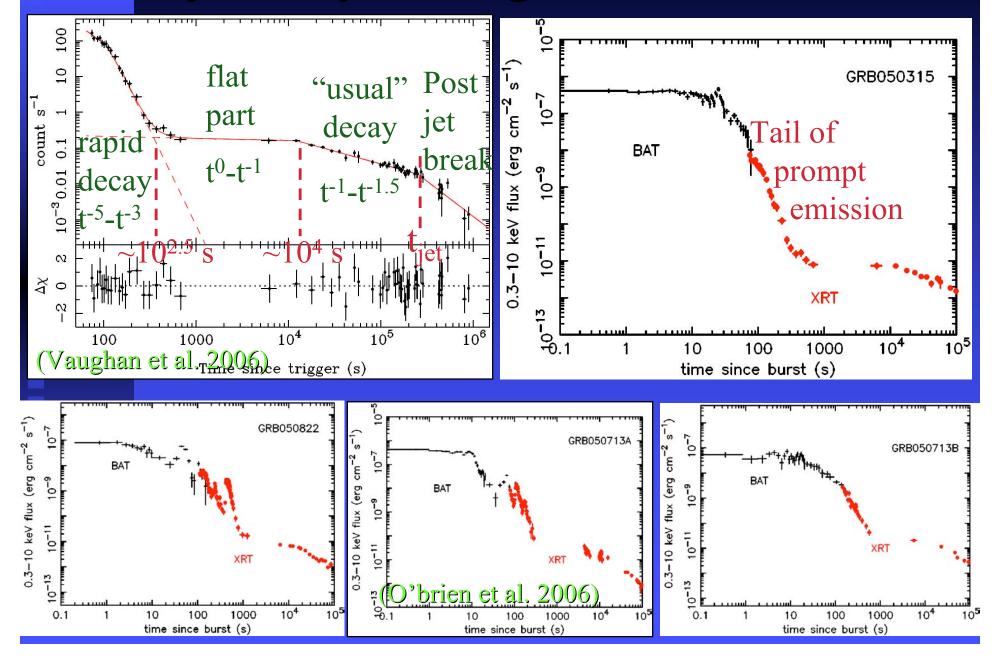
How may GLAST Help Solve some GRB Mysteries Raised by Swift

Jonathan Granot

KIPAC @ Stanford

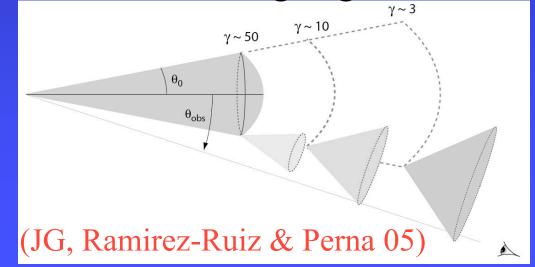
Collaborators: J. Cohen-Tanugi, E. do Couto e Silva

A. Königl, T. Piran, P. Kumar, D. Eichler,


E. Ramirez-Ruiz, C. Kouveliotou, ...

First GLAST Symposium, February 7, 2007, Stanford

Outline of the Talk:


- Early X-ray afterglow of Swift GRBs: flat decay phase
 - ◆ brief outline of possible explanations & implications
 - ◆ GLAST could test the models & effect implications
- X-ray flares: from same mechanism as prompt GRB?
 - ◆ GLAST could probe emission site & mechanism
- Opacity effects in prompt GRB emission / X-ray flares
 - ◆ Time dependence: helps distinguish between models
 & effects shape of high-energy cutoff in spectrum
 - ♦ Results applicable to impulsive relativistic sources
- Conclusions

Early X-ray Afterglows from Swift:

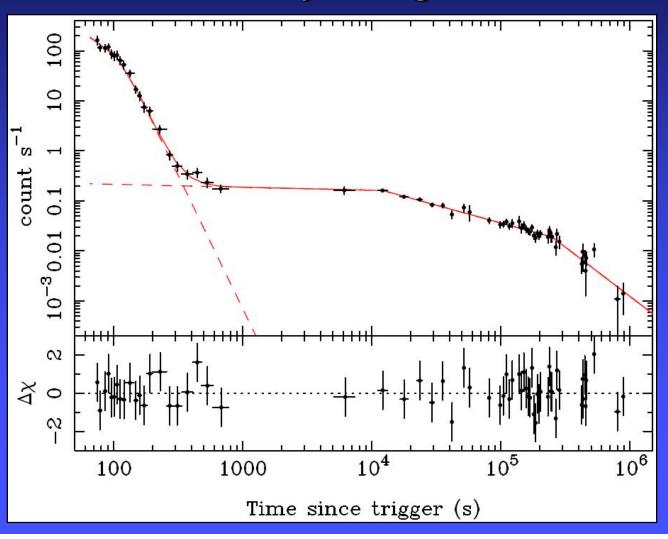
Possible Explanations for Early Flat Decay

- **Energy injection** into afterglow: (Nousek et al. 06)
 - ◆ I. Continuous relativistic wind $L \propto t^{-0.5}$ (magnetar?)
 - ◆ II. Slower material ejected during the prompt GRB gradually catches up the decelerating afterglow shock
- Afterglow efficiency increases with time (varying shock micro-physics parameters; JG, Königl & Piran 06)
- Observer outside emitting region (JG & Eichler 06)

Possible Explanations for Early Flat Decay

- **Energy injection** into afterglow: (Nousek et al. 06)
 - ◆ I. Continuous relativistic wind L∝ t^{-0.5} (magnetar?)
 - ◆ II. Slower material ejected during the prompt GRB gradually catches up the decelerating afterglow shock
- Afterglow efficiency increases with time (varying shock micro-physics parameters; JG, Königl & Piran 06)
- Observer outside emitting region (JG & Eichler 06)

Two component jet: $\Gamma_0 \sim 20-50$ $\Gamma_0 \sim 100$ Two component jet: $\Gamma_0 \sim 100$ Two component jet: $\Gamma_0 \sim 100$ Two component jet: $\Gamma_0 \sim 100$


observer

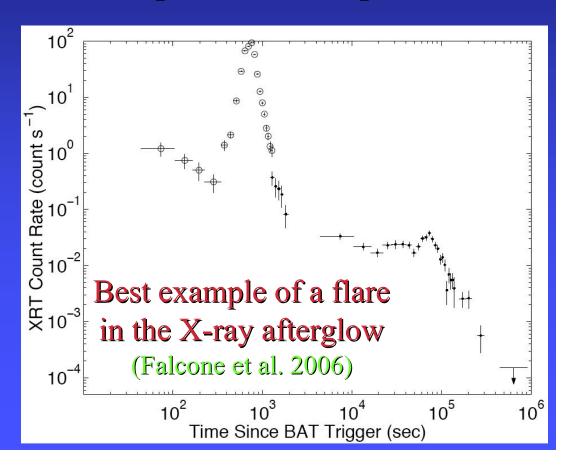
(JG, Königl & Piran 06)

 $t_{\rm dec} \propto \Gamma_0^{-2(4-k)/(3-4)} \text{ for } \rho_{\rm ext} \propto r^{-k} \Longrightarrow t_{\rm dec,n} \ll t_{\rm dec,w}$

Implications for γ-ray Efficiency

- $\epsilon_{\gamma} = E_{\gamma}/E_0, \epsilon_{\gamma}/(1-\epsilon_{\gamma}) = \kappa f; \kappa = E_{\gamma}/E_k(t), f = E_k(t)/E_{k,0}$
- $\kappa \sim 1$ from the X-ray afterglow flux at t = 10 hr

Implications for γ-ray Efficiency

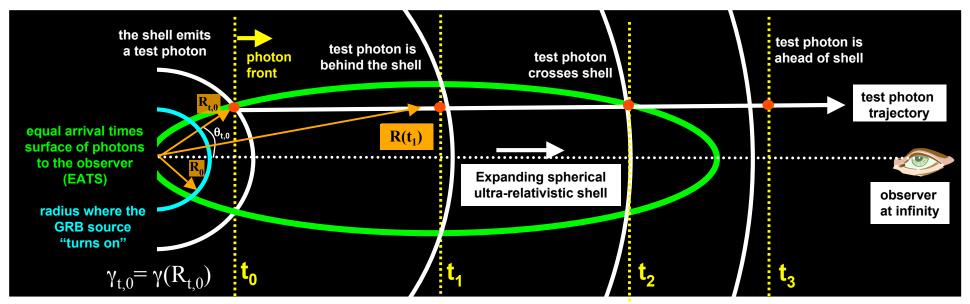

- $\mathbf{E}_{\gamma} = \mathbf{E}_{\gamma}/\mathbf{E}_{0}, \, \mathbf{\varepsilon}_{\gamma}/(1-\mathbf{\varepsilon}_{\gamma}) = \kappa \mathbf{f}; \, \kappa = \mathbf{E}_{\gamma}/\mathbf{E}_{k}(t), \, \mathbf{f} = \mathbf{E}_{k}(t)/\mathbf{E}_{k,0}$
- $\kappa \sim 1$ from the X-ray afterglow flux at t = 10 hr
- $f \ge 10$ if flat decay is energy injection: $\varepsilon_{v} \ge 0.9$
- If the flat decay phase is due to an increase in the afterglow efficiency then $f \sim 1 \& \epsilon_{y} \sim 0.5$
- If also $E_k(t = 10 \text{ hr})$ is underestimated (e.g., $\xi_e \sim 0.1$ instead of 1) then possibly $\kappa \sim 0.1$ & $\epsilon_{\gamma} \sim 0.1$
- ⇒ a typical afterglow kinetic energy $\gtrsim 10^{52}$ erg ($\gtrsim 10^{53}$ erg) for a uniform (structured) jet
- \blacksquare GLAST might find a larger $E_{\gamma} \Rightarrow$ higher ε_{γ}
- Models differ in GLAST range (SSC componet)

X-ray Flares

- Temporal & spectral properties similar to prompt GRB
- The emission site & mechanism is similarly uncertain

GLAST observations can help solve such questions

(SSC component, opacity effects)


Pair Opacity: Time Dependence

- work in progress, with J. Cohen-Tanugi & E. do Couto e Silva
- Above some photon energy ε_1 , $\tau_{\gamma\gamma} > 1$ at the source & the spectrum cuts off exponentially
- Lack of such a cutoff up to an observed photon energy $\varepsilon_{\text{max}} \Rightarrow \gamma \gtrsim 100[L_{0,52}(\varepsilon_{\text{max}})^{\alpha}/R_{13}]^{1/2(1+\alpha)}$ where $\varepsilon = E_{\text{ph}}/m_{\text{e}}c^2$, $L_{\varepsilon} = L_0\varepsilon^{-\alpha}$
- In some models the emission is impulsive (e.g. internal shocks), rather than quasi-steady state
- Initially there is no photon field & the opacity builds-up with time \Rightarrow even $\varepsilon > \varepsilon_1$ (steady state) photons can initially escape, as long as $\varepsilon_1(t) > \varepsilon$
- ⇒ a distinct temporal & spectral signature

Simple (yet rich) Semi-Analytic Model

- Ultra-relativistic ($\gamma \gg 1$) spherical thin ($\Delta \ll R/\gamma^2$) shell emits in a finite interval $R_0 \le R \le R_0 + \Delta R$
- Isotropic emission in the shell co-moving frame
- For simplicity $\gamma^2 \propto R^{-m}$, L'_{ϵ} , $\propto (\epsilon')^{-\alpha} R^b$ is assumed while the formalism is more general
- The thin shell approximation is valid for GRB internal shocks (fast cooling: thin cooling layer)
- The photon field is calculated at all space & time
- The pair-production optical depth is integrated along the trajectory of each photon

Calculating the $\gamma\gamma \rightarrow e^+e^-$ Optical Depth

$$\left| \tau_{\gamma \gamma}(R_{t,0}, \theta_{t,0}, \varepsilon_t) = \tau_0(R_{t,0}, \varepsilon_t) \cdot F(\gamma_{t,0} \theta_{t,0}) \right|$$

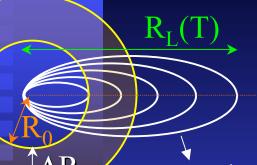
 $F(\gamma_{t,0}\theta_{t,0})$ is a double integral on the positions of the two photons, after several changes of variables

$$\left|\tau_{\gamma\gamma}(R_{t,0},\theta_{t,0},\varepsilon_{t}) = \int ds \int d\varepsilon_{i} \int d\Omega_{i} \sigma^{*} \left[\chi(\varepsilon_{t},\varepsilon_{i},\mu_{t,i})\right] (1-\mu_{t,i}) \frac{dn_{i}}{d\varepsilon_{i}d\Omega_{i}}\right|$$

s = path length along test photon trajectory

 $\theta_{t,0}$ = initial angle between the test photon direction and the radial direction

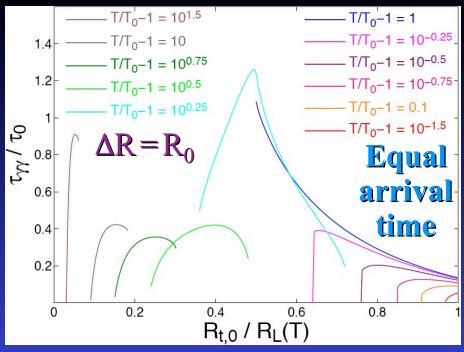
 $\mu_{t,i}$ = cosine of the angle between the directions of the two photons

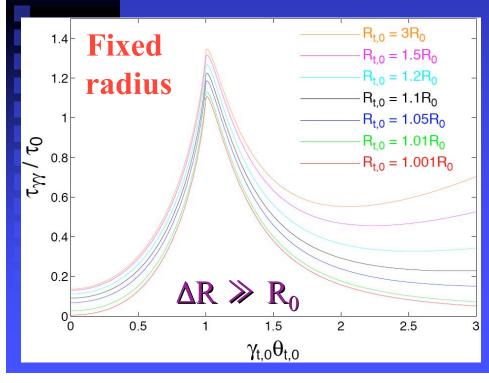

 χ = center of momentum energy of photons in units of $m_e c^2$

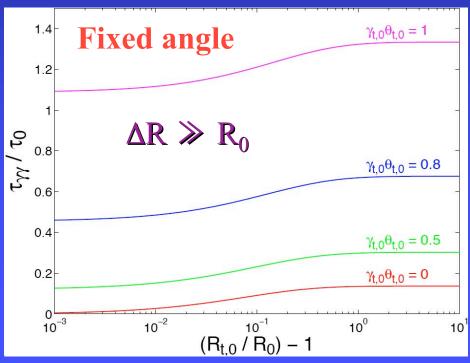
 Ω_i = solid angle of the photons that can potentially interact with the test photon

 n_i = number density of these photons

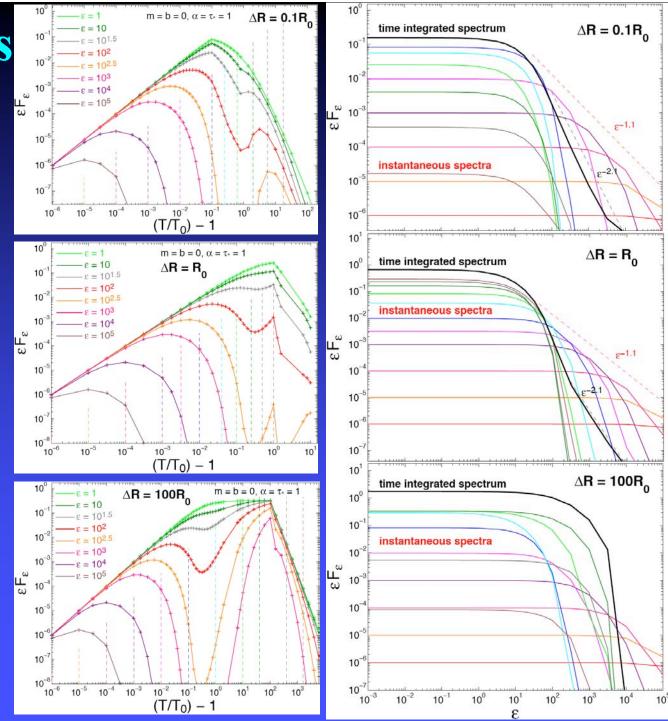
 σ^* = the cross section for pair production


Results: optical depth




observer 5

Equal arrival time surfaces



Light Curves & Spectra

The power law tail is more pronounced for larger $\Delta R / R_0$

Conclusions:

- High energy spectral components in the GLAST range may help pin down the origin of the early shallow decay phase, as well as the emission mechanism in the prompt GRB & X-ray flares
- Opacity build-up in impulsive relativistic sources
 - ◆Power law high-energy tail instead of the exponential cutoff in steady state models
 - ◆Photons above the spectral break would arrive mainly near the onset of spikes in light curve