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Preface
The Galileo Project: Commitment, Struggle, and Ultimate Success

I am glad to see that someone has followed through and done a really comprehensive 
and workman-like job capturing the history of the Galileo project. This book goes all 
the way back to the initiation of the project, when it was more or less just a thought in 
a few peoples’ minds, and traces the whole evolution from there. I got a great deal out 
of reading it.  

I have a vested interest in the Galileo project—I was deeply involved in it for 
over a decade. A lot of people know about the mission and its terrific science return, 
but they don’t know about the struggle putting the project together, getting it started, 
and keeping it going through all of the reprogramming and restructuring. One of the 
arguments that we used with people on Capitol Hill to keep the program alive through 
delays in the congressional budgeting process was that Galileo would be a nonthreatening 
manifestation of our country’s technological capabilities, and this would send a powerful 
message to the rest of the world. It did just that. 

Galileo meant a lot to the United States, but it also meant a lot to our space 
science community, because at the time that we were going through the development 
of Galileo, it was the only major deep space project. There were Earth satellite launches 
going on, but nothing to the planets. It was Galileo that really helped NASA and the U.S. 
space science community maintain viability during a period of extreme drought in pro-
gram development. A lot of capability would have disappeared over the course of the 10 
years that Galileo was in development.  

The commitment that individuals made to Galileo was extraordinary. Many indi-
viduals committed a third or more of their professional lifetimes to executing this project. 
Over the years, situations developed so many times where it looked like there was just no 
way out for the project, but we always managed to come up with a solution. The number 
of times we managed to pull the fat out of the fire was truly remarkable.  

The Galileo project was complex in that it required funding for science instrument 
and spacecraft development from numerous sources, including NASA and its Centers, the 
Department of Energy, U.S. universities, and the Europeans (especially the Germans). Just 
how the pieces of the fabric were woven together into what turned out to be a very suc-
cessful program—one that required an investment of almost two decades of preparatory 
and execution work to bring about—is an interesting story. Revisiting the program from a 
historical point of view is what motivated me to read this book. I think that people who are 
interested in the space program, its science achievements, and its contribution to technol-
ogy in general will really appreciate this history. It’s comprehensive, it’s complete, and it 
seems to me to be pretty even-handed. I’m very appreciative of what Michael has done.

  			          —John Casani, First Galileo Project Manager
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Foreword
We Are All Standing on the Bridge of Starship Enterprise

This book details the history of the Galileo mission. Galileo had political ups and downs, 
technical challenges and hurdles, and was a multigenerational task. We had people starting 
the mission on advisory committees and senior management jobs who have now passed on. 
Many people went through parts of Galileo in stages of their careers. I have friends who still 
mark their anniversaries and the birthdates of their children in terms of, “That was when we 
were on the beginning stages of prelaunch preparation,” or, “It was during our first Europa 
encounter when that happened.” The Galileo team felt much more as a family than a pure 
professional enterprise. People worked together for long periods of time, through good 
times and bad, to accomplish this thing not just for them, but for everybody.  
	 The Galileo mission to Jupiter was part of the grand sweep of solar system exploration. 
You can view planetary exploration as a human endeavor—a wave sweeping outward from Earth. 
We went to the close-in places first—the Moon, Venus, and Mars. The outer solar system was the 
next big frontier, and it was an order of magnitude more difficult to explore. The distances are 
truly staggering, and the problems of developing spacecraft that could survive on their own for 
long periods of time were major challenges. 
	 The early explorations of the outer solar system were performed by relatively fast-
trajectory spaceships, like the Pioneers and Voyagers. They and Galileo were major steps 
forward in being able to develop reliable craft that would operate for decades, continue 
to send data back without failing, and be smart enough to take care of themselves out of 
communication with Earth. At Jupiter, the time available to send a radio signal is typically 
45 minutes, and another 45 minutes before you get an answer back. You are well beyond 
being able to do the types of things that can be done in Earth orbit. 
	 NASA’s outer solar system missions helped turn that region into a known place, 
rather than just the realm of astronomers. The outer solar system became someplace that 
can be talked about and thought about in geological and geophysical terms. The person on 
the street and kids in school can say, “Hey, I saw a picture of a moon of Jupiter the other 
day and it had volcanoes on it.”
	 We planned the Galileo mission in that context. The scientific advisory committees 
to NASA and the U.S. government laid out an exploration strategy of fast reconnaissance 
missions followed by missions such as Galileo, in which we orbited planets and did more 
detailed studies. There was a leapfrogging characteristic to this type of exploration. The 
missions take so long to plan and execute that the next wave of exploration must be pre-
pared even before the current one can be launched. We began work on Galileo in 1972 in 
its infant form, and we really got to work on it in 1974 with detailed studies, even before 
Voyager was launched in 1977.  
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	 On Galileo, we combined orbital and in situ exploration strategies. We believed 
that if we were going through so much effort and so many resources to get there, we ought 
to not only study the planet, its satellites, and magnetic fields, but that we also should 
understand the chemistry of the atmosphere in detail with an entry probe that actually went 
into the atmosphere, grabbed a sample, analyzed it, and sent the data back to the mother 
ship before burning up in the atmosphere. This was very ambitious.
	 We had a strategic plan that said we were going to go orbit Jupiter, get into its 
atmosphere, and then inform that plan with tactics derived from Voyager results. It is a good 
example of the way exploration progresses. You learn things that lead to new questions 
you want to answer, and so forth. We were preparing to follow up and understand Jupiter’s 
miniature planetary system at a very detailed level, even as Voyager was continuing on from 
Jupiter to Saturn, opening up the rest of the outer solar system. 
	 People frequently ask, “Why should the average person be interested in what’s 
going on in the Jupiter system?” There are answers to that on all levels, ranging from the vis-
ibility of high technology to developing new things that have spinoffs to enhancing national 
prestige to satisfying pure curiosity. But really, it is all about changing the way we look at 
the universe and the world. We want to know how planets tick and understand the pro-
cesses that control us here on Earth—everything from geophysics to climatology to global 
warming. The universe is effectively a laboratory waiting for us to study these things.  
	 Most of the people who have worked on Galileo over the years probably regard 
their biggest contribution as having changed the textbooks. Kids today learn about such 
things as the moons of Jupiter, and they know what they’re talking about. To them, the 
planets become not just dots in the sky that you can barely see with a telescope. The planets 
become real places, and kids know their characteristics.
	 There is always a tension in the national debate about how much robotic explora-
tion (such as Galileo) we should do versus so-called human exploration (such as Apollo). 
This misses the point! What we call robotic exploration is in fact human exploration. The 
crews sitting in the control room at Jet Propulsion Laboratory as well as everyone out there 
who can log on to the Internet can take a look at what’s going on. So, in effect, we are all 
standing on the bridge of Starship Enterprise.
	 It is important to note that Galileo was an international mission. Science is, by its 
nature, international. We had people contribute from countries all over the European com-
munity and other countries as well. This was one of the first missions in which the analysis 
of data more or less continued around the clock, around the globe. We’d wake up in the 
morning and hear that one of our colleagues in Berlin had processed some images over-
night and brought new data to the table—and we could look at it immediately, while they 
had a chance to sleep.  
	 The intellectual children, grandchildren, and great-grandchildren of the people 
who worked on Galileo have now spread through the crews operating the Cassini space-
craft at Saturn and the MER Rovers, Spirit and Opportunity, on the surface of Mars. It is an 
ongoing spirit of exploration and, to me, that’s really the bottom line of what Galileo was 
all about. It is important to record the history of these types of things, both because of the 
intrinsic interest that the public has and because there are always lessons to be learned. I 
sure hope people will read this book and get that feeling from it.   

	
		                                    —Torrence V. Johnson, Galileo Chief Scientist
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ibility of high technology to developing new things that have spinoffs to enhancing national 
prestige to satisfying pure curiosity. But really, it is all about changing the way we look at 
the universe and the world. We want to know how planets tick and understand the pro-
cesses that control us here on Earth—everything from geophysics to climatology to global 
warming. The universe is effectively a laboratory waiting for us to study these things.  
	 Most of the people who have worked on Galileo over the years probably regard 
their biggest contribution as having changed the textbooks. Kids today learn about such 
things as the moons of Jupiter, and they know what they’re talking about. To them, the 
planets become not just dots in the sky that you can barely see with a telescope. The planets 
become real places, and kids know their characteristics.
	 There is always a tension in the national debate about how much robotic explora-
tion (such as Galileo) we should do versus so-called human exploration (such as Apollo). 
This misses the point! What we call robotic exploration is in fact human exploration. The 
crews sitting in the control room at Jet Propulsion Laboratory as well as everyone out there 
who can log on to the Internet can take a look at what’s going on. So, in effect, we are all 
standing on the bridge of Starship Enterprise.
	 It is important to note that Galileo was an international mission. Science is, by its 
nature, international. We had people contribute from countries all over the European com-
munity and other countries as well. This was one of the first missions in which the analysis 
of data more or less continued around the clock, around the globe. We’d wake up in the 
morning and hear that one of our colleagues in Berlin had processed some images over-
night and brought new data to the table—and we could look at it immediately, while they 
had a chance to sleep.  
	 The intellectual children, grandchildren, and great-grandchildren of the people 
who worked on Galileo have now spread through the crews operating the Cassini space-
craft at Saturn and the MER Rovers, Spirit and Opportunity, on the surface of Mars. It is an 
ongoing spirit of exploration and, to me, that’s really the bottom line of what Galileo was 
all about. It is important to record the history of these types of things, both because of the 
intrinsic interest that the public has and because there are always lessons to be learned. I 
sure hope people will read this book and get that feeling from it.   

	
		                                    —Torrence V. Johnson, Galileo Chief Scientist
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In an address to the U.S. Senate Subcommittee on  
Science, Technology, and Space, author James Michener 
asserted that “it is extremely difficult to keep a human life 

or the life of a nation moving forward with enough energy and commitment to lift it into 
the next cycle of experience . . . . There are moments in history when challenges occur 
of such a compelling nature that to miss them is to miss the whole meaning of an epoch. 
Space is such a challenge.”1 

The Galileo mission to Jupiter successfully explored a vast new frontier, had a 
major impact on planetary science, and provided invaluable lessons for the design of sub-
sequent space vehicles. In accomplishing these things, Galileo met the challenge of “such a 
compelling nature” that Michener envisioned. The impact of the mission was felt by those 
who worked on it, the country that supported it, and the people from other parts of the 
world who were deeply impressed by it. In the words of John Casani, the original Project 
Manager of the mission, “Galileo was a way of demonstrating . . . just what U.S. technology 
was capable of doing.”2 An engineer on the Galileo team expressed more personal senti-
ments when she said, “I had never been a part of something with such great scope . . . . 
To know that the whole world was watching and hoping with us that this would work. We 
were doing something for all mankind . . . I’d walk outside at night and look up at Jupiter, 
and think, my ship’s up there.”3

Introduction
Meeting the 

Grand Challenge

1	 James A. Michener, “Space Exploration: Military and Non-Military Advantages” (speech delivered before the U.S. 
Senate Subcommittee on Science, Technology, and Space, Washington, DC, 1 February 1979). Published in Vital 
Speeches of the Day (Southold, NY: City News Publishing Company, 15 July 1979). 

2	 John Casani interview, tape-recorded telephone conversation, 29 May 2001.

3	 Nagin Cox interview, tape-recorded telephone conversation, 15 May 2001.

“All truths are easy to understand once they are discovered. 
The point is to discover them.”

—Galileo Galilei 
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xxii	 MISSION TO JUPITER: A History of the Galileo Project

	 Like other grand voyages of discovery, Galileo altered the way we view our sur-
roundings (in this case, our planetary surroundings). It is thus fitting that this mission to 
the Jovian system was named after a man whose own astronomical observations radically 
challenged the way that people of his time viewed their universe. The discoveries of both 
Galileo the man and Galileo the spacecraft brought us new perceptions of our planetary 
system, made our lives richer and more interesting, and breathed new vitality into our quest 
to understand ourselves and our universe. 
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