages the Federal Enterprise Architecture (FEA) and
builds upon the concepts, principles, and benefits of
Service Oriented Architecture (SOA). SCBA represents a
practical, results-oriented, approach to modernizing
enterprises. It is intended to help organizations reduce
long-term costs, improve quality of service, improve
information sharing, and help achieve a vision of flexible
business processes supported by customer-focused
applications, which can be altered in a matter of days
instead of months. SCBA builds upon SOA principles in
three ways:

• it is tightly integrated with the Federal Enterprise
Architecture,

• it provides a description of what the architecture is
(clarifying the varying descriptions that exist), and

• it identifies the organizational, cultural, and process
elements, as well as technological elements, that
need to exist for these architectures to be
successful.

The most important aspect of SCBA is its focus on reuse
of services and components – better referred to as
Service Components.

Services and Components-Based Architectures Version 3.5

 Page 1-33

Term Source Definition

Service Level
Agreement (SLA)

SCBA v2 A contract or memorandum of agreement between a
service provider and a customer that specifies, usually in
measurable terms, what services the service provider will
furnish. Information technology departments in major
enterprises have adopted the idea of writing a service
level agreement so that services for their customers
(users in other departments within the enterprise) can be
measured, justified, and perhaps compared with those
of external (sourcing) service providers.

Service Oriented
Architecture (SOA)

SCBA v2
modified,

EA Assessment
Framework 1.5
CBDiForum
Essential Guide

1) Architecture that describes an entity (e.g., application
or enterprise) as a set of interdependent services. SOA
provides for reuse of existing services and the rapid
deployment of new business capabilities based on
exploiting existing assets.
2) Representation of a system where the functionality is
provided as a set of services called by other parts of the
system
3) Policies, practices and frameworks that enable
application functionality to be provided and requested
as sets of services published at a granularity relevant to
the service Requestor, which are abstracted away from
the implementation using a single, standards based form
of interface

SOAP CAF Glossary Simple Object Access Protocol - A World Wide Web
Consortium (W3C) specification that facilitates the
interoperability between a broad mixture of programs
and platforms.

Solution Assembly SCBA v2 Process of implementing a solution by assembling the
necessary services into a complete solution. This process
often involves additional “glue” code to integrate the
assembled components.

System
Development
Lifecycle (SDLC)

Wikipedia System Development Life Cycle, or SDLC, is the process
used by a systems analyst to develop an information
system, including requirements, validation, training, and
user ownership through investigation, analysis, design,
implementation and maintenance. SDLC is also known
as information systems development or application
development. An SDLC should result in a high quality
system that meets or exceeds customer expectations,
within time and cost estimates, works effectively and
efficiently in the current and planned Information
Technology infrastructure, and is cheap to maintain and
cost-effective to enhance. SDLC is a systems approach
to problem solving and is made up of several phases,
each comprised of multiple steps.

Services and Components Based Architectures Version 3.5

 Page 1-34

Term Source Definition

Test Harness SCBA v2 Software that automates the software testing process to
test software services or components as thoroughly as
possible before using them on a real application.

UDDI CAF Glossary Universal Description, Discovery and Integration is a an
online directory that gives businesses and organizations a
uniform way to describe their services, discover other
companies' services and understand the methods
required to conduct business with a specific company.

Use Case Jacobson92 A use case is a narrative document that describes the
sequence of events of an actor (an external agent)
using a system to complete a process.

Web Service SCBA v2
modified

Specific method of implementing a service, using the
Internet (XML, TCP/IP) as the transport mechanism and
conforming to a specific set off standards (WSDL, SOAP,
etc).. Can be internally provided or can be offered
externally.

Wrapping Isolating the code to create an independently
deployable unit of software and creating an interface
around legacy code that exposes functionality as
services via interfaces that conform to a component
specification.

WSDL CAF Glossary Web Services Description Language is a specification
that is published to a UDDI directory. WSDL provides
interface/implementation details of available Web
services and UDDI Registrants. It leverages XML to
describe data types, details, interface, location and
protocols.

XML CAF Glossary Extensible Markup Language is a non-proprietary subset
of SGML (Standard Generalized Markup Language). It is
focused on data structure and uses tags to specify the
content of the data elements in a document.

Services and Components-Based Architectures Version 3.5

 Page 1-35

Appendix B: Chapter Guide
Given the differing focus areas of individuals in its target audience, SCBA has been
organized into distinct chapters. Each chapter is specifically targeted at the needs and
concerns of a sub-set of the overall audience. Figure 9 is a guide indicating which chapters
are most relevant to which groups, and how these chapters interrelated. It is intended that
individuals read the chapters pertinent to their needs without having to review the entire
document.

Figure 9 - Chapter Guide

The following is a detailed description of each of the chapters in this document.

Chapter 1 – Executive Strategy
This chapter provides an overview of Services and Components Based Architectures,
explains their advantages and origins, and describes a ready-to-implement strategy for their
implementation. It specifically covers the roles of services and components in modern
architectures, what strategic and policy changes need to be implemented to enable
service oriented architectures, and a concrete implementation strategy. Setting up a reuse-
focused organization is also covered, and includes details on processes and polices, design
for reuse, focusing an organization’s culture on reuse, and reuse governance and
responsibilities.

Chapter 2 – Business Imperatives (SRM/CPIC/EA Integration)
This chapter will discuss the business and economic imperatives of integrating service and
component reuse into existing government-wide policies and practices. It specifically
addresses the SRM, Capital Planning and Investment Control (CPIC), Enterprise Architecture
(EA) and their integration. This chapter will discuss the concepts surrounding the integration
of CPIC and EA processes in driving a component-based architecture. This will include
discussions on how to discover Service Components, how to identify re-usable assets, how to
leverage existing investment control processes to enable reuse, and what new governance
models will be needed. Last, this chapter will discuss how to use EA analysis to perform
“what-if” and scenario-based modeling to fully assess the feasibility, viability, reliability and
economic impact of reuse.

Services and Components Based Architectures Version 3.5

 Page 1-36

Chapter 3 – Foundational Framework (SOA, SOA Strategy)
This chapter will define Service-Oriented Architecture (SOA) and discuss the need for
business managers to think of SOA relative to an overarching enterprise strategy for enabling
the reuse of Service Components. It will focus on the importance of standards and
specifications, such as XML, WSDL, UDDI, and SOAP, and also cover the following related
topics:

• Industry SOA best practices on where to start, what policies and procedures need to
be in place, what outcomes to consider, and what design factors to evaluate now
and in the future.

• The Services Evolution Life-Cycle (SELC), consisting of a suite of activities around
planning, publishing, consuming, discovering, and managing Service Components.

• How to calculate the costs and timeframes for developing services,
• New governance and compliance models needed to govern reuse policies and

practices with an SOA focused organization.
• The concept of a Business Services Registry (BSR), processes for publication of Service

Components into them, and criteria for Service Component classification (e.g.,
mission critical, non-mission critical, etc.).

Chapter 4 – Service Component Governance
This chapter will discuss the governance processes that must exist to allow Service
Components to be effectively developed and managed, and how those processes map to
organizational structures. The importance of interface-centric management will be
described, and how to create supportive but unrestrictive SLAs. Multi-generational-service
planning and decision-gate based program management will be reviewed as best
practices, and the importance of proper service launch, maintenance, and sun-setting will
be reviewed.

Chapter 5 – Solution Architecture
This chapter will discuss how to create a Solution Architecture that directly supports the
realization of re-usable services and components across an enterprise. This chapter will
introduce Solution Architecture concepts and principles, describes the goals, objectives and
outcomes of a Solution Architecture, present best practices, case studies and lessons
learned, and describe how agencies should bundle Solution Architectures into EA, CPIC and
procurement processes.

Chapter 6 – Component-Based Development
This chapter will review the technical details of Component-Based Development (CBD).
Specifically, it will briefly review the fundamental design concepts of interfaces and
encapsulation, and the most popular technical frameworks for doing general component
development (e.g., .com and JavaBeans) and enterprise component development (e.g.,
.NET and Java EE). It will focus heavily in two areas (1) component scope and interface
design and (2) on how to expose Web Services based interfaces. The Web-Services section
will provide guidance on how to ensure that these interfaces are fast, maintainable, secure,
and fully cross-platform accessible. It will conclude with recommendations as to when not to
use Web Services, and how to provide useful component documentation.

Chapter 7 – Service Production, Discovery and Consumption
This chapter will introduce the dual concepts of “Service Provider” and “Service Consumer”
and cover the following key areas of Service Component production, discovery, and
consumption:

Services and Components-Based Architectures Version 3.5

 Page 1-37

• the roles, responsibilities and attributes that needs to be considered (e.g., security,
access policies and descriptors) when enabling services for reuse,

• how to discover Service Components through public and private Universal
Description, Discovery and Integration (UDDI) directories, component registries and
repositories, and service registries,

• how to leverage and engage communities of interest in the production of services
and components,

• how to effectively consume (or use) Service Components – including the necessary
governance controls and Service-Level Agreements that will be needed to analyze
the performance of reuse relative to the demands of the business, programs and
missions.

Chapter 8 – Using Government-Wide Profiles and Lines of Business
This chapter will discuss how to use Government-Wide Profiles, when to consider the use of a
profile, and how profiles can help to reduce costs and improve organizational performance.
This chapter will provide examples such as the Records Management Profile and describe
how missions, programs, and enterprises can leverage these profile services and
components within their existing business processes (e.g., Capture Record Component,
Record Archive Component, etc). The chapter will also discuss how to discover Service
Components from LoB initiatives (e.g., Human Resources, Financial Management, and
Grants Management) and SRM component lists. Finally, a set of guidelines for how to
leverage LoB and SRM information will be provided.

Chapter 9 – Finding and Publishing Components: Registries, Repositories, and COIs
This chapter will discuss the concepts of component registries and repositories, highlight the
differences between each, discuss their use and how to leverage them, and describe how
to use them to publish Service Components. The importance of engaging communities of
interest when developing and publishing a component and service is described, as well as
techniques for facilitating these communities. How to join LoB communities of interest to
further assist in developing cross-agency, shared-service business models will also be
discussed. Finally, this chapter will present the life cycle of sharing a component, including
how components are certified, discovered, and reused.

Appendices
In addition to the main text, two appendices are envisioned that would evolve as each
chapter is produced. The first would be a master glossary of SOA terms, and the second a
master list of SOA reference material.

Services and Components Based Architectures Version 3.5

 Page 1-38

Appendix C: Reuse Quotient Examples and Notes

Example 1 – Project both Using and Producing Service Components
An agency’s web site reuses an existing search and a customer authentication component
from other project. At the same time, the project creates a new geospatial management
Service Component. When the system is completed, the only project using the new Service
Component is the project itself. The project’s reuse component would be equal to .66,
computed as shown in Figure 10. The “total number of Service Components in project reused
IN other systems or processes” is equal to zero because, although a new Service Component
has been created, it has not actually been reused yet.

Figure 10 - Project Reuse Quotient at Project Delivery

The project team then publishes the geospatial-management Service Component in a
component registry. Over time, two other agencies discover the new Service Component
and incorporate it into two of their projects. When this occurs, the reuse quotient for the
project will increase, as shown in Figure 11.

Figure 11 - Project Reuse Quotient When New Component Reused

A critical observation to take away from this example is that a project’s reuse quotient can change
over time.

Example 2 – Project Exists Solely as a Service Component
An agency decides to produce a new security-assessment tracking database, intended for
reuse across multiple agencies. The Service Component is designed for integration into
other agency’s security systems, and not to actually function by itself (it offers no user
interface). The Service Component does not reuse any other Service Components. When
the Service Component is first created, its reuse quotient will be equal to zero, as computed
in Figure 12.

Figure 12 - Project Reuse Quotient at New Service Component Creation

Six other agencies decide to reuse this new Service Component. When they complete their
integration work, the project’s reuse quotient jumps to 6, as computed in Figure 13.

Services and Components-Based Architectures Version 3.5

 Page 1-39

Figure 13 - Project Reuse Quotient after New Service Component Reused

Example 3 – Project Repackages Functionality as a Service Component
A department within an agency has an internally successful business process for obtaining
approval for budget requests, and decides that this process may be reusable by other
departments. At the start, this business process is not well documented and offers no
external interfaces. Because of this, the business process is not a Service Component, and its
reuse quotient is undefined, as computed in Figure 14.

Figure 14 - Project Reuse Quotient Before Modification to bel Service component

Over time, the business process is modified to become a Service Component. When this is
completed, the business process’s reuse quotient changes to zero, as shown in Figure 15.

Figure 15 - Project Reuse Quotient After Modification to bel Service component

Finally, the Service Component is adopted by one other department. At this time, its reuse
quotient changes to one, as shown in Figure 16.

Figure 16 - Project Reuse Quotient Project Reuse Quotient After Business Process Reused

Cautions on Use
It is critical to note that this metric does not necessarily show how much a project increases
reuse; only how much reuse it involves. Compare two hypothetical projects competing for
resources. Project A is a small but contentious modification to a service that is already
reused in 10 different places. Project B is the first step towards making a legacy system

Services and Components Based Architectures Version 3.5

 Page 1-40

available as a service. Project A will have a high score and B a low score, but B will result in
an increase in sharing, while A will only be an in-place improvement. Going for the high
score is not necessarily the right thing to do. The quotient is a useful metric, but good
management and common sense should be exercised by decision makers in all cases.

Services and Components-Based Architectures Version 3.5

 Page 1-41

Appendix D: Case Studies

Case Study 1 – Authentication Service Component (ASC)*
The ASC is a government-wide authentication solution that includes technical and policy
subcomponents to identify users on the internet. It includes policy sub-components that
establish standard levels of risk for applications, standard levels of assurance for
credentialing services, and standard technical specifications for system interactions. The
ASC has internal governance components to manage, maintain, and ensure uniform
application of these standards. The ASC also includes operational systems, including a
portal and a Certificate Authority that issues certificates used for server-to-server
authentication.

The ASC enables organizations to participate in a federation in which members can rely on
each other’s credentialing systems securely, enabling end user identity to be portable across
Internet domains. This eliminates the need for every web-enabled application to establish its
own identity management and credentialing system, resulting in enormous savings for the
government and easier online access to government services for citizens. The Program
Management Office (PMO) assigns relationship managers and technical subject matter
experts to assist organizations implementing, or considering implementing, the ASC. The
PMO also operates an interoperability lab that tests relevant Commercial off the Shelf (COTS)
products to ensure interoperability within in the ASC.

Case Study 2 – Housing and Urban Development (HUD) Electronic Case Binder†
In 2005, the Department of Housing and Urban Development created two service
components designed to help facilitate housing-related financial documentation. The
components help authorized lenders endorse Federal Housing Authority mortgage loans for
insurance without a pre-endorsement review by HUD. Before these service components
were developed, lenders applying for insurance had to transmit insurance data and mail
paper case binders to HUD's Homeownership Centers. With these new service components,
companies handle the endorsement themselves and send only electronic case binders to
HUD when requested. This new, re-designed process reduces processing time by one third
and decreases direct insurance expenses by as much as 25 percent. This Web-based
service is shared by HUD, the Veterans Affairs and Education departments. HUD has
estimated that it has saved taxpayers more than $500 million in reduced loan losses.

Case Study 3 – Department of Labor, Business Rules Engine
When creating the GovBenefits.gov citizen online benefit search engine portal in 2003, the
Department of Labor specified a requirement that the rules expressions that define whether
a user is a possible candidate for a particular federal or state benefit program are easily
modified or extended. The development team responded to the requirement by creating a
generic rules engine that allowed for a wide variety of business rules to be expressed. The
development team went further, though, by designing the rules engine as a reusable
component. This investment paid off, when, in 2004, the Department of Energy created the
GovLoans.gov portal, which reused this component in its entirety. This reuse saved the

* This text adapted from the June 2005 ASC application from registration in Core.gov
† Information from Government Computer News, September 27, 2005 “Service-oriented components advance
transformation”, by Wyatt Kash and September 26, 2005 HUD news release “HUD ANNOUNCES LENDER INSURANCE
INITIATIVE”

Services and Components Based Architectures Version 3.5

 Page 1-42

Department of Energy and its partner agencies an estimated 50% of the overall
development cost of the system. Additionally, OMB is exploring the possibility of reusing this
component again to create a new system for a natural disaster emergency application
system. This rules engine component is available to government through CORE.gov.

