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Abstract

Restoring the ecological integrity of regulated large rivers necessitates characterizing the natural flow regime. We
applied ‘Indicators of Hydrologic Alteration’ to assess the natural range of variation of the Missouri River’s flow
regime at 11 locations before (1929–1948) and after (1967–1996) mainstem impoundment. The 3768 km long
Missouri River was divided into three sections: upper basin least-altered from flow regulation, including the lower
Yellowstone River; middle basin inter-reservoir, and lower basin channelized. Flow regulation was associated with
a reduction in magnitude and duration of the annual flood pulse, an increase in magnitude and duration of annual
discharge minima, a reduction in frequency of annual low-flow pulses, earlier timing of March–October low-flow
pulses, and a general increase in frequency of flow reversals with a reduction in the rate of change in river flows.
Hydrologic alterations were smallest at two least-altered upper-basin sites and most frequent and severe in inter-
reservoir and upper-channelized river sections. The influence of reservoir operations on depressing the annual flood
pulse was partially offset by tributary inflow in the lower 600 km of river. Reservoir operations could be modified
to more closely approximate the 1929–1948 flow regime to establish a simulated natural riverine ecosystem. For
inter-reservoir and upper channelized-river sections, we recommend periodic controlled flooding through managed
reservoir releases during June and July; increased magnitude, frequency and duration of annual high-flow pulses;
and increased annual rates of hydrograph rises and falls. All of the regulated Missouri River would benefit from
reduced reservoir discharges during August–February, modified timing of reservoir releases and a reduced number
of annual hydrograph reversals. Assessment of ecological responses to a reregulation of Missouri River flows that
more closely approximates the natural flow regime should then be used in an adaptive fashion to further adjust
reservoir operations.

Introduction

So paramount is a river’s flow regime as an underpin-
ning to ecological integrity that its protection or restor-
ation has been accorded ‘the natural flow paradigm’
(Poff et al., 1997; Richter et al., 1997). Alteration
of the natural flow regime through impoundment and
flow regulation has severely compromised the ecolo-
gical health (sensuKarr & Chu, 1999) of most of the
world’s rivers. This is pervasive for large and great
rivers in developed countries because of their long
association with human activities (Davies & Walker,
1986; Benke, 1990; Bravard & Petts, 1996). Rehabil-

itation of the hydrological and ecological integrity of
large rivers is therefore a major thrust of contempor-
ary fluvial ecology (Gore, 1985; Boon et al., 1992;
National Research Council, 1992; Calow & Petts,
1992).

Assessment is a fundamental aspect of charac-
terizing, conserving or recovering the ecological in-
tegrity of fluvial hydrosystems and benchmarks or
reference conditions are necessary to quantify what
constitutes ‘healthy’ or ‘integrity.’ Hughes (1995) gave
six approaches for determining reference conditions.
These include: regional reference sites, historical data,
paleoecological data, experimental laboratory data,
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quantitative models and best professional judgement.
Assessing and restoring ecological integrity of large
rivers precludes use of regional reference systems as
there is only one Danube or Missouri River. Ad-
ditionally, biomonitoring, experimental studies and
quantitative models of large rivers are limited relative
to wadeable streams due to their size and sampling dif-
ficulties (Johnson et al., 1995; Reash, 1998). However,
long-term hydrological records are often available for
large rivers (Sparks, 1992).

An initial consideration to realize fluvial restora-
tion is to reregulate the natural flow regime (National
Research Council, 1992; Gore & Shields, 1995; Stan-
ford et al., 1996; Poff et al., 1997), since attempts to
reestablish a river’s biological integrity are doomed
without recreating the underlying physical template.
Consequently, ‘managed flooding’ is now recommen-
ded to naturalize river flows and their associated eco-
logical processes in some large rivers (Michener &
Haeuber, 1998).

Our objective was to assess ecologically relevant
components of the Missouri River’s flow regime and
their longitudinal variability before and after main-
stem regulation. We use this information to provide
initial guidelines for restoring a more natural hydro-
graph to enhance the ecological integrity of the river’s
imperiled biota.

Missouri River hydrosystem

The Missouri River is the longest river in the conter-
minous United States. It extends 3768 km from south-
west Montana to the Mississippi River, near St. Louis,
Missouri (Figure 1). Its drainage basin encompasses
about one-sixth of the conterminous United States
(1 371 000 km2) and is largely semi-arid, resulting in
a low discharge relative to basin area. Mean annual
Missouri River discharge per unit drainage area from
1951 to 1980 was about four times less (0.0016 m3

s−1 km−2) than for the adjacent upper Mississippi
River (0.0065 m3 s−1 km−2; data from Hedman &
Jorgensen, 1990).

Public demands to improve navigation, irrigate the
arid Great Plains, control devastating floods and gener-
ate electricity began in earnest on the Missouri River in
the early 1900s. Today, this highly regulated river can
be divided into three approximately equal length sec-
tions. The upper 1241 km represents a ‘least-altered’
section relative to the remaining river. Although four
mainstem dams and reservoirs are present – Helena,

Figure 1. Map of the Missouri River basin (thick broken line), the
Missouri River and its major tributaries, mainstem reservoirs (names
in bold), and locations of gauging stations where historical flow
records were analyzed.

Hauser, Holter and Canyon Ferry – their usable ca-
pacity (2.7 km3) is only 3% of the downriver main-
stem reservoirs. The 1233 km long middle or ‘inter-
reservoir’ section was impounded between 1937 and
1963 by a cascade of six large mainstem reservoirs
(total gross volume: 90.7 km2; total average annual
discharge: 100.5 km3 yr−1). Flows in the 1212 km
long lower section are regulated by upstream reser-
voirs. Channel-floodplain morphology in the lower
section from Sioux City, Iowa (1178 km), to the mouth
was also altered by channelization, bank stabilization
and levee construction and will be referred to as the
‘channelized’ section.

System impoundment, flow regulation, channel-
ization, levee construction, and other basin develop-
ments and their impacts on the system’s ecology have
been considerable and are chronicled elsewhere (see
Hesse et al., 1989; Schmulbach et al., 1992; Galat
& Frazier, 1996 and references therein). Collectively,
Missouri River basin development has contributed to
listing as endangered, threatened, or rare by state or
federal agencies seven species of plants, six insects,
two mussels, 16 fishes, four reptiles, 14 birds and three
mammals (Whitmore & Keenlyne, 1990). The conser-
vation organization, American Rivers, listed the Mis-
souri River as North America’s most endangered river
in 1997 (American Rivers, 1997). Re-establishing a
semblance of the natural flow regime is an essential
element to restore the Missouri River’s ecological in-
tegrity; characterizing pre-regulation hydrologic vari-
ability is an initial step.
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Methods

The Range of Variation Approach, or RVA, was de-
veloped by The Nature Conservancy (Richter et al.,
1997) to assess and define river ecosystem manage-
ment targets based on a statistical characterization of
ecologically relevant hydrologic parameters (Richter
et al., 1996). The hydrologic parameters used in the
RVA comprise the ‘Indicators of Hydrologic Altera-
tion,’ or IHA, method (Richter et al., 1996). These
parameters reflect five fundamental attributes of river
flow that have profound ecological significance: mag-
nitude, timing, frequency, duration and rate of change
of discharge (Richter et al., 1996, 1998; Poff et al.,
1997; Scott et al., 1997). The IHA method calculates
32 hydrologic parameters for each year of flow re-
cord (Table 1). Measures of central tendency (mean,
median) and dispersion (range, standard deviation,
percentiles, coefficient of variation (CV) and coef-
ficient of dispersion (CD)) are used to characterize
inter-annual variation before (reference period)versus
after the system has been altered by human activit-
ies (Richter et al., 1996). A fundamental concept of
the RVA is that post-regulation river flows should be
managed to fall within the targeted range of IHA val-
ues at the same frequency as the pre-regulation flows
(Richter et al., 1997).

Richter et al. (1997) recommended six steps for
setting, implementing and refining flow management
targets for a specific river or reaches within a river. We
applied the first two steps to evaluate contemporary
Missouri River hydrology relative to historical condi-
tions. First, we characterized the natural range of flow
variation (Step 1) for the Missouri River using IHA
before and after mainstem flow regulation, referred
to hereafter as pre- and post-regulation, respectively.
Second, initial flow management targets were iden-
tified for these hydrologic parameters using the RVA
approach.

River-flow data were analyzed from gauging sta-
tions above (least-altered), between (inter-reservoir)
and below (channelized) the large mainstem reser-
voirs. Comparing hydrologic parameters before and
after flow regulation at stations above major reservoirs
provides an estimate of natural temporal variability
between the two time periods. It also enabled us to
evaluate the applicability of relatively least-altered
sites as spatial references for distant locations below
large mainstem reservoirs.

The IHA software uses daily flow data input by
water year (October 1–September 30). The first year

of continuous daily flow records for most mainstem
Missouri River stations was water year 1929 (October
1928–September 1929). We searched the U.S. Geolo-
gical Survey’s (USGS) stream-flow records to locate
mainstem Missouri River stations meeting three cri-
teria: 1. a minimum of 13 years of continuous flow
records both before and after reservoir construction;
2. location of stations within each of the least-altered,
inter-reservoir and channelized-river sections; 3. con-
centration of stations in river sections where input
from major tributaries was highest. Ten of the 24
mainstem gauging stations met these criteria.

Gauging stations are identified by their location
(km) upstream from the mouth of the Missouri River
followed by a two-letter abbreviation of the station
name. Least flow-altered sites are identified inbold
typeface. Inter-reservoir stations and station 1297YT,
just below the most downstream reservoir (Lewis and
Clark), are identified by normal type face and stations
in the channelized section are distinguished byitalics.
We also included one tributary, least-altered station in
our analysis: Sidney, Montana (2592SN), 47 km up-
stream from the Yellowstone River’s confluence with
the Missouri. The Yellowstone is the longest free-
flowing, high-quality, large river in the conterminous
U.S. (Benke, 1990; White & Bramblett, 1993), and
has a greater discharge than the mainstem Missouri
at their confluence (Table 2). Stations3336FB and
2592SNare affected by human activities (e.g. small
impoundments and water diversions), but their flow
regimes are little altered relative to other mainstem
Missouri River sites (White & Bramblett, 1993; Scott
et al., 1997; Shields et al., 1997).

Construction of Ft. Peck (2850 km), the first dam
on the mainstem Missouri, began in 1937. Hesse
& Mestl (1993) reported that its early operation did
not affect the hydrograph at Bismarck, North Dakota
(2115BM), until 1948 and they defined the pre-
regulation period for the entire river as 1929–1948.
We adopted this interval, but recognize that filling
and operation of Ft. Peck Dam may have influenced
river flow at the Wolf Point station (2738WP) between
Ft. Peck Dam and 2115BM. The remaining mainstem
reservoirs were constructed between 1953 and 1963
and the six-dam system commenced operation in 1967
(Ferrell, 1993); we defined the post-regulation period
as 1967–1996. Flow data were incomplete over the 50
year record for three of the 11 stations. One year of
pre-regulation flows was absent from905NC(1929)
and two years each from2592SN(1932–1933) and
1297YT (1929–1930).
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Table 1. Summary of the 32 hydrologic parameters used in the Indicators of Hydrologic Altera-
tion (IHA) method for the Missouri and lower Yellowstone rivers. Sources: Richter et al. (1996,
1998)

IHA statistics group Hydrologic parameters (number)

Group 1: Magnitude of monthly Median discharge for each calendar

discharge conditions month (12)

Group 2: Magnitude and duration of Annual median discharge maxima

annual extreme discharge and minima averaged over 1-day,

conditions 3–day, 7-day, 30-day and 90-day

intervals (10)

Group 3: Timing of annual extreme Median Julian date of each annual

discharge conditions (Jan–Dec) 1-day maximum and

minimum discharge and median

Julian date of each seasonal

(Mar–Oct) 1-day minimum

discharge (3)

Group 4: Frequency and duration of Median number and median duration

high- and low-flow pulses of high and low discharge pulses

each year (4)

Group 5: Rate and frequency of Mean of all positive and negative

hydrograph changes differences between consecutive

daily discharge values and mean

number of flow reversals (3)

Indicators of hydrologic alteration calculations

We added an additional variable to the Group 3 statist-
ics (Table 1): Julian date (JD) of the vegetation ‘grow-
ing season’ 1-day minimum flow where the growing
season was defined as March 1–October 31 (JD 122–
305). Minimum flows during this period are relevant to
reproductive success of the federally endangered least
tern (Sterna antillarum) and threatened piping plover
(Charadrius melodus), which nest on exposed sand
islands along the Missouri and its major tributaries
(Smith, 1996; Bacon & Rotella, 1998). Timing of sand
island exposure is also important to nesting success of
softshell turtles (Apalonespp., pers. comm., R. Bodie,
Dept. Biol. Sci., University of Missouri), as is expos-
ure of mud flats to germination of annual moist-soil
plants (Galat et al., 1998). Additionally, most Missouri
River fishes reproduce during the March–October in-
terval (Galat et al., 1998) and shallow-water habitats
are important nursery areas for many large-river fishes
(Copp, 1991; Poizat & Pont, 1996). It was not neces-

sary to add a new variable to reflect the date of the
growing season 1-day discharge maximum, because
the maximum for the whole year at all stations always
occurred between March and October.

Specific high and low discharge thresholds are
user-defined in the IHA to compute the number and
duration of high and low pulses relative to these
flows. Richter et al. (1997) suggest a default defini-
tion of high pulses as>75th percentile (%ile) of all
pre-dam flows and low pulses as<25th%ile of all
pre-dam flows. We adopted this approach, but applied
a more conservative criterion, defining the annual
high-flow threshold at each station as the 75th%tile
daily discharge for the month with the highest pre-
regulation monthly median discharge. Conversely, the
low-discharge threshold was set as the 25th%ile daily
discharge for the month with the lowest pre-regulation
monthly median discharge.

Range of variability calculations

Once IHA parameter values are calculated (Step 1),
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Table 2. Location (kilometers upstream from Missouri River mouth), drainage area,
pre- (Oct 1929–Sep 1948) and post-flow (Oct 1967–Sep 1996) regulation mean an-
nual discharge, and percent change in mean annual discharge from pre- to post-flow
regulation at two stations on the Missouri and lower Yellowstone (2592SN) rivers
upstream from large mainstem reservoirs (bold), three stations immediately below
dams or between reservoirs, and six stations downstream from reservoirs in the chan-
nelized river (italics). Pre-flow regulation period is missing 1932–33 at km2592SN,
1929–1930 at km 1297YT, and 1929 at km905NC

Name Station Mean annual discharge (m3 s−1)

(USGS station number) location Drainage

(km) area 1929– 1967– Percent

and ID (km2) 1948 1996 change

Fort Benton, MT 3336FB 64 100 175.1 228.4 30.4

(06090800)

Wolf Point, MT 2738WP 213 131 212.0 300.1 41.6

(06177000)

Sidney, MT YSR 2592SN 178 977 332.6 358.4 7.8

(06329500)

Bismarck, ND 2115BM 482 776 583.9 698.5 19.6

(06342500)

Yankton, SD 1297YT 723 905 692.8 812.8 17.3

(06467500)

Omaha, NE 991OM 846 306 771.5 1012.2 31.2

(06610000)

Nebraska City, NE 905NC 1 072 154 913.7 1193.8 30.6

(06807000)

St. Joseph, MO 721SJ 1 088 577 1007.4 1386.4 37.6

(06818000)

Kansas City, MO 589KC 1 256 668 1240.9 1673.0 34.8

(06893000)

Boonville, MO 317BV 1 299 403 1487.0 2020.4 35.9

(06909000)

Hermann, MO 158HM 1 357 678 1955.6 2629.6 34.5

(06934500)

the RVA recommends that flow management ‘targets’
for each hydrologic parameter be based on a river
management team’s selected ranges of natural vari-
ation for that parameter (Step 2). In the absence
of specific ecological information to identify these
targets, Richter et al. (1997) recommend using±1

standard deviation (SD) of pre-development hydrolo-
gic parameters as initial targets; we follow this general
approach. However, hydrologic data are often skewed
so that±1 SD falls outside the range of observed
values. This occurred for various parameters within
Groups 1–4 of the IHA statistics for the Missouri River
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data set. Consequently, we report median (50th%ile)
values rather than means for parameters within Groups
1–4 and use the 25th and 75th%iles as our initial flow
management targets. The mean and±1 SD were used
for Group 5 parameters (rise rate, fall rate and number
of flow reversals). We report each IHA parameter as
the percent change in medians or means and CDs or
CVs from the pre-regulation to post-regulation period:

%CHG= ((post-regulation value)

− (pre-regulation value))/

(pre-regulation value)∗ 100.

See Galat & Lipkin (1999) for numerical values of
each variable.

Using measures of natural dispersion based on
pre-regulation data as flow ‘targets’ evaluates if post-
regulation hydrologic conditions occur at the same
frequency as before regulation (Richter et al., 1998).
Pre-regulation annual values for hydrologic paramet-
ers fall within the 25–75th %ile values 50% of the time
and within±1 SD about 67% of the time. Thus, for
post-regulation IHA observations to meet target cri-
teria, only one-half to two-thirds of annual values are
expected to fall within the pre-development flow re-
gime. The degree to which the selected pre-regulation
RVA measure of dispersion is not attained is an es-
timate of ‘hydrologic alteration’ (Richter et al., 1998).
We follow Richter et al.’s (1998) example and report
the percent of hydrologic alteration as:

%HA =((Observed− Expected)/

Expected)∗ 100.

‘Observed’ is the count of post-regulation years the
hydrologic parameter was observed within the pre-
regulation 25–75th %iles or±1 SD of the pre-
regulation mean. ‘Expected’ is the count of post-
regulation years the hydrologic parameter is expected
within the pre-regulation 25–75th %iles or±1 SD of
the mean, which by definition, is either 50 or 67%,
respectively. Thus, %HA = 0, when the observed
frequency of post-regulation years falling within the
pre-regulation target range is the same as expected
during the pre-regulation period. When %HA>0,
post-regulation annual parameter values fell within the
RVA target windowmoreoften than expected, while
%HA<0 for a post-regulation parameter indicates an-
nual values fell within the RVA target windowless
often than expected. We further abstract hydrologic
alteration among stations by dividing %HA values

(absolute) into four classes of equal range: 0 = 0–
25%, low flow alteration; 1= 26–50%, moderate flow
alteration; 2 = 51–75%, high-flow alteration; and 3 =
76–100%, extreme flow alteration. These ranks were
first averaged over the hydrologic indicators within
each of the five IHA groups and then the group means
averaged to yield an index of overall hydrologic al-
teration for each station. Caution is advised not to
overinterpret this summary index, as combining off-
setting variables might yield similar overall %HAs
among stations which exhibit widely different causes
of impairment. Management actions should rely on
consideration of each of the 32 individual indicators.

Results

Mean annual discharge over the study period (1929–
1996) increased gradually from3336FBto 991OM, as
only a few major tributaries contribute flow in this sec-
tion (e.g. Yellowstone River, Table 2). Downriver from
991OM,flow increased more steeply with the input of
several tributaries (Platte, 957 km; Kansas, 591 km;
Grand, 402 km; Chariton, 366 km; Osage, 209 km;
and Gasconade, 168 km). Although the lower 991 km
of river drains only about 38% of the total Missouri
River catchment, it contributed 61% of the 50 year
mean annual discharge at158HM.

Mean annual discharge for the 30 year post-
regulation period was higher at all stations than for
the 20 years before mainstem dams operated as a
complex (Table 2). This increase in discharge was
<10% at 2592SN (Yellowstone River), but about
30% higher at3336FB. The discharge increase at the
six channelized stations on the lower Missouri River
ranged from about 30 to 38%. The greatest increase
in post-regulation discharge was observed at 2738WP,
below Ft. Peck Dam. This appeared to be an arti-
fact of including reservoir filling in the 1929–1948
pre-regulation interval.

Magnitude of monthly discharge

The general pattern of mean monthly discharge at
all stations before mainstem impoundments were op-
erational was an extended period of low flow from
August through February (Figure 2). Mean discharge
increased beginning in March at most stations, showed
a small peak in April between 2115BM and589KC,
and was highest during June throughout the river
continuum. The annual flood pulse was unimodal at
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Figure 2. Mean monthly discharge before (a, Oct 1929−Sep 1948)
and after (b, Oct 1967−Sep 1996) flow regulation along the main-
stem Missouri and lower Yellowstone rivers. Stations above large
mainstem reservoirs are indicated by dotted lines, those between
and immediately below reservoirs by dashed lines, and those below
reservoirs in the channelized Missouri River are identified by solid
lines. River kilometer is distance above the Missouri River mouth.
Station 2592 (Sidney, MT) is on the undammed lower Yellowstone
River.

least-altered site3336FB(June peak), weakly bimodal
at 2738WP and 2115BM (April, June peaks), strongly
bimodal at2592SN(March, June peaks) and also at
1297YT,991OMand905NC,but with April and June
peaks. The bimodal flood-pulse pattern weakened
downriver from991OM, gradually becoming nearly
unimodal again at the lowermost station (158HM).
A small November flow pulse was also observed be-
fore flow regulation at the two lowermost stations
(317BV,158HM). The absence of a distinct flood pulse
at 2738WP relative to3336FBand 2592SN(Figure
2) again appeared to be a result of filling Ft. Peck
reservoir in the ‘pre-impoundment’ period.

The general pattern of post-regulation flows was
a stabilization of mean monthly discharge by an in-
crease in August through February low flows and
a reduction in June and July high flows (Figure 2,

Table 3). This change was absent at least-regulated
stations (3336FB, 2592SN), most pronounced at inter-
reservoir and upper-channelized-river sites, and less
extreme at lower-channelized river sites (589KC–
158HM). Once the mainstem dams became opera-
tional, the naturally bimodal flood-pulse became un-
imodal at all sites below reservoirs and the small fall
pulse at sites317BVand 158HM disappeared because
of constantly high summer-autumn reservoir water
releases.

August through February median monthly dis-
charges at most stations were above the pre-regulation
75th%ile flow interval more often than expected for
post-regulation years (Table 3). April and July %HA
was often positive following flow regulation, indic-
ating that more years were within the pre-regulation
25–75th%iles than expected for many stations, but
there was no consistent trend in %HA for March, May
or June. Flow variability (% change in CD) was lower
following impoundment for most months and gauging
stations.

Median flows for the peak discharge month of
June decreased 16% at least-altered station2592SN
between the two time intervals, the CD increased
by 50%, and 27% fewer years were within the
1967–1996 target window for June discharge (Fig-
ure 3). In contrast, median June discharge increased
37% at 3336FB, the CD was less, and 20% fewer
years than expected were within the 1929–1948 25–
75th%iles. Decreases in median June discharge attrib-
uted to flow regulation were highest at inter-reservoir
sites 2115BM and 1297YT and – moving downriver
through the channelized reach – became progress-
ively smaller (Figure 3). Median June flows decreased
<10% following impoundment at channelized-river
stations721SJ, 589KC, 317BV and 158HM, while
variability in June discharge decreased by≥45% (Fig-
ure 3, Table 3). Fewer post-regulation years than
expected were within the pre-regulation 25–75th%iles
for June discharge at most stations above905NC
(except 2738WP). The number of years where June
discharge was outside the pre-regulation target win-
dow generally decreased downriver until there was no
difference between the two time intervals at905NC
(Figure 3). Below905NC, a higher number of post-
regulation years were within the pre-regulation June
flow 25–75th%iles than expected.
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Table 3. Percent change in median, coefficient of dispersion, and hydrologic alteration of
monthly discharge between pre- (Oct 1929–Sep 1948) and post-flow regulation (Oct 1967–Sep
1996) periods along the Missouri and lower Yellowstone (2592SN) rivers. Station locations are
kilometers above Missouri River mouth. Station numbers inbold type are the least flow-altered,
those in regular type are inter-reservoir or immediately below reservoirs, and those initalics are
below reservoirs in the channelized river. See text for how hydrologic alteration was calculated

Station Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Median

3336FB 77 72 45 21 21 37 105 85 51 36 34 48

2738WP 285 366 90−12 30 −6 64 47 100 77 92 230

2592SN 49 68 −12 24 11 −16 −7 17 42 35 26 70

2115BM 314 272 18 9 −6 −54 −21 43 43 56 118 201

1297YT 128 97 −15 5 19 −43 −18 62 88 157 143 126

991OM 106 108 13 14 31−27 −7 65 83 120 128 165

905NC 63 52 14 23 32−19 −15 55 59 67 97 128

721SJ 71 61 22 32 47 −7 2 63 90 75 103 123

589KC 55 50 10 22 44 −3 −4 68 88 98 95 129

317BV 70 63 0 27 50 −4 −6 64 79 80 107 117

158HM 47 81 19 37 48 0 5 55 67 76 101 93

Coefficient of dispersion (CD)

3336FB −61 −29 18 −54 4 −17 10 63 15 46 2 −50

2738WP −84 −81 −55 28 −56 −48 −52 −68 −75 −50 −27 −81

2592SN −25 17 −6 −28 −4 50 −21 −19 −39 −26 25 −44

2115BM −67 −56 −52 −60 −36 9 −49 −47 −49 −12 −8 −48

1297YT −25 −51 −69 −79 −63 −55 −72 −17 −48 −65 −37 46

991OM −8 −35 −38 −67 −47 −43 −45 −23 −52 −53 −12 54

905NC 17 −17 73 −44 −32 −28 −27 −35 −41 −36 −9 45

721SJ 40 −8 27 −46 −19 −46 −46 −23 −48 −53 −14 −7

589KC 25 32 44 −9 −20 −60 −29 −27 −10 −44 −39 −15

317BV −15 45 25 2 −42 −63 −15 −27 20 −24 −37 −17

158HM −6 8 93 −1 −25 −45 −10 −34 18 −19 0 −20

Hydrologic alteration (HA)

3336FB −87 −93 −47 67 −53 −20 −27 −80 −67 −33 −40 −73

2738WP −100 −100 −53 33 53 60 −7 93 87 27 −60 −100

2592SN −93 −87 40 27 −7 −27 20 0 7 −13 −47 −53

2115BM −100 −100 27 33 13 −60 60 −47 0 −13 −47 −100

1297YT −100 −80 60 67 47 −80 87 −87 −87 −87 −87 −100

991OM −100 −87 60 87 0 −13 80 −100 −100 −100 −73 −100

905NC −93 −47 −40 33 7 0 73 −87 −100 −100 −73 −93

721SJ −93 −40 −27 47 −13 27 67 −80 −87 −100 −80 −87

589KC −80 −47 −20 20 −7 40 60 −60 −87 −100 −73 −80

317BV −67 −53 −13 33 13 40 40 −67 −87 −73 −67 −73

158HM −13 −33 −47 7 7 47 40 −67 −67 −67 −53 −53

Magnitude and duration of discharge extremes

Patterns of annual discharge maxima and minima were
similar among the 1-, 3-, 7-, 30- and 90-day aver-
aging windows so we report only the 1-, 7- and 30-day

results (Table 4). Post-regulation median discharge
maxima for 1-, 7-, and 30-day intervals were between
12 and 23% lower than before regulation at2592SN
on the Yellowstone River, but about 30% higher at
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Figure 3. Median June discharge at five stations along the Missouri
and lower Yellowstone rivers (YSR) before (1929−1948) and after
(1967−1996) flow regulation. No flow records were available for
Sidney, MT, during 1932−33. The horizontal dotted lines are the
25th (lower) and 75th (upper) percentiles for the pre-regulation in-
terval and define a target range of acceptable hydrologic variability
for post-regulation years. Numbers within panels identify station
locations in kilometers above Missouri River mouth. Least-altered
station names are inbold typeface, inter-reservoir stations are in
normal typeface, and channelized river stations are initalics.

the least-regulated Missouri River station3336FB
(Table 4). Median annual maximum flows for the three
averaging durations were nearly all less after regula-
tion for inter-reservoir and channelized-river stations
2738WP to905NC; station 721SJwas transitional,
and maximum flows increased from589KC down-
stream to the Missouri’s terminus. Post-impoundment
variability of annual maximum flows decreased at
3336FB, all inter-reservoir stations and the uppermost
channelized-river site (991OM), increased at stations
905NCand721SJin the channelized section, but then
decreased again at589KCand downriver. Hydrologic
alteration in annual maximum flows at least-altered
stations ranged from 27% more years within the pre-
regulation 25–75th%ile than expected to 20% less
years than expected. Most regulated river stations ex-
hibited a greater alteration in medians of annual max-
imum flows than least-altered sites. Fewer years than
expected were within the pre-regulation 25–75th%ile
target range for 1- and 7-day (Figure 4) averaging

Figure 4. Annual 7-day median discharge at five stations along the
Missouri and lower Yellowstone rivers (YSR) before (1929−1948)
and after (1967−1996) flow regulation. The horizontal dotted lines
identify a target range of variability for the post-regulation period.
Refer to Figure 3 for further explanation.

periods of median annual maxima for inter-reservoir
stations. The river from Kansas City (589KC) to the
mouth showed a different trend with a higher num-
ber of post-regulation years falling within the target
25–75th%iles of the 1–30-day averaging windows of
maximum discharge than before flow regulation.

Post-regulation medians of annual minimum flows
for 1-, 7- and 30-day averaging intervals at all study
gauges were higher than pre-dam medians, over 100%
at many stations (Table 4, Figure 5). Locations with
the smallest increases in annual minimum flows (al-
though still ranging between 41 and 136% higher)
were the two least-altered sites and lowermost stations
317BVand158HM. Over 50% of post-dam years at all
stations had fewer 1-, 7- and 30-day annual minimum
flows within the pre-dam 25–75th%iles than expected;
all 30 post-dam years were above the target window
for one or more of the annual minimum-flow dura-
tions at six of the inter-reservoir and channelized-river
stations (Table 4, Figure 5).
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Table 4. Percent change in nonparametric (median, coefficient of dispersion) and parametric (mean, coefficient of variation) statistics
and hydrologic alteration for five groups of hydrologic variables between pre- (Oct 1929–Sep 1948) and post-flow regulation (Oct
1967–Sep 1996) periods along the Missouri and lower Yellowstone (2592SN) rivers. All hydrologic parameters are summarized by
nonparametric statistics except rise rate, fall rate and number of reversals, which are summarized by parametric statistics. Refer to
Table 2 for station locations in relation to reservoirs. See Table 1 for definitions of hydrologic terms and text for how hydrologic
alteration was calculated. JD = Julian date

Station Group 2−Magnitude & duration Group 3− Timing of Group 4− Frequency & Group 5− Rate &

of annual discharge extremes annual discharge duration of high & low frequency of

extremes pulses hydrograph changes

Max Min JD annual JD Mar– High pulse Low pulse

Oct

Rise Fall No. flow

1d 7d 30d 1d 7d 30d Max Min Min Count Dur. Count Dur. rate rate reversals

Median/mean
3336FB 30 27 33 69 41 51 3 34 14 100−21 −11 −77 −15 −17 −6

2738WP −27 −28 −21 370 346 176−31 −38 22 50 −48 −40 −72 −39 −27 51

2592SN −12 −23 −12 126 102 51 4 8 −3 0 24 −17 −45 −33 −34 −4

2115BM −61 −52 −41 256 260 177−38 −55 5 25 −41 0 −74 −62 −48 145

1297YT −59 −52 −34 144 148 149 95 48 −48 −50 −3 −75 76 −76 −62 56

991OM −36 −40 −17 207 204 157 12 13 −51 −33 −42 −75 156 −53 −44 40

905NC −21 −29 −12 174 186 124 1 12 −29 −17 −31 −78 101 −42 −40 30

721SJ 6 −8 −1 212 250 140 3 9 −28 40 5 −63 46 −13 −17 24

589KC 15 1 5 163 179 126 −1 7 −30 0 17 −63 16 −6 −11 19

317BV 49 30 25 117 136 97 4 5 −18 50 19 −56 −34 13 11 16

158HM 21 38 53 91 94 100 −1 7 −21 60 20 −33 −34 14 13 14

Coefficient of dispersion/coefficient of variation (CD/CV)
3336FB −20 −28 −11 −48 −8 −5 94 −27 48 25 68 −39 152 37 35 −21

2738WP −5 −27 −40 −50 −53 −39 −10 406 49 50 168 483 38 −23 0 −22

2592SN −25 5 29 48 18 −2 −15 159 25 33 2 100 0 −35 −39 −26

2115BM −51 −47 −45 −38 −27 8 71 144 212 260 37 100−31 −9 14 −30

1297YT −16 −22 −14 28 −12 −46 −12 187 70 167 125 33 97 18 58 75

991OM −1 −13 −15 30 2 7 7 60 84 250 315 60 314 −4 −11 −28

905NC 39 52 19 15 −4 10 14 −14 106 140 292 200 133 16 18 −7

721SJ 25 50 5 −28 −45 −3 20 17 197 25 42 33 107 34 7 −8

589KC −36 −16 −8 16 −18 −15 149 −14 252 25 −58 100 81 15 9 10

317BV −67 −50 −32 17 11 76 53 0 140 17−49 80 43 −10 −3 −4

158HM −46 −47 −51 34 46 1 168 125 115 −22 −45 −200 60 −20 −20 −6

Hydrologic alteration (HA)
3336FB −7 7 −20 −53 −73 −87 −53 −40 −60 −60 −33 47 −40 −35 −35 15

2738WP −40 −40 −33 −100 −100 −100 13 80 −67 −27 −47 −80 −53 −30 −15 −70

2592SN 27 13 −7 −87 −67 −73 −20 13 −13 13 27 −13 −33 15 5 20

2115BM −93 −93 −40 −100 −100 −100 −40 80 −87 −73 7 −27 −67 −85 −80 −100

1297YT −100 −100 −47 −67 −80 −87 −93 −73 −93 −33 −53 −67 −73 −100 −95 −95

991OM −73 −60 7 −87 −100 −100 −40 −60 −47 −40 −73 −60 −73 −80 −75 −100

905NC −47 −40 0 −87 −100 −100 −27 −67 −67 −60 −73 −87 −60 −50 −55 −90

721SJ −33 −27 0 −73 −87 −100 −20 −13 −67 −20 −40 −53 −53 −20 0 −80

589KC 47 33 20 −73 −80 −87 −47 47 −80 −20 47 −67 −47 0 5 −75

317BV 67 53 20 −93 −100 −100 −7 67 −73 −47 27 −33 −7 10 10 −35

158HM 60 53 47 −73 −73 −73 −20 73 −40 −27 53 −53 −33 15 20 −25
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Figure 5. Annual minimum 7-day median discharge at five sta-
tions along the Missouri and lower Yellowstone rivers (YSR) before
(1929−1948) and after (1967−1996) flow regulation. The hori-
zontal dotted lines identify a target range of variability for the
post-regulation period. Refer to Figure 3 for further explanation.

Timing of annual discharge extremes

Median date of the annual maximum daily discharge
before flow regulation occurred within the same three
weeks (21 May – 14 June, JD 142–166) among all
stations except 1297YT (10 April). There were only
small differences (<4%) in timing of the median
Julian date of annual daily flow maxima following
regulation at above-reservoir stations and also in the
channelized river from905NCdownriver (Table 4).
However, variability in the date of annual max-
imum daily flow among years was generally higher in
the channelized section following river impoundment
(Table 4); fewer years than expected were within the
pre-regulation 25–75th%iles. Annual peak daily dis-
charges occurred between 56 and 70 days earlier at
inter-reservoir stations 2738WP and 2115BM, but 173
days later at station 1297YT below Gavins Point Dam,
an important nesting area for federally threatened least
terns (Smith, 1996).

Prior to flow regulation, annual daily discharge
minima occurred between mid-December and early
January (JD 345–4) at all stations except site3336FB,
where the median date of annual minimum daily

discharge was 12 August. Median Julian date of
annual flow minima occurred much earlier follow-
ing dam operation at inter-reservoir stations 2738WP
and 2115BM, and 80% more post-regulation years
than expected were within the pre-regulation 25–
75th%iles, even though variability in the timing of
annual daily flow minima was much higher (Table 4).
The gauge below Gavins Point Dam (1297YT) was
again different from other inter-reservoir sites, as the
timing of annual daily flow minima was delayed after
flow regulation from Julian day 350 (15 December) to
JD 71 (11 March) and 73% fewer years than expected
fell within the pre-regulation 25–75th%iles. Variabil-
ity in CD at channelized-river sites ranged from +60 to
−14%, except at158HMwhere it increased to 125%.
Also, the percentage of post-regulation years within
the pre-regulation 25–75th%iles was higher than ex-
pected at the three lowermost channelized stations
(Table 4).

Pre-dam median date of lowest daily flow between
May and October occurred from JD 223 to 283 (10
August–9 October) at all stations, was most com-
mon in September (7 of 11 stations), and generally
occurred later in the season farther downriver (Oc-
tober in the three lowermost stations). Timing of
the 1967–1996 May–October daily flow minima was
generally later than the 1929–1948 25–75th%iles for
stations3336FB and 2738WP, was erratic at inter-
reservoir station 2115BM, and occurred much earlier
in the growing season at station 1297YT and all sites
downriver (Table 4).

Frequency and duration of annual high- and low-flow
pulses

Discharges selected as the minimum threshold to
define annual high pulses occurred in June at all
Missouri River stations (Galat & Lipkin, 1999). Least-
altered and inter-reservoir stations exhibited fewer
(3–4 yr−1) high-flow pulses before flow regulation
than channelized-river stations (5–6 yr−1). The me-
dian number of high-flow pulses per year doubled at
the Missouri River least-altered station3336FB(from
3 to 6 yr−1) between the two time intervals, but re-
mained constant at the Yellowstone River least-altered
station (2592SN). Frequency of high-flow pulses in-
creased following flow regulation at inter-reservoir
stations 2738WP and 2115BM; decreased at inter-
reservoir and channelized stations 1297YT,991OM
and905NC; and increased at three of the four lower-
basin channelized stations (721SJ, 317BV, 158HM).
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Figure 6. Number of high-flow pulses per year at five stations
along the Missouri and lower Yellowstone rivers (YSR) before
(1929−1948) and after (1967−1996) flow regulation. The hori-
zontal dotted lines identify a target range of variability for the
post-regulation period. Refer to Figure 3 for further explanation.

Variability in the number of high-flow pulses per year
increased by over 100% following flow regulation at
inter-reservoir and channelized-river stations 2115BM
to 905NC,compared to less than 35% at least-altered
upper basin sites (Figure 6).

Median duration of high-flow pulses before im-
poundment ranged from 12 to 17 days yr−1 at sta-
tions3336FBto 1297YT and decreased downriver to
7–9 days yr−1 at stations991OM–158HM. After im-
poundment, the median duration of high-flow pulses
decreased (−3 to−48%) at 6 of the 7 stations between
3336FBand905NC, except station2592SNwhere it
increased by 24%. In contrast, the length of high-
flow pulses increased from 5 to 20% at the four
lowermost channelized-river stations (721SJ–158HM)
during 1967–1996. The number of days per year
of high-flow pulses at the Yellowstone River site
(2592SN) and the three lowermost channelized-river
stations(589KC, 317BV and 158HM), were within
the pre-regulation 25–75th%iles for over 60% of post-
regulation years. In summary, the number of high-flow
pulses per year generally increased between the two
time periods, but their length was shorter at the two
least-regulated stations and the two upper river, inter-

Figure 7. Number of low-flow pulses per year at five stations
along the Missouri and lower Yellowstone rivers (YSR) before
(1929−1948) and after (1967−1996) flow regulation. The hori-
zontal dotted lines identify a target range of variability for the
post-regulation period. Refer to Figure 3 for further explanation.

reservoir sites. Both the number and duration per year
of high-flow pulses were reduced below Gavins Point
Dam at station 1297YT, while their values generally
increased between 1929–1948 and 1967–1996 at the
four farthest downriver gauges (721SJ–158HM).

The number of low-flow pulses per year decreased
at 10 of the 11 stations following flow regulation
(Table 4). This reduction was smallest at the two
above-reservoir stations and at the lowermost river
gauge (158HM). The post-dam decrease in number of
low-flow pulses per year was highest (−40 to−78%)
at inter-reservoir and channelized-river stations, with
the exception of 2115BM (Figure 7). Variability in
the number of low-flow pulses per year generally in-
creased during the reservoir operation period, except
at 158HM where the CD decreased. Fewer post-
regulation years than expected for most stations were
within the 25–75th%ile target range for the number of
low-flow pulses, and the decrease in%HA was lowest
at least-altered site2592SN.

Changes in the duration of annual low-flow pulses
were recorded between pre- and post-regulation in-
tervals, but were variable along the river continuum
(Table 4). Duration following regulation was 45–77%
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shorter at the two above-reservoir stations and the
two uppermost inter-reservoir gauges. Below Gavins
Point Dam the pattern was reversed, duration increas-
ing by over 75% at stations 1297YT,991OM and
905NC. This increase was dampened downriver until it
again decreased at the two lowermost stations (317BV,
158HM). So, while there was a general basin-wide re-
duction in the number of low-flow pulses between the
pre- and post-dam intervals, their duration showed a
complex longitudinal pattern: decreasing, increasing
and then decreasing again.

Rate and frequency of change in discharge

Rates of change in river flow were the only hydrologic
parameters analyzed using parametric statistics and
the pattern of results were similar for both discharge
rises and falls (Table 4). Mean rates of discharge rises
and falls were between 15 and 34% lower and the
mean number of flow reversals per year decreased
slightly (4–6% less) during 1967–1996 at the two
least-altered stations. There was a more pronounced
post-regulation reduction in rise and fall rates at inter-
reservoir and upper channelized-river sites than at
least-altered stations, and between 50 and 100% fewer
years were observed within the pre-regulation %HA
target window at stations 2115BM to905NC(Table 4).
The post-regulation reduction became progressively
less proceeding downriver from 1297YT to 721SJ–
589KC, while below 589KC (317BVand158HM)the
mean rate of discharge change increased (Table 4).
Additionally, 10–20% of post-regulation years were
within the pre-regulation target windows at the two
lowermost sites, while between 50 and 100% fewer
years than expected were within the target window at
most regulated river stations upstream from721SJ.

More flow reversals per year were observed fol-
lowing regulation at stations downstream from dams,
but this increase gradually diminished to only 14%
more pulses per year after regulation at station
158HM. Similarly, the reversal rate per year between
the two time periods was highest at inter-reservoir
stations and decreased linearly downriver to158HM.

Basin-wide summary

Major differences in hydrologic indicators between
pre- and post-regulation for the 11 stations are high-
lighted by reporting %HA for hydrologic indicators
ranked high or extreme (Table 5).

These include variables and stations where>50%
more post-regulation years than expected (>22 of the

30 post-regulation years for Groups 1–4) were within
or outside of the RVA target window (25–75th%ile for
Groups 1–4,±1 SD for Group 5).

Mean annual discharge for all stations along the
Missouri River was higher from 1967 to 1996 than
between 1929 and 1948, but noticeably less so at
2592SN, the only station with no upriver impound-
ments. Flow regulation of the mainstem Missouri
River was associated with significant alterations in
many of the 32 hydrologic indicators (Table 5). Most
notably, these were: 1. a reduction in the magnitude
(i.e. lower high flows) and duration of the annual flood
pulse; 2. an increase in the magnitude (i.e. higher
low flows) and duration of annual discharge min-
ima; 3. a reduction in the frequency of annual daily
low-flow pulses and earlier timing of growing season
daily low-flow pulses; and 4. a general increase in
the frequency of discharge reversals per year coupled
with a reduced rate of change in river flows. Col-
lectively, hydrologic alterations were lowest at least-
altered station2592SN, most severe at inter-reservoir
and upper channelized-river sections, and intermedi-
ate at the lowermost channelized-river stations (Figure
8). Least-altered station3336FB, below Canyon Ferry
Reservoir, showed a composite hydrologic alteration
much higher than least-altered site2592SNand sim-
ilar to that of the four lowermost channelized-river
stations. Higher post-regulation discharge throughout
most of the Missouri River catchment, but to a much
lesser extent in the Yellowstone River basin, appeared
to interact with reservoir operations to influence meas-
ures of hydrologic alteration between the two time
intervals.

Discussion

Alterations in seasonal flow patterns and ecological
effects

Our characterization of the Missouri River’s flow re-
gime between 1929 and 1948 shows the system to
be more complex than previously reported (Hesse et
al., 1989; Hesse & Mestl, 1993). The protracted pre-
regulation annual flood pulse in the lower Missouri
River was a temporally cumulative result of com-
plex precipitation and climatic patterns throughout the
catchment: spring ice-out in the upper and middle
basins, spring snowmelt in the middle basin, runoff
from spring rains in the lower basin, and runoff from
June snowmelt in the upper basin. We suspect the
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pre-regulation annual flow regime in the middle-river
section was more bimodal than elsewhere because
a spring rainy season is absent in the Great Plains
Province.

The importance of a predictable annual flood pulse
to reproduction of fishes in large floodplain rivers is
well documented (Junk et al., 1989; Ward, 1989;
Welcomme et al., 1989; Bayley & Li, 1992) and is
the basis of the ‘flood-pulse advantage’ observed in
the high production of fishes in large river-floodplain
systems (Bayley, 1991). If tenets of the flood-pulse
concept are applicable to the Missouri River hydro-
system, we hypothesize that modifications in the mag-
nitude, frequency, timing and duration of the annual
flood pulse have reduced recruitment and production
of native river-floodplain fishes in the inter-reservoir
and channelized-river sections. Galat et al. (1998)
showed that inundation for≥10 days of the Mis-
souri River floodplain in central Missouri occurred
during the optimal spawning temperature ranges of
native fishes for only 4 of the 15 post-regulation years
between 1983 and 1996.

There was historically a small fall increase in dis-
charge along the lowermost Missouri River, similar
to that reported by Sparks et al. (1990) and Sparks
(1995) for the nearby upper Mississippi River. This
small pulse is regional and due to the onset of au-
tumn rains in the well-watered Central Lowlands and
Interior Highlands physiographic provinces (Galat et
al., 1998). A fall flow pulse is important to provide
fishes access to wintering habitats on the floodplain
and in backwaters before cold-water temperatures re-
duce their swimming ability (Bodensteiner & Lewis,
1992). Furthermore, it inundated annual moist-soil ve-
getation in floodplain wetlands, providing forage to
fall migrating waterfowl. This historically small au-
tumn flow pulse inundated floodplain wetlands to a
shallower depth than the subsequent large June pulse,
with the result that forage remained available for wa-
terfowl on their return migration the following spring
(Sparks, 1992; Galat et al., 1998). Flow releases for
navigation and levees that disconnect the lower Mis-
souri River from its floodplain wetlands have largely
eliminated this fall river rise and the benefits to fish
and wildlife it once provided.

Assessment of intra-annual flow patterns also iden-
tified alteration of several ecologically important sum-
mer low-flow variables and showed that changes are
widespread over the regulated Missouri River. Sus-
tained reservoir water releases during the naturally
low-water season cause protracted flooding of about

two-thirds of the Missouri River and may be as pervas-
ive and damaging a disturbance as reduction of the an-
nual June flood pulse. Circumstantial evidence for this
hypothesis comes from the native fish community that
reproduces in or along the Missouri and lower Yellow-
stone rivers. Based on adult habitat use and reproduct-
ive requirements described in Pflieger (1971, 1997),
we identified as ‘fluvial specialists’ (∗) seven of the
nine fishes federally listed as candidate, threatened,
or endangered (U.S. Fish & Wildlife Service, 1994,
1995):Acipenser fluvescens, ∗Scaphirhynchus albus,
Polyodon spathula, ∗Hybognathus argyritus, ∗H. pla-
citus, ∗Macrhybopsis gleida, ∗M. meeki, ∗Platygobio
gracilis and ∗Cycleptus elongatus. Fluvial special-
ists use flowing-water habitats throughout life (Bain,
1992; Kingsolving & Bain, 1993). The remaining two
species,A. fluvescensandP. spathula, are considered
‘fluvial dependent,’ requiring flowing water at some
point in their life cycle (Bain, 1992; Kingsolving &
Bain, 1993). Both fishes reproduce in flowing waters
and may migrate into tributary streams to spawn. All
nine fishes are capable of completing their entire life-
cycle within the channel complex and are included in
Pflieger’s (1971) ‘Big River Faunal Group.’ Loss of
a river-floodplain connection due to a reduced annual
flood pulse should have less direct affect on spawning
success of these fishes than on floodplain-dependent
species like centrarchids. Therefore, the dispropor-
tionate decline in Missouri River’s native fluvial fishes
appears most associated with protracted summer-fall
high flows and in-channel habitat loss.

Loss of the lower Missouri River’s braided chan-
nel geometry through channelization has eliminated
most sand island and shallow in-channel habitats used
by riverine fishes for spawning and nursery (Funk
& Robinson, 1974; Latka et al., 1993). The few
low-elevation sand islands and associated shoals that
remain are now flooded or their surface area reduced
during much (July–September) of the reproductive
season for many riverine fishes, as well as for birds
and turtles (Galat et al., 1998) that make similar
use of these critical habitats. Additionally, protrac-
ted summer-fall high flows prevent germination of
early-successional tree species (Johnson, 1992) and
moist-soil annual vegetation in suitable habitats that
remain along the lower Missouri River.

This hypothesis regarding the ecological effects of
altered summer-fall low flows is not intended to dis-
count the importance of restoring the annual flood
pulse, but to emphasize the need for the full range
of seasonal flow variability to re-establish a natural-
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ized flow regime. The annual flood pulse is a critical
cue to initiate spawning migrations for many fluvial-
specialist and fluvial-dependent fishes, it is essential
to transport floodplain-derived organic matter and nu-
trients to the main channel, and to maintain channel-
floodplain geomorphic diversity (Welcomme, 1985;
Junk et al., 1989).

Natural factors contribute to spatio-temporal
variability in river flows

Station2592SNon the Yellowstone River was the only
site evaluated where no upstream mainstem impound-
ments were present and it showed the lowest degree
of hydrologic alteration between the two time inter-
vals (Figure 8). Proceeding downriver from the last
mainstem dam, Gavins Point (km 1305), overall flow
alteration between 1967 and 1996 declined from that
observed at inter-reservoir sites. Hydrologic variabil-
ity was less from721SJto the mouth than between
the mainstem reservoirs and was similar to, or lower
than, the upstream least-altered Missouri River site
at 3336FB. However, sources of hydrologic altera-
tion differed somewhat among the channelized-river
stations and between them and3336FB (Table 5).
Notably, post-regulation magnitude and duration of
annual maximum flows were higher at317BV and
158HMthan at other channelized sites because317BV
and158HMwere more affected by climatically driven
flooding in 1993, 1995 and 1996 (Parrett et al., 1993;
Galat et al., 1998).

Flow differences were moderate to extreme com-
paring the 1929–1948 interval to 1967–1996 at all
sites examined, including least-altered site2592SN
(Table 5). Consequently, caution must be used in
attributing hydrologic alteration among sites and
between the two time intervals solely to flow regula-
tion. While mainstem impoundment, flow regulation,
and changes in land use greatly influenced hydrologic
variability of the Missouri River, at least two natural
factors also contributed to these spatio-temporal dif-
ferences. Basin-wide precipitation and runoff differed
between the two time intervals, and hydrology is in-
herently variable along the Missouri River continuum.

The ‘dust bowl’ droughts of the 1930s occurred
during the pre-regulation period and recurrent flooding
in the 1990s was prevalent during the post-regulation
interval. Qi Hu et al. (1998) analyzed interdecadal
variations in precipitation from the 1890s through the
1990s in the central U.S., including the lower Missouri
River basin states of Kansas, Nebraska, Iowa and Mis-

souri. They concluded that there has been a trend in
the region’s annual mean precipitation and that it has
changed from a decrease before the mid-1960s to an
increase thereafter. Thus, the increase in low-flow dis-
charge between 1967 and 1996, and most pronounced
at inter-reservoir and channelized-river sites, appears
to be an additive effect of mainstem flow regulation
operating within the context of a catchment-wide in-
crease in precipitation. This conclusion illustrates the
importance of including least-altered sites in analyses
of historical flow variability to normalize or filter out
temporal climatic variation, even if such sites are not
entirely anthropogenically unaltered.

A paradigm of the flood-pulse concept is that hy-
drologic buffering of a large catchment area results in
smooth and predictable flooding and that effects of
seasonal climatic changes are observed downstream
only after several weeks or months in unaltered large-
floodplain rivers in temperate and tropical regions
(Junk et al., 1989). This has been shown graphic-
ally for the pre-regulation upper Mississippi (Sparks,
1992; Sparks et al., 1998) and Illinois rivers (Sparks,
1995). In contrast, timing of the pre-regulation median
annual discharge maxima at 10 of 11 locations over
the entire Missouri and lower Yellowstone rivers all
occurred within 24 days and there was no longitudinal
time lag. Additionally, IHA variables along the Mis-
souri River continuum did not show a longitudinal de-
crease in predictability before flow regulation. Indices
of dispersion (CD and CV, Tables 3 and 4) and the rel-
ative ranges of the pre-regulation 25–75th%iles among
stations (Figures 3–7) either showed no longitudinal
pattern or upper – and lowermost – stations exhib-
ited the greatest flow variability for most hydrologic
indicators.

The Missouri River does not fit neatly into
the flood-pulse concept because it arises in the
well-watered Rocky Mountains and then flows over
1000 km through the semi-arid Great Plains. Con-
sequently, its middle section is largely allogenic, ana-
logous to a dryland river as described by Walker et
al. (1995). Tributary influx to the Missouri River is
greatest in the lowermost section, and variability in
frequency and duration of high-flow pulses and dis-
charge is also high here. Our assessment of 50 years
of Missouri River hydrology illustrates that the in-
fluence of reservoir operations on the annual flood
pulse was partially offset by tributary influx downriver
from Kansas City (589KC) during the wet period of
1967–1996. Therefore, the flood pulse retains a more
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Figure 8. Ranked percentages of hydrologic alteration for the 1967−1996 post-regulation period averaged over five groups of hydrologic
indicators for 11 stations along the Missouri and lower Yellowstone rivers. Hydrologic alteration occurs when the post-regulation median or
mean of a hydrologic variable falls within the observed pre-regulation 25th to 75th percentiles or± 1SD, respectively, more or less often
than expected. Low alteration indicates that annual values for the average of all groups of post-regulation hydrologic indicators fell within
the observed pre-regulation range of hydrologic alteration 0−25% more or less often than expected, moderate: 26−50%, high: 51−75%, and
extreme: 76−100%.

natural character here than at upriver channelized and
inter-reservoir locations.

Hughes (1995) recommended regional or ecore-
gional references to develop biological criteria for
rivers. Our results support use of ‘regional’ rather
than basinwide references, since distant locations were
shown to be inappropriate spatial references for large
rivers where natural longitudinal and geographic vari-
ability are great. Additionally, spatio-temporal differ-
ences in precipitation can confound the applicability
of historical flow data for establishing baseline condi-
tions. Prescribing initial flow targets from least-altered
locations and historical discharge data at the landscape
scale for large rivers maximizes use of available in-
formation. However, these sources are not without
their shortcomings and, therefore, should be applied
with caution, and not be the sole criteria for designing
flow guidelines.

Preliminary flow recommendations within an
adaptive management framework

The IHA and RVA methods are comprehensive tech-
niques to assess the hydrological and, by inference,
ecological integrity of running waters. A particular
value of these methods is that they identify both in-
creases and decreases in hydrologic variability and

give high – and low – flow alterations equal weight.
The idea of a human-induced disturbance as an al-
teration from the natural range of flow variation is
bi-directional. River regulation that produces high
flows during the historical low-flow season can have
ecological consequences as harmful as an imposed re-
duction in the annual flood pulse. Reduced seasonal
discharge variability through impoundment and flow
regulation is evident today along much of the Missouri
River (Figure 2). Additionally, channelization, bank
stabilization, levee construction and changes in land
use and land cover greatly influence the discharge-
stage relationship, river-floodplain hydrology, and
habitat quality and availability. These factors also need
to be considered when designing, implementing and
refining flow-management guidelines. Restoration of a
river’s ecological integrity often requires rehabilitating
and managing both flow and habitat.

Operational flexibility within the existing reservoir
complex could be used to more closely approxim-
ate the 1929–1948 flow regime of the Missouri River
in order to establish a ‘simulated natural ecosystem’
(sensuSchmidt et al., 1998). For example, target
guidelines for Groups 1–4 variables are that 50%
of years should fall between the pre-regulation 25th
and 75th%ile values (Figures 3–7), and for Group 5
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variables, 67% of the years should fall between the
pre-regulation−1SD and +1SD values. Preliminary
flow guidelines based on this approach are detailed in
Galat & Lipkin (1999) for each of the 32 hydrologic
variables and for the nine flow-altered stations. Our
results indicate that overall ecological structure and
function of the inter-reservoir and upper channelized-
river sections would benefit by: 1. controlled flooding
through managed reservoir releases during June and
July of some years; 2. increasing the magnitude, fre-
quency, and duration of annual high-flow pulses; and
3. increasing the annual rate of hydrograph rises and
falls. All of the regulated Missouri River would benefit
from: 1. reducing reservoir discharges from August
through February, 2. modifying the timing of reser-
voir releases, and 3. reducing the number of annual
hydrograph reversals. These actions would increase
the annual flood pulse, increase frequency and reduce
monthly and annual low flows, delay timing of the
growing season daily discharge minima and reduce
the frequency of flow reversals per year. Assessment
of ecological responses to a reregulation of Missouri
River flows that more closely approximates the natural
flow regime should then be used in an adaptive fashion
to further adjust reservoir operations. Results sum-
marized here and detailed in Galat & Lipkin (1999)
provide a first approximation of flow recommenda-
tions that approach the 1929–1948 range of variability
of mainstem river flows throughout the Missouri River
catchment.

Aspects of these ecologically based flow-manage-
ment guidelines conflict with contemporary Missouri
River reservoir management objectives of maximizing
mid-summer power production in the inter-reservoir
river and providing summer-autumn flow releases for
navigation in the channelized river. Agency and public
support for a more naturalized Missouri River hy-
drograph is increasing as the Missouri River Natural
Resources Committee (Risland, 1999) is recommend-
ing a trial ‘spawning rise’ below Ft. Peak Reservoir.
Flow releases from Lewis and Clark Reservoir to en-
hance the spring flood pulse are also under review
by the U.S. Army Corps of Engineers (1998). Im-
poundment and flow regulation have provided large
economic benefits by reducing annual flow extremes
and increasing predictability of intermediate flows. In
contrast, ecological systems benefit most from the full
natural range of seasonal flows and associated uncer-
tainty. We believe that the total economic value of
the Missouri River will be higher when the traditional
products of agriculture, electric-power generation and

transportation are integrated with the socio-ecological
benefits of a naturalized flow regime. We hope that
consideration of the range of flow variability approach
presented here and elsewhere (Richter et al., 1998)
will stimulate discussion among the various benefi-
ciaries within and outside the Missouri River basin to
reconcile differences.

Analyses of hydrologic variability are needed on
other river systems to better define the geographic
diversity of natural and altered flow regimes. Such
assessments will assist development of integrated and
adaptive hydro-ecological models to predict a range of
structural and functional responses of river-floodplain
biota to various flow management scenarios within
a framework of broader policy issues and societal
values.
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