

SMD Research Program -- Science AOs and Grants --

Paul Hertz Chief Scientist Science Mission Directorate

Planning Conference Science Subcommittees, NASA Advisory Council May 3-4, 2006

Research Program

- Research is a part of everything we do, and it is a part of every budget line
- Research and Data Analysis (R&DA)
 - -Research and Analysis (R&A)
 - -Supporting Research and Technology (SR&T)
 - -Suborbital Investigations (Aircraft, Balloon, Sounding Rocket)
 - Data Analysis (DA) (includes General Observers GO)
- Missions
 - Development (including PI-led mission development and PI-led instrument development)
 - -Operations (including science operations and data processing)
 - Science Teams (including Participating Scientists and Interdisciplinary Scientists)

- Scientific merit through peer review
 - Use scientific merit, as determined through community and peer review, as the primary criterion for science program planning and resource commitment.
- Timely availability of data
 - Ensure vigorous and timely interpretation of mission data, requiring that data acquired be made publicly available as soon as possible after scientific validation.
- Community participation
 - Ensure the active participation of the research community outside NASA, which is critical to success.
- Maintain NASA capabilities
 - -Maintain essential technical capabilities at the NASA Centers.

Solicitations - AOs

- Announcements of Opportunity
 - Used to solicit science investigations requiring the development of flight hardware up to and including a complete mission from formulation through operation and data analysis
 - Used when NASA is requesting science investigations rather than instruments meeting specific technical specifications
 - Otherwise use Request for Proposals (RFP)
 - -PI-led mission AOs (investigations involving complete missions)
 - Explorer, Discovery, ESSP, Mars Scout, New Frontiers
 - Instruments for Strategic Missions (investigations involving instruments and science team members)
 - Lunar Reconnaissance Orbiter Instruments
 - Mars Science Laboratory Instruments
 - Radiation Belt Storm Probes Instruments

PI-led Mission Launches

PI-led Mission AOs

- Discovery
 - Budget includes development, operations, and competed data analysis program (Discovery DAP)
 - Budget approx \$270M per year (through FY08) growing to \$310M per year (in FY11)
 - -2006 AO closed April 5, cost cap \$425M (FY06)
- Explorer
 - -Budget includes development and prime mission operations
 - Budget approx \$210M per year (FY05-FY06), \$150M per year (FY07-FY09), rebounding to \$190M per year (in FY11)
 - -Next AO (MIDEX) no earlier than FY2008

PI-Led Mission AOs

- ESSP
 - -Budget includes development and operations
 - Budget approx \$120M per year (through FY09) growing to \$200M per year (in FY11)
 - -Next AO no earlier than FY2008
- Mars Scout
 - -Budget a component of overall Mars Exploration budget
 - AO released on May 1, proposals due on August 1, cost cap \$475M (FY06)
- New Frontiers
 - -Budget includes development and operations
 - Budget approx \$155M per year (through FY08) growing to \$250M per year (in FY10)
 - -Next AO no earlier than FY2008

Solicitations - NRAs

- NASA Research Announcements
- Research Opportunities in Space and Earth Sciences
 -SMD's Omnibus NRA
 - -Used to solicit virtually all non-flight opportunities
 - -ROSES-06 has 64 program elements (so far)
- Solicit R&DA plus science teams
 - -R&A (e.g. Solar and Heliospheric Physics)
 - -SR&T (e.g. Advanced Component Technology)
 - -Suborbital (e.g. Atmospheric Composition TC4)
 - -DA (e.g. Cassini Data Analysis)
 - -GO (e.g. GALEX Guest Investigator)
 - -Science Teams (e.g. MRO Participating Scientists)
 - Multi-mission science integration (e.g. Earth System Science Research using Data Products from EOS Satellites)
 - -Earth science applications (e.g. Decision Support)

ROSES Funding Available

\$M for New Awards

9

Research Budget

- Research is part of everything we do, and it is a part of every budget line
 - Budget is distributed as a component of every program and every project
 - Different divisions bookkeep their research budgets in different ways
 - E.g. Science teams can be embedded in individual flight projects or funded from a research project some are R&A, some are not
 - E.g. Data analysis can be embedded in individual flight projects or funded from a research project some are R&A, some are not
- Research is a "program line" in the NASA budget
 - -R&A is only one "project" in the "program"
 - -Mission operations
 - –Data analysis
 - -Suborbital projects
 - Data archives
 - -Etc.

Research Budget

The following budget chart aggregates the competed SMD research budget excluding flight hardware development

- Traditional R&A
 - -R&A project (each Division has one)
 - R&A embedded in flight programs (e.g. Mars, Living With a Star, Beyond Einstein)
 - -Technology distributed
- Data analysis (other than traditional R&A)
 - -General Observer/Guest Investigator programs
 - -Archival data analysis programs
 - -Mission or program specific data analysis programs
 - -Data archive, virtual observatory, etc.
- Science Teams (other than traditional R&A)
 - -PI teams for missions and instruments selected through AO
 - -Additional team members selected through competition
 - Participating scientists, interdisciplinary scientists, science working ¹¹ group members, etc.

Research from Flagship Missions

- Development and operation of "Flagship Missions"
 - -Flagship missions enable NASA to meet science objectives
 - -Significant community funding is associated with large missions
 - Hubble Space Telescope: <u>Development</u> of instruments provided over \$1.2B to 10 instrument teams; <u>Observing</u> enabled 6510 GO grants over 15 years providing \$283M to 4138 investigators, 1323 postdocs, 1852 grad students.
 - Earth Observing System missions provided \$1.6B in funding over 14 years to 781 investigators, 112 postdocs, 159 grad students for algorithm development, IDS investigations, cal/val investigations.
 - Spitzer Space Telescope: Science operations provided \$100M to 318 investigators over 6 years for science team and general observers.
 - Cassini: Science operations provided \$200M over 9 years to 125 investigators, 120 postdocs and grad students for science development and data analysis.
 - All funding is peer reviewed and selected through AOs, NRAs, Calls for Proposals (observing), or unsolicited but peer reviewed proposals.

SMD Research Budget

			5\/07	FY08-11
"Standard" R&A	<u>FY05</u>	<u>FY06</u>	<u>FYU/</u>	(average per year)
Astrophysics	60	60	50	50
Heliophysics	30	30	30	30
Planet Sci (w/ astrobiology)	150	130	100	110
Earth Science	200	170	160	180
<u>Other R&DA (w/ science teams)</u>				
Astrophysics	170	170	150	120
Heliophysics	80	90	120	100
Planetary Sci (w/ Mars)	130	140	150	130
Earth Science	270	270	290	310
SMD Total	1090	1060	1050	1050

- Notes
 - Totals are approximate and illustrative only
 - Only "Standard" R&A was reduced by 15%
 - Does not include development (missions, instruments)
 - Out year (FY07-FY11) "Other R&DA" budgets are incomplete due to (a) missions
 that have not yet been extended, (b) unselected missions

- The NASA human space exploration program will create science opportunities
 - -Near-term: Robotic lunar exploration
 - -Next decade: Human sorties to the Moon
 - Long-term: Extended human lunar missions, human missions to Mars and other destinations
- SMD will fund science enabled by the Exploration program using established principles
 - -Execute the most compelling and highest priority science
 - -Take advantage of all appropriate opportunities
 - -Prioritized in the context of the existing science program
 - since the funds come from the same pool
 - -Set priorities jointly with the science community
 - through strategic planning and peer review
 - -Use open competition and peer review

- SMD has asked the NRC Space Studies Board to undertake a study on lunar science priorities
 - -Study serves as statement of community interest in lunar science
 - Provides a comprehensive, well-validated, and prioritized set of scientific research objectives for the Moon
 - Anticipates science value in the context of the rest of the SMD science portfolio
 - Interim release by August 2006 to support ongoing activities
 - -Final report by May 2007
- Study will provide long range science objectives to frame decisions on lunar enabled opportunities
 - -In the context of established science priorities

"Suitcase Science"

- First opportunities enabled by human lunar exploration will be small, autonomous experiments deployed by astronauts during first lunar sorties
 - -Resource constrained
 - -Analogous to ALSEP Apollo Lunar Surface Experiment Package
 - -AKA "Suitcase science"
- SMD is planning to solicit concept studies this year for suitcase science investigations
 - -Science priorities set by decadal surveys & NASA roadmaps
 - Concept study would identify resource requirements -- potentially provide input to exploration architecture
 - -Concept study would identify technology or other R&D required

"Suitcase Science"

- SMD is planning to solicit concept studies this year for suitcase science investigations
 - -Evaluation criteria would include
 - Compelling nature of science in context of national science priorities
 - Justification of need for human deployment and lunar surface location
 - Reasonableness of estimated resource requirements
 - Relevance to NASA
 - -Select 5-10 investigations for 1 year
- Solicitation will be issued as a ROSES program element
 - -Draft solicitation ready to go
 - -Reasons to go:
 - Potential impact on lunar architecture
 - Engage science community in thinking about high priority science on the Moon
 - -Reasons to delay:
 - SSB study pending

Backup

Near Term AO Schedule

- 2005
 - -Radiation Belt Storm Probes (instruments)
- 2006
 - -Discovery (missions)
 - -Mars Scout (missions)
- 2007 or later
 - -Explorer (MIDEX missions)
 - -ESSP (missions)
 - -New Frontiers
 - -Other opportunities

Research & Data Analysis

- R&DA includes basic and applied supporting research and technology in space and Earth sciences, including
 - -theory, modeling, and analysis of data;
 - -aircraft, stratospheric balloon, and suborbital rocket investigations;
 - -development of experiment techniques suitable for future missions;
 - -development of concepts for future missions;
 - -development of advanced technologies relevant to missions;
 - development of techniques for and the lab analysis of both extraterrestrial and terrestrial samples that support missions;
 - determination of atomic and composition parameters needed to analyze space data as well as samples from the Earth or space;
 - Earth surface observations and field campaigns that support missions;
 - -development of integrated Earth system models;
 - development of systems for applying Earth science research data to societal needs; and
 - development of applied information systems applicable to SMD objectives and data.

