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Abstract

This paper proposes a simple generalization of the classical measurement error
model, introducing new measurement errors that subtract signal from the true
variable of interest, in addition to the usual classical measurement errors (CME)
that add noise. The effect on OLS regression of these lack of signal errors (LoSE)
is opposite the conventional wisdom about CME: while CME in the explanatory
variables causes attenuation bias, LoSE in the dependent variable, not the ex-
planatory variables, causes a similar bias under some conditions. In addition,
LoSE in the dependent variable shrinks the variance of the regression residuals,
making inference potentially misleading. The paper provides evidence that LoSE
is an important source of error in US macroeconomic quantity data such as GDP
growth, illustrates downward bias in regressions of GDP growth on asset prices,
and provides recommendations for econometric practice.
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1 Introduction

This paper proposes a simple generalization of the classical measurement error model

and studies its implications for ordinary least squares (OLS) regression. The usual model

starts with the true variable of interest and adds noise, which we call the classical mea-

surement error (CME) term; see Fuller (1987) or virtually any econometrics textbook.

The generalization discussed here incorporates a different kind of measurement error that

subtracts signal from the true variable; this new error term is called the Lack of Signal

Error, or LoSE for short. This additional term adds some much-needed flexibility to the

classical measurement error model: it allows the mismeasured variable to have either

more or less variance than the true variable of interest, in contrast to the classical model

which imposes that the mismeasured variable have greater variance. This restriction

does not hold in some important applications in macroeconomics and elsewhere.

The implications of LoSE for OLS regression are opposite the usual intuition about

measurement error, which is applicable to CME only. The CME intuition says that

measurement error in the dependent variable Y of a regression poses no real problems

for standard estimation and inference. Parameter estimates are unbiased and consistent,

while hypotheses are more difficult to reject because CME increases the variance of

regression residuals and parameter estimates; inference under these circumstances has a

cautious slant. CME in the explanatory variables X causes the real problems for OLS

regression, namely attenuation bias and inconsistency. However with LoSE these results

are reversed. For the baseline case considered here, LoSE in the explanatory variables

X produces no bias or inconsistency, and similar to CME in Y , LoSE in X boosts the

variance of regresson residuals and hence standard errors. And, LoSE in the dependent

variable Y introduces an attenuation-type bias and inconsistency into the regression
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under some circumstances (in particular, when the explanatory variables contain some

signal missing from the dependent variable). In addition, LoSE in Y shrinks the variance

of the regression residuals, thus shrinking parameter standard errors compared to what

they would be without this type of mismeasurement. Standard errors are potentially

misleadingly small, complicating inferences about the relation between true Y and X.

Under these conditions, a more cautious approach to inference than has been taken in

the past may be warranted.

Mismeasurement in many types of data used for empirical work in economics and

other disciplines may be better described by the generalized measurement error model

with LoSE than by the pure classical measurement error model. This paper focuses

on US macroeconomic quantity data such as gross domestic product (GDP) and gross

domestic income (GDI), which attempt to measure the same underlying concept using

different source data; see Fixler and Nalewaik (2007) and Nalewaik (2007a). These data

pass through numerous revisions, and the more poorly-measured initial estimates have

less variance than the revised estimates, providing a concrete example of measurement

error that cannot be CME; see also Mankiw and Shapiro (1986). Section 2 of the paper

makes this point while motivating the generalization of the CME model outlined here.

Section 3 of the paper discusses the nature of the source data used to compute US

macroeconomic quantity data, and points out some reasons why LoSE may be present

in the estimates even after they have passed through all their revisions. The fact that

GDP growth should equal GDI growth, but does not in the fully revised quarterly or

annual frequency data, proves that some mismeasurement remains in either GDP or GDI

growth. The evidence in Fixler and Nalewaik (2007) and Nalewaik (2007a,b) supports

the notion that this mismeasurement is largely LoSE, with more LoSE in GDP growth
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than in GDI growth. Those arguments are recounted briefly in this section, and some

simple calculations comparing GDP and GDI growth show that the LoSE in GDP growth

is likely substantial: after 1984, at least 30% of the variance of the true growth rate of

the economy appears to be missing.

Some of the implications of substantial LoSE in GDP growth are fairly obvious.

Realizations of GDP growth are simply less informative about the true growth rate

of the economy than many macroeconomists currently believe, given the common but

incorrect presumption that fully-revised GDP growth is measured with little error. In a

macro forecasting context, true forecast errors are larger, on average, than forecast errors

computed using data mismeasured with LoSE. The implications for regression estimation

are more complicated, and working out those implications is the main contribution of the

paper. This is done in section 4, which illustrates the effect of LoSE in the dependent and

explanatory variables under different sets of assumptions. For concreteness, examples of

popular regressions from macroeconomics that may conform to each set of assumptions

are provided.

In a wide variety of econometric specifications employed in the macroeconomics and

finance, variables like GDP growth, investment growth and consumption growth are

regressed on asset prices - interest rates, stock price changes, exchange rate changes,

etc. These regressions are of particular interest because asset prices potentially capture

some signal missing from the mismeasured quantities, implying attenuation-type biases

in the coefficients. Section 4 tests for these biases, regressing different output growth

measures contaminated with more or less LoSE on a fixed set of stock or bond prices.

When the dependent variable is contaminated with more LoSE, the regression coefficients

are smaller, and the differences across regressions are often statistically significant. For

4



example, the coefficients increase when we switch the dependent variable from the early

GDP growth estimates based on limited source data to later GDP growth estimates

based on more-comprehensive data. Tellingly, the coefficients increase again when we

switch the dependent variable from GDP growth to GDI growth. The hypothesis that

measurement error in the dependent variable does not bias OLS regression coefficients,

a core piece of conventional wisdom in the profession, is rejected by the data, just as the

paper predicts if the measurement error is LoSE. Section 5 concludes the paper.

2 A Generalization of the Classical Measurement

Error Model

Let Y �
t be the true value of the variable of interest, while Zt is an (1 × l) vector of

possibly stochastic variables used to construct Y �
t . The mismeasured estimate of the

variable of interest is Yt. In many cases a government statistical agency or some other

organization computes Yt based on information from surveys, administrative records,

and other data sources (source data for short); then Zt will be variables drawn from the

source data, possibly including non-linear functions of the original source data.

Under the classical measurement error model,

Yt = Y �
t + εt.

The term εt is “noise” or the classical measurement error (CME) in the estimate. In

the current context this is taken to imply independence of εt and Y �
t , although the

weaker assumption cov (Y �
t , εt) = 0 suffices for many purposes. The CME may arise
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from estimation errors or other sources; since many estimates Yt are based on surveys,

survey sampling errors are often thought to be a source of CME.

Under the generalized model of mismeasurement considered here, the mismeasured

estimate Yt is as in Fixler and Nalewaik (2007):

Yt = E (Y �
t |Zt) + εt.(1)

The CME term εt is assumed independent of Zt and Y �
t . It can be seen immediately

that the classical measurement error model is a special case of this more general model,

where Zt spans Y �
t so E (Y �

t |Zt) = Y �
t .

Define the deviation of the variable of interest from its conditional expectation as:

ζt = Y �
t − E (Y �

t |Zt) .(2)

This deviation represents the information about Y �
t not contained in Zt, and is inde-

pendent of all functions of Zt. With cov (E (Y �
t |Zt) , ζt) = 0, the variance of the true

variable of interest may be decomposed into the variance of the conditional expecta-

tion plus the variance of ζt, and: var (ζt) = var (Y �
t ) − var (E (Y �

t |Zt)). The variance

of ζt represents the variance of the information about Y �
t missing from the conditional

expectation. Substituting into (1):

Yt = Y �
t − ζt + εt.(3)

Thinking of εt as mismeasurement from noise, ζt represents an opposite kind of mis-

measurement, mismeasurement from lack of signal about Y �
t in the information used to
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construct Yt. As such, ζt may be labelled the Lack of Signal Error, or LoSE for short.

Since the CME is independent of Y �
t , it is naturally independent of the LoSE as

well. However the LoSE is clearly correlated with Y �
t , with cov (Y �

t , ζt) = var (ζt) in fact.

Taking variances of (3):

var (Yt) = var (Y �
t ) + var (ζt) − 2 cov (Y �

t , ζt) + var (εt)

= var (Y �
t ) − var (ζt) + var (εt) .(4)

Depending on whether the variance of the LoSE is greater than or less than the variance

of the CME, the variance of the estimate Yt may be greater than or less than the variance

of the true variable of interest Y �
t . With CME alone, the variance of the estimate must

exceed the variance of the true variable. The key limitation of the CME model is the

assumption that cov (Yt − Y �
t , Y �

t ) = 0; the generalization allows this covariance to range

from 0 to a lower bound of minus var (Yt − Y �
t ), in which case all the mismeasurement

arises from LoSE.

The restrictions imposed by the CME model on variances and covariances have ob-

vious drawbacks, as it is easy to think of hypothetical and actual counterexamples. As

a hypothetical counterexample, assume that Y �
t has positive variance, while the esti-

mate Yt is just a constant for all t. The estimate Yt is clearly mismeasured, but the

classical measurement error model cannot handle this case. The growth rates of US

GDP and GDI provide an actual counterexample. These estimates pass through nu-

merous revisions that plausibly reduce measurement error, since they incorporate more

comprehensive and higher-quality source data. For example, suitable source data is sim-

ply unavailable for many components of the “advance” current quarterly GDP estimate
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released about a month after the quarter ends. Source data for some of those compo-

nents is incorporated into the revised “final” current quarterly estimate released about

two months later, and higher-quality data are incorporated at subsequent annual and

benchmark revisions, likely bringing the estimate closer to its true value.1 Then an early

estimate of GDP growth or GDI growth can be modelled as a later revised estimate (the

analog to Y �
t ) plus a measurement error term, which disappears with revision. Table 1

shows that the initial estimates have less variance than the revised estimates, violating

the variance restrictions of the CME model.2 The generalized model here implies that

the bulk of the measurement error is LoSE, as noted by Mankiw and Shapiro (1986).

While the generalized model here is less restrictive than the CME model, some

restrictions do remain. Writing:

Yt + ζt = Y �
t + εt,(5)

the independence of ζt from Yt is a restriction, implied by the first term in (1) being

a conditional expectation. However systematic biases in the estimate, on top of those

caused by noise,3 violate this assumption. For concreteness, assume E (Y �
t |Zt) = Ztγ.

1For more on revisions to GDP, see Grimm and Weadock (2006). An estimate of GDI growth is not
released at the time of the “advance” GDP estimate because of data limitations, but GDI is always
released at the time of the “final” current quarterly estimate. For GDI, annual revisions incorporate
information from administrative and tax records that is much more comprehensive than the samples
used to compute the “final” current quarterly estimates.

2These are annualized quarterly growth rates. Each quarterly observation in the “advance” or “final”
time series is the “advance” or “final” estimate for that quarter, i.e. the estimate released one or three
months after that quarter closes. We end the sample in 2004 so that all observations in our latest
available time series have passed through three annual revisions, ensuring each observation is much
more heavily revised than the corresponding “advance” or “final” current quarterly observation.

3With the noise term, E (Y �
t |Yt) �= Yt; the estimate is biased in this sense.
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Consider an estimate of Y �
t based on Zt that misuses the information, so Yt = Ztγ̃ + εt

with γ̃ �= γ. The estimate “misses” in a systematic way.4 Taking variances, we have:

var (Yt) = var (Y �
t ) + var (Ztγ̃) − var (Ztγ) − var (ζt) + var (εt) .

For estimation and inference about Y �
t and its relation to other variables, these sys-

tematic biases in Y �
t lead to biased and inconsistent estimates, in general. However

unless additional information is available about the nature of the “misses” Ztγ̃ − Ztγ,

the direction and magnitude of these biases is unclear. In some cases this additional

information may be available, but in general, an important goal of all creators of data

(government statistical agencies as well as other groups) is to avoid such systematic

mismeasurement. Indeed, their ultimate goal is probably to produce estimates Yt that

are as close as possible to E (Y �
t |Zt), with as broad an information set Zt as possible

given resource constraints.5 As such, the generalized model (1) is a useful benchmark,

and should approximate well the underlying mismeasurement in many situations. It also

has the advantage of being mathematically tractable.

Before concluding this section, it is worth emphasizing that Zt need not be an exhaus-

tive information set - i.e. it need not contain all available relevant pieces of information

about Y �
t . Resource and other constraints certainly preclude this from being the case,

and the sections below considering the implications of LoSE allow for this possibility.

4A highly stylized example is Yt = α0 + α1Y
�
t + εt, with α0 �= 0 and α1 �= 1.

5If that is not their ultimate goal, it should be.
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3 Data

3.1 Discussion of U.S. Macro Quantity Data

Each estimated growth rate of a macro quantity such as gross domestic product (GDP)

is an attempt at measuring the change in the value of all relevant economic transactions,

in the entire economy, from one fixed time period to the next. For an entity as large

as the U.S. economy, this is a daunting, almost mind-boggling task, as the number of

transactors and transactions is typically enormous, with little or no information recorded

about many of them at high frequencies. Attempts to measure changes in these macro

quantities are much more ambitious than attempts to measure similar changes for a

single person, household, or even company. Simply due to their broad, universal nature,

estimates of macro quantities are likely to miss more information - i.e. be contaminated

with more LoSE - than are estimates of micro quantities (although some micro data

sources may be contaminated with LoSE as well).6

Of course, the nature of the available source data determines the information content

of macro quantity growth rates of interest, and frequency is important in this regard in

the case of data from the U.S. National Income and Product Accounts (NIPA).7 The

6For example, it has long been suspected that management of many publicly traded corporations
“smooth” quarterly earnings to meet their guidance (prior estimates of what their earnings would be).
Such spurious reductions in the variability of measured earnings growth should effectively add LoSE to
those measures.

7The growth rates of real quantities are of interest in most economics applications. In the NIPAs, real
quantities are typically estimated by gathering the appropriate nominal source data and the appropriate
price indexes, and then deflating the former with the latter. The discussion of LoSE in source data
here focuses on the nominal source data, but there may exist significant LoSE stemming from the price
indexes as well. Measured price indexes may miss fluctuations in the quality of goods, from either the
introduction of new goods or modifications of existing goods; see Bils and Klenow (2001) and Bils (2004).
The length of their time series is short, but Broda and Weinstein (2007) do provide some evidence that
product creation (and hence quality improvement embedded in new products) is pro-cyclical, implying
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most comprehensive data on GDP and other major NIPA aggregates are only available

at the quinquennial frequency (every five years), at the time of the major economic

censuses. Even then, resource constraints make true census counts impossible. Many

transactions in the underground economy remain unobserved and must be estimated,

and some “above-ground” transactions are simply missed by any census.8 At the annual

frequency, the GDP source data are typically samples drawn from the census universe.

These samples can be quite large, capturing a sizeable fraction of the relevant value

of transactions, but they are typically skewed towards measuring the transactions of

larger businesses. As such, they may miss variation arising from the transactions of

small companies and from businesses starting, shutting down, and operating in the

underground economy. The lack of representation of these segments of the economy may

add or substract variance to the official estimates, depending on the relative variance

of the non-measured segments and their covariance with the measured segments, but

this mismeasurement has the potential to add some LoSE to the data. At the annual

frequency, and also at the quarterly frequency to some extent, government tax and

administrative records are used as an additional source of information about the value

of transactions, especially on the income (GDI) side of the accounts. These data can be

informative, but underreporting makes them less than fully comprehensive.

At the quarterly and monthly frequency,9 reliance on samples is more pronounced,

counter-cyclical variation in prices. If standard prices indexes miss this counter-cyclical variation, real
quantities deflated by these indexes may not be pro-cyclical enough or variable enough.

8In this regard, it should be noted that the Bureau of Labor Statistics and the Census Bureau each
maintain a list which attempts to track the entire universe of business establishments in the US, from
which each agency draws samples. A 1994 comparison of the two lists found a non-trivial number of
non-matches - establishments on one list but not the other.

9Treatment of seasonality immediately becomes a major issue when moving to frequencies higher
than annual, and identification of the seasonal patterns of interest, the “true” seasonal factors, can be

11



and the samples are less comprehensive. Smaller samples introduce larger sampling er-

rors, which have traditionally been thought of as introducing CME into the estimates.

The samples are typically random, after all, so part of the difference between the popu-

lation and sample moments is likely random variation uncorrelated with the variation in

the population moments. However smaller samples may introduce some LoSE as well,

since smaller samples are simply less informative than larger samples: when different

segments of the economy behave quite differently, small samples which are not fully rep-

resentative may miss variation arising from some segments.10 In addition, usable data

on the value of transactions at a frequency higher than annual is simply unavailable

for a substantial share of some NIPA aggregates such as GDP; many of the services

categories of personal consumption expenditures (PCE) lack usable source data, for ex-

ample.11 Quarterly and monthly growth rates are typically interpolated from annual

totals, or estimated as “trend extrapolations.” The lack of hard information for these

categories must introduce some LoSE into the quarterly and monthly estimates.

3.2 Evidence of LoSE from GDP and GDI growth

Some users of quarterly or annual US NIPA data take the view that the variance of CME

is negligible after the data have passed through its sequence of revisions, particularly

tenuous; see Watson, 1987. Seasonal adjustment programs are all essentially smoothing algorithms, and
as such they risk introducing LoSE into the data.

10Samples for which topcodes are binding by definition miss variation arising from the top-coded
units. The samples used in the construction of the U.S. NIPA data generally are not top-coded, but
analysts at the Bureau of Economic Analysis (BEA) do look at very detailed categories of data and
trim outliers, which may have an effect similar to topcoding.

11This situation has begun to change, with the introduction of the Quarterly Services Survey (QSS)
in 2002, but so far the BEA uses the QSS for a relatively small share of PCE services.
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for the more highly aggregated NIPA quantities like GDP growth where any remaining

CME variance in its subcomponents may be diminished by averaging. Absent knowledge

of the possible existence of LoSE, this view would imply that the variance of overall

mismeasurement is close to zero, since var (Yt − Y �
t ) = var (εt) in the pure CME model.

However there is ample evidence that the variance of overall mismeasurement in the

most aggregated NIPA aggregate, GDP, is not close to zero, especially since the mid-

1980s. GDI is an alternative estimate of the same quantity, so examining the relation

between GDP and GDI provides some direct evidence on mismeasurement. Table 2

shows that, prior to 1984, the variance of each estimate is close to the covariance between

the two, for both annual and annualized quarterly growth rates. The two estimates

diverge very little, providing little direct evidence of mimeasurement. However after

1984, when the variance of both estimates drops dramatically (see McConnell and Perez-

Quiros (2000)), the correlation between the estimates also falls, as the covariance falls

relative to the variances on average. This is especially true for the quarterly growth rates,

where the correlation falls from 0.93 to 0.68.12 Interestingly, the variance of GDI growth

also increases relative to the variance of GDP growth. Under the generalized CME

model of section 2, this relatively large GDI variance may stem from some combination

of two possible sources: (1) a relatively large amount of CME in GDI growth, boosting its

variance, and (2) a relatively large amount of LoSE in GDP growth, damping its variance.

The evidence favors the latter as the more important source of mismeasurement.

First, consider the results in Nalewaik (2007a), who estimates a two-state bivariate

12At the annual frequency, the correlation falls from 0.98 to 0.94; the decline in smaller at this
frequency primarily because the variance of GDP growth falls below its covariance with GDI growth.
This cannot happen in either the pure CME model or the generalization favored here - i.e. the variance
of each estimate must be larger than their covariance; see Fixler and Nalewaik (2007). Given that only
20 observations are employed to compute these variances, this may be a small-sample estimation issue.
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Markov switching model where mean GDP and GDI growth switch with the state; the

low-growth states identified by the model encompass recessions as defined by the NBER.

The conditional variance of GDI in that model, conditional on the estimated state of

the world, is actually slightly lower than the conditional variance of GDP, despite the

fact that the unconditional variance of GDI growth is higher. The higher unconditional

variance stems from GDI growing faster than GDP in high-growth periods and slower

than GDP in slow-growth periods in and around recessions. In other words, GDI growth

appears to contain more signal about the state of the world than GDP growth: the larger

spread between its high- and low-growth means implies greater informativeness about

the state. Greater signal in GDI growth implies some LoSE in GDP growth, relatively

more than in GDI growth.

Second, table 1 shows that the variance of GDI growth becomes relatively large

only after the data pass through annual and benchmark revisions; in the earlier current

quarterly estimates, the variance of GDP growth actually exceeds the variance of GDI

growth. Since the revisions plausibly bring estimated GDI growth closer to the truth,

they must either reduce LoSE, which would increase its variance, or reduce CME, which

would decrease its variance. The increase in variance from the revisions, then, is likely

a decrease in LoSE, suggesting the relatively large variance of revised GDI stems from

relatively less LoSE. The annual and benchmark revisions appear to add more signal to

GDI growth than GDP growth, increasing the variance of GDI growth relative to GDP

growth.13 Fixler and Nalewaik (2007) discuss the revisions evidence in more detail,

13The results in Nalewaik (2007b) support this interpretation of the revisions. Using the Markov
switching model in Nalewaik (2007a), Nalewaik (2007b) shows that the revisions increase mean GDI
growth in the high-growth state and reduce mean GDI growth in the low-growth state, effectively
increasing its informativeness about the state of the economy. The revisions increase the gap between
the high- and low-growth means for GDP growth as well, but the increase is not as large as the increase
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testing the hypothesis that the idiosyncratic variation of GDI growth is purely CME

and rejecting at conventional significance levels. This again implies some LoSE in GDP

growth.

To get a sense of the magnitude of the potential variance missing from GDP growth

due to LoSE, assume that the CME variance in each estimate is negligible, so the

differences between GDP and GDI growth stem entirely from differential LoSE:

ΔY GDP
t = E

(
ΔY �

t |ZGDP
t

)
= ΔY �

t − ζGDP
t , and:

ΔY GDI
t = E

(
ΔY �

t |ZGDI
t

)
= ΔY �

t − ζGDI
t .

Taking variances as in (4) yields:

var
(
ΔY GDP

t

)
= var (ΔY �

t ) − var
(
ζGDP
t

)
,

var
(
ΔY GDI

t

)
= var (ΔY �

t ) − var
(
ζGDI
t

)
, and the covariance is:

cov
(
ΔY GDP

t , ΔY GDI
t

)
= var (ΔY �

t ) − var
(
ζGDP
t

) − var
(
ζGDI
t

)
+ cov

(
ζGDP
t , ζGDI

t

)
.

The idiosyncratic variance of one estimate (its variance minus its covariance with the

other estimate) is then proportional to the LoSE in the other estimate:

var
(
ΔY GDP

t

) − cov
(
ΔY GDP

t , ΔY GDI
t

)
= var

(
ζGDI
t

) − cov
(
ζGDP
t , ζGDI

t

)
, and:

var
(
ΔY GDI

t

) − cov
(
ΔY GDP

t , ΔY GDI
t

)
= var

(
ζGDP
t

) − cov
(
ζGDP
t , ζGDI

t

)
.

The information missed by both estimates is cov
(
ζGDP
t , ζGDI

t

)
; the idiosyncratic variance

for GDI growth.
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of GDI growth is then the variance of all the information about ΔY �
t missing from

measured GDP growth minus the part of that information also absent from GDI growth.

Rearranging the covariance provides a lower bound on the variance of true GDP growth

ΔY �
t :

var (ΔY �
t ) = cov

(
ΔY GDP

t , ΔY GDI
t

)
+

(
var

(
ζGDI
t

) − cov
(
ζGDP
t , ζGDI

t

))
+

(
var

(
ζGDP
t

) − cov
(
ζGDP
t , ζGDI

t

))
+ cov

(
ζGDP
t , ζGDI

t

)
, so:

> cov
(
ΔY GDP

t , ΔY GDI
t

)
+

(
var

(
ζGDI
t

) − cov
(
ζGDP
t , ζGDI

t

))
+

(
var

(
ζGDP
t

) − cov
(
ζGDP
t , ζGDI

t

))
.

The last column of table 2 uses this equation to set an upper bound on the fraction of

variance of Y �
t captured by measured GDP growth:

var(ΔY GDP
t )

var(ΔY �
t )

. Measured GDP growth

captures at most 70% of the variation in ΔY �
t after 1984, under the assumption of

negligible CME. Of course the assumption of no noise is an extreme one, particularly for

the quarterly estimates. Indeed, the evidence in section 4.3.1 from regressions involving

GDP growth, GDI growth, and stock prices indicate about a quarter of the variance of

GDP growth is noise, but these results actually tighten the upper bound, decreasing it

from 70% to 64%. And this is in fact an upper bound, since it does not account for

cov
(
ζGDP
t , ζGDI

t

)
, the variation in ΔY �

t missed by both measured GDP and GDI growth.

The variation missed by both estimates at the quarterly frequency could be substantial.

Going forward, if these post-1984 variances and covariances are the norm, the impli-
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cations of a potentially non-trivial amount of LoSE in macro data such as GDP growth

should be taken seriously. For estimation and inference, the post-1984 portion of many

samples will become increasingly large and important. The next section explores the

implications of LoSE for estimation and inference using the most ubiquitous tool in

econometrics: OLS regression.

4 Implications for OLS Estimation

Consider ordinary least squares estimation of the relation between a mismeasured vari-

able Yt and a (1 × k) set of mismeasured explanatory variables Xt, using a sample of

length T . When stacking together the observations, time subscripts are dropped for

convenience:

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Y1

Y2

...

YT

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

; X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

X1

X2

...

XT

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Our full set of assumptions is as follows:

Assumption 1 Y �
t = X�

t β + U�
t . U�

t is i.i.d., mean zero, with var (U�
t ) = σ2

U� and

U�
s independent of X�

t , ∀t, s. Yt follows the generalized measurement error model of

section 2: Yt = E (Y �
t |Zy

t ) + εt. The CME εt is i.i.d., mean zero, and independent of all

conditioning information sets, with var (εt) = σ2
ε . The LoSE ζt = (X�

t − E (X�
t |Zy

t ))β +

U�
t − E (U�

t |Zy
t ) = ζxy

t β + ζu
t . ζu

t is i.i.d. and mean zero with var (ζu
t ) = σ2

ζ,u, and ζxy
t is

i.i.d. and mean zero with var (ζxy
t ) = σ2

ζ,xy, a k × k matrix. Xt follows the generalized
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measurement error model of section 2: Xt = E (X�
t |Zx

t )+εx
t . The CME εx

t is i.i.d., mean

zero, independent of εt and all conditioning information sets, with var (εx
t ) = σ2

ε,x, a k×k

matrix. The LoSE ζx
t = X�

t −E (X�
t |Zx

t ) is i.i.d. and mean zero with var (ζt) = σ2
ζ,x, also

a k × k matrix. 1
T

(X�)′ X� p−→ Qxx,
1
T

(E (X�|Zy))′ E (X�|Zy)
p−→ Qxx − σ2

ζ,xy = Qzy
xx,

1
T

(E (X�|Zx))′ E (X�|Zx)
p−→ Qxx − σ2

ζ,x = Qzx
xx,

1
T

(E (X�|Zy))′ E (X�|Zx)
p−→ Qzb

xx,

and 1
T
X ′X

p−→= Qzx
xx + σ2

ε,x. All relevant fourth moments exist.

Then Yt can be written as:

Yt = E (X�
t |Zy

t ) β + E (U�
t |Zy

t ) + εt(6)

= Xtβ + (E (X�
t |Zy

t ) − Xt)β + E (U�
t |Zy

t ) + εt

= Xtβ + (E (X�
t |Zy

t ) − E (X�
t |Zx

t ) − εx
t )β + U�

t − ζu
t + εt.

The OLS regression estimator is:

β̂ = (X ′X)
−1

X ′Y

= β + (X ′X)
−1

X ′ ((E (X�|Zy) − E (X�|Zx) − εx) β + U� − ζu + ε) .(7)

Consider the sources of bias and inconsistency in this estimate. It is well known that

the CME in Y introduces no bias and inconsistency, since ε is independent of X. Inter-

estingly, the LoSE in U� introduces no bias or inconsistency either: the independence

of U� from X� implies the independence of E (U�|Zy) = U� − ζu from E (X�|Zx)14 and

14Write the joint distribution of U�, X�, Zy and Zx as f (U�, X�, Zy, Zx). Since X� and U� are
independent, this distribution can be factored into two marginal distributions, one containing X� and
the other containing U�. This implies a parition of Zy and Zx between the two marginals: let Zy

x be
the set of variables in Zy that influence X� and are independent of U�, let Zy

u be the set of variables
in Zy that influence U� and are independent of X�, and without loss of generality let all variables in
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hence X = E (X�|Zx) + εx. The other components in the error of (6) do cause bias and

inconsistency; taking expectations and probability limits of (6) yields:

E
(
β̂
)

= β + E
(
(X ′X)

−1
X ′ (E (X�|Zy) − E (X�|Zx) − εx)

)
β, and:(8)

β̂
p−→ β +

(
Qzx

xx + σ2
ε,x

)−1 (
Qzb

xx − Qzx
xx − σ2

ε,x

)
β.(9)

The usual attenuation bias and inconsistency from CME in X is evident here. The

additional inconsistency from LoSE depend on the difference between Qzb
xx and Qzx

xx. Like

attenuation bias, these additional biases likely tend towards zero: Qzb
xx should be smaller

than Qzx
xx if Zy and Zx contain a substantial amount of non-overlapping (independent)

information.

The inconsistency of β̂ can be corrected by instrumenting with a (1 × m) set of

instruments Wt, with m ≥ k, if the instruments meet the following set of assumptions:

Assumption 2 With PW = W (W ′W )−1 W ′, 1
T
X ′PWX

p−→ Qw
xx, a positive semi-

definite matrix, and 1
T
X ′PW ((E (X�|Zy) − E (X�|Zx) − εx)β + U� − ζu + ε)

p−→ 0. All

relevant fourth moments exist.

Valid instruments must be asymptotically independent of the CME in X, a standard

condition. However, an additional condition must be met: the instruments must be

Zx be independent of U�. Then:

f (U�, X�, Zy, Zx) = fUZ (U�, Zy
u) fXZ (X�, Zy

x , Zx)
= gU (U�|Zy

u) fZy (Zy
u) gXZ (X�, Zy

x |Zx) fZx (Zx)
= gU (U�|Zy

u) fZy (Zy
u) gX (X�|Zx) gZx (Zy

x |X�, Zx) fZx (Zx) ,

factoring fUZ , fXZ and gXZ into conditional and marginal distributions. E (U�|Zy) is an integral of
gU over U�, while E (X�|Zx) is an integral of gX over X�; since each of these two expectations does
not depend on the other variable, and only on variables independent of the other variable, they must
be independent.
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asymptotically independent of E (X�|Zy) − E (X�|Zx). This condition is met by in-

struments W that are common to both information sets (if such information exists),

so W ⊂ Zx and W ⊂ Zy, since W ′E (X�|Zy) and W ′E (X�|Zx) then have the same

probability limit. With valid instruments, we have:

β̂ =
(
X ′PW X

)−1
X ′PW Y

= β +
(
X ′PW X

)−1
X ′PW ((E (X�|Zy) − E (X�|Zx) − εx)β + U� − ζu + ε) ,(10)

and β̂
p−→ β. The asymptotic distribution of the estimator is:

√
T

(
β̂ − β

)
d−→ N

(
0, (Qw

xx)−1
(
σ2

U� − σ2
ζ,u + σ2

ε + β′
(
Qzy

xx − 2Qzb
xx + Qzx

xx + σ2
ε,x

)
β
))

.

where
d−→ denotes convergence in distribution as T −→ ∞, and N (a, b) is a Gaussian

distribution with mean a and variance b. The usual estimator of the variance of the error

term, s2 = 1
T

(
Y − Xβ̂

)′ (
Y − Xβ̂

)
, converges to the error variance in this asymptotic

distribution:

s2 =
1
T

(
E (X|Zy) β + E (U�|Zy) + ε − (E (X�|Zx) + εx) β̂

)′

∗
(
E (X|Zy) β + E (U�|Zy) + ε − (E (X�|Zx) + εx) β̂

)
=

1
T

E (U�|Zy)′ E (U�|Zy) +
1
T

ε′ε +
1
T

β′E (X�|Zy)′ E (X�|Zy) β

− 1
T

β′E (X�|Zy)′ E (X�|Zx) β̂ − 1
T

β̂′E (X�|Zx)′ E (X�|Zy)β

+
1
T

β̂′E (X�|Zx)′ E (X�|Zx) β̂ +
1
T

β̂′εx′εxβ̂ +
1
T

cross terms.

The first two terms converge in probability to σ2
U� − σ2

ζ,u + σ2
ε ; the terms involving β

and β̂ simplify in the limit since β̂
p−→ β; and the cross terms converge in probability

to zero. Then: s2 p−→ σ2
U� − σ2

ζ,u + σ2
ε + β ′ (Qzy

xx − 2Qzb
xx + Qzx

xx + σ2
ε,x

)
β. The next
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four subsections discuss the most important implications of LoSE in X and Y for the

parameter estimates and standard errors, examining some more specialized examples of

this general model that highlight the implications of interest.

4.1 X Mismeasured, Y Not Mismeasured: No LoSE Problems

Given the traditional focus on mismeasurement in X on regression estimation, we begin

with this subsection making the following assumption, in addition to assumption 1:

Assumption 3 Yt is not mismeasured: Yt = Y �
t .

Then (5) simplifies to:

Y �
t = X�

t β + U�
t

= Xtβ + (X�
t − Xt) β + U�

t

= Xtβ − εx
t β + ζx

t β + U�
t .

Not all of the true variation in X�
t appears in Xt due to LoSE, but all of that variation in

X�
t does appear in Y �

t through X�
t β. That variation in Y �

t missing from Xt is relegated

to the error term of this equation.

The OLS regression estimator in this case is:

β̂ = (X ′X)
−1

X ′Y

= β + (X ′X)
−1

X ′ (−εxβ + ζxβ + U�) .

Since ζx is independent of E (X�|Zx) + εx = X, the LoSE in X introduces no bias

into β̂ in this case. Given assumption 1, 1
T
X ′ζx p−→ 0, and the LoSE introduces no

21



inconsistency either. These results clearly hinge on the assumption that the LoSE is

the difference between truth and a conditional expectation, and measurement error of

a different form, such as the systematic biases discussed at the end of section 2, would

lead to biased and inconsistent parameter estimates. The consistency result here also

relies on all k explanatory variables being conditioned on the same information set Zx.

Kimball, Sahm, and Shapiro (2007) discuss a related example, where different elements

of X are conditioned on different information sets, causing bias and inconsistency.

Of course, the CME in X produces the usual attenuation bias. By way of review,

and for comparison with later results:

E
(
β̂
)

= β − E
(
(X ′X)

−1
X ′εx

)
β, and:(11)

β̂
p−→ β − (

Qzx
xx + σ2

ε,x

)−1
σ2

ε,xβ.(12)

Instruments uncorrelated with the CME in X yield consistent estimates.

To focus more tightly on the implications of LoSE, the remainder of this subsection

considers the case of no CME in X:

Assumption 4 var (εx
t ) = 0.

Then E
(
β̂
)

= β, and β̂
p−→ β. The variation in X�

t that appears in Y �
t but is miss-

ing from Xt shows up in the error term of the regression, increasing the variance of

the parameter estimates. We have var
(
β̂
)

= E
(
var

(
β̂|X

))
+ var

(
E

(
β̂|X

))
, but

E
(
β̂|X

)
= β and var (β) = 0, so the second term vanishes. Then since U� and ζx are
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independent, with both independent of X,15 standard manipulations show:

var
(
β̂
)

= E
(
var

(
β̂|X

))
= E

(
E

((
β̂ − β

)(
β̂ − β

)′
|X

))
= E

(
E

(
(X ′X)

−1
X ′ (U� + ζxβ) (U� + ζxβ)′ X (X ′X)

−1 |X
))

= E
(
(X ′X)

−1
X ′E ((U�U�′ + ζxββ ′ζx′) |X)X (X ′X)

−1
)

= E
(
(X ′X)

−1
) (

σ2
U� + β ′σ2

ζ,xβ
)
.

Asymptotically, the analogous distributional results hold, as:

√
T

(
β̂ − β

)
d−→ N

(
0, (Qzx

xx)
−1 (

σ2
U� + β ′σ2

ζ,xβ
))

,

and s2 converges to this error variance σ2
U� + β ′σ2

ζ,xβ. So the LoSE in X increases the

variance of the regression error, and since the power of hypothesis tests is typically

decreasing in the variance of the regression error, this decreases power. Then in a

regression situation such as that described in this subsection, if a hypothesis test passes

at a prescribed level of statistical significance, that is in spite of the dimunition of power

from the increased error variance.

4.1.1 Empirical Examples

Since nominal asset prices are measured with virtually no error, they provide a can-

didate Y variable meeting the assumptions of this section.16 Given the evidence from

the prior section indicating that macroeconomic quantities are measured with LoSE, a

15The independence of U�
t from X�

t implies independence of U�
t from E (X�

t |Zx
t ), Xt, and ζx

t .

16However real, after-tax asset returns are employed in many regression specifications, and these may
be mismeasured via use of inapppropriate marginal tax rates or mismeasured price indexes for deflation.
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specification such as the human capital CAPM, essentially a regression of stock prices on

labor income growth, may be well represented by the regression model developed here.

4.2 Y Mismeasured, X Not Mismeasured, Xt ∈ Zy
t : Potentially

Misleading Standard Errors

In addition to assumption 1, this subsection makes the following assumptions:

Assumption 5 Xt is not mismeasured: Xt = X�
t , and Xt ∈ Zy

t .

Then Y �
t = Xtβ+U�

t . The relation between Xt and the information set Zy
t has an impor-

tant effect on the properties of the OLS regression estimates; this subsection considers

Xt ∈ Zy
t , and the next Xt �∈ Zy

t .

Since E (Xt|Zy
t ) = Xt, we have: Yt = Xtβ + E (U�

t |Zy
t ) + εt in this case. The LoSE

impacts only U�
t , so ζt = U�

t − E (U�
t |Zy

t ), and var (E (U�
t |Zy

t )) = σ2
U� − σ2

ζ . The OLS

regression estimates β̂ as:

β̂ = (X ′X)
−1

X ′Y

= β + (X ′X)
−1

X ′ (E (U�|Zy) + ε)

= β + (X ′X)
−1

X ′ (U� − ζ + ε) .
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LoSE in U� introduces no bias or inconsistency,17 so the overall measurement error

in Y introduces no bias or inconsistency in this case. The assumption that Y is a

conditional expectation of Y � plus noise again plays a critical role here; consistency

and unbiasedness do not follow if the first component of Y is something other than a

conditional expectation.

The standard errors around the point estimates are more interesting. For the variance

of the point estimates, var
(
β̂
)

= E
(
var

(
β̂|X

))
, and:

E
(
var

(
β̂|X

))
= E

(
E

((
X ′X

)−1
X ′ (E (U�|Zy) + ε) (E (U�|Zy) + ε)′ X

(
X ′X

)−1 |X
))

= E
((

X ′X
)−1

) (
σ2

U� − σ2
ζ + σ2

ε

)
,

since E (U�|Zy) and ε are independent; the analogous asymptotic results hold. Consider

first the impact of the CME ε, which increases the variance of the regression residuals

and parameter estimates, and reduces the power of hypothesis tests.18 This is a cost

of mismeasurement of this type, as hypothesis tests must overcome this dimunition of

power to meet conventional levels of statistical significance. Conducting hypothesis tests

in the usual way is actually somewhat cautious, as CME in Y leads to fewer rejections

of hypotheses, on average. Perhaps because of this increased caution, this bias against

17That E
(
(X ′X)−1

X ′E (U�|Zy)
)

is zero can be seen as follows: E
(
(X ′X)−1

X ′U�
)

=

E
(
(X ′X)−1

X ′
)

E (U�) = 0, but:

E
(
(X ′X)−1

X ′U�
)

= E
(
E

(
(X ′X)−1

X ′U�|Zy
))

= E
(
(X ′X)−1

X ′E (U�|Zy)
)

, since X ∈ Zy.

18Neither LoSE in X nor CME in Y introduce bias, and both increase standard errors compared to
the case of no mismeasurement. These two types of mismeasurement are really quite similar, then, in
terms of their effect on OLS regressions.
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rejecting hypotheses, econometricians have largely concluded that CME in the dependent

variable Yt poses no real problems for standard OLS regression and inference.

LoSE in the dependent variable has an opposite effect, decreasing the variance of the

regression residuals and parameter estimates. Measurement error of this type actually

increases the power of hypothesis tests. Is more power a good thing? I would argue not.

If a hypothesis is rejected at a prescribed significance level, an immediate concern is that

the rejection was due to LoSE-induced power. If the data were free of mismeasurement,

the variance of the parameter estimates would be larger and the rejection may not have

occured.

Note that the parameter variances here are correct for the parameters governing the

relation between mismeasured Y and X, and are not biased down in the same sense as

they would be if, for example, we ignored positive autocorrelation in the residuals of the

regression. However in most applications the parameters of interest are those governing

the relation between true Y � and X, and the econometrician uses the mismeasured data

to make inferences about that true relation out of necessity, because the mismeasured

data are all that is available. Under the assumptions of this subsection, the parameters

estimated using the mismeasured data are unbiased and consistent for the parameters

governing the true relation, but the parameter variances are smaller than they would be

without the LoSE in Y . Standard errors computed using data mismeasured in this way

then give a misleading sense of precision about the relation between true Y � and X, and

the power of hypothesis tests is misleadingly large.

An example clarifies some of these issues. Imagine a situation where the econome-

trician has access to true Y �, X, and a list of other variables Zy that are orthogonal to

X but related to Y �. Hypotheses about the relation between Y � and X are of interest.

26



Testing hypotheses using parameter estimates and standard errors from a regression of

Y � on X is the natural and correct way to procede. But consider the following two step

procedure: (1) regress Y � on X and some subset of Zy, and compute predicted values

which we call Y , and then (2) regress Y on X, testing hypotheses about the relation

between Y � and X using standard errors from this second regression. The parameter

estimates in the second regression are the same as in a regression of Y � on X, but the

standard errors are smaller and tests have greater power because the first stage generates

LoSE in Y . In fact, by making Zy arbitrarily small, the standard errors can be made

arbitrarily small and any hypothesis may be rejected; setting Zy to the null set drives

the standard errors to zero. Artificially generating LoSE in Y in this fashion is clearly

ridiculous, and makes hypothesis tests meaningless.

In reality, if the data meet the conditions of this section, the econometrician starts

out in stage (2) of this two step procedure, sadly without access to Y �. Something

analogous to step (1) has already taken place with the creation of the data Y , by a

government statistical agency or some other entity. The main issue is not materially

different if it is a government statistical agency rather than the econometrician who has

generated the LoSE in Y .

If the variance of LoSE σ2
ζ were known, the most prudent course of action would

be to increase the estimated variance of β̂ by σ2
ζ . This essentially brings us back the

pure CME case, where econometricians are comfortable using standard procedures for

inference.19 Unfortunately, σ2
ζ is typically unknowable; the results in sections 3.2 and

19Note that one could make a symmetric argument to the one outlined above for decreasing the
variance of β̂ by the variance of the CME σ2

ε . However an asymmetric treatment is probably appropriate,
where such a downward adjustment to the variance of β̂ is not made, on the grounds that it is better
to be cautious in rejecting hypotheses.
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4.3.1 for measured GDP growth provide only an approximate lower bound on σ2
ζ . The

bottom line is that inferences are fundamentally less definitive when the dependent

variable is contaminated with LoSE.

In a forecasting context, it should be noted that the LoSE also shrinks the variance

of out-of-sample forecast errors. The actual variance of the out-of-sample forecast error

for the true variable of interest, Y �
t+k−Xt+kβ̂, with β̂ estimated using mismeasured Yt, is

σ2
U� +

(
σ2

U� − σ2
ζ + σ2

ε

)
Xt+kE

(
(X ′X)−1) X ′

t+k. However the LoSE reduces this variance

by σ2
ζ , and if the increase in variance from CME σ2

ε does not offset this increase, the

forecast errors computed using mismeasured Yt+k give a misleading sense of precision: the

deviations of Y �
t+k from the forecasts are larger than those mismeasured forecast errors

suggest. For example, table 1 shows that for GDP growth forecasts, forecast errors

computed using the “advance” GDP growth estimates will be smaller, on average, than

the true forecast errors.

4.2.1 Empirical Examples

Regressions of mismeasured macroeconomic quantities like GDP growth on time trends,

dummies, and other deterministic variables certainly meet the conditions outlined in

this subsection. These types of regressions are run most frequently in a forecasting

context, where the primary goal is to forecast Y �, not to estimate the deep structural

parameters of an economic model relating Y � to X�.20 Many other types of variables

that are mismeasured in the latter context can be treated as measured without error in

the former forecasting context, where the explanatory variables X are just forecasting

20Of course, if the primary goal is to forecast mismeasured Y instead of true Y �, then standard OLS
results for variables free of measurement error apply.
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tools. A good example is source data used to estimate Y (certainly in the relevant

information set). The source data X may be a mismeasured estimate of some other

variable X�, but X� is not relevant when using X solely as a forecasting tool; X can

be treated as an estimate of itself measured without error. Another potential example

is lags of the dependent variable;21 lagged Y is by definition a mismeasured estimate of

lagged Y �, but this is irrelevant for purposes of pure forecasting. The lags are certainly

in the information set of the agency estimating Y , although it is not necessarily clear

to what extent the estimating agency relies on the lags in computing current period

estimates. If the agency uses the lags optimally in constructing the estimates, or if the

lags contain no information above and beyond the source data used to compute the

current period estimates, then the lags meet this subsection’s conditions for X variables

in the context of a pure forecasting regression. Any variable that adds no information

about the dependent variable above and beyond that contained in its source data would

qualify.

4.3 Y Mismeasured, X Not Mismeasured, Xt �∈ Zy
t : Biased

Point Estimates

In addition to assumption 1, this subsection makes the following assumptions:

Assumption 6 Xt is not mismeasured: Xt = X�
t , and Xt �∈ Zy

t .

This case is applicable when the explanatory variables add information about the de-

pendent variable above and beyond that contained in the source data used to esti-

21Some parts of Assumption 1 pertaining to independence will not be applicable with lagged de-
pendent variables, and the small sample results here do not hold in this case. However alternative
assumptions may be made for which the analogous asymptotic results do hold.
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mate the dependent variable. The mismeasured variable of interest in this case is then

Yt = E (Xt|Zy
t )β + E (U�

t |Zy
t ) + εt. Equation (6) becomes:

β̂ = (X ′X)
−1

X ′Y

= β + (X ′X)
−1

X ′ ((E (X|Zy) − X)β + U� − ζu + ε)

= β + (X ′X)
−1

X ′ (−ζxyβ + U� − ζu + ε) .

Bias and inconsistency are evidently issues here. X = E (X|Zy) + ζxy is clearly not

independent of −ζxyβ, and:

E
(
β̂
)

= β − E
(
(X ′X)

−1
X ′ζxy

)
β(13)

= E
(
(X ′X)

−1
X ′E (X|Zy)

)
β.

β̂
p−→ β − (Qxx)

−1 σ2
ζ,xyβ(14)

= (Qxx)
−1 Qzy

xxβ.

The inconsistency of β̂ tends towards zero, since Qxx equals Qzy
xx plus another positive

semidefinite matrix σ2
ζ,xy. Some variation in X that appears in Y � is missing from mis-

measured Y , essentially driving down the covariance between X and Y , and driving

down the parameter estimates as well since the variance of X is not biased down. If

X is univariate, the inconsistency of β̂ is unambiguously towards zero, similar to stan-

dard attenuation bias from CME in the explanatory variable of a regression. Indeed,

comparing these bias and inconsistency results with (10) and (11), it is clear that CME

in X and LoSE in Y of the type in this subsection lead to biases that are essentially

equivalent algebraically.
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Instruments W that meet the conditions of assumption 2 in this case are those for

which X ′PW ζxy converges in probability to zero, for example if Wt ∈ Zy
t , so that Wt is

independent of the information about X�
t missing from Yt. Instruments typically thought

of as valid based on other considerations may not meet this condition; see the discussion

of Euler equation estimation at the end of the section. The asymptotic distribution of

the IV regression estimates β̂ is:

√
T

(
β̂ − β

)
d−→ N

(
0, (Qw

xx)
−1 (

σ2
U� − σ2

ζ,u + σ2
ε + β ′σ2

ζ,xyβ
))

,

with s2 converging to this asymptotic variance. The concerns about σ2
ζ,u from subsection

4.2 remain, as the LoSE in U� reduces the error and parameter variances compared to

the case of no mismeasurement. The part of the LoSE that impacts the explanatory

variables increases the variance of the error.

4.3.1 Empirical Examples

A wide range of regression specifications may employ explanatory variables that are not

mismeasured and contain information about the dependent variable above and beyond

that contained in the source data used to estimate the dependent variable. Some such

specifications are employed for forecasting Y � using X, some are employed to estimate

the structural parameters of an economic model relating Y � to X, and some are employed

for both purposes; the bias results apply in all these situations as long as Y � is the object

of interest.

Regressions of macroeconomic quantities on asset prices are particularly interesting

examples likely to meet the conditions of this subsection. It is entirely possible that
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some of the variation missed by LoSE-contaminated macroeconomic quantities appears

in asset prices. Of course, some variation in asset prices likely arises from misinformation,

rational or irrational bubbles, and other factors unrelated to fundamentals, but this does

not imply that other more informative types of variation are not present as well. Dynan

and Elmendorf (2001) and Fixler and Grimm (2006) show that asset prices predict

revisions to economic aggregates like GDP growth, showing that asset prices contain

information missed by the earlier vintages of the government estimates. Asset prices

may contain information missed by the fully revised, later-vintage estimates as well, and

that information may appear in asset prices in at least two ways.

First, there almost surely exists publicly-available information about the state of

the economy that is not fully incorporated into GDP growth or its subcomponents,

information which is observed by the vast majority of asset market participants and is

thus likely incorporated into asset prices. The various pieces of data used to compute

GDI may be part of this information, including GDI’s source data on corporate profits

and employee compensation. Not all of this information appears to be incorporated into

measured GDP growth, as section 3.2 illustrates, and financial markets certainly react

to this information; see Faust et al (2003), for example.

Second, asset prices aggregate the private information of vast numbers of market

participants, private information that is likely correlated with current or future economic

activity. For example, the stock price of a company may reflect numerous pieces of

private information about that company’s cash flow prospects. Aggregating across all

firms, the idiosyncratic variation in firms’ stock prices averages out, so an aggregate stock

market index contains the signal about aggregate economic activity dispersed in all the
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pieces of private information.22 Bond prices and exchange rates are fundamentally tied to

economic activity, with market participants placing bets with real money about current

and future economic prospects; see Evans and Lyons (2005, 2007) for a description of how

private information about the economy becomes embedded in exchange rates through

the market’s filtering of order flow information.

This points to parameter estimates from regressions of macro quantities on asset

prices that are biased towards zero. To examine this, consider a regression of several of

our quarterly output growth measures on current and lagged growth rates of the Wilshire

5000 stock price index; Fama (1990) studied a similar specification.23 The relation

between economic growth and lagged stock prices can be interpreted in at least two non-

mutually-exclusive ways. First, stock prices may be responding to news about current

and future economic growth and its effect on expected cash flow to firms.24 Second, stock

price variation may have a causal effect on current and future economic growth, through

wealth effects on consumer spending, for example. For our purposes here, differentiating

between these two stories is not necessary; it suffices that a relation between true GDP

22Even if the aggregate stock price contains useful information about aggregate activity, that does
not necessarily imply that any individual holds particularly useful private information - the aggregation
of dispersed private information by the market is key - see Hayek (1945). Nalewaik (2006) makes a
similar argument about consumption growth.

23The stock price changes are quarterly growth rates, while the output growth measures are annualized
quarterly growth rates as in tables 1 and 2. The stock price index is nominal. The results change little
if the stock price index is deflated with the GDP deflator; deflating introduces some measurement error
issues into the explanatory variables and for our purposes here it seems best to avoid that.

24Using similar logic, an analogous specification was derived to model the relation between income
growth and current and lagged consumption growth by Hansen, Roberds and Sargent (1987), which
was employed fruitfully by Nalewaik (2006). Under this interpretation, if the stock price is the present
discounted value of expected future profits, the discount rate is constant, and profits are a linear
function of true output growth, then in a regression of true output growth on current and lagged stock
price growth, the coefficients are proportional to the Wold moving average coefficients from a linear
combination of the set of variables governing the market’s information about output growth.
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growth Y � and stock prices X does exist, governed by a true parameter vector β.

The first column of table 3 shows regression results from the post-1984 sample, using

as the dependent variable the time series of “advance” GDP growth estimates. Recall

that since a substantial amount of data is missing for the “advance” GDP estimate, it is

likely contaminated with a particularly large amount of LoSE. The second column shows

results using the latest available estimates of GDP growth, which have passed through

revisions incorporating more-comprehensive data, reducing LoSE and increasing the

variance of the estimates (see table 1).

In comparing these two columns of table 3, first note that each stardard error in the

second column exceeds its counterpart in the first (these are Newey-West (1987) cor-

rected for heteroskedasticity and second-order autocorrelation). The LoSE in “advance”

GDP growth biases down the standard errors. Second, note that most of the coefficients

in the second column exceed those in the first.25 The last column reports the sum of

the coefficients and its standard error, giving a sense of the average downward bias in

the coefficients in the first column relative to the second. The difference between the

sums in the two columns, 0.072, is statistically significant, with a standard error of 0.036

correcting for cross-correlation and second-order cross-autocorrelation between the two

sets of residuals. We reject the hypothesis that the LoSE in “advance” GDP growth

does not bias down the regression coefficients. The size of the downward bias is about

what we would expect given the summary statistics in table 1: if all the variance in each

estimate is signal, the ratio of the variance of the two GDP growth estimates provides

25Although intuition about univariate attenuation bias does not necessarily hold for all coefficients
in a multivariate setting, (X ′X)−1 is close to diagonal since Δpt is approximately serially uncorrelated,
and that intuition does hold here.
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a reasonable guess as to the expected size of the downward bias.26 This signal-to-signal

ratio is about three-fourths, with the ratio of the sum of the coefficients about two-thirds.

The third column of table 3 reports results using latest GDI growth as the depen-

dent variable. Most striking is the large increase in the sum of the regression coefficients

compared to column two, 0.116 with a standard error of 0.040. A straightforward in-

terpretation of this result is that GDI growth contains more information about true

output growth than does GDP growth, leading to a greater LoSE-induced attenuation

bias in regressions using GDP growth. However, direct measures of corporate profits are

included in estimates of GDI growth, opening up other possible interpretations.

One alternate interpretation is that estimates of corporate profits are noisy, and stock

prices react to some of that noise. Then ε is positively correlated with X in regressions

using GDI growth as the dependent variable, biasing the coefficients up. If this were the

case, the problem should be more severe for the early estimates of GDI growth, before

profits have been benchmarked to administrative and tax records. Yet the fourth column

of table 3 shows that the sum of the coefficients using the early estimates of GDI growth

is less than half the sum of the coefficients using the revised estimates released several

years later; this noise interpretation does not fit the facts.

A second alternate interpretation is that GDI growth contains more information

about corporate profits than does the profits variation implicit in measured consumption,

investment, and the other components of GDP growth, but that superior information

about profits does not translate into superior information about output growth. This

could occur if the profits information is negatively correlated with the remainder of

26Of course, it is only signal reflected in stock prices that matters for bias, not overall signal. But if
stock prices are a comprehensive information aggregator, this calculation should work well.
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GDI growth. Since profits are likely the relevant variable for determining stock prices,

relatively large regression coefficients may occur using GDI growth even if it does not

contain superior information about output growth. This is unlikely for a number of

reasons, but can be examined most directly by regressing the growth rate of GDI minus

corporate profits (deflated by the GDP deflator) on the stock price changes. If this

alternate interpretation is correct, stripping out profits should reduce the sum of the

coefficients, but the last column of the table shows that the sum of the coefficients

actually increases.27

As tables 1 and 2 show, the ratio of the variances of latest GDP growth over latest

GDI growth is 0.87, but the ratio of the sum of the coefficients in table 3 is considerably

less, again about two-thirds. One possible explanation is that not all of the variance

of GDP growth is signal; some noise in GDP growth would bring down the signal-to-

signal ratio of GDP to GDI growth closer the observed downward bias in the regressions.

To investigate this, table 3A switches to a univariate regression framework where the

explanatory variable is the average stock price change over the current and six previous

quarters; table 3B then reverses the regression, using the average stock price change as

the dependent variable. The coefficient using GDP growth as the explanatory variable is

about three-fourths the size of the coefficient using GDI growth, an attenuation bias that

is indicative of noise in GDP growth. While the statistical significance of the difference

between the slopes is marginal (the 0.146 difference has a standard error of 0.088), this

evidence is suggestive.

Assuming that one-fourth of the variance of GDP growth is noise, then GDP growth

captures at most 64 percent of the variance of true GDP growth, recomputing the upper

27A similar result occurs using the growth rate of national income minus corporate profits.
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bound on
var(ΔY �

t )−var(ζGDP
t )

var(ΔY �
t )

from the end of section 3.2. In this case the variance of

signal in GDP growth is about equal to its covariance with GDI growth, and the ratio

of this signal variance to the variance of GDI growth gives the upper bound. If all

information about output growth is reflected in GDI growth, so ΔY � = ΔY GDI , this

bound holds and the coefficients in the third column of table 3 are the true parameter

vector β. However, if some information about true output growth is missing from GDI

growth, these coefficients are themselves biased down, and unfortunately we do not know

the size of this downward bias.

These results using stock prices are largely confirmed by regressions of the different

output growth measures on bond prices, as shown in table 4. The explanatory variables

are TERM, the difference in yield between 10-year and 2-year treasury notes, and DEF,

the difference in yield between corporate bonds and 10-year treasury notes.28 Numer-

ous papers have used similar variables to forecast output growth; see for example Chen

(1991) and Estrella and Hardouvelis (1991). The table examines regressions at forecast-

ing horizons ranging from one- to eight-quarters ahead; DEF has substantial explanatory

power at shorter horizons, while TERM shows some explanatory power at longer hori-

zons. All of the coefficients except one and all of the standard errors increase when we

switch from “advance” GDP as the dependent variable to latest GDP. Switching from

latest GDP to latest GDI, the coefficients again all increase, except for TERM at the

one- and two-quarter ahead horizons when its statistical significance and marginal ex-

planatory power are weakest. The last column reports p-values from an F-test of equal

coefficients from the GDP and GDI regressions; equality is rejected at the three- and

28The corporate bond yield measure is the Merrill Lynch High Yield Master II Index. This series
extends back only as far as 1986; hence the shorter sample for these regressions.
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four- quarter ahead horizons. Similar results obtained from univariate regressions using

either TERM or DEF, although the standard errors around the TERM coefficients were

larger making definitive statements from those regressions difficult. Using DEF as the

dependent variable in reverse regressions, coefficients were smaller using GDP growth

as the explanatory variable than using GDI growth, supporting evidence of some noise

in GDP growth. The coefficients using GDP growth were between 12 and 42 percent

smaller, depending on horizon.

The evidence here and in section 3 shows that GDP growth at the quarterly fre-

quency is contaminated with significant LoSE, implying its major subcomponents are

contaminated with significant LoSE as well. As discussed in section 3.1, a large fraction

of consumption lacks any real source data at the quarterly frequency, so this component

is likely to be particularly contaminated. Consider the implications for Euler equation

estimates of the relation between quarterly macro consumption growth Δct and interest

rates rt; see Campbell and Mankiw (1989). True consumption growth may have substan-

tial covariance with interest rates, but mismeasured consumption growth misses some of

this variation, biasing the OLS regression coefficient towards zero. Lagged variables such

as lagged interest rates are almost universally assumed to be valid instruments in esti-

mating the Euler equation, and they may be valid for dealing with expectational errors

and some other forms of endogeneity. However if interest rates contain information about

actual contemporaneous consumption growth missed by measured consumption growth,

lagged interest rates likely contain just as much if not more of this missing information,

since interest rates are basically forward-looking. Instrumenting current interest rates

with lagged interest rates does not meet Assumption 2, and the instrumental variables

parameter estimates remain biased towards zero.
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4.4 Both X and Y Mismeasured: Illuminating Special Cases

Again for simplicity, and to focus on the effects of LoSE, this section considers the case

of no CME in X, so assumption 4 holds, as well as assumption 1. Three special cases

are illuminating. The first is where the information sets used to construct Y and X

coincide in the universe of variables correlated with X, so Zy
x = Zx (see footnote 14).

Then E (X�|Zy) = E (X�|Zx), so their difference in (5) and (6) disappears, leaving

unbiased and consistent regression parameter estimates. The variance and asymptotic

distribution of β̂, and the probability limit of s2, are as in subsection 4.2. The main

concern under these circumstances is the shrinking effect of LoSE on standard errors.

The second illuminating case is where Zy
x ⊂ Zx, so Zx contains all the information

about X� in Zy, plus additional information. The difference E (X�|Zx) − E (X�|Zy)

is independent of Zy; substituting this difference for ζxy in subsection 4.3 then leaves

the results of that section unchanged. The estimate β̂ is biased and inconsistent, with

the bias towards zero; some variation in measured X that appears in Y � is missed by

measured Y , biasing down the covariance between X and Y relative to the variance of

X. Valid instruments must be in the information set used to compute the more-poorly

measured Y .

The last illuminating case is where Zy contains all the information about X� in Zx

plus additional information, so Zy
x ⊃ Zx. Then E (X�|Zy) − E (X�|Zx) is independent

of Zx and X, and if this difference replaces ζx in subsection 4.1, the results in that

subsection carry over to this case, except LoSE in U� shrinks the error and parameter

variances. The estimates are unbiased and consistent.

These cases should help provide some intuition about the potential effects of LoSE in

particular regression applications where the econometrician has some knowledge of the
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relative degree of mismeasurement in the explanatory and dependent variables. For each

application, whether Zy
x ⊃ Zx, Zy

x = Zx, or Zy
x ⊂ Zx provides the best description of

reality determines which results are most relevant, those from subsection 4.1 (augmented

with LoSE in U�), 4.2, or 4.3. For example, the extent of any bias in the parameter

estimates depends on the degree to which the mismeasured explanatory variables contain

signal missing from the dependent variable.

4.4.1 Empirical Examples

Regressions of mismeasured macro quantities on other mismeasured macro quantities

meet the conditions of this subsection, when the goal is to estimate the relation be-

tween Y � and X�, the true values of the quantities. The permanent income hypothesis

(PIH), for example, is about the relation between the true values of consumption and

income, not mismeasured estimates of consumption and income, so regressions of macro

consumption on macro income that attempt to estimate the PIH parameters meet the

conditions of this subsection. The evidence in sections 3.2 and 4.3.1 suggests that the

Zy
x ⊂ Zx results on bias may be operational in such a PIH regression.29

5 Conclusions

This paper has shown that the canonical classical measurement error (CME) model is

too restrictive to handle some important cases of mismeasurement. That model assumes

that the mismeasured variable of interest is equal to the true variable plus a noise term

29Income and consumption do share some source data at the quarterly frequency, so a counterveiling
bias here may be correlated CME in the estimates biasing the regression coefficients upwards. Formally,
the assumption 1 does not hold since εt is positively correlated with εx

t .
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uncorrelated with the true variable, implying that the variance of the mismeasured vari-

able must exceed the variance of the true variable. It is easy to think of hypothetical

examples where this implication is not met, and some important examples of mismea-

surement in macroeconomic time series do not meet this implication either. For example,

time series such as US GDP growth and GDI growth pass through numerous revisions,

and the first-available vintage of a variable can be thought of as a mismeasured estimate

of subsequent revised vintages. The variance of the first-available vintage is often less

than the variance of better-measured subsequent vintages, a form of mismeasurement

that does not fit into the CME box.

The paper proposes a simple generalization of the CME model that is mathematically

tractable, embeds the CME model as a special case, and adds useful flexibility, allowing

the mismeasured variable to have either more or less variance than the true variable of

interest. The key to the generalization is that instead of just allowing mismeasurement

that adds noise to the true variable of interest, it also permits mismeasurement that

subtracts signal; I label this reduction of signal from mismeasurement the Lack of Signal

Error, or LoSE for short.

In some ways, this generalization of the CME model provides the second half of

the story about errors in variables and their effect on ordinary least squares (OLS)

regression, as the results here exhibit a symmetry that is intuitively pleasing. CME

in the dependent variable of a regression Y does not bias parameter estimates, and

its only effect is to increase standard errors compared to what they would be without

the mismeasurement. Given this lack of bias, and the caution in rejecting hypotheses

introduced by the relatively large standard errors, the consensus in the profession is that

CME in the dependent variable Y poses no serious problems for OLS regression and
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inference. LoSE in the explanatory variables X, has the same effect on OLS regression:

the LoSE does not introduce bias into the parameter estimates, and it increases their

standard errors compared to what they would be without the mismeasurement.

CME in the explanatory variables X, of course, does cause problems for OLS regres-

sion, namely bias in the parameter estimates, towards zero in the univariate case. LoSE

in the dependent variable Y introduces a similar bias under some circumstances: when

some of the signal missing from the dependent variable Y is captured by the explanatory

variables X, such an attenuation-type bias appears. LoSE in Y is also problematic since

it shrinks the variance of the regression residuals, decreasing the size of standard errors

compared to what they would be without this type of mismeasurement. This raises the

possibility that some rejections of hypotheses may stem from the existence of LoSE in

Y , so without this measurement error, the hypotheses would not be rejected. Under

such circumstances, additional caution in making inferences about the relation between

true Y and X seems appropriate, as conventional standard errors may be misleadingly

small.

The paper provides a taxonomy of different types of LoSE and their impact on OLS

parameter estimates and standard errors, and provides examples of common regressions

in macroeconomics that may fit into the different categories considered. The paper

reviews recent evidence in Fixler and Nalewaik (2007) and Nalewaik (2007a,b) that US

GDP growth is mismeasured with LoSE even after the data has passed through all its

revisions. A comparison with GDI growth yields a lower bound on the variance of LoSE

in GDP growth: since the mid-1980s, quarterly or annual GDP growth has captured at

most 70% of the variance of the true growth rate of the economy. US GDP growth and its

subcomponents like consumption growth have served as the dependent variables in many

42



regression studies in macroeconomics and finance; the potential for biases stemming from

mismeasurement of the dependent variable, and misleading standard errors - these issues

have not been contemplated in a serious way prior to this paper.

Asset prices are a set of variables that may capture some of the signal missing from

GDP growth and its subcomponents, implying attenuation-type biases in regressions of

the mismeasured quantities on those prices. The empirical results here confirm that.

The government’s first estimates of GDP growth are likely contaminated with more

LoSE than their revised GDP growth estimates, and those GDP growth estimates are

likely contaminated with more LoSE than GDI growth. In regressions of these different

measures of output growth on either stock prices or bond prices, the measures of output

growth contaminated with more LoSE have smaller coefficients, and the changes in the

coefficients across regressions are often statistically significant. The set of explanatory

variables is fixed from regression to regression; the only thing changing is the degree

of measurement error in the dependent variable. We reject the CME intuition that

measurement error in the dependent variable does not bias regression coefficients. It can

cause biases if it is LoSE, and does cause biases in this important set of regressions of

macro quantities on asset prices.

On a positive note, the results derived here provide some clear prescriptions for han-

dling different types of mismeasurement, in terms of choice of instruments, and also

choice of which variable is dependent Y , and which is explanatory X. As an example,

consider estimation of an Euler equation relation between macro data on consumption

growth and the interest rate. If consumption growth is mismeasured with LoSE, and the

interest rate is free from mismeasurement as it may be under some circumstances, then

the results here recommend using the interest rate as the dependent variable. The com-
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mon practice of using consumption growth as the dependent variable, and instrumenting

the interest rate with lagged interest rates, does not produce consistent estimates when

consumption growth contains LoSE. Such insights are opposite the current conventional

wisdom in the profession. The generalized measurement error model with LoSE is likely

applicable in a wide variety of econometric specifications beyond the few considered here,

and our results should provide helpful insights for making appropriate modifications to

econometric practice.
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Table 3: Regressions of Different Measures of Quarterly Output Growth

on Current and Lagged Stock Price Growth, 1984Q3 to 2004Q4:

ΔY i
t = α + β0Δpt + β1Δpt−1 + . . . + β6Δpt−6 + et

Measure: ΔY GDP ΔY GDP ΔY GDI ΔY GDI ΔY GDI−CP

Vintage: “Advance” Latest Latest “Final” Latest

β0: 0.012 0.014 0.032 0.031 0.003

(0.019) (0.027) (0.026) (0.023) (0.025)

β1: 0.048 0.054 0.084 0.038 0.083

(0.018) (0.024) (0.023) (0.023) (0.030)

β2: 0.021 0.065 0.056 0.036 0.059

(0.024) (0.027) (0.027) (0.027) (0.028)

β3: 0.058 0.057 0.067 0.044 0.093

(0.017) (0.022) (0.023) (0.020) (0.031)

β4: 0.011 0.015 0.051 0.024 0.064

(0.023) (0.028) (0.029) (0.024) (0.028)

β5: -0.003 -0.007 0.038 -0.019 0.070

(0.025) (0.026) (0.022) (0.022) (0.028)

β6: 0.002 0.023 0.008 0.002 0.032

(0.016) (0.017) (0.027) (0.018) (0.030)∑6
k=0 βk: 0.149 0.221 0.337 0.156 0.403

(0.055) (0.060) (0.069) (0.069) (0.079)
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Table 3A: Regressions of Different Measures of Quarterly Output Growth

on Current and Lagged Stock Price Growth, 1984Q3 to 2004Q4:

ΔY i
t = α + β (Δpt + Δpt−1 + . . . + Δpt−6) /7 + et

Measure: ΔY GDP ΔY GDP ΔY GDI

Vintage: “Advance” Latest Latest

β: 0.142 0.214 0.325

(0.060) (0.068) (0.073)

Table 3B: Reverse Regressions of Current and Lagged Stock Price Growth

on Different Measures of Quarterly Output Growth, 1984Q3 to 2004Q4:

(Δpt + Δpt−1 + . . . + Δpt−6) /7 = α + βrΔY i
t + et

Measure: ΔY GDP ΔY GDP ΔY GDI

Vintage: “Advance” Latest Latest

βr: 0.411 0.454 0.600

(0.194) (0.182) (0.169)
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Table 4: Regressions of Different Measures of Quarterly Output Growth

on Lagged Interest Rates Spreads (TERM and DEF), 1988Q3 to 2004Q4:

ΔY i
t = α + βTERM

(
r10yr
t−k − r2yr

t−k

)
+ βDEF

(
rcorp
t−k − r10yr

t−k

)
+ et

Measure: ΔY GDP , “Advance” ΔY GDP , Latest ΔY GDI , Latest p-val., equal βs

βTERM βDEF βTERM βDEF βTERM βDEF

k=1 0.20 -0.50 0.31 -0.61 0.23 -0.79 0.10

(0.26) (0.13) (0.26) (0.13) (0.29) (0.10)

k=2 0.42 -0.44 0.48 -0.53 0.43 -0.69 0.13

(0.26) (0.12) (0.31) (0.12) (0.33) (0.13)

k=3 0.58 -0.38 0.60 -0.40 0.68 -0.65 0.00

(0.30) (0.12) (0.36) (0.15) (0.37) (0.15)

k=4 0.62 -0.23 0.57 -0.28 0.70 -0.50 0.01

(0.32) (0.15) (0.39) (0.17) (0.40) (0.17)

k=5 0.59 -0.19 0.67 -0.29 0.75 -0.41 0.40

(0.35) (0.14) (0.38) (0.14) (0.44) (0.19)

k=6 0.72 -0.27 0.76 -0.32 0.92 -0.39 0.54

(0.35) (0.10) (0.38) (0.13) (0.41) (0.16)

k=7 0.73 -0.19 0.81 -0.20 0.96 -0.39 0.14

(0.35) (0.10) (0.36) (0.13) (0.38) (0.15)

k=8 0.66 -0.10 0.72 -0.15 0.94 -0.27 0.27

(0.34) (0.13) (0.36) (0.14) (0.37) (0.15)
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