
THE LISTER HILL NATIONAL CENTER 
FOR BIOMEDICAL COMMUNICATIONS 

A research division of the U.S. National Library of Medicine 

 
 
 

 
 
TECHNICAL REPORT 
 

 
 
 
 
 
 
 
 
 
 

Advanced Library Services
Developing a Biomedical Knowledge Repository
to Support Advanced Information Management
Applications 
 
September  2006
 
Olivier Bodenreider, M.D., Ph.D.
Thomas C. Rindflesch, Ph.D. 


 

 
 
 
 
 
 
 
 
 

 
U.S. National Library of Medicine, LHNCBC 

8600 Rockville Pike, Building 38A 
Bethesda, MD 20894 

 



 

Advanced Library Services  i 

Table of Contents 
 
 

1 Background .............................................................................................................. 1 

2 Project Objectives .................................................................................................... 1 

3 Project Significance ................................................................................................. 1 

4 Methods and Procedures......................................................................................... 2 
4.1 Overview........................................................................................................... 2 
4.2 Extracting Predications from Text .................................................................... 2 

4.2.1 SemRep................................................................................................. 2 
4.2.2 SemGen................................................................................................. 3 
4.2.3 Other systems........................................................................................ 3 

4.3 Converting Structured Data into a Common Format........................................ 4 
4.3.1 Description of Resources ...................................................................... 4 
4.3.2 Representing normalized knowledge.................................................... 5 
4.3.3 Pilot project: Converting Entrez Gene to RDF..................................... 6 

4.4 Integrating predications: Biomedical Knowledge Repository.......................... 8 
4.4.1 Overview............................................................................................... 8 
4.4.2 Origin of the predications. .................................................................... 8 
4.4.3 Metainformation associated with the predications. .............................. 8 
4.4.4 Storing the predications. ....................................................................... 9 
4.4.5 Querying the predications. .................................................................... 9 
4.4.6 Integrating predications. ....................................................................... 9 
4.4.7 Estimated size of the repository............................................................ 9 

4.5 Exploiting the Repository: Semantic Medline Web Portal............................. 10 
4.5.1 Background......................................................................................... 10 
4.5.2 Implementation ................................................................................... 10 
4.5.3 Using Semantic Medline..................................................................... 11 

5 Evaluation Plan ...................................................................................................... 13 
5.1.1 Evaluating extraction .......................................................................... 13 
5.1.2 Evaluating integration......................................................................... 14 
5.1.3 Evaluating applications....................................................................... 14 

6 Project Schedule..................................................................................................... 14 

7 Project Resources................................................................................................... 14 

8 Summary................................................................................................................. 15 

9 References............................................................................................................... 15 

10 Appendix................................................................................................................. 21 
10.1 Appendix A: Example of XML representation............................................... 21 
10.2 Appendix B. Example of RDF representation ................................................ 21

 
         

 



 

Advanced Library Services  1 

1 Background 
Expert assessment of the nation’s health care system suggests that it is slow in translating knowl-
edge into practice and that patient care is not keeping abreast of advances in basic research [1]. 
The American Medical Informatics Association recently proposed a plan for improving health 
care delivery. The plan [2] focuses on clinical decision support, which “encompasses a variety of 
approaches for providing clinicians, staff, patients or other individuals with timely, relevant in-
formation that can improve decision making, prevent errors, and enhance health and health care.” 
The National Library of Medicine (NLM) can make a substantial contribution to improving na-
tional health by making a wide range of biomedical resources readily accessible to advanced in-
formation technology. 
 
There is a large, and growing, amount of online health-related information. Some resources are 
in the form of text readily accessible only to humans; examples include MEDLINE/PubMed and 
ClinicalTrials.gov. Other information is structured and includes biomedical vocabularies, clinical 
and molecular biology knowledge bases, and model organism annotation databases. Within 
NLM, examples include the Unified Medical Language System and Entrez Gene. There are also 
several specialized biomedical databases, for example the BIND database [3] and PharmGKB 
[4], as well as commercially curated drug databases, such as Micromedex DRUGDEX [5] and 
DrugDigest [6]. 
 
The growth of online information resources for biomedicine is outstripping access applications 
that could allow users to maximally exploit those resources. In order to take full advantage of 
available resources, the Library needs to provide services beyond traditional information re-
trieval (such as PubMed). Emerging research provides the underpinnings for developing applica-
tions that accommodate the growth in online information. Advanced applications manipulate in-
formation, not just text, and provide visualization of results and interconnections among multiple 
sources. Some research concentrates on extracting information from text [7-11]. Other emerging 
systems focus on using the information extracted; examples include automatic summarization 
(which pinpoints the most relevant information in large document sets) [12, 13], question an-
swering (which provides “just in time” information)[14-17], and knowledge discovery (which 
uses extracted information for hypothesis generation) [18, 19]. 

2 Project Objectives 
We propose a research initiative for accommodating applications that more effectively process 
online information than is currently possible. The proposal has several core objectives: a) Create 
a comprehensive repository of executable biomedical knowledge drawn from both the research 
literature and structured databases; b) Develop advanced applications that directly access the re-
pository; c) Exploit and extend ongoing research at LHNCBC. 

3 Project Significance 
This project is significant from several points of view. It creates a comprehensive online resource 
that integrates data resources across the biomedical spectrum into a seamless repository with dis-
tributed, interoperable architecture, thus allowing NLM’s extensive biomedical information re-
sources to be effectively exploited by emerging applications in automatic information manage-
ment. As key components of an infrastructure for translational research, such applications con-
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tribute to enhanced understanding of the processes underpinning disease and advances in patient 
care. A more intangible, but nonetheless significant, aspect of this project is that it supports 
NLM’s prominent role as a leader in affording comprehensive health information to both profes-
sionals and the public. Finally, this project provides a framework for trans-NIH collaborative 
projects. In actively constructing informatics resources for basic research and information dis-
semination, the Biomedical Knowledge Repository (BKR) and associated applications have the 
potential to play a significant role in translating scientific advances into improvements in clinical 
practice and public health.  

4 Methods and Procedures 

4.1 Overview 
We discuss issues involved in constructing a Biomedical Knowledge Repository and illustrate 
an emerging Web application that exploits a preliminary version. The SemRep [20, 21] and Sem-
Gen [22, 23] natural language processing systems will be used to extract information in the form 
of semantic predications consisting of arguments and a predicate that represent relations between 
concepts asserted in text. Information in biomedical structured resources will be converted into a 
common format (also predications) and all information will be integrated into the repository. Fi-
nally, a significant aspect of this project is the development of applications that exploit the Bio-
medical Knowledge Repository.  

4.2 Extracting Predications from Text 
Two programs developed at LHNCBC (SemRep and SemGen) will initially be used to extract 
semantic predications from ClinicalTrials.gov narrative and MEDLINE/PubMed citations for the 
repository. SemRep was devised to apply to the clinically oriented research literature, while 
SemGen addresses the genetic etiology of disease.  

4.2.1 SemRep  
SemRep is a rule-based symbolic natural language processing system developed for the bio-
medical research literature. As the first step in identifying semantic predications, SemRep pro-
duces an underspecified (or shallow) syntactic analysis based on the SPECIALIST Lexicon [24] 
and the MedPost part-of-speech tagger [25]. The most important aspect of this processing is the 
identification of simple noun phrases. In the next step, these are mapped to concepts in the 
Metathesaurus using MetaMap [26]. Syntactic analysis in Table 1-line (2), for example, contains 
Metathesaurus concepts and semantic types (abbreviated) for the sentence in Table 1-line (1).  
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Sentence Phenytoin induced gingival hyperplasia (1) 
Syntactic 
analysis 

[[head(noun(phenytoin)), metaconc(‘Phenytoin’:[orch,phsu]))], 
[verb(induced)], [head(noun([‘gingival hyperplasia’)), meta-
conc(‘Gingival Hyperplasia’:[dsyn]))]] 

(2) 

Semantic 
Network 

‘Pharmacological Substance’ CAUSES ‘Disease or Syndrome’ (3) 

Semantic 
Predication 

Phenytoin CAUSES Gingival Hyperplasia (4) 

Table 1. SemRep analysis 
 
SemRep relies on structures such as that in Table 1-line (2) to translate syntactic structures into 
semantic predications. One aspect of this processing is “indicator” rules which map syntactic 
elements (such as verbs and nominalizations) to predicates in the Semantic Network, such as 
TREATS, CAUSES, and LOCATION_OF. Argument identification rules (which take into ac-
count coordination, relativization, and negation) then find syntactically allowable noun phrases 
to serve as arguments for indicators. If an indicator and the noun phrases serving as its syntactic 
arguments can be interpreted as a semantic predication, the following condition must be met: 
The semantic types of the Metathesaurus concepts for the noun phrases must match the semantic 
types serving as arguments of the indicated predicate in the Semantic Network. For example, in 
the structure given in Table 1-line (2) the indicator induced maps to the Semantic Network rela-
tion in Table 1-line (3).  
 
The concepts corresponding to the noun phrases phenytoin and gingival hyperplasia can serve as 
arguments because their semantic types (‘Pharmacological Substance’ (phsu) and ‘Disease or 
Syndrome’ (dsyn)) match those in the Semantic Network relation. In the semantic predication 
produced as output (Table 1-line (4)), the Metathesaurus concepts from the noun phrases are sub-
stituted for the semantic types in the Semantic Network relation.  

4.2.2 SemGen  
SemGen was adapted from SemRep in order to identify semantic predications on the genetic eti-
ology of disease. The main consideration in creating SemGen was the identification of gene and 
protein names as well as related genomic phenomena. For this SemGen relies on ABGene [27], 
in addition to MetaMap and the Metathesaurus. Since the UMLS Semantic Network does not 
cover molecular genetics, ontological semantic relations for this domain were created for Sem-
Gen. The allowable relations were defined in two classes: gene-disease interactions (ASSOCI-
ATED_WITH, PREDISPOSE, and CAUSE) and gene-gene interactions (INHIBIT, STIMU-
LATE, and INTERACTS_WITH). 

4.2.3 Other systems  
The information submitted to the repository by SemRep and SemGen could be supplemented 
with output from other natural language processing technologies that produce relationships. Phe-
notypic information from clinical narrative could be made accessible with the NLP system de-
scribed by Friedman et al. [28]. For molecular biology phenomena, several systems use syntactic 
templates and shallow parsing to produce a variety of relations [29], including gene and protein 
functions [30], protein interactions [7], and protein modifications such as phosphorylation [31]. 



 

Advanced Library Services  4 

Friedman et al. [32] use extensive linguistic processing for relations on molecular pathways, 
while Lussier et al. [9] use a similar approach to identify phenotypic context for genetic phenom-
ena.  

4.3 Converting Structured Data into a Common Format 
Since relations in structured resources are already represented in some kind of formalism, their 
conversion to a common format is somewhat easier than extraction from text. However, the chal-
lenges in normalizing such knowledge are not unlike those encountered with textual data. In both 
cases, knowledge extraction involves syntactic issues (i.e., the formalism used to represent 
knowledge) and semantic issues (i.e., the meaning of the terms used to represent data and their 
interrelations). Various formalisms are used to represent structured data, including relational da-
tabases, tables (e.g., Excel spreadsheets), graphs, etc. Currently, no universal conversion mecha-
nism is available. Moreover, the semantics of the data is often implicit (especially for relation-
ships) or limited, for example, to short column names in a database schema. The objective of the 
conversion is the creation of “normalized knowledge”. This effort, in the context of knowledge 
management, is somewhat equivalent to term normalization (i.e., the models of lexical resem-
blance used, for example, to identify candidate synonyms in the UMLS [24]). Knowledge nor-
malization ensures that the same entity referred to in different resources is ultimately identified 
in such a way that it is recognized as a unique thing. Knowledge normalization forms the basis 
for information and data integration. 

4.3.1 Description of Resources 
Over the past twenty years, NLM has developed many knowledge resources, from various per-
spectives. Terminological resources such as the Unified Medical Language System (UMLS) re-
sult from the integration of many existing terminologies and ontologies, represented in a com-
mon formalism – UMLS’ Rich Release Format – and partially normalized. While synonymous 
terms are grouped together as names for a given concept, synonymous relationships are typically 
not identified as such [33]. Nevertheless, with some 8 million relations, the UMLS Metathesau-
rus constitutes an important resource, providing mostly hierarchical relations (useful as a “back-
bone” for the Biomedical Knowledge Repository) and co-occurrence relations. 
 
Another source of structured knowledge is represented by the many databases available under 
the umbrella of the NCBI’s Entrez system. While some databases such as MEDLINE/PubMed 
and OMIM (Online Mendelian Inheritance in Man) are mostly textual resources, many other 
NCBI databases contain predominantly structured information. Entrez Gene, for example, is a 
gene-centric resource in which a record provides gene properties such as names, associated dis-
eases, function, sequence, etc [34]. While numerous links have been created across the resources 
in the Entrez system for navigation purposes (e.g., between Gene and OMIM), such links typi-
cally require human interpretation and therefore cannot be used for knowledge discovery pur-
poses in high-throughput systems. 
 
Finally, structured databases and knowledge bases are also available outside NLM. One example 
of large, publicly available genomic resource is represented by the genome annotations for the 
major model organisms (fly, mouse, yeast, worm, etc). Here, the existence of a controlled vo-
cabulary – the Gene Ontology – has contributed to developing unified functional annotations, 
integrated in systems such as the Mouse Genome Database [35] and the Saccharomyces Genome 
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Database [36]. In the clinical domain, the various knowledge bases of drug information consti-
tute important resources about drug-drug interactions, drug kinetics and metabolism, and indica-
tions and contraindications. DRUGDEX [5], produced by Micromedex, is an example of such a 
resource. 

4.3.2 Representing normalized knowledge 
One of the strengths of the World Wide Web is that it relies on textual information, easily cre-
ated and interpreted by humans. This is also one of its principal limitations. The absence of ex-
plicit semantics prevents agents from being able to make sense of the information on the Web. 
This is the motivation of the Semantic Web [37], which aims at creating a vast collections of in-
tegrated and interoperable resources. There is an obvious parallel between the Semantic Web and 
the Biomedical Knowledge Repository we propose to create. The technologies developed for 
the Semantic Web offer possible solutions to some of the challenges we face, including selecting 
a formalism for normalized biomedical knowledge and identification issues for biomedical enti-
ties [38]. It is worth noting that some of these issues are still actively being debated in the Se-
mantic Web community, especially in the Semantic Web Health Care and Life Sciences Interest 
Group [39]. 
 
Formalism. Many of the resources produced by NLM and other organizations are available in 
XML, the eXtensible Markup Language. However, the semantics of XML is limited. In addition 
to XML, the World Wide Web Consortium (W3C) has produced the specifications of other for-
malisms for representing resources (RDF/S, the Resource Description Framework) and ontolo-
gies (OWL, the Web Ontology Language). Collectively know as Semantic Web technologies, 
these specifications define the building blocks of the Semantic Web [40]. 
 
Of particular interest to us is the Resource Description Framework. RDF extends the capabilities 
of the extensible markup language XML as it enables many-to-many relationships between re-
sources and data. The resulting structure is a graph in which the nodes are resources (identified 
by a Uniform Resource Identifier or URI) or data (e.g., strings, numerals) and the edges are rela-
tionships (called properties). The basic unit in RDF is therefore the equivalent of a (concept, re-
lationship, concept) triple, similar to a relation in the UMLS Metathesaurus or a predication ex-
tracted by SemRep. RDF integrates limited inference rules, enabling, for example, the definition 
of subclasses and subproperties. 
 
Some extensive resources such as UniProt [41] have already been converted to RDF [42]. The 
BioRDF [43] task force of the W3C Semantic Web Health Care and Life Sciences Interest Group 
currently investigates methods whereby existing biomedical resources can be converted to RDF. 
Such methods include XSLT, GRDDL and DB2RDF, among others. The eXtensible Stylesheet 
Language Transformation (XSLT) [44] uses a stylesheet approach to converting XML to RDF. 
GRDDL (Gleaning Resource Descriptions from Dialects of Languages) [45] specifies associa-
tions between markup languages – including XLM – and RDF. Finally, DB2RDF is used to con-
vert databases to RDF. 
 
Identification issues. In order for RDF triples to form a graph – and for integrated knowledge to 
be interoperable – entities (i.e., the nodes in the RDF graph) and relationships (i.e., the edges in 
the graph) must be identified consistently and unambiguously. For example, if the disease Neu-
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rofibromatosis 2 is identified by the code SNOMEDCT:92503002 in one resource (annotated 
with SNOMED CT) and by the code MESH:D016518 in another (annotated with the Medical 
Subject Headings), the RDF triples involving SNOMEDCT:92503002 and MESH:D016518 will 
not come together as expected unless both resource are converted to the other annotation system 
or mappings are created between the two systems. For example, the UMLS Metathesaurus could 
be used to convert or bridge between MeSH and SNOMED CT, in this case through the concept 
C0027832. The predications extracted from the literature by SemRep already use UMLS codes 
to identify biomedical entities. 
 
From a technical perspective, several technologies have been developed by various communities 
to implement identification mechanisms for RDF. There are three major identification mecha-
nisms: 

• LSID (Life Science Identifier), promoted by the Life Sciences community [46]. Exam-
ples of applications using LSID include Taverna [47] and resources created by the 
BioPathways Consortium [48]. 

• Solutions based on the HTTP protocol (Unified Resource Identifiers (URIs), Names 
(URNs) and Locators (URLs)), promoted by the W3C [49]. 

• ARK (Archive Resource Key), promoted by the Digital Library community [50]. 
There are important differences among three mechanisms regarding location independence, 
backward compatibility, resolution mechanism and versioning. It is unclear at this time what 
mechanism would suit our needs best. 

4.3.3 Pilot project: Converting Entrez Gene to RDF 
As a proof of concept, we converted the Entrez Gene database into RDF [51]. The entire Gene 
database in its native ASN.1 format was downloaded by FTP from the NCBI website 
(ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/) and later converted to XML using the program 
gene2xml provided by NCBI. Using the eXtensible Stylesheet Language Transformation 
(XSLT) approach [44], we mapped the element tags of the XML representation to more intuitive 
relationship names manually, and used them during the automatic conversion to RDF. Finally, 
we stored this RDF version of Entrez Gene in the Oracle 10g relational database management 
system, which provides support for storing and querying native RDF data. The conversion proc-
ess is illustrated in Figure 1. Examples of XML and RDF representations for a Gene record are 
provided in appendix A and B. 
 

XML
(file)
XML
(file)

RDF
(file)
RDF
(file)

RDF
(Oracle)

RDF
(Oracle)

JAPX Jena

XSLT
stylesheet

XSLT
stylesheet

 
Figure 1. Overview of the conversion of Entrez Gene from XML to RDF 
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Mapping XML element tags to RDF properties. While XML data can be mechanically con-
verted to RDF, the resulting RDF graph would be of limited interest because the semantics of the 
properties (relationships) is most often implicit in XML and needs to be made explicit. Starting 
from one typical Entrez Gene record, we identified all its XML element tags, corresponding to 
the properties of the gene, as described in the Gene record. Examples of such properties include 
<Genetrack_geneid> and <Genetrack_update-date>, indicating the identifier and the update 
date of the gene record, respectively. A total of 124 unique elements tags were identified. Be-
cause XML element tags represent gene properties, they were transformed into predicates in 
RDF (also called properties in RDF parlance). For example, <Genetrack_geneid> becomes 
has_unique_geneid and relates the gene record (subject) to its unique identifier in the Gene data-
base (object). Note that the RDF property now conveys the notion – implicit in the XML repre-
sentation – that the identifier is a unique identifier, corresponding to a primary key in a relational 
database. Converting XML elements to RDF properties requires familiarity with the structure 
and content of the original record structure and is a key component to the mapping process. After 
eliminating redundant and superfluous XML element tags, 106 unique RDF properties were cre-
ated. The mapping of Entrez gene XML element tags to RDF properties is specified formally us-
ing the XPath language [52] and constitutes a stylesheet. This stylesheet is specific to the conver-
sion of the Entrez Gene database. 
 
Converting XML to RDF through XSLT. Once the stylesheet is created, it can serve as an 
auxiliary file for existing programs realizing the XML to RDF conversion. In other words, the 
major interest of this approach is that no specific code is required for the conversion, because the 
transformation logic resides entirely in the stylesheet. We used JAXP, the Java Application Pro-
gramming Interface (API) to XML, to implement the conversion. The resulting 411 million RDF 
triples were then loaded in a store using Oracle 10g using the Jena API. 
 
Lessons learned, issues and challenges. This experiment confirmed the feasibility of converting 
a large resource from XML to RDF. It also showed that the issues are not technical, but rather lie 
in the necessity of making explicit the relationships represented implicitly by element tags in 
XML. This step requires the manual intervention of a domain expert. In our experience, it took 
less than a week for one person familiar with both bioinformatics and stylesheets to formalize the 
mapping between XML element tags and RDF properties. Although the stylesheet created is spe-
cific to the Entrez Gene database, it is expected that part of the expertise acquired during this 
transformation can be applied to transforming other NCBI resources. 
 
The major unresolved issue concerns entity identification. If the RDF graph resulting from the 
conversion of Entrez Gene is to be integrated with clinical or bibliographic information, the dis-
eases associated with genes must be represented not as literals (strings) as they currently are, but 
by their identifiers in the corresponding clinical (e.g., SNOMED CT) and bibliographic (e.g., 
MeSH) controlled vocabularies, or with the concept unique identifier (CUI) in the UMLS 
Metathesaurus. Only after such mapping will the RDF graph integrating Entrez Gene and, say, 
the Metathesaurus, support queries such as Find all genes associated with neurodegenerative 
diseases. The knowledge required in this cases comes in part from Entrez gene (e.g., APP asso-
ciated with Alzheimer disease and PARK3 associated with Parkinson’s disease) and from UMLS 
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(e.g., Alzheimer’s disease isa Neurodegenerative disease, Parkinson’s disease isa Neurodegen-
erative disease). 

4.4 Integrating predications: Biomedical Knowledge Repository 

4.4.1 Overview 
The Biomedical Knowledge Repository can be understood as a specialized version of the Se-
mantic Web. It consists of an extensive collection of predications (i.e. concept-relationship-
concept triples), represented in a common format, processable by computers. Biomedical termi-
nologies and ontologies provide the concepts involved in the facts. Logical reasoners extend the 
capabilities of the repository by inferring new knowledge [53]. Each fact in the repository is an-
notated with metainformation regarding its origin (e.g. source, extraction method, timestamp, 
etc.), making it possible for applications exploiting the repository to select facts of interest in a 
given context and for a particular task. Once it is fully populated, the Biomedical Knowledge 
Repository is expected to comprise several hundred million facts, collected from hundreds of 
sources.  

4.4.2 Origin of the predications.  
The Biomedical Knowledge Repository (BKR) comprises predications form three major sources: 
extracted from the biomedical literature by NLP programs such as SemRep, converted from ex-
isting structured knowledge bases, and contributed by users (collaborative development). In our 
vision of the BKR, NLM not only contributes to populating the BKR, but also makes it available to 
the community as a framework for researchers to deposit their predications. Predications result-
ing from experiments, from alternative processing of the literature, and inferred from other pre-
dictions, for example, can be contributed by members of the community and made available to 
others. One measure of success of the BKR would be for it to become a standard repository for 
the knowledge created through biomedical research experiments. In order to maintain the consis-
tency and integrity of the BKR, its developers would have to follow guidelines regarding formal-
ism of the predications and identification mechanism for biomedical entities. 

4.4.3 Metainformation associated with the predications.  
Just as few users need all the vocabularies in the UMLS Metathesaurus for a given purpose, it is 
unlikely that all predications will be equally useful for a given task, such as question answering. 
Instead, a mechanism supporting the selection of relevant sets of predications is needed. The 
metainformation associated with each predication enables this selection and may include the 
source of the predication (e.g., biomedical article, database name), the method of extraction (e.g., 
SemRep, XSLT), the date of extraction, in addition to the usual metadata associated with MED-
LINE/PubMed citations for predications extracted from the literature (e.g., authors, journal, 
MeSH main headings and checktags, etc). Researchers contributing predications to the BKR will 
be requested to annotate them with similar metainformation. Another form of contribution to the 
repository is to provide not predications, but annotations to existing predications. Such a contri-
bution represents a form of collaborative curation of the repository by the community, similar to 
the framework developed by the SWAN project for the Alzheimer research community [54]. 
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4.4.4 Storing the predications.  
Several technological solutions, called RDF stores, have been developed for storing information 
in RDF format, generally implemented on top of some storage system (relational database, in-
memory, file system, etc). One such open source RDF database is Sesame [55]. More recently, 
traditional database management systems have started offering direct support for native RDF tri-
ples. For example, version 10g of the Oracle system supports RDF in addition to the relational 
model. Since we need to store large amounts of both RDF (predications) and traditional informa-
tion (annotations), we started experimenting with Oracle 10g while converting Entrez Gene to 
RDF last summer. Preliminary results are encouraging although we might face optimization is-
sues. 

4.4.5 Querying the predications.  
Analogous to SQL for relational databases, SPARQL is the language for querying RDF [56]. 
Like SQL, SPAQRL queries have a SELECT and a WHERE clause. However, in a SPARQL 
query, the WHERE clause follows the pattern of a RDF triple in which at least one element of 
the triple is replaced by a variable. In the BKR, the predications to be queried would first be se-
lected based on their annotations (metainformation). For example, a typical query supporting 
multidocument summarization would be as follows. Select all predications from MED-
LINE/PubMed returned by a PubMed query on metabolic syndrome, restricted to citations from 
JAMA, Am J Cardiol. and J Hypertens., published between 2004 and 2005. Additionally, select 
those predications from the UMLS Metathesaurus and Entrez Gene having at least one node in 
common with those from the literature. The resulting graph is expected to provide a richer, more 
detailed summary than would the predications from one source only. 

4.4.6 Integrating predications.  
The query example presented above illustrates the interest of integrating knowledge under a 
unique framework. First, there is a unique namespace (i.e., universe of reference) for all knowl-
edge in the BKR. As mentioned earlier, we will largely rely on the UMLS for identifying bio-
medical entities. Second, once integrated into a graph, the predications can serve as a basis for  
inferencing, creating additional knowledge along the way. This represents an advantage over tra-
ditional database and information retrieval approaches. Finally, complex rules can be written to 
implement additional reasoning. For example, it is possible to restrict queries to those redundant 
predications asserted in more than 2 sources and for which the frequency of occurrence is above 
a certain threshold. 

4.4.7 Estimated size of the repository.  
Once fully instantiated, the Biomedical Knowledge Repository is expected to comprise several 
hundred million predications extracted from the literature, terminological resources and struc-
tured knowledge bases. Assuming an average of ten predications is extracted from the title and 
abstract of each MEDLINE/PubMed citation, we can expect about 150 million predications from 
MEDLINE/PubMed. (With the availability of full text articles, a significant increase is to be ex-
pected in the average number of predications extracted). The UMLS Metathesaurus records 
about 9 million relations, either symbolic (e.g., Parkinson disease isa Neurodegenerative disease) 
or statistical (e.g., co-occurrence between Parkinson disease and Dopamine agonists). Some 
seven million functional annotations for the major model organism databases are recorded in the 
Gene Ontology database. Finally, our conversion experiment with Entrez Gene yielded over 400 
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million RDF triples. In this experiment, the objective was to systematically represent in RDF all 
the information present in the original XML file. In fact, part of this information would become 
metainformation in the context of the BKR (e.g., update date of the record), resulting in a signifi-
cantly smaller number of triples to be actually contributed to the repository. 

4.5 Exploiting the Repository: Semantic Medline Web Portal 
As a pilot project to exploit a preliminary version of the Biomedical Knowledge Repository, we 
are developing a Web portal, called Semantic Medline, for managing the results of PubMed 
searches. The portal is designed as a Java-based Web application that seamlessly integrates 
PubMed, SemRep processing of the results of the search, automatic summarization [12, 57], and, 
finally, visualization of the results, with links to the underlying citations and relevant additional 
knowledge in the UMLS Metathesaurus, the Genetics Home Reference, and Entrez Gene. Real-
time access is achieved by pre-processing text from MEDLINE/PubMed abstracts and other 
sources with SemRep/SemGen and storing the results in a database.  

4.5.1 Background 
Several recent systems visualize the results of information identified in text as a way of provid-
ing users with enhanced access to the information retrieved [58]. Results are often represented as 
a graph of interrelated relationships [59]. The Telemakus project [60] is based on relationships 
identified by hand and is meant to enable knowledge discovery through interactive visual maps 
of linked concepts among documents. Jensen et al. [61] constructed literature networks of genes 
found relevant in gene expression data analysis. Analysis is based on co-occurrence of genes in 
MEDLINE/PubMed abstracts. Van der Eijk et al. [62] use various relations for literature-based 
discovery. The relationships represent co-occurrence of MeSH headings associated with MED-
LINE/PubMed citations by a mapping program (MeSH terms assigned by indexers are not used). 
Feldman et al. [63] represent several gene-related relations (e.g. gene-gene binding; gene-
phenotype; gene-disease) in a graph. The relations were extracted with a type of underspecified 
natural language processing. Finally, Tao et al. [64] visualize genomic information across both 
structured and textual databases.  

4.5.2 Implementation 
Semantic Medline is implemented as a three-tier, Java EE-based Web application (Figure 2). 
The three-tier architecture allows for the separation of user interface, application logic and data 
storage, providing improved performance, easier maintenance and scalability. We leverage ma-
ture open-source technologies in the development to the extent possible. The prototype runs in a 
Tomcat servlet container on an Apache Web server. It has been developed using the Apache 
Struts Web application framework. This framework encourages the use of MVC (Model-View-
Controller) paradigm to provide a clean separation of application model, navigational code, and 
page design code through the use of Java Servlet API.  
 
The controller is a Java servlet that mediates the application flow; the model comprises Java 
classes that represent the functionality of the semantic tools and the view is JSP pages that con-
tain dynamic content. A MySQL database is used to store Semantic Medline data, which in-
cludes semantic predications extracted from MEDLINE/PubMed abstracts and ClinicalTrials.gov 
clinical study texts as well as a subset of UMLS Metathesaurus data. The database tables are pre-
populated from plain text files that contain SemRep/SemGen output and Metathesaurus data us-
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ing Perl scripts. Hibernate object/relational mapping (ORM) tool is used to programmatically 
access the database. We use such Hibernate features as database connection pooling and query 
caching for increased performance.   
 

 
Figure 2. Semantic Medline system architecture 

 

4.5.3 Using Semantic Medline 
MEDLINE/PubMed contains more than 16 million citations (dating from the 1960’s to the pre-
sent) drawn from nearly 4,600 journals with biomedical relevance. Searches often retrieve large 
numbers of items. For example, the query “diabetes” returns 207,997 citations. Although users 
can restrict searches by language, date and publication type (as well as specific journals), results 
can still be large. For example, a query for treatment (only) for diabetes, limited to articles pub-
lished in 2003 and having an abstract in English finds 3,621 items; limiting this further to articles 
describing clinical trials still returns 390 citations. It is difficult for a user to effectively exploit 
the information in this many citations. Semantic Medline addresses this difficulty by allowing 
users to summarize the results of searches focused on one of several points of view, including 
diagnosis and treatment of disorders, drug interactions and adverse events, genetic basis of dis-
ease, and pharmacogenomics.  
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A clinical scenario based on a summary focused on drug interactions illustrates the potential use 
of Semantic Medline for taking advantage of the research literature in clinical practice. In a hy-
pothetical situation, a patient presents with peptic ulcer and tests positive for Helicobacter pylori. 
The clinician has tried several standard regimens including two different triple regimens: (proton 
pump inhibitor, amoxicillin, and metronidazole) and (ranitidine bismuth citrate, clarithromycin, 
amoxicillin); however, the patient still tests positive for H. pylori. (It is known that treatment of 
several upper gastrointestinal disorders such as peptic ulcer requires eradication of H. pylori 
[65].) 
 

 
Figure 3. Summary of 564 MEDLINE/PubMed citations for lansoprazole, showing IN-

TERACTS_WITH 
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In order to gain insight from recent research, the physician uses Semantic Medline to issue a 
PubMed search (limited to the past 5 years) for lansoprazole, (a proton pump inhibitor).  SemRep 
extracts 5,971 predications from 564 citations returned by this search, and automatic summariza-
tion for drug interactions involving lansoprazole condenses the final list of predications to 182, 
which are visualized by the system as the interactive graph in Figure 3.  
 
Figure 3 provides an informative overview of recent research on lansoprazole represented as 
predications asserting INTERACTS_WITH. Each predication is linked to the MED-
LINE/PubMed citation that generated it. Of interest for this case are two predications in the 
graph: “Lansoprazole INTERACTS_WITH Famotidine” and “Famotidine INTERACTS_WITH 
CYPC19 Enzyme.” SemRep extracted the first predication from a citation (15963082) with title 
seen in the first line of Table 2 and the second from a citation (15710002) with in the second 
line.  
 
PMID Title 
15963082 Effect of concomitant dosing of famotidine with lansoprazole on gastric acid secre-

tion in relation to CYP2C19 genotype status 
15710002 Concomitant dosing of famotidine with a triple therapy increases the cure rates of 

Helicobacter pylori infections in patients with the homozygous extensive metabo-
lizer genotype of CYP2C19 

Table 2. MEDLINE/PubMed citations 
 
Both citations discuss the salutary effect of combining famotidine (a histamine blocker) with lan-
soprazole. In the second citation, which reports on a randomized controlled trial, the authors real-
ized between 63% to 100% eradication of H. pylori (depending on CYP2C19 status) with the 
addition of famotidine to a standard triple therapy (lansoprazole, clarithromycin and amoxicillin) 
and conclude that this is a promising option for patients who phenotypically are extensive me-
tabolizers. If the patient in this hypothetical scenario falls under this category, it would be a po-
tentially valuable regimen to pursue. 

5 Evaluation Plan 
We intend to follow a multifaceted evaluation plan, focusing evaluation activities on specific as-
pects of the project.  

5.1.1 Evaluating extraction  
For this project, effectiveness of information extracted from text crucially depends on the accu-
racy of SemRep and SemGen. We have performed linguistic evaluation across a wide variety of 
predicates that includes the clinical (SemRep) as well as the genetic (SemGen) domain. Among 
the predicates evaluated were TREATS, PREVENTS, LOCATION_OF, CAUSES, ISA, IN-
TERACTS_WITH, AFFECTS, DISRUPTS, PROCESS_OF, PART_OF, MANIFESTA-
TION_OF, ASSOCIATED_WITH, INHIBITS, STIMULATES, and PREDISPOSES. Recall on 
the extraction of semantic propositions with these predicates has ranged from 41% to 74% and 
precision from 68% to 84%. Previous evaluations have been reported in [12, 21-23, 57], and we 
will continue this evaluation paradigm.  
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The framework for evaluating knowledge extraction from terminological and structured knowl-
edge bases is not as well established as the evaluation of relation extraction from text. However, 
several aspects are particularly important. The rules used for the conversion (e.g., the XSLT style 
sheet) need to be reviewed independently by several experts for a given knowledge base and in-
tegrated across databases in order to ensure consistency of the extraction of the relationships. 
Key to the consistency of the graph is also the mapping of literals (e.g., disease names) to con-
cepts – the nodes in the RDF graph and their consistent representation by identifiers from au-
thoritative sources. 

5.1.2 Evaluating integration 
Ideally, the graph resulting from integrating knowledge from several sources is consistent both 
structurally (e.g., a directed acyclic graph) and semantically (e.g., no contradicting predications, 
directly or inferred). Therefore structural techniques based on graph theory and semantic ap-
proaches similar to reasoning services created for description logics [66] are expected to play a 
central role in evaluating the quality of knowledge integration in the repository. However, the 
UMLS Metathesaurus, while resulting from the integration of a much smaller body of termino-
logical knowledge, is already not always structurally or semantically consistent [67-69]. Like the 
Metathesaurus, the Biomedical Knowledge Repository will allow contradictory predications to 
be represented as long as they occur in the original information sources. However, consistency is 
expected to be found at both structural and semantic levels on limited subsets of the repository 
(e.g., predications extracted from the literature on a given topic published over a limited period 
of time). 

5.1.3 Evaluating applications 
When evaluating applications such as automatic summarization, it is useful to compare results 
against curated resources. Standard measures of performance (recall and precision) can be calcu-
lated with respect to the reference standard chosen. For treatment of disease, the British Medical 
Journal clinical evidence concise [70] is one (semistructured) alternative.  For drug interactions 
and adverse events, Micromedex DRUGDEX [5], DrugDigest [6], and the First DataBank's Na-
tional Drug Data File [71] can be used. A more ambitious method, requiring human experts, is 
task-based [72] evaluation. Ultimately, user-centered evaluations such as the one described by 
McKeown [73] must be considered.  

6 Project Schedule 
• Year 1: Pilot study, processing all of MEDLINE/PubMed, integrating Entrez Gene 
• Year 2: Integrating UMLS and other NCBI resources 
• Year 3: Annotating predications, opening the BKR to collaborative development and use 
• Year 4: Fully integrated ALS system available 

7 Project Resources 
This project relies on a range of existing competencies and resources and has the potential to 
federate research energies throughout the Lister Hill Center. In addition to the efforts of the two 
core component projects, Semantic Knowledge Representation and Medical Ontology Research, 
the success of this project relies on collaboration with the Indexing Initiative, the Lexical Sys-
tems Project, and ClinicalTrials.gov. The effectiveness of applications drawing on the repository 
could be strengthened by providing links to Visible Human images where appropriate.  
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In order to accomplish the goals of this project additional staff and equipment are required: staff 
for creating and populating the repository and servers for providing effective access to the re-
pository. Initially, PubMed and ClinicalTrials.gov will be processed by SemRep and SemGen 
and the predications extracted will be stored in the repository. Dedicated servers are required to 
process PubMed (more than 16 million citations) for this project.  

8 Summary 
NLM can make a significant contribution to improving national health by making a wide range 
of biomedical resources readily accessible to advanced information technology. As part of this 
contribution, we propose the Advanced Library Services project. The core goal of this project is 
to create a comprehensive repository of executable biomedical knowledge drawn from both the 
research literature and structured databases. Further, we are developing advanced applications 
that directly access the repository; such tools are seen as a vital component of the infrastructure 
for supporting translational research. 
 
The Biomedical Knowledge Repository (BKR) represents a step forward compared to the indi-
vidual information sources routinely queried by biomedical researchers. Knowledge in the re-
pository is normalized, represented in a common format (i.e. concept-relationship-concept tri-
ples) and using identifiers from authoritative sources, and thus made compatible with the rec-
ommendations of the Semantic Web. Moreover, knowledge from sources including the biomedi-
cal literature, terminological resources and knowledge bases is integrated, making it possible for 
researchers to query heterogeneous resources seamlessly. Normalized and integrated, the knowl-
edge available in the BKR can be processed by humans, but is also accessible to agents, support-
ing data mining and knowledge discovery applications. Finally, the applications exploiting the 
BKR can take advantage of metainformation stored with the knowledge and select various subsets 
of it according to the task at hand. 
 
As a pilot project to exploit a preliminary version of the Biomedical Knowledge Repository, we 
are developing a Web portal, called Semantic Medline, for managing the results of PubMed 
searches. The portal is designed as a Java-based Web application that seamlessly integrates 
PubMed, SemRep processing of the results of the search, automatic summarization [12, 57], and, 
finally, visualization of the results, with links to the underlying citations and relevant additional 
knowledge in the UMLS Metathesaurus, the Genetics Home Reference, and Entrez Gene. We 
propose Semantic Medline as an enabling information resource for biomedical scientists, clini-
cal decision support developers, health professionals, patients, as well as the general public. 
 
The Advanced Library Services project has considerable potential to support health and health 
care. In actively constructing informatics resources for basic research and information dissemina-
tion, the Biomedical Knowledge Repository and associated applications can play a significant 
role in enabling scientific discovery, helping translate discoveries into advances in patient care, 
and providing the basis for individual decision making.  
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10 Appendix 

10.1 Appendix A: Example of XML representation 
The Entrez Gene XML representation of the proteins coded by Gene with geneid 351 (represen-
tative fragment of XML with extra element tags to be valid XML) 
 

 

10.2 Appendix B. Example of RDF representation 
The Entrez Gene RDF representation of the proteins coded by Gene with geneid 351 (representa-
tive fragment of RDF with extra element tags to be valid XML). 
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