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Glossary 

 
AAM  Active Appearance Modeling 
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ALTS  ASCUS-LSIL Triage Study 
AO  Anterior Osteophytes 
ASCCP American Society for Colposcopy and Cervical Pathology 
ASCUS Atypical Squamous Cells of Undetermined Significance 
ASM  Active Shape Modeling 
AW  Acetowhite Lesions 
BMT  Boundary Marking Tool 
CBIR  Content-Based Image Retrieval 
CE  Columnar Epithelium 
CEB  Communications Engineering Branch  
CIN  Cervical Intraepithelial Neoplasia 
CLEF  Cross Language Evaluation Forum  
CCV  Color Coherence Vector 
DP  Dynamic Programming 
DSN  Disc Space Narrowing 
ECOC  Error-Correcting Output Codes 
GHT  Generalized Hough Transform 
GIFT  GNU Image Finding Tool 
GMM   Gaussian Mixture Model 
HREB  Hormonal and Reproductive Epidemiology Branch 
ImageCLEF Medical Image Retrieval extension to CLEF 
IRMA  Image Retrieval for Medical Applications 
LSIL  Low-grade Squamous Intra-epithelial Lesion 
MDT  Multimedia Database Tool 
MedGIFT GIFT modified for medical image retrieval  
NCI  National Cancer Institute 
NHANES National Health and Nutrition Examination Surveys 
NLM  National Library of Medicine 
NN  Neural Networks 
PACS  Picture Archiving and Communications Systems 
PATH  Program for Appropriate Technology in Health 
PSM  Partial Shape Matching 
RF  Relevance Feedback 
ROI  Region of Interest 
SCJ  Squamo-Columnar Junction 
SE  Squamous Epithelium 
SECC  Semantic Error-Correcting output Codes 
SPIRS  Spine Pathology and Image Retrieval System 
SR  Specular Reflection 
STAPLE Simultaneous Truth and Performance Level Evaluation 
WSM  Whole Shape Matching 
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Biomedical Imaging Research and Development 
KNOWLEDGE FROM IMAGES IN THE MEDICAL ENTERPRISE 

1 Introduction and Background 

The importance of images as a knowledge resource within the medical enterprise is universally 
acknowledged, and despite decades of effort toward integrating images into seamless workflows 
for the clinician and medical researcher, many obstacles still remain. 
  
Research at the Communications Engineering Branch (CEB) that addresses these challenges in 
significant ways may be understood as three interrelated efforts:   
 

(1) Imaging R&D focusing on systems integration of existing technologies to create novel 
applications and solutions for high impact medical information problems.  
 
a. The problems addressed include those in image storage, display, network transmission, 
integration with other knowledge sources, incorporation into training and education 
systems, and image-based medical knowledge collection, including graphical knowledge.   
b. The R&D emphasis is on novel systems integration techniques, and systems 
integration applied to novel medical application domains.  
c. The fundamental methods used for image indexing, organization, and retrieval in these 
applications are mostly well-established. 
 

(2) R&D into advanced methods for knowledge exploitation by directly using image content.  
 
a. The emphasis here is on advanced, state-of-the-art or experimental algorithmic 
development for indexing, organizing, and retrieving images by the direct use of image 
content, including properties such as color, texture, shape, and geometric arrangement of 
objects in the images. 
b. The work also addresses the critical issue of incorporating user feedback on query 
results in order to refine and improve the quality of the system response relative to the 
user’s retrieval goals, and hence, to reduce the semantic gap between desired and 
achieved query results. 
 

(3) R&D into evaluation of imaging solutions.   
 

a. This work involves establishing datasets and methodologies for the evaluation of 
image-derived knowledge from multiple observers. 
b. The work is primarily to address several related problems widely recognized in the 
medical image processing community: the need for techniques to evaluate the 
segmentations of objects in medical images that are obtained from multiple observers; 
how to obtain “truth” segmentations; and the fundamental issue of how to exploit “truth 
segmentation” in a way that is both meaningful and of practical value.  
 

Following a retrospective of work conducted at the CEB in biomedical imaging (Section 1.1), 
and a description of a new image collection from the National Cancer Institute that motivates 
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much of our current work (Section 1.2), we discuss the significance and objectives of this 
project. Section 4 outlines our response to recommendations by the Board in 2002. In Section 5 
we describe tools being developed in collaboration with NCI, and techniques that exploit image 
content for the indexing and retrieval of biomedical images (Content-Based Image Retrieval or 
CBIR.) In Sections 6, 7 and 8, we outline our approach to evaluate the techniques and tools, a 
project schedule and a summary, respectively.  
 
1.1 Biomedical Imaging at CEB: A Retrospective 

The long standing interest in biomedical imaging research at the Communications Engineering 
Branch spans several image types, but originates in an effort a decade and a half ago to preserve 
a collection of spine x-rays acquired as part of a periodic nationwide survey of public health 
conditions called the National Health and Nutrition Examination Survey (NHANES). The U.S. 
National Center for Health Statistics (NCHS) conducts this survey by setting up mobile Medical 
Examination Centers appropriately equipped and staffed at selected locations throughout the 
U.S. Data is gathered on a sampling of the population at each site. The second such survey, 
NHANES II, yielded a broad spectrum of information on each of 25,286 participants, of whom 
20,322 were both interviewed and examined [1]. The data taken included medical examination 
data, demographic information, and blood chemistry analyses. In addition, a subset of the 
participants received a detailed examination that included radiographs of the cervical and lumbar 
spine. This resulted in a collection of approximately 17,000 films. The third survey, NHANES 
III [2], produced an additional 10,000 films of hands, wrists and knees.  

Apart from these x-rays, the image sets of interest in our research also include the Visible 
Human color cryosections as well as recent collections of uterine cervix and histological images 
from the National Cancer Institute. Nevertheless, these x-rays provided the opportunity to begin 
investigating a wide range of problems related to the archiving, compression, transmission, 
indexing, access, retrieval and dissemination of digital biomedical images.  

Since an original objective was to investigate the technologies for archiving and disseminating 
these x-rays, the 10,000 cervical and 7,000 lumbar spine radiographs were digitized at 146 dpi 
using a Lumisys laser scanner. Stored originally in a large optical disk jukebox, they currently 
reside in a 24 TB mass storage device, from which they are publicly accessible for FTP transfer. 
In addition, lower resolution versions of the images are accessed in response to queries to the 
WebMIRS system (described below). As mentioned, along with the x-ray images, the NHANES 
II survey also included information on demographics, health questionnaire responses and 
physician's examination results. Over 2,000 fields of such information were collected on each 
surveyed person, providing a large body of textual information, most of which is also publicly 
available through the WebMIRS system. Since the availability of metadata and successful 
migration from obsolete media to newer ones are key requirements for preservation, the original 
goal of preserving the images was met by the unique linking of the textual information 
(metadata) to the images, and the subsequent migrations.  

The NHANES image set and the associated text have been used in several CEB projects whose 
objectives include: (a) the classification of the images for biomedical researchers, in particular 
the osteoarthritis research community - a long-standing goal for us as well as our collaborators at 
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NCHS and the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS); 
(b) the capability to retrieve images based on geometric characteristics of the vertebrae - of 
interest to the vertebral morphometry community; and (c) the development of automated or 
computer-assisted classification and retrieval methods, highly desirable to offset the high cost of 
manual classification by medical experts. To address the medical, statistical, and technological 
issues related to the use of digitized versions of the NHANES II spine x-rays, two NIH 
workshops were convened: Digitized Radiographic Images: Challenges and Opportunities, held 
June 2-3, 1993; and Digitized Radiographic Images:  Computer and Internet Access to 
Radiographic Images from Population Surveys, held May 9, 1995. These workshops identified 
25 biomedical features of interest in the NHANES II spine x-ray images, viz., anterior 
osteophytes, disk space narrowing, subluxation in the cervical spine and spondylolisthesis in the 
lumbar spine, posterior osteophytes, plate erosion or sclerosis, vacuum phenomenon, 
abnormalities, ankylosing spondylititis, apophyseal OA, congenital/developmental disease, 
DISH, evidence of surgery, fracture, infection, disc calcification, neuropathic spine, osteopenia, 
Paget's disease, rheumatoid arthritis, spondyloarthropathy, spondylosis deformans, anterior 
ligamentous calcification, congenital fusion, and tumor. However, the workshops identified only 
3 features that could be reliably and consistently detected, viz., anterior osteophytes, disc space 
narrowing, and subluxation for the cervical spine and spondylolisthesis for the lumbar spine. 
Consequently, we have concentrated the automated classification and Content-based Image 
Retrieval (CBIR) efforts on these features.  

The CEB projects using the NHANES II x-ray images as the principal image data were favorably 
reviewed at numerous times by the Board of Scientific Counselors, and are summarized below. 

Reviewed by the BSC in 1991 and 1995, the DXPNET Project (Digitized X-ray Prototype 
workstations linked via InterNET), a collaborative effort among NLM, NIAMS and NCHS, 
developed systems for the collection of controlled radiological interpretations of the NHANES II 
digitized x-ray images by multiple readers (domain experts) in the distributed environment of the 
Internet [3]. In this project CEB accomplished: the software development and system integration 
necessary to allocate images to multiple, geographically-distributed readers; multisocket 
transmission techniques to efficiently deliver images from CEB to the readers [4]; software to 
display images on high-resolution (2Kx2.5K) Megascan monitors hosted by Sun workstations at 
reader sites; acquiring image interpretations through an onscreen template (designed in 
collaboration with NIAMS domain experts); collecting these interpretations at a central database 
maintained by CEB; and development of Quality Control Workstations for content experts to 
verify image quality.  

DXPNET led to several research activities toward improving public access to the NHANES 
images and collateral data, including the development of WebMIRS (which evolved from an 
initial non-Web, Sun workstation-based, Medical Information Retrieval System), the FTP x-ray 
Archive, and the Digital Atlas of the Cervical and Lumbar Spine. One technical accomplishment 
related to the DXPNET project, in collaboration with NCHS domain experts, was to establish the 
level of digitization to be used for the 5,000 hand x-ray films collected by the NHANES III 
survey, conducted 1988-1994. A multiple-reader data collection was carried out at the CEB site, 
using high-resolution Megascan monitors, display and data collection software developed by 
CEB. The study used 49 hand radiographs collected from the Pima Indian population. Each 
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radiograph was digitized at three different resolutions: 2001x1634, 3000x2400, and 4900x3000, 
all with a pixel depth of 12 bits. Two radiologists independently graded each of the three sets of 
digital images for degree of bone erosions. A pre-existing grading of the original film by a 
different group of radiologists was used as a reference. Based on the outcome of the study, the 
NCHS elected to digitize the NHANES III x-ray films at the medium resolution (3000x2400), 
striking a balance between effective image quality and storage and transmission 
requirements [5].  

 
 

The development of WebMIRS (Web-based Medical Information Retrieval System), reviewed 
by the BSC in 1998, provided Web access to the x-rays and associated data to a broad user 
community from academia, corporations, hospitals and elsewhere. Reported uses include 
research in epidemiology and rheumatology, computer science work in algorithmic development 
and image processing research, and graduate education in the classroom.  

  
(a) (b) 

 
 

(c) (d) 
Figure 1.1: Related CEB Projects: (a) WebMIRS Query Results Screen, Image View (b) Atlas Images for 
CSPINE Anterior Osteophytes (c) Spine x-ray Multimedia Database Implemented with Microsoft Access (d) 
Visible Human Image Downloading Application Using Lossless Compression 
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WebMIRS capabilities included:  

• Database access through standard Java-enabled Web browsers (Netscape/Internet 
Explorer), on PCs, Sun Solaris machines, and potentially any platform providing the 
same level of Java support;  

• Optimum GUI design for relational database query capability;  
• Retrieval of the x-ray images as well as the associated text in response to queries;  
• User capability to save results for subsequent review and documentation;  
• User capability to export results to standard statistical tools (SAS, SUDAAN) for 

research and analysis;  
• Access to multiple databases;  
• Access to coarse-level segmentation data marked by medical experts for a subset of the 

images for use in image processing research.  

A view of the WebMIRS query results screen, in the optional ``Image View'' mode, is shown in 
Figure 1.1(a). Retrieved in response to a query, the textual data in the bottom window 
corresponds to the highlighted x-ray image of a particular survey subject. Two databases are 
supported by the WebMIRS system; these databases have been created from the data in 
NHANES II and III surveys. The WebMIRS NHANES II database contains demographic, 
anthropometric, adult health questionnaire and physical examination data for 20,322 NHANES II 
survey participants. The WebMIRS NHANES III database contains demographic, adult health 
questionnaire, youth health questionnaire, and laboratory data for all of the approximately 30,000 
NHANES III survey participants. The 17,000 cervical and lumbar spine images collected during 
NHANES II are available for display through WebMIRS, in low-resolution form, in addition to 
this text survey data. For both databases, the statistical weights and survey design variables are 
available for proper analysis of the data.  

Our design and development of WebMIRS has benefited from close collaboration with NCHS 
and NIAMS, and has also incorporated the advice and recommendations of statisticians expert in 
the nuances of the use and interpretation of health survey data, including Dr. Donna Brogan [6] 
of Emory University and Dr. Barry Graubard [7] of the National Cancer Institute. Currently, 
WebMIRS has 436 registered users in the U.S. and in 54 foreign countries. About one half of 
WebMIRS users are in the United States, with the next four countries, in order of number of 
users, being India, Canada, the United Kingdom, and China. Current WebMIRS users are 
predominantly in the academic world; a breakdown of users by category is given in Figure 1.2. 
The ways in which WebMIRS is being used, as reported by users, is given in Figure 1.3. An 
example of a classroom use of WebMIRS is as a hands-on tool in a graduate class in public 
health statistics at Columbia University. 227 requests have been received for WebMIRS for 
academic use. 
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An FTP x-ray image archive 
was developed for public access 
to the full resolution versions of 
all 17,000 NHANES II x-ray 
images. This FTP service is 
publicized on the CEB Web site. 
To view these images in full 
spatial and grayscale resolution, 
CEB developed a Java image 
viewer that is publicly available 
from the same site. In addition, 
for users preferring to use 
standard and widely available 
image viewers, 550 of these 
images have been converted to 
the standard TIFF 8-bit form and 
made publicly available also, 
along with coarse segmentation 
data acquired by a medical 
expert. There are 437 registered 
users of the FTP archive, from 49 
countries.  As for WebMIRS, 
about one half of the users are 
from the United States, and the 
next countries, in order of 
number of users, are the United 
Kingdom, India and Canada 
(same number), and Australia, 
Brazil, Canada, China, and Spain 
(each with the same number of 
users).  A breakdown of these 
users, by category, is given in 
Figure 1.2. These images, and the 
segmentation data, have been 
accessed for use in a number of 
technical papers, for four Ph.D. 
dissertations [8-11], three 

Master’s theses [12-14], and is currently being used in two Ph.D. dissertations in progress; one of 
the completed dissertations [8] directly addresses the digital library problem of searching large 
image collections for images satisfying user criteria imposed on objects in the image. 222 
requests for the x-rays for academic use have been received. A breakdown of the ways in which 
the FTP archive is being used is given in Figure 1.3.  

Are the x-ray images useful for other than spine data? We see evidence that exploitation of the 
images for purposes other than spine information may be possible. Researchers in Spain [15], for 
example, have developed image processing algorithms for the automatic localization of 
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Figure 1.2: WebMIRS/FTP Archive Users 
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landmarks within the skull and the extraction of geometric measurements derived from these 
landmarks. This process has application to the practice of orthodontics, and, when carried out 
manually, can take 10-15 minutes per image.  

The increasing use of digital medical images requiring expert interpretation gave rise to the need 
for convenient online digital reference tools, to assist in producing interpretations that conform to 
recognized standards. In view of this, we developed the Digital Atlas of the Cervical and 
Lumbar Spine in collaboration with NIAMS and NCHS [16] to fill a perceived need for such 
reference data for osteoarthritis in the cervical and lumbar spine, especially since a standard 
reference [17] of photographs of these features is out of print and difficult to obtain. Important 
features of the Atlas include:  

• Presentation of standard reference images for a subject area (osteoarthritis of the cervical 
and lumbar spine) not previously addressed by digital atlases, to our knowledge;  

• Display of single or multiple Atlas images simultaneously;  
• Built-in image processing capability;  
• Capability to add user-provided images to the Atlas, without code modifications.  

An example of an Atlas display is given in Figure 1.1(b). In this example, four Atlas images 
illustrate anterior osteophytes with varying degrees of severity. The Atlas may be downloaded 
from the CEB Web site, and is available as a CD. 

Multimedia databases on commodity products. The migration of usable multimedia database 
products from the high-end of the workstation and software spectrum to the consumer or 
commodity end has been a topic of research interest in CEB. Toward this goal, a multimedia 
database product has been developed with Microsoft Access software that accesses the database 
from a CD-ROM drive. This product provides access to back pain-related survey data for 14,000 
adults in the NHANES II health survey, along with digitized x-ray images for 550 of the older 
survey participants. A graphical user interface provides simple query capability by checkbox and 
mouse clicks, as well as the capability to export results in several formats, including ASCII, 
Excel, and HTML. A query results screen from this application is shown in Figure1.1(c).  

Other biomedical imaging R&D. Apart from the x-ray images, biomedical imaging R&D at 
CEB has involved the Visible Human data. While lossy compression techniques achieve high 
compaction, these result in irrevocable data loss, which may not be desirable for archiving 
purposes. Lossless compression techniques were therefore explored, one exploiting slice-to-slice 
pixel similarities, the subject of a collaborative effort [18]. This work resulted in the 
development of a method for lossless compression of the Visible Human images by a process of 
removing the image background, and then applying Adaptive Arithmetic Coding to the 
remaining foreground image. The compression ratio achieved over the entire Visible Male 15 
GB dataset was 9.2:1, a three-fold improvement over conventional common lossless techniques, 
a significant step for improving transmission efficiency over the Internet [19]. Figure 1(d) shows 
one screen of the application developed to allow downloading of Visible Human images using 
this lossless compression.  
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In addition, AnatQuest, a system analogous to MapQuest, makes VH images easily available to a 
large constituency. It is a Web interface with a viewport into the anatomy so that a user may: 
navigate in 3 dimensions, along z- as well as x- and y-axes; zoom to navigate through high 
resolution images; display both raw image slices (sagittal, coronal, axial), as well as rendered 
organs (one by one, or streaming video, depending on user bandwidth available); show anatomic 
labels to identify structures; dissect rendered images to reveal internal structure. The AnatQuest 
viewer fetches desired images from a database server, and transfer mechanisms accommodate 
low bandwidth connections by transferring only portions sufficient to fill the display frame of the 
viewer. For high bandwidth connections, streaming video gives continuous motion display of 
organs. The system is based on Java Advanced Imaging (JAI: Java 3D) released for Web, which 
possesses image processing features, e.g., contrast enhancement, scaling, cropping.  

1.2 Prolog to Current Work 

Significant challenges remain in finding the best ways to archive, compress, transmit, index, 
access, retrieve and disseminate digital biomedical images. Automated indexing by image 
content features through CBIR techniques is a particular interest. We have summarized much of 
our past and recent work in [20].  While we continue to use our x-ray collection to tackle these 
problems, much of our current focus is on new image collections from NCI, as described in this 
report.  

The images from NCI derive from two major studies. The first is the ASCUS-LSIL Triage Study 
(ALTS), a 2-year longitudinal study of 5,000 women with minor cervical cytologic abnormalities 
that yielded 40,000 cervicographic images. The other similar, screening study called the 
Guanacaste Project [21] is an intensive, population-based cohort study of human papillomavirus 
(HPV) infection and cervical neoplasia among 10,000 women in Guanacaste, Costa Rica, where 
the rates of cervical cancer are perennially high. State-of-the-art visual, microscopic, and 
molecular screening tests are used to examine the origins of cervical precancer/cancer and to 
explore viral and host factors that make a geographic region ‘high risk’. The Guanacaste study 
has completed its field phase after seven years of follow-up, and now has spawned a number of 
subprojects based on collected specimens, images, and outcomes. NCI is examining several 
potentially important etiologic cofactors, such as chronic inflammation and endogenous hormone 
levels, which may contribute to cervical cancer risk. Most ambitiously, over 30,000 cervical cell 
and 30,000 plasma specimens are being tested for HPV DNA and antibodies, respectively, to 
determine how type-specific HPV DNA types (there are over 40 types of cervical HPV) and 
antibodies influence outcome.  Image data collected includes cervicography (a type of high-
definition cervical photograph), Pap test, and histology images. In conventional cervical cancer 
prevention programs, abnormal cytology (Pap tests) trigger referral to a magnified visual 
assessment of the cervix following application of vinegar (5% acetic acid), which is called 
colposcopy. Cervicography is a low-cost alternative to colposcopy that produces similar images. 
Colposcopists take biopsies based on their assessment of the site of most significant disease. The 
resultant biopsies are used to guide treatment. While biopsy and cytology slides are saved and 
can be shared for research and teaching, colposcopy has not lent itself to rigorous research. The 
use of stored digital images is expected to make an impact on research and education in the use 
of cervicographic and colposcopic images for the study and prevention of uterine cancer. It has 
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been remarked by an expert in the field of gynecology that colposcopy research has lagged 
behind other fields that have taken advantage of advances in computerization [22]. 
 
Our work in collaboration with NCI is to develop methods to permit exploration of visual aspects 
of HPV and cervical neoplasia. In etiologic studies NCI researchers will relate the numbers of 
infecting viral types with numbers and positions of lesions. They will be able to follow the 
topographic progression and regression of lesions. For screening research NCI will be able to use 
60,000 digitized uterine cervix images from the Guanacaste Project to optimize and standardize 
visual screening of the cervix. Along with developing supporting technologies, we assume the 
role of developing a suite of open source applications for the purpose of exploiting extensive 
longitudinal study data collected on subjects from the ALTS and Guanacaste projects. 

2 Project Significance 

Both NLM and NIH expert advisory groups in past years have explicitly placed high importance 
on incorporating image use into medical knowledge, research and practice [23, 24]. The matrix 
below illustrates the relationship of our project work to current NLM long-range goals, as 
elaborated in the updated 2006 NLM Long Range Plan [25]. 
 
 

Project work Applicable 2006 NLM Long Range Plan elements 

Imaging R&D focusing 
on systems integration 
for novel solutions to 
high impact medical 
information problems 

• Data mining tools and algorithms for knowledge discovery 
• Support integration of public health data…into clinical informatics 
• Develop…public health information by supporting training and research 
• Develop and promulgate … model programs that server underserved 

populations at home and abroad 
• Develop open-source, translational research tools and resources, 

including data collection tools. 
• Interact closely with…the work of other individual institutes 

 

R&D for advanced 
imaging solutions by 
use of image contents 

• Data mining tools and algorithms for knowledge discovery 
• Develop computational algorithms and tools that can extract information 

from multiple biological sources…and integrate them into coherent data 
models 

• Develop open-source, translational research tools and resources, 
including data collection tools 

 

R&D into evaluation of 
imaging solutions 

• Data mining tools and algorithms for knowledge discovery 
• Play a leading role in encouraging…criteria for quality in clinical 

databases 
• Develop computational algorithms and tools that can extract information 

from multiple biological sources…and integrate them into coherent data 
models 

• Interact closely with…the work of other individual institutes 
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3 Project Objectives 

The overall goal of the project is to push the current state of image use in significant biomedical 
imaging domains, for example, spinal and uterine cervix images. This goal is to be achieved 
through the following specific objectives: 
 
Objective 1 Develop tools to enable the collection and dissemination of new knowledge 
from images 
 
This objective addresses R&D into innovative systems integration required to develop tools 
(applications) that support specific efforts such as the exploitation of the NCI uterine cervix data 
for medical analysis, training and education. Our applications combine Java programming, Java 
servlets, PHP scripting, embedded SQL, the MySQL DBMS, XML, Asynchronous Java Script 
(AJAX), tiled image processing, and both off-the-shelf and custom-written, Wavelet-based, 
image compression. This work is yielding open source applications created in close collaboration 
with medical experts working with data of significant value to the national and international 
medical communities.  
 
Objective 2 Actively support the use of our tools for the collection and evaluation of 
image-derived knowledge from multiple observers 
 
Here our objective is to ensure that tool development is in synchrony with the research objectives 
of our biomedical collaborators. This involves introducing our tools at the earliest point at which 
they are sufficiently mature, fine tuning the tools for accuracy and performance, and enhancing 
them with added capabilities missing in early versions. This close collaboration also allows 
gathering and reconciling data from multiple experts, and deriving from this data the ground 
truth necessary for algorithm development.  
 
We actively work with our NCI collaborators as they conduct studies employing our tools.  At 
present, nine studies have been or are in the process of being conducted, as summarized in Table 
1.  Seven of these studies use our Boundary Marking Tool, and two use a prototype of our 
Virtual Microscope tool. Eight are oncological studies for the uterine cervix, and one is an 
oncological dermatology study. To date these studies have resulted in one publication [26] in a 
medical journal, with three more medical publications [27-29] pending.   
 
Objective 3 Develop advanced techniques for extracting knowledge directly from image 
content 
 
We are conducting R&D into developing a future generation of query and retrieval techniques 
that will directly use the contents of images, including such features as color, texture, and shape. 
These techniques may be applied to objects within an image or to the image as a whole.  This 
work is conducted through: (a) the development of algorithms for image segmentation, feature 
extraction, classification, similarity matching and other key stages in Content-Based Image 
Retrieval (CBIR); (b) the development of prototype systems that implement these algorithms; 
and (c) using the prototypes to evaluate and fine tune these algorithms for optimum performance 
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for targeted image collections. CBIR is expected to play a significant role in data mining and 
knowledge discovery from images in the future. 
 
Objective 4 Maintain a strong publication policy and publicly disseminate the 
applications developed 
 
Our work has been, and will continue to be, published in the open literature. Further, all software 
will continue to be distributed as open source material, and commercial dependencies 
(sometimes necessary in early prototypes) will be eliminated to enable widespread use.  
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Table 1.  Impact of CEB applications on biomedical objectives 
No. NLM Tool Image Type Study Name Purpose/objective NCI 

Investigators 
NCI 
Branch 

Description Status/Outcome 

1 Boundary 
Marking 
Tool 

Uterine 
cervix – 
digitized 
photos 

 Examine Reproducibility of 
Lesion Marking; Correlation 
of Visual Diagnosis with 
HPV Infection 

Jose 
Jeronimo, 
M.D. 

HREB 939 images, 20 
expert observers 

* Abstract submitted to 23rd 
Int’l HPV Conf [27].; 
Ongoing analysis 
* Paper: Visual appearance 
of the uterine cervix: 
correlation with human 
papillomavirus detection 
and type [28]. Submitted to 
American Journal of 
Obstetrics and Gynecology.  
 
* Inter-observer agreement 
in the evaluation of digitized 
cervical images: results 
from the NIH-ASCCP 
Research Group [29]. 
(Draft) 

2 Boundary 
Marking 
Tool 

Skin lesions 
– digital 
camera 
photos 

Kaposi Sarcoma 
Nicotine 
Treatment 

Evaluation regression of 
Kaposi sarcoma skin lesions 
under treatment with 
nicotine patch 

James 
Goedert, 
M.D. 

Viral 
Epidemi
ology 

24 patients; 950 
images obtained 
over 15 weeks; 2 
expert observers 

In progress 

3 Boundary 
Marking 
Tool 

Uterine 
cervix – 
digitized 
photos 

Age-related 
changes of the 
cervix 

Study correlation between 
amount of columnar 
epithelium/age to presence 
of carcinogenic and non-
carcinogenic HPV 

Jose 
Jeronimo, 
M.D.; 
Phil Castle, 
Ph.D. 

HREB 945 patients; 945 
images; 1 expert 
observer 

Results published in Cancer 
Research [26] 

4 Boundary 
Marking 
Tool 

Uterine 
cervix – 
digitized 
photos 

South Africa: 
Visual 
characteristics of 
CIN3 patients 
undetected by 
colposcopy 

Visual evaluation of 
characteristics of the pre-
cancerous lesions that were 
lost during the first medical 
examination 

Jose 
Jeronimo, 
M.D.; 
Michelle 
Ross, M.D. 
(South 
Africa) 
 

HREB 525 images In progress 

5 Boundary 
Marking 
Tool 

Uterine 
cervix – 
digitized 

China: 
Visual 
characteristics of 

Visual evaluation of 
characteristics of the pre-
cancerous lesions that were 

Jose 
Jeronimo 
M.D.; 

HREB 
PATH 
[30] 

145 images In progress 



14 

Table 1.  Impact of CEB applications on biomedical objectives 
No. NLM Tool Image Type Study Name Purpose/objective NCI 

Investigators 
NCI 
Branch 

Description Status/Outcome 

photos CIN2+ patients 
undetected by 
colposcopy 

lost during the first medical 
examination 

John Sellors, 
M.D. 

6 Boundary 
Marking 
Tool 

Uterine 
cervix – 
digitized 
photos 

Multinational 
evaluation of a 
new approach for 
cervical cancer 
screening and 
treatment 

A new approach for cervical 
cancer prevention based on 
HPV-DNA testing followed 
by visual inspection to be 
tested with physicians and 
nurses from USA, Peru, 
Costa Rica, Nicaragua, and 
South Africa. 

Julia Gage; 
Jose 
Jeronimo, 
M.D. 

HREB 721 images In progress 

7 Boundary 
Marking 
Tool 

Uterine 
cervix – 
digitized 
photos 

Multi-expert 
evaluation and 
consensus in the 
evaluation of 
digitized 
cervigrams to be 
used for training 
purposes 

Selection of images to be 
used for training in 
colposcopy,  by consensus 
among expert colposcopists. 

Jose 
Jeronimo, 
M.D.; 
Dennis 
O’Connor 
M.D;  
Alan 
Waxman 
M.D. 

HREB 
ASCCP 

100 In progress 

8 Virtual 
Microscope 

Uterine 
cervix – 
digitized 
biopsy 
(histology) 
slides 

Evaluate virtual 
microscope for 
cell counting 

 Mark 
Schiffman, 
M.D.; 
Melinda 
Butch-
Kovacic, 
Ph.D. 

HREB 500 images; 1 
observer 

In progress 

9 Virtual 
Microscope 

Uterine 
cervix – 
digitized 
biopsy 
(histology) 
slides 

Evaluate 
reproducibility 
of physical 
microscope 
study with digital 
tools 

 Jose 
Jeronimo, 
M.D. 

HREB 600 patients; 1200 
images; 5 expert 
observers 

In progress 
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4 Status Report 

Reviewing our early work in Content-Based Image Retrieval in 2002, the BSC stated that this 
research program has significance in that it is central to the mission of the National Library of 
Medicine as a global archive for important classes and examples of biomedical images 
associated with human health and disease. With this in mind, the Board made insightful 
recommendations that have since been incorporated in this project. The first recommendation, 
that our research should be extended to an additional test collection, was met with the addition of 
large sets of uterine cervix images collected by the NCI. Future projects using the clinical Lung 
Image Data Consortium and other images in their archive are also under discussion with NCI 
collaborators. 
 
A second recommendation was to include similarity measures for the text accompanying the 
images in addition to the similarity measures used for image features. While our work uses text 
descriptors for the cervix and spinal images, comparisons are made on the exact matching of text 
since the text descriptors do not readily lend themselves to similarity measurements. A pilot 
project is under way to investigate the challenges of mapping image-associated text to uniform 
medical terms for similarity comparisons.  
 
In line with another recommendation, steps were taken to review visualization work in other 
labs, focusing particularly on tools. Examples are the SPIRE project at the Pacific Northwest 
Labs, and work at the University of Maryland’s Human Computer Interface Laboratory.   
 
The Board also recommended a survey of researchers using NHANES data with a view to 
determining the role of CBIR. It was found that the literature contains numerous instances of the 
use of NHANES II images for image analysis and informatics research, though specific efforts 
toward CBIR are relatively rare. However, three board certified radiologists consulted were very 
encouraging about the value of CBIR in these and other images. Such favorable feedback has 
influenced our research direction and work in CBIR. In particular, it has informed the design of 
data validation tools and techniques to reflect user needs and process workflows that better 
accommodate requirements in a biomedical research setting.  
 
The Board finally recommended expanding the community of researchers in CBIR for 
biomedical images through small contracts. In this regard, we have assembled a small group of 
university collaborators with the goal of furthering the state of the art in image analysis, 
enhancement, compression, feature extraction, image similarity measures, combining image and 
text retrieval, and relevance feedback for use in CBIR research.  

5 Methods and Procedures for Biomedical Image Informatics 

In this section we present an overview of ongoing and future work in two broad categories: 
multimedia data management, where we have emphasized systems integration R&D in order to 
create applications with near-term biomedical impact in data mining, integration of public health 
data into clinical informatics, and supporting training and research for public health 
improvement; and advanced algorithmic R&D into new methods of knowledge extraction from 
biomedical images for data mining, knowledge discovery, and the development of computational 
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algorithms and tools that can extract information from multiple sources, both text and images, 
and integrate them into coherent data models. 
 
All tools developed are intended to be open source, including those for data collection and 
information sharing, for both the research community and the general public.  The tools are 
developed in collaboration with the National Cancer Institute (uterine cervix applications) or 
with individual biomedical experts (spine applications).   
 
5.1 Multimedia data management: enabling applications for near-term impact 
 
CEB work in developing informatics applications in collaboration with the National Cancer 
Institute are expected to have near-term impact in the field of colposcopy.  This work was the 
subject of an editorial in the national journal of the American Society for Colposcopy and 
Cervical Pathology (ASCCP), which stated: 
 

In the archive that NCI staff have prepared in collaboration with experts at the National Library of 
Medicine (NLM), images have been digitized and correlated with digitized photographs of biopsy material 
as well as with patient demographics and risk factors, including type-specific human papillomavirus results. 
 
Thanks to the generosity of the National Institutes of Health (NIH), ASCCP has begun to explore 
opportunities for collaborative uses of this archive in research and teaching.  Colposcopy research has 
lagged behind other fields that have taken advantage of advances in computerization.  Most colposcopy 
research has been conducted at single institutions or small consortia, limiting generalizability and scope.  
The ASCCP, NCI, and NLM have developed a panel of colposcopists who will be assessing research 
questions in colposcopy through the Internet by marking up hundreds of colposcopic images using NIH-
based servers and statistical techniques.  This collaboration would allow us to address issues important to 
all colposcopists, including how closely the range of colposcopic findings correlates with high-grade 
disease and how interobserver and intraobserver variability impacts the accuracy of colposcopic 
assessment. [31] 

5.1.1 Boundary Marking Tool 
 
The Boundary Marking Tool (BMT) [32, 33], shown in Figure 5.1, provides capability to 
manually draw regions on the cervicography image and to record region labels and expert 
interpretative information.   Regions that may be marked to correspond to tissue types or 
anatomical features are acetowhite lesions, invasive cancer, squamous metaplasia, Nabothian 
cysts, cervical borders, os, and polyps.  In addition, the squamocolumnar boundary may be 
marked, as well as two frequently-obscuring features: blood and mucus.  Detailed labeling may 
be recorded for some of these features.  
 
For example, for the acetowhite lesions, the expert may classify the lesion boundary shape 
characteristics using a standard Reid scale, may classify the color of the lesion, and may record 
the presence of certain detail features (punctation, mosaicism, vasculature).   The BMT is a 
mature tool, primarily for data collection, that has already supported multiple studies (See 
Section 3) for NCI researchers, including one published result [26]; additional medical 
publications are pending [28-30].  A recent NCI data collection with the BMT used 
cervicography from 939 women and 20 expert colposcopist evaluators at geographically-
distributed sites.  Each evaluator marked cervix boundaries and acetowhite lesions on the images 
and provided a clinical diagnosis, ranging from normal, through low- and high-grade lesion, to 
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invasive cancer.  Multiple studies are under way on this data, including assessment of 
reproducibility of colposcopic diagnosis, accuracy of the visual evaluation, and visual patterns in 
the cervices of HPV-infected and non-HPV-infected women. Future BMT studies will 
investigate patterns of appearance and disappearance of precancerous lesions, and inter-observer 
agreement on biopsy placement.  

Although the BMT was designed for use with the uterine cervix we expect it to be useful for 
collecting region-based data from additional image types. Figure 5.1 shows initial work to use 
the BMT in a dermatology study that will measure the effects of nicotine patch treatment on 
Kaposi sarcoma lesions. 
 
The BMT is designed as a Java client application which interfaces to a server MySQL database; 
tunneling software (JDBTunnel) is currently used to allow the client to communicate to the 
database by using only HTTP messages to the Web server.  This avoids communications 
problems frequently encountered when users deploy the BMT client behind firewalls at their 
local sites.  In further development of this tool, to eliminate the firewall problem without this 
commercial software dependency, we plan to replace the tunneling software with a servlet 
architecture. 

5.1.2 Multimedia Database Tool 
 
The Multimedia Database Tool (MDT) [33, 34], shown in Figure 5.2, represents the next 
generation of the Web-based Medical Information Retrieval System [35], described in Section 
1.1, with which NLM has been distributing spine x-ray images and health survey data for several 
years. The MDT will serve as the central database tool for accessing the Guanacaste and ALTS 
Project data, and will provide the capability to query on any of the text data in these databases, 
and retrieve not only text, but associated images.   
 

Uterine cervix Dermatology (Kaposi sarcoma study) 
Figure 5.1: The Boundary Marking Tool 
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The MDT will allow query of the 
central repository of all of the 
cervicography images (including those 
marked by the BMT), histology 
images, Pap test images, and other 
images associated with the Guanacaste 
Project (or ALTS or other similar 
projects). One area of design emphasis 
has been on supporting a patient-
centric view, as preferred by NCI 
medical collaborators, that will enable 
all data related to a particular patient, 
including both text and images, to be 
navigated in a streamlined manner:  
for a particular patient, researchers  
will be able to view and move among 
different image types (cervicography, 
histology, Pap test) on a multi-view 

display, as well as to dwell on  a particular image type and drill through a stack of images for 
that image type. 

5.1.3 Virtual Microscope 
 
The Virtual Microscope (VM) [33] provides capability to view histology images and to record 
expert interpretations, and is primarily a data collection tool.  The current, operational prototype 

is shown in Figure 5.3.  Common 
practice in current histology studies by 
multiple experts is to use physical 
microscopes and glass slides, with the 
slides being sequentially shipped from 
one expert to another for 
interpretation.  The VM will allow 
simultaneous viewing and 
interpretation of histology by multiple 
experts at geographically-distributed 
sites. With the VM a study 
administrator may create a set of 
research questions and identify 
associated regions on histology 
images; the VM then presents these 
questions, with a display of the 
associated regions, to experts who are 
participating as study observers, and 

records their answers in a server database. To accommodate the very large size of histology 
images, ranging into the tens of gigapixels, our design of the VM adopts the method of 

Figure 5.2: The Multimedia Database Tool 

Figure 5.3: The Virtual Microscope (prototype) 
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displaying the images as tiles which are dynamically assembled into the current view panned by 
the user.   
 
Prototypes of the VM have been developed as browser-based applications based on the Zoomify 
[36] tiling technology incorporated in a Web server system with PHP and Java servlets.  Figure 
5.3 shows the screen from one of these prototypes.   A key NCI study under way is to evaluate 
the reliability of virtual microscope technology in diagnosis of pre-malignant uterine cervix 
disease.  In this study digitized slides from 600 patients are viewed by five expert observers, who 
record a diagnosis ranging from normal, through CIN 1/2/3, to invasive cancer.  (“CIN” or 
cervical intraepithelial neoplasia refers to abnormal cell growth within the “skin” of the cervix; 
the terms “CIN 1, 2, 3” refer to increasing grades of abnormality [37].) The study results will be 
compared to a study previously carried out with the same data, using conventional 
microscope/glass slide protocol. The next generation VM system is being designed with Java 
support for image tiling and handling, to eliminate dependency on the commercial Zoomify 
product, and to allow more flexibility for future modification. 

5.1.4 Teaching Tool 
 
The Teaching Tool (TT) [33], shown in Figure 5.4, will provide training and teaching in the 
interpretation of cervicography images for development of precancer.  It is intended for use in 
training experts in the use of cervicography and colposcopy images for screening patients for 
pre-cancerous conditions.  The TT allows a study administrator to create training materials, in 
the form of images and related questions, for which immediate feedback may be provided; or 
certification examinations, which also present images and related questions, but with student 
responses being collected, scored, and sent to the study administrator, with statistical summaries 

of results provided by the tool.  
 An example question from a 
certification exam might present 
images of both a Pap test and 
cervicography and ask, “Based on 
your overall impression, what is the 
worst diagnosis?”, where multiple 
choice answers ranging from HPV 
infection to carcinoma are provided. 
Other questions may present 
histology images showing two biopsy 
results and similarly ask for a 
multiple-choice diagnosis, then ask in 
a follow-up question for clinical 
management options.  
 
 In its first version, the TT has been 
developed as a PHP-driven Web 
browser application.  This version 

Figure 5.4: The Teaching Tool. 
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was reviewed by NCI and ASCCP experts who produced requirements for the second 
implementation, which is expected to be deployed for actual training and testing.  The TT serves 
both data dissemination (by training) and data collection (by testing) functions. 
 
5.2 Advanced techniques for biomedical image knowledge extraction 
 
Knowledge extraction from biomedical images is an essential activity in development of 
multimedia databases and management of large image and text archives. With this motivation we 
are conducting advanced algorithmic R&D in Content-Based Image Retrieval (CBIR) to develop 
new methods of knowledge extraction from biomedical images for data mining, knowledge 
discovery, and the development of computational algorithms and tools that can extract 
information from multiple sources, both text and images, and integrate them into coherent data 
models.  
 
In concept, CBIR is a collection of enabling techniques for the extraction, assimilation, and 
dissemination of knowledge from images. In practice, however, it is extremely challenging to 
assemble an effective system with these functions. However, addition of metadata such as 
supporting text which could be extracted from patient records, physician’s notes, published 
literature, and imaging parameters, could assist in significantly boosting the utility of such a 
system. The potential pay-off from medical imaging informatics and CBIR, in particular, is 
highly significant. According to a 2001 technical review [38] of the field, CBIR is critical in 
digital libraries for patient care, clinical diagnosis and decision making in large-scale clinical 
trials, managing large-scale protein image databases, and in biomedical education. A primer on 
CBIR is provided in Appendix A. 
 
As mentioned earlier, two NLM Long Range Planning panels have recommended research into 
extraction of knowledge from image data. As far back as 1986, an earlier panel noted that “In the 
area of non-textual signals, the field most in need of initiative by the NLM is that of the handling 
of images which are important to the biological community” [23]. Another NIH workshop 
sponsored by the National Cancer Institute was convened in 1993 to explore medical image 
databases and arrived at specific recommendations [24] for future research that included 
development of image indexing and retrieval techniques with advanced non-textual query 
capability using image features; relating image features to disease; and cohesive unification of 
data from various sources. These goals are addressed through our research into CBIR, an area of 
open, but promising and popular, work [39-41]. All these goals require development of imaging 
tools and techniques for automatic segmentation, labeling and organization of normal and 
abnormal anatomy for retrieval, analysis and classification which constitute basic steps into 
development of CBIR systems. Our approach in the development of CBIR systems reflects many 
recommendations made by these long range panels and in NIH workshops. 
 
Our vision of CBIR as a biomedical informatics tool 
 
A problem faced in many current approaches to CBIR for medical images is that they operate on 
the image as a whole, i.e., they compute global image features such as a color histogram 
measured on the entire image. For some purposes, this global approach is adequate.  An 
instructor looking for an example of lateral view lumbar spine x-rays within a PACS system of 
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images that are heterogeneous with respect to data acquisition modality, viewing aspect, and 
gross anatomical feature may be quite satisfied with a data retrieval system that can make these 
large-scale distinctions based on the indexing of global image characteristics.  A typical 
biomedical image archive, however, is unlikely to be limited to only one type of images as with 
the NHANES II spine x-rays or the NCI uterine cervix image collection. To be useful as a 
biomedical informatics tool, CBIR techniques must also be able to retrieve images relevant to 
queries on specific local image characteristics, such as acetowhite lesions in uterine cervix 
images or for small masses in breast or lung tissue. Developing generalized CBIR techniques and 
systems with this two-level view has been our long-term goal. 
 

 In our CBIR work, we have 
taken steps in a systematic 
manner to address these 
challenges and are making 
good progress toward the 
development of a practical 
system. Because we recognize 
the potential for CBIR as a 
biomedical informatics tool 
for use across image domains, 
we seek to implement 
generalized capabilities, 
where practical, for possible 
use on other medical image 

types and modalities.  Our two-tier view of a practical CBIR system is shown in Figure 5.5 in 
which we posit the image repository to be similar to a PACS containing a heterogeneous 
collection of images which vary by modality, view, or anatomy. This information along with 
globally computed image features can be used to identify image groups relevant to a user query. 
At the next tier CBIR techniques pertinent to a consistent collection selected from the 
heterogeneous global repository are applied. Here, local aspects of the visual query such as shape 
or regional color or texture, if any, are then applied to query particular features on this image 
subset to identify relevant images that exhibit these features. This architecture also allows 
support for user feedback using local features or global features. In addition, we include use of 
textual metadata for enriching the queries. 
 
CBIR: Prior work 
 
In our approach to addressing the challenges of developing a CBIR system, we have adopted a 
strategy in opposite sequence to that indicated in Figure 5.5, i.e., investigate local CBIR first. 
This is because pre-existing uniform image collections, such as the NHANES II digitized spine 
x-ray images, and challenges posed by need for local CBIR for their analysis presented the 
opportunity to develop techniques in shape based retrieval for these images. Prior work in this 
area, detailed in the report to the Board of Scientific Counselors in 2002 [42], included steps in 
segmentation, metadata collection, feature extraction, shape similarity, and vertebra pathology 
classification. Our segmentation work then focused on development of Active Contour 
Segmentation [10, 43], Generalized Hough Transform [44] and Active Shape Modeling [9, 13, 

Heterogeneous
Image

Collection

 Classify by:
Modality,

View,
Anatomy

Global / High Level
Similarity

Spine

Uterine
Cervix

...

Local Image
Feature Match

Response to
Text Query
Component

Local / Low Level
Similarity

User

Local Feedback
      Loop

Global Feedback
Loop

 

Figure 5.5: Two-tier CBIR view. 
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45]. For feature extraction and shape similarity, we explored 2D geometrical features, Fourier 
Descriptors, and Polygon Approximation [46, 47]. In vertebra pathology classification, we 
developed methods for automatic classification/detection of anterior osteophytes, disc space 
narrowing, and subluxation in the cervical spine and spondylolisthesis in the lumbar spine [48, 
49]. Results from these efforts are highlighted in Appendix B. 

5.2.1 Global feature CBIR 
 
To complement encouraging results achieved in local CBIR through shape-based retrieval of 
spine x-ray images, we conducted experiments in global CBIR to evaluate the state of the art and 
identify research directions. In the process, we developed a novel global image classification 
algorithm which achieved significant results in comparison to other published techniques tested 
on a common database (Section 5.2.1.1). Following this success, we have initiated collaboration 
with one other group which has also obtained significant results in global CBIR and maintains a 
Web interface. This effort is aimed at evaluation of the two-tier CBIR design described above 
through a Web-based system (Section 5.2.1.2). 

5.2.1.1 Classification of images using SECC 
 
In our investigation of global CBIR techniques, we have conducted pilot experiments on a 
heterogeneous collection of 10,000 x-ray images obtained from the ImageCLEF [50] collection. 
ImageCLEF is an extension to the European initiative on cross-language studies that focuses on 
the retrieval of medical images along with medical text. Our experiments framed image retrieval 
as an image annotation and classification problem, i.e., classifying a given image into one of 
several pre-defined labels. Annotation typically generates a large number of possible labels, e.g., 
the ImageCLEF dataset has 57 different labels. Error-Correcting Output Codes (ECOC) [51, 52] 
was identified as a useful model to solve the classification problem with a large number of 
possible labels by first solving a set of 2-class classification problems and then combining the 
classification results from these 2-class classifiers. Our approach, which introduced Semantic 
Error-Correcting output Codes (SECC), and described in [53], extended the conventional ECOC 
to a semantic ECOC. The criterion for ECOC coding is that the differences between the codes of 
different overall labels should be large, usually measured using the Hamming distance function. 
Typically, the individual classifiers are randomly selected and a greater number of these yields 
higher accuracy in overall classification. ECOC classification is solved by finding the code 
whose distance to the query code is the minimum.  A typical overall label for ImageCLEF 2005 
annotation data set, however, is elbow image, sagittal view, plain radiography, and 
musculoskeletal. We denote each individual part of an overall label as a category and the 
possible values for this category among all the overall labels as category labels. For example, a 
category ARM can have as possible labels: forearm, elbow, and non-arm, similarly, FOOT can 
have as possible labels: foot and non-foot, and VIEW can have as possible labels: axial, sagittal, 
and coronal. Some independent categories do not depend on others, e.g., the VIEW category is 
in general independent of other categories. In contrast, categories that are statistically correlated 
with other categories are called correlated categories, e.g., the ARM and FOOT categories are 
correlated such that if the ARM category assumes a label forearm or elbow, the FOOT category 
must then be non-foot. In general, a “non—” category label indicates that the imaged anatomy 
does not belong to that category. 
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For image classification it is 
necessary to compute both the 
overall label of a query image and 
its probability, and the 
corresponding category labels and 
their probabilities. Since the 
individual classifiers in the ECOC 
coding are selected randomly, they 
seldom contain the latter 
information. Hence, it is unlikely 
that a single classifier can 
successfully solve the classification 
problem related to one of the 
categories. In our application, we 
assign a value of 0 to a “non” label 
while other labels are assigned non-

zero values. If, for one sample, there is only one correlated category such that its category label 
is not a “non—” label, the category is called the delegate category of the sample and one 
individual classifier is trained for it. The classifier is of the k-class type, where k > 2. Also, 
different individual classifiers may use different classification models and different feature sets. 
Since ECOC similarity functions (e.g., the Hamming distance function) are not suitable for 
SECC, a probabilistic similarity function for SECC was developed, details of which can be found 
in [53]. As a result of this work, the image classification yielded an 82.3% overall success rate 
with a 93% success rate for correct retrieval of images. Figure 5.6 shows retrieval results on the 
far right for a spine x-ray image on the left (the query image).  The vertical column adjacent to it 
is a set of potentially semantically-relevant images.  
 
It is necessary to define semantic similarities among different imaged objects before using our 
method. The challenge here is in addressing the subjective nature of human interpretation of 
images. For example, our approach is flexible in allowing similarity to be defined between 
different views of the same object, or between different parts of the same object, or between 
different objects. Recall that in our case, two overall labels are considered similar if their 
delegate categories are the same. For a query image, we first apply the SECC annotation method 
to determine the individual labels and their probabilities. The overall label is then determined 
and is used to retrieve other images with that label. 
 
CBIR techniques to date have concentrated on retrieval of images solely by image feature 
content. A key difference in our semantic retrieval method is that query images are not limited to 
being visually similar to the retrieved ones. It is acceptable for a retrieved image to be similar to 
the query at a high semantic level. For example, in our retrieval system, a query with a hand 
image resulting in an upper arm image is considered acceptable. We envision our approach to 
complement CBIR techniques that use image features only.  
 
 
Data. The ImageCLEF 2005 data set consists entirely of x-rays. There are 9000 training images 
and 1000 test images. These images can be categorized into 57 classes. Each class has 9 to 2563 

 

Figure 5.6: Global image classification result using SECC.
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training images. We define 11 categories for the data set: CRANIUM(C), SPINE(C), ARM(C), 
LEG(C), VIEW(I),  ADIOGRAPHY(I), FUNCTION(I), CHEST(C), ABDOMEN(C), 
PELVIS(C), and BREAST(C), where C or I represents a correlated category or an independent 
category. Each category has between 2 and 6 labels. 
 
Evaluation approach. Each image is first normalized to 16x16 pixel size. We evaluated three 
features: intensity, Haar wavelet, and Gabor wavelet, and determined intensity as adequate for 
combining the computational efficiency and retrieval effectiveness of each on a sample of the 
image data. The training procedure is performed on 9000 training images. The annotation is 
tested on 1000 test images. A test image is deemed to be successfully annotated if the annotated 
overall label is the same as the ground truth overall label.  
 

Table 2: ECOC vs. SECC 
Coding Method (#Classifiers) Error Rate % 

SECC (11) 18.7 
ECOC (10) 32.6 
ECOC (50) 25.7 

ECOC (100) 19.5 
ECOC (200) 15.1 

 
Results. Table 2 documents the comparisons between SECC and ECOC with varying number of 
classifiers. A higher number of classifiers requires greater computational resources and is not 
preferred. It is clear from Table 2 that for comparable error rates, SECC requires far fewer 
classifiers than ECOC.  
 
We also compare the accuracy of our SECC method with 12 other annotation methods that use 
the same training and test data and were reported in ImageCLEF 2005. The error rates ranged 
from the lowest of 12.6% to the highest error rate of 55.7% with a median error rate of 21.4%. 
Our method with 18.7% ranks fourth among these. 
 

Table 3. Comparison between different retrieval methods 
Method (# Classifiers) Experiment 1 (% Precision) Experiment 2 (% Precision) 

SECC (11) 94.1 93.8 
ECOC (10) 77.3 45.3 
ECOC (50) 83.5 47.1 
ECOC (100) 87.8 49.9 
ECOC (200) 91.6 53.6 

MedGIFT 65.6 27.3 
 
Retrieval evaluation. We conducted two experiments in which images in the test database were 
used as query images.   Their results are reported in Table 3. We evaluated image retrieval on 
three techniques, the SECC, the ECOC with varying number of classifiers, and MedGIFT [54]. 
MedGIFT is an image retrieval  tool developed for medical images and is sourced from the GNU 
Image Finding Tool (GIFT). MedGIFT image retrieval relies solely on extracted image features, 
does not use any classification techniques, and yields a precision of only 65.6% and 27.3%, 
respectively. In this experiment it serves as a baseline against which other techniques may be 
compared, showing the performance gain that can be expected by combining SECC with image 
feature content-based retrieval systems.  
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In Experiment 1, the retrieved image is required to have the same overall label as the query 
image label. It is clear that the precision of the SECC retrieval (with only 11 classifiers) is higher 
than that of the ECOC (200) retrieval. It is interesting to note that although ECOC with 200 
classifiers marginally outperforms SECC with 11 classifiers in automatic annotation (Table 2), 
its classification results are poorer (Table 3). This is because SECC uses the delegate category 
labels that are at a finer granularity than the category labels available to ECOC. In Experiment 2, 
the retrieved images are similar only at a high level with the query image. All the methods except 
our SECC method show a significant precision decrease with respect to Experiment 1.  

5.2.1.2 Enabling interaction with other global CBIR Systems 
 
In addition to conducting our own R&D into global CBIR, it is important that our methods be 
enabled for interaction with global CBIR research being conducted elsewhere. One such research 
center is at the Aachen University of Technology in Aachen, Germany. Their project, Image 
Retrieval for Medical Applications (IRMA) [55], aims to develop and implement high-level 
methods for CBIR, including a prototype application for medical diagnostic tasks using a 
radiological image archive. Their long-term goals include performing semantic and formalized 
queries on the medical image database which includes intra- and inter-individual variance in 
disease assessment. Example tasks are the staging of a patient's therapy or the retrieval of images 
with similar diagnostic findings from large electronic archives. Formal content-based queries 
also take into account the technical conditions of the examination and the image acquisition 
modalities. The IRMA system is designed to classify and register radiological images in a 
general way without restriction to particular diagnostic problems or questions, and therefore may 
be considered to be a global CBIR system. Methods of pattern recognition and structural analysis 
are used to describe the image content in a feature-based, formal and generalized way. The 
formalized and normalized description of the images is then used as a means to compare images 
in the archive, achieving fast and reliable retrieval.  Automatic classification and indexing in 
IRMA allows conventional radiographs to be inserted into the system without human interaction, 
and therefore without the labor burden of large-scale manual text entry. As a result of our 
collaboration, the IRMA database now also hosts our spine x-ray images and extracted vertebra 
shape features. The initial database view of these images is now available on the IRMA Web site 
[56] and is shown in Figure 5.7.  
 
We have proposed a project in which a user would be able to select spine x-ray images in the 
IRMA system by specifying text parameters or, alternatively, by supplying an example image. At 
this stage the interface will allow the user to pick a particular vertebral shape for similarity 
search. The IRMA system will then transmit this shape query to a CEB server hosting local 
shape matching algorithms. Images ranked in order of similarity to the input image will be 
returned to the user via IRMA host servers. Although the current implementation is limited to 
grayscale medical images, it is readily extensible to color images. This effort is unique in the 
following ways: 
 

a. It supports our development of the two-tier system to a significant extent, with planned 
support for global as well as local relevance feedback. 

b. It supports a distributed image knowledge management technique. 
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c. It is a Web application that does not require any client software installation, thereby 
allowing easy access over secure networks. 

 

 

Figure 5.7: IRMA Web interface to NHANES II x-rays and shape data. 

5.2.2 Local feature CBIR 
 
Our R&D efforts in CBIR techniques that utilize local features are relatively mature. Moving 
beyond this work we have initiated R&D into global feature based CBIR as shown in the 
previous section. While global feature based CBIR tends to offer quicker response time and the 
ability to distinguish between different image types, it cannot be used to reliably locate images 
exhibiting a specific pathology that is expressed within a local region. For example, global image 
feature based retrieval techniques may be able to identify spine x-ray images in the sagittal view 
from a collection of other images, but not to retrieve spine x-ray images with deformities on the 
vertebral body. This retrieval requires techniques that focus on such local aberrations which are 
usually expressed in the local shape within a vertebral outline. However, local CBIR techniques 
perform better if they are applied on a uniform image set. Thus to be effective a biomedical 
image informatics system must enable both local and global feature based CBIR. As noted, our 
R&D has largely concentrated on shape-based retrieval of spine x-ray images, and we have 
recently initiated efforts into applying color, texture, and geometric location (spatial feature) for 
retrieval of uterine cervix images (Section 5.2.2.3).  Our prior and recent work in this area has 
been devoted to R&D efforts in image segmentation techniques, whole and partial shape 
matching algorithms, shape feature indexing, relevance feedback, and tool development for 
multi-expert markup and validation data collection. Recent results from these efforts are 
described in the following sections.  
 
Much of our R&D effort has focused on developing prototypes in a proprietary software 
development environment (Matlab). While this programming environment supports rapid 
development of complex mathematical routines, it has been difficult to develop multi-user 
systems and obtain user feedback. We have recently initiated efforts into transitioning successful 
research into Web-deployable technologies, though lack of strong mathematical libraries makes 
this redevelopmental effort slow and challenging. We are incorporating our algorithms 
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developed in Matlab into a client-
server framework that uses standard 
Web technologies such as PHP, Java 
Applets, Java applications, and Java 
servlets. 
 
Spine Pathology and Image 
Retrieval System (SPIRS). 
Screenshots of a Web-based interface 
of the Spine Pathology and Image 
Retrieval System (SPIRS) 
implemented in the client-server 
framework are shown in Figure 5.8 
(query screen) and Figure 5.9 (results 
screen). In this system we have 
implemented whole and partial shape 
retrieval from coordinate and metric 
tree indexed vertebral shapes using 
embedded shape space techniques [10, 
57-59]. The SPIRS system will be 
extended to include other shape 
similarity techniques [20, 60-63] 
techniques developed earlier. 

5.2.2.1  Image segmentation 
 
Image segmentation is a critical step in 
the extraction, analysis, and 
visualization of knowledge from 
images. It is also an extremely 
challenging task highly dependent on 
imaging modality, spatial and color 

resolution, quality, and nature of the imaged anatomy. Reliable automated operation can be 
defined as the goal for a successful image segmentation technique. The results from 
segmentation are image features that can then be represented in various forms such as those 
useful for CBIR. Practical CBIR systems for biomedical images require subsystems to index 
these images by image content.  Depending on the image type, image indexing would rely on 
color, texture, shape, or some combination of these.  For the spine x-ray images, vertebral shape 
is an image characteristic of high significance, while for uterine cervix images the cervix region 
boundary and within it color or texture of AW lesions would be important. Thus the nature and 
number of segmentations can vary according to image type and its expected use.  
 
In the rest of this section (5.2.2.1) we discuss our recent work in two segmentation techniques for 
x-ray images (Orthogonal Active Contour Segmentation and LiveWire), summarize the 
performance of other techniques investigated (Active Shape Model and our enhancements to it), 

 
Figure 5.8: Vertebra shape query selection in SPIRS. 
 

Figure 5.9: Partial shape query retrieval results in SPIRS. 
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describe our current development of a Generalized Shape Segmentation Toolbox and a Web-
based Segmentation Service, and discuss our initial steps in segmenting uterine cervix images. 
 

   

(a) (b) (c) 

Figure 5.10: (a) Active Contour Segmentation with intersecting grid lines, (b) nonintersecting orthogonal 
curves define the search grid used in Active Contour Segmentation; (c) resulting segmentation 
 

Orthogonal Active Contour Segmentation (ACS). Our initial ACS algorithm was 
implemented as a constrained form of the classical snake model. The segmentation is performed 
one vertebra at a time and a priori information about the anatomy and expected neighboring edge 
interference is used to apply a search constraint on the contour. The algorithm constrains solution 
contours to lie on a grid between an ‘inner contour’, inside the template, and an ‘outer contour’, 
outside the template. The algorithm minimizes an objective function by seeking a contour with 
maximized gradients along normals to the contour, and minimized contour length (‘maximum 
edge strength and maximum smoothness’). The objective function has heuristically-determined 
weights for these two factors. The initial contour is a template created by averaging manually-
segmented vertebral shapes. This earlier implementation used a grid created by simple normal 
line segments; however, in cases where the vertebra has a narrow protrusion, these normal line 
segments can be self-intersecting, shown in Figure 5.10 (a), resulting in bad segmentations in 
many cases. A novel feature in our orthogonal active contour segmentation is that the grid lines 
are nonintersecting ‘orthogonal curves’, shown in Figure 5.10 (b), calculated by numerically 
solving a boundary-value partial differential equation. This approach is described in [20, 64]. A 
resulting segmentation from this approach is shown in Figure 5.10 (c). 
 
LiveWire Segmentation. Another approach to segmentation that integrates user interaction with 
an algorithm for object segmentation is LiveWire or Intelligent Scissors [65]. It is an interactive 
segmentation method. LiveWire allows the following:  1) the user controls the appearance of the 
final boundary through piecewise specification; and 2) the approach is less sensitive to noise. 
The user selects boundary points, and the algorithm completes the segmentation between the 
selected points. LiveWire provides advantages over other segmentation techniques such as 
speed, accuracy, and reproducibility but requires greater user interaction.  For image sequence 
applications (e.g., a CT study with multiple images), the algorithms integrated with LiveWire 
can also be trained rapidly using reference image data. 
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(a) (b) 
Figure 5.11: LiveWire segmentation prototype tool (a) initialization screen (b) results screen. 

 
In our R&D, two LiveWire implementations were investigated, including:  1) complete initial 
boundary selection LiveWire algorithm, presented earlier [42] and 2) an updated point-wise 
boundary selection LiveWire algorithm.  Screen shots from our prototype segmentation tool are 
shown in Figure 5.11. Earlier, the LiveWire algorithm from [65] was extended for application to 
the spine x-ray segmentation. Specifically, the LiveWire algorithm utilized a discrete cosine 
transform (DCT) based watershed approach.  The complete initial boundary selection LiveWire 
algorithm provides the user the capability to select points along the boundary to be connected in 
generating a closed vertebra boundary.  After inputting the initial boundary points, the user must 
wait for the boundary to be generated, which may take several minutes.  The delay can be 
primarily attributed to the watershed and dynamic programming algorithms and tends to detract 
the user from interaction in the segmentation process.   
 
The second algorithm enhances the original LiveWire algorithm to one using point-wise 
boundary selection. This also provides the user the capability to select points along the boundary 
to be connected in generating a closed vertebra boundary.  But this algorithm performs image 
preprocessing operations and applies a path determination algorithm to speed up the 
user/program interaction.  
 
Summary of image segmentation approaches to date. A goal of our segmentation work has 
been to develop a suite of segmentation tools representing leading segmentation techniques for 
research and comparative evaluation. Previous NLM work has included the development of 
several segmentation approaches for the spine x-rays.  These include Active Contours, Active 
Shape Models (ASM), the Generalized Hough Transform (GHT), Active Appearance Models 
(AAM), LiveWire segmentation and, currently in progress, segmentation by Level Sets (LS).  
Technical descriptions of these methods appear in the literature in references [[12-14, 20, 43-
46,].  Each method investigated represents a significant advance beyond heuristic, edge detection 
methods (which have yielded very little promise of success in segmenting irregular, noisy 
images) into the domain of model-based approaches, including deformable template methods, 
with some of these incorporating statistical models.   
 
Upon achieving significant maturity in the development of an algorithm we conduct a 
performance evaluation to study its value in a practical setting. A formal evaluation of 
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orthogonal active contours and LiveWire algorithms is forthcoming. However, they have been 
found sufficiently useful and efficient in an informal evaluation with collaborating radiologists. 
They are now being put to use to obtain segmentations on a large number of our spine x-ray 
images. These segmentations will be validated by experts using our pathology validation tool 
(PathVa) described in Section 5.2.3.1.1.  
 
A more formal evaluation was conducted for the template “family” of algorithms and results are 
presented in Table 4. In each case the results were evaluated against reference or “truth” 
segmentations created by engineers.  Row 1 shows the performance of the Generalized Hough 
Transform (GHT) when used alone.  Successful results for this case were judged by subjective, 
visual criteria, by making a judgment about whether the converged solution lies near enough to 
the target vertebrae to be segmented, so that the output would be useful in initializing a 
subsequent algorithm, such as ASM or AAM, to finalize the segmentation.  Row 2 shows results 
for the Zamora hierarchical segmentation algorithm, which combines the GHT with ASM and a 
deformable model (DM) algorithm customized for deforming around the corners of vertebrae to 
capture the shape of bone spurs (osteophytes).  The “success criteria” are given in terms of the 
average pixel error from the “truth” segmentation.  The success rates are shown after application 
of the GHT only, after application of the GHT with ASM, and after the GHT with ASM and 
DM, so that the improvement added by each step may be understood.  Row 3 shows results for 
the Howe hierarchical segmentation, which combines the GHT with AAM step applied to the 
entire set of vertebrae in the spine being segmented, plus AAM again applied to each individual 
vertebra, to complete each vertebral segmentation without effects from neighboring vertebrae.  
The testing followed the “leave one out” methodology, where the algorithm was trained on 99 
images, then tested on an image outside of the training set.  This process was repeated for each of 
the 100 c-spine and l-spine images in turn.  This “leave one out” approach models the expected 
behavior of our algorithm on new image data. The success criteria were tightened for this test, as 
shown.   
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Table 4: Performance evaluation results for template “family” of algorithms 
Interactivity  Method Concept 
Initial After GHT 

Test Method Success 
Criteria 

Success rates: 

1 GHT Ballard formulation of 
Generalized Hough 
Transform, adapted for 
vertebrae 

None Choose among 
3 best 
solutions. 

473 c-spine images; 472 l-spine 
images; GHT run without user 
input; at convergence, best of 3 
solutions was chosen; solutions 
were judged “acceptable” by visual 
inspection, if they appeared to give 
good initializations for ASM 

Subjective: is 
GHT result 
accurate 
enough to 
successfully 
initialize 
ASM? 

c-spine: 85% 
l-spine: 85% 

2 Zamora Zamora hierarchical 
segmentation: a combination 
of the GHT (for initialization), 
ASM, and a final “deformable 
model” (DM) step to adjust 
the vertebrae corner for 
osteophyte shape capture 

None Choose among 
5 best 
solutions 

100 c-spine images; 
100 l-spine images; 
 

c-spine: 20 
pixels 
l-spine: 50 
pixels 

c-spine: 
GHT: 65% 
GHT+ASM: 75% 
GHT+ASM+DM: 75% 
l-spine: 
GHT: 40% 
GHT+ASM: 47% 
GHT+ASM+DM: 49% 

3 Howe Howe hierarchical 
segmentation: a combination 
of the GHT, AAM applied to 
the entire spine (AAM1), and, 
finally, AAM applied to each 
individual vertebrae (AAM2) 

None Choose among 
3 best 
solutions 

100 c-spine images; 
100 l-spine images; 
Testing was “leave one out”. AAM 
model was built using 99 images, 
tested against 1 image.  This 
process was repeated for each of 
the 100 c-spine (l-spine) images. 

c-spine: 10 
pixels 
l-spine: 25 
pixels 

c-spine: 
GHT: 10% 
GHT+AAM1: 60% 
GHT+AAM1+AAM2: 
65% 
l-spine:  
GHT:21% 
GHT+AAM1: 67% 
GHT+AAM1+AAM2: 8% 
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Generalized Shape Segmentation Toolbox. To advance our work in developing efficient and 
practical segmentation system, there are two near-term goals:  (1) extension of all previously-

developed methods and their 
integration into a single system, to 
serve as a flexible testbed  and 
prototype system for segmenting a 
large class of biomedical images by 
shape;  and (2) the establishment of 
a “production level” system and 
workflow to segment the NHANES 
II spine image collection and 
thereby provide a model for a 
practical system and methodology 
for shape indexing of large 
collections of biomedical images.  
 
To achieve these goals, several 
tasks are required:  (1) create a 
shape segmentation system that will 
extend the flexibility of all 
previously-developed methods to 

accommodate more complex shape models; this will allow the capture of additional significant 
detail from the vertebrae, as well as from new anatomical objects in anticipated future images; 

(2) further optimize, if possible, the 
performance of one or more of the 
methods for segmentation of the spine x-
rays; (3) make all of the algorithms 
operable in batch mode, for efficient, 
large-scale processing; (4) make the spine 
x-ray dependencies in the segmentation 
methods user-controllable, so that the 
methods may be used for general grayscale 
images; (5) provide support for seamless 
color image segmentation by color plane;  
and (6) integrate the methods under a 
common graphical user interface that will 
accommodate the addition of future 
segmentation methods.  Figure 5.12 and 
Figure 5.13 show screenshots from the 
toolbox user interface for the Active 
Appearance Modeling (AAM) and Active 
Shape Modeling (ASM) algorithms with 
NHANES II spine x-rays as segmentation 
examples. 

 

 

Figure 5.12: Active Appearance Modeling (AAM) segmentation  
component in Generalized Shape Segmentation Toolbox. 

 

Figure 5.13: Active Shape Modeling (ASM) 
 component in Generalized Shape Segmentation Toolbox. 
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Web-based Segmentation Service. In light of the critical role of image segmentation in CBIR, a 
goal for us is to distribute the knowledge acquired through our R&D. While we develop a 
generalized image segmentation tool providing capabilities for segmenting color and grayscale 
images through orthogonal active contour segmentation, LiveWire, ASM, AAM, and others, we 
are simultaneously studying methods to make these segmentation approaches currently 
implemented in Matlab available as a Web service. Such a service, once developed, would 
provide a two-fold benefit. It would enable remote users, possibly experts, to provide image 
segmentations and expert markup for image collections hosted at NLM, and in addition enrich 
the science by allowing users to segment their own images.  

 
As an initial step in this direction, we have 
developed a client-server service for the point-
wise LiveWire algorithm, shown in Figure 5.14. 
This service operates under the fold of the 
pathology validation and collection tool (PathVa), 
which is described later in Section 5.2.3.1.1. In 
this initial step, its use is limited to spine x-ray 
images. It communicates with a modified Matlab 
LiveWire routine operating as a server through a 
Java servlet. Since it is currently limited to our 
spine x-ray images, no image data is exchanged 
between the client and the server. The server loads 
the appropriate image file from the local image 
archive. Image coordinates through mouse-clicks 
are communicated to the server which responds 

with the next segment. Through implementation of our own session management routines, we 
are able to provide “Undo” capability. The client also allows the user to submit a 36-point 
vertebral boundary segmentation as an adequate candidate for a single-pass version of the 
LiveWire method. In addition to this Web-based LiveWire service, we are also exploring 
implementation of orthogonal active contours as a Web service using Java applets. 
 
Uterine Cervix Segmentation. Described here is our initial R&D toward effective segmentation 
algorithms for the uterine cervix cervicography images.  Figure 5.15 shows an example of one of 
these images with several significant visual features indicated.  These are the columnar 
epithelium (CE), which is the glandular tissue near the cervix center,  the squamous epithelium 
(SE), which is smooth-textured and surrounds the CE, an acetowhite lesion (AW), and specular 
reflections (SR), caused by camera flash.  All of these features lie within the cervix region-of-
interest (ROI), which must be detected prior to attempting to extract other features. 

Figure 5.14: Web-based LiveWire segmentation. 
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Figure 5.16 illustrates some of 
the processing stages used in the 
cervix ROI detection.  Two 
features are used in the 
algorithm to detect this area.  
These are the a channel in Lab 
color space [66], which 
corresponds to colors in the red 
end of the spectrum, and 
distance d from the center of the 
image.  This feature pair (a,d) is 
calculated for each pixel in the 
image.  The image is modeled 
as a Gaussian Mixture Model 
(GMM) [67] with two 2D 
Gaussian distributions, one to 
model the cervix ROI, and the 

other to model the background.  Parameters for the models are computed iteratively, using the 
expectation-maximization method.  The model yielding the highest  a mean and the lowest d 
mean (more red, more centrally located)  determines the cervix ROI.  An additional step is being 
added [68] which takes the boundary of this cervix ROI as the initialization to an active contour 
algorithm to further refine the curve. 
 

(a) (b) (c) 
Figure 5.16: (a) Uterine cervix image; (b) Smoothed “a” color channel in Lab color space; (c) Automatically 
detected cervix region-of-interest, using “a” color channel and distance from image center as pixel features. 
 
Figure 5.17 illustrates a further segmentation step for the uterine cervix images.  After the cervix 
ROI has been determined, all further processing is restricted to that region.  The approach for CE 
segmentation is similar to that used for the cervix ROI.  Again, two features are used:  the b 
channel from Lab color space and a scale-sensitive texture feature, referred to as texture-
contrast.  CE pixels are observed to have a significant content of yellow hue, which motivates 
the use of the b color channel.  Again, a GMM with two Gaussians is used, expectation-
maximization is applied to find parameters of the GMM, and the CE region is determined by the 
Gaussian having the highest b mean and highest texture-contrast mean. This approach is to be 
extended to identify other features of interest in these images. 
 

 

Figure 5.15: Significant regions on a uterine cervix cervicographic 
image. 
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(a) (b) (c) 

Figure 5.17: (a) Labeling of candidate columnar epithelium (CE) tissue by Gaussian Mixture Modeling; (b) 
Regions near image boundary are discarded; (c) Final CE labeled regions (white); expert-marked region is 
purple. 

5.2.2.2 Shape similarity research in spine x-rays 
 
Several similarity measures including Procrustes distance, Fourier descriptors, shape features, 

invariant moments, polygon approximation for tangent space 
matching, and token evaluation in multi-scale space [20, 45, 
69] have been implemented for matching whole spine x-ray 
shapes. However, retrieval results using whole shape matching 
were found to have only about 56% relevance [47]. While 
whole shape matching (WSM) is a valuable technique, 
pathology of interest on a vertebral outline is often localized 
along a short interval on the boundary. For example, an AO is 
expressed only along the anterior “corners” as seen in the 
sagittal view. Since most WSM measures approximate over 
the entire shape, it is difficult to obtain good matches specific 
to a particular interval of interest. This motivates our research 
into partial shape matching (PSM) or localized curve 
matching. In Figure 5.18, four possible partial shape queries 
are illustrated along the anterior face of the vertebra by solid 
lines. Implementation of Procrustes Distance based PSM has 
been done in Matlab and has been evaluated for effectiveness 
in retrieval of vertebral shapes by pathology and has shown 

some improvement over WSM. Further, a shape organization algorithm has been developed in 
Matlab and C where Procrustes Distance characteristics are embedded in an organization 
structure for efficient retrieval of shapes.  
 
Partial Shape Matching based on Procrustes Distance. We have explored both partial and 
whole shape matching using the Procrustes Distance [10, 69]. The Procrustes distance method 
performs a linear transformation on one shape to find the best match between two shapes. This is 
represented by the following equation, where x,y and x’,y’ are n boundary point coordinates of  
shapes X and X’, and P is the Procrustes Distance. 

  

  
Figure 5.18: Examples of different 
partial shape queries. 
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The matching process translates shape X by TX,TY such that the center of gravity of the two 
shapes coincide. Next, the shape X is scaled by S and rotated by θ for the minimum sum of 

squared distances between the boundary 
points of the two shapes. The subtraction 
represents the Euclidean distance measure 
between two points. In the context of shape 
space theory, this method finds the closest 
chord distance between two shapes. We 
extend this approach to include partial 
shapes [10]. Sample results screen shot is 
shown in Figure 5.19. This method was 
then used to examine use of PSM for 
retrieval of specific types and severities of 

anterior osteophytes on a collection of 206 expert marked images [70]. 

Dataset. The data set (a total of 888 shapes) for this experiment was generated from a total of 
206 spinal x-ray images (106 cervical and 100 lumbar images) selected from the NHANES II 
collection. Each vertebral shape boundary is composed of 36 points consistently segmented with 
the first point at the posterior superior “corner” of the vertebra as seen in the sagittal view. Two 
classification schemes for AOs were chosen to establish the ground truth. One is the Macnab 
classification [71-73]. Two types of osteophytes are adapted from the Macnab classification: 
claw and traction. A claw spur rises from the vertebral rim and curves toward the adjacent disk. 
It is often triangular in shape and curved at the tips. A traction spur protrudes horizontally, is 
moderately thick, does not curve at the tips, and never extends across the inter-vertebral disk 
space. The second classification is a severity grading system which was defined by a medical 
expert consistent with reasonable criteria for assigning severity levels to AO. Three severity 
levels of AO are defined as slight, moderate, and severe. The criteria listed in Table 5 were 
developed based on [70]. By combining the two classification schemes above, six categories of 
pathology can be established. For each shape, both the anterior inferior and superior parts are 
classified and recorded separately. As with any medical diagnosis, the classification must be 
regarded as an opinion. While necessary for our evaluation, caution must be taken in considering 
this set as a gold standard. Ideally, a ground truth set should be developed through some form of 
consensus from multiple experts and reflect observer variability, and the development of such 
ground truth is a goal for us.  
 
Evaluation Results. We present a summary of results and analysis of algorithm performance 
through charts and result tables. Four perspectives were obtained on the aggregate results. The 
results indicate the proportion of retrieved vertebra that matches particular criteria of the query 
shape. These criteria are: 

a) Severity of pathology depicted in the query shape, shown in Figure 5.20 (a); 
b) Macnab’s classification indicated on the query shape, shown in Figure 5.20 (b); and  
c) Severity combined with Macnab’s classification indicated on the query shape, shown 

in Figure 5.20 (c) 

Figure 5.19: Example of retrieval by partial shape 
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Figure 5.20 (a) shows the proportion of 3 grades of severity exhibited by the retrieved vertebrae 
for each queried grade. For queries on slight grade, 88.3% of vertebrae were correctly retrieved. 
It should be noted that slight grade includes normal vertebrae since distinction between normal 
and slight is highly subjective. Results were relatively mixed for moderate and severe grades 
(45% correct, for each). From the data it appears that the PSM algorithm favors slight grade; 
45% of slight grade vertebra are retrieved in queries for moderate grade and 26.3% in those for 
severe queries. This confusion is further analyzed in Figure 5.20 (c). 

 
Figure 5.20 (b) shows the proportion of retrieved vertebrae whose Macnab class matched with 
that indicated in the query shape. Again, we see an 87.5% match for normal vertebra, 43.3% for 
claw and 49.2% for traction. It is also interesting to note that claw and traction have nearly 
identical confusion with normal vertebrae (near 30%) and with each other (near 17.5%). These 
results are viewed as encouraging because raw partial shape information is able to separate the 
classes reasonably well, and the results show a near uniform value for inter-class confusion. 
Figure 5.20 (b) also indicates a low confusion (less than 6%) for those vertebrae that have been 
marked as dual-category by the medical expert. We believe that incorporating the shape 
characteristics that define claw and traction pathologies and severity into the algorithm would 
greatly improve the results.  
 
In Figure 5.20 (c) we analyze the correlation between the proportion of Macnab’s classification 
types in retrieved vertebrae for queries that exhibited a combination of features from the 
Macnab’s classification and the grading system. It is apparent from the results that the algorithm 
suffers greatly by the lack of training on particular shape characteristics of claw and traction. The 
method does fairly well in matching cases with pathology that is indicated by gross shape 
patterns. The algorithm tends to confuse moderate grades in claw or traction with normal 
vertebrae or those with slight grade since these could have a similar overall shape. Local angles 
on the osteophyte tip and their direction tendency can distinguish vertebra pathology and its 
severity.  These can be especially unclear to the untrained algorithm for vertebra with moderate 
grade pathology. Note that some bars do not add up to 1, since the experiments ignored cases 
exhibiting both slight claw and traction pathologies since these are indeterminate.  
 

Table 5. AO Severity Grading Criteria 
Severity  Slight Moderate Severe 
Features No narrowing or a < 15° angle 

by the AO from the expected 
normal anterior face of the 

vertebra or protrusion’s length 
begin < 1/5 of the vertebra 
width (traction) or height 

(claw) 

Mild narrowing or a [15° to 45°] 
angle by the AO from the 

expected normal anterior face of 
the vertebra or protrusion’s 

length being (1/5 to 1/3) of the 
vertebra width (traction) or 

height (claw). 

Sharp/sever narrowing or a ≥ 
45° angle by the AO from the 

expected normal anterior face of 
the vertebra or protrusion’s 

length being > 1/3 of the 
vertebra width (traction) or 

height (claw) 
Example 

Image 

   



 

38 

Indexing shapes for efficient retrieval. In a CBIR system features captured from an object of 
visual interest are stored as a feature vector. A similar feature vector extracted from the query 
image needs to be compared with every equivalent vector in the database to identify similar 
images. For large image archives, such as ours, this could run into hundreds of thousands of 
comparisons for each query. For example, a single spine x-ray can result in 6 to 8 feature vectors 
which for a collection of 17,000 images could result in over 120,000 comparisons in a brute 
force search. This linear search is impractical and underscores the need for an organizational 
structure for image indexing.  
 

 

 
(a) (b) 

Figure 5.21: Illustration of (a) coordinate and (b) metric search spaces for a range query and their 
organization in index tree structures. 

 
In general, there are two common forms of graphical queries: a range query in which the 
database retrieves all images that have features u satisfying D(q,u) ≤ T, where q is a query 
feature, D is a feature distance, and T>0 is a user defined threshold. Related to this is the k-
nearest neighbor query in which the database retrieves k closest features to q, where proximity is 
evaluated by D. Both queries can be satisfied by brute force search through the database. The 
computational cost of this approach, however, grows linearly with the size of the database. To 
speed up the response, the database needs to be organized by indexing trees [10]. Such indexes 
have been commonly used for text databases, but are less used in practical image retrieval 
systems. 
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(a) Proportion of 3 grades of severity 
exhibited by the retrieved vertebrae for 
each queried grade 

(b) Proportion of retrieved vertebrae 
with their Macnab class correctly 
matching that indicated in the query 
shape. 

(c) Correlation between the proportion of 
Macnab’s classification types in retrieved 
vertebrae for queries that exhibited a 
combination of features from Macnab’s 
classification and the grading system. 

Figure 5.20: Result charts of PSM Analysis 



 

39 

 
 
Broadly speaking, there are two classes of indexing trees: one class assumes that the indexed 
features belong to a vector space, called coordinate trees since they exploit the coordinate 
structure of vector spaces, and the other assumes that the features belong to a metric space. The 
latter are less useful since they cannot be used to index and retrieve data with other metrics. 
Since shape space has a metric, metric trees are most suitable for indexing shapes. But, because 
coordinate trees are more efficient, it is desirable to embed these shape spaces into coordinate 
trees. These structures are illustrated in Figure 5.21. 
 
Evaluation of indexing performance.  The efficiency of the indexing scheme using the kD-tree 
after shape embedding was compared with a metric tree in the original metric space. 2812 shapes 
were randomly sampled into sets of size 434, 902, 1654, and 2812. Each set was indexed in the 
original shape space by a metric tree and after embedding by a kD-tree. Every shape in the 
database was used as a query shape and k-nearest neighbor vertebral images were retrieved using 
Euclidean shape distance for k=10 and 20 nearest neighbors. We recorded the average number of 
node tests per query (NT), which represents the computational burden of indexing, and the 
average number of surviving leaf nodes (DA), which measures disk access performance. The 
performance measures are computed as a function of the database size and k for the kD-tree and 
metric tree and are expressed as absolute numbers and as a fraction of the database size, where: 
 

• FNT = NT/DB_size is NT expressed as a fraction of the database size 
• FDA = DA/DB_size is DA expressed as a fraction of the database size 
 

The fractions should remain constant for an indexing scheme with linear complexity, and should 
decrease with the size of the database for sub-linear complexity, the desirable case. Plots of the 
fractions FNT and FDA for k = 10 are shown in Figure 5.22. It is clear from the figure that our 
indexing algorithms are sub-linear in complexity. 
 

 

Figure 5.22: Comparison of indexing performance 
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Practical use of shape indexing. As a result of our collaboration with researchers at Yale 
University, SPIRS the Web-based CBIR system shown in Figure 5.8 and Figure 5.9, supports 
partial shape matching with the option to select multiple partial shapes. We have currently 
indexed over 7000 shapes using shape space embedded in a kD-tree and expect to add more as 
we generate more vertebral segmentations. 

5.2.2.3 Color and spatial similarity in uterine cervix images 
 
In parallel with work to refine and extend the segmentation capability for the uterine cervix 
cervicography images, we have initiated development of a CBIR tool for evaluation of color, 
texture, and spatial location. It should be noted that the CBIR tool shown in Figure 5.23 is 
primarily for engineering evaluations, though certain functions could eventually be included in 
tools for content experts.  

 
The tool currently operates 
on JPEG compressed images, 
but will be extended to 
include special image 
compression formats 
developed with our 
collaborators. For an initial 
test we are using a set of 120 
images from the collection 
that have been marked by an 
expert for features of interest, 
such as, cervix region 
boundaries, aceteowhite 
lesions, blood, squamo-
columnar junction, cysts, 
polyps, mucus, etc. It 
currently supports several 
color spaces including RGB, 

HSV, Lab, HIS, YUV, YIQ, Luv, and YCbCr. These color features are captured using 1D and 
3D color histograms, 1st, 2nd, and 3rd order moments, Color Coherence Vector (CCV), and 
dominant color descriptors. Texture features are measured using Gabor filter (4 scales and 6 
orientations, the average magnitude and phase are used as features), Log-Gabor filter (4 scales 
and 6 orientations, the average magnitude and phase are used as features), Gray level co-
occurrence matrix (4 directions and 4 distances, the contrast, energy, correlation and 
homogeneity features are used), and the Discrete Wavelet Transform (4 scales, the average 
energy and standard deviation for each scale and each band are used). The tool also permits 
retrieval of specific regions of interest as a ratio of its size to the size of the cervix. Finally, 
location information is captured as a 4-tuple polar grid feature vector. The feature vector 
includes angle range of the region, radius range of the region, center of the region, and extent of 
the region on a polar grid placed on the cervigram with the center of the os as the origin. The 

Figure 5.23: Tool for evaluation of CBIR of uterine cervix images.
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orientation of the cervix marked by the expert is used as the reference axis with the angle 
measured in the clockwise direction.  
 
The tool supports query by user sketch in which the user identifies the region of interest using 
the mouse or could use existing markup as a query. In the future, this will be extended to allow 
use of segmentation methods described previously, when mature. The tool is unique in 
supporting feature weighting, normalization, and combination at the feature level or the 
similarity level, i.e., the combined similarity results from each feature can be obtained through a 
single composite weighted feature vector, or similarity results from each individual feature are 
obtained and then combined using the weights. Several similarity distance measure are 
implemented currently with scope for additional measures. Current measures include L1 distance, 
Euclidean distance, earth mover distance, histogram intersection, match distance, Jeffery 
divergence, quadratic-form distance, and bit difference. 

 
After a detailed evaluation of these features and distance measures, a small set will be 
judiciously selected and developed into a usable CBIR system for our NCI collaborators and 
other content experts. 

5.2.2.4 Relevance feedback 
 
As noted, substantial research effort has been devoted to exploiting image features such as color, 
shape, and texture for CBIR [34]. These techniques attempt to determine perceived or “high 
level” visual characteristics in the query to identify similar candidate images through computed 
similarity of these image or “low level” features. Inevitably, this results in a “gap” caused either 
by erroneous determination of the query semantics or limitations in the CBIR technique. Such a 
gap is observed in global CBIR using medGIFT when compared with semantic label retrieval, as 
shown in Table 3.  While semantic labeling can address some of this, the gap limits the 
performance of most CBIR systems using image feature based similarity alone. This issue 
becomes more evident in medical image retrieval since medical images of the same anatomy but 
with different pathology often exhibit very subtle differences which can lead to different and 
subjective opinions even among experts. It is critical, therefore, that a CBIR system applied to 
medical images be less susceptible to this gap. Traditionally user interactivity has helped in 
minimizing similar problems with text retrieval and user feedback has often been analyzed and 
employed to improve retrieval relevance. Such feedback, often referred to as relevance feedback 
(RF), has also been used in CBIR [74-79]. Very few, however, have applied it to medical 
images, especially on local CBIR features. Appendix C offers an overview of the RF methods in 
the literature. 
 
To be useful, a CBIR system must capture not only the differentiating visual characteristics 
between images, but also those on which meaningful queries can be posed. Our R&D efforts in 
CBIR techniques for spine x-ray images have broadly focused on WSM and PSM techniques. 
While this work has provided fairly promising results, it has operated on the implicit assumption 
that a single query shape / image is sufficient to express desired query parameters. Use of RF is a 
natural expansion of our earlier work. A linear weight-updating RF approach was initially 
proposed and applied to spine x-ray image retrieval [80] in which like most other RF approaches, 
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a set of new parameters (weights) was calculated after each feedback iteration intended to 
enhance the query expression while the refined retrieval results still came purely from CBIR  

 results by using the new set of parameters. We 
have since developed a novel hybrid approach to 
RF which uses a short-term memory (STM) model 
to cache images with positive feedback that are 
then used to enhance retrieval.  
 
 Linear Weight Updating Approach. The 
complete hierarchical retrieval model for spine 
shapes is shown in Figure 5.25. Similarity 
between the query shape and a candidate shape in 

the database is determined along one of two paths labeled WSM and PSM. WSM is an umbrella 
label for all approaches that match the whole vertebral shape, while PSM is a similar label for 
partial shape matching methods. As seen from the bottom to the top, there are three hierarchical 
levels: component level, representation level, and method level. A method can utilize multiple 

feature representations, each 
of which can be computed 
from multiple components. 
For example, three 
representations in WSM, 
Geometric Properties, 
Fourier Descriptor (FD) 
and Procrustes Distance are 
used as methods; Geometric 
Properties consists of two 

feature representations Elongation and Compactness which are computed on different 
components. There is a weight associated with each component, representation, and method 
indicated by the lower case (w). The overall dissimilarity is calculated hierarchically as a 
weighted sum. 
 
 For convenience the following expressions compute dissimilarity, instead of similarity which is 
usually expressed as (1 – dissimilarity). For the PSM methods, for example, the dissimilarity is 
computed as: 
 

DPSM = W21DDP +W22DFD +W23DPro  (1) 
where, 

DDP = W211Dlen +W212Dang +W213Dmer  (2) 
 
DFD  is the L2 distance between two Fourier Descriptor vectors representing two partial shapes and 
DPro is the Procrustes Distance between two sets of shape data points. Similarly, for WSM method, 
the dissimilarity is computed as: 
 

DWSM = W11DGP +W12DFD +W13DPro  (3) 
where, 

DGP = W111DElo +W112DCom   (4) 
 

The overall dissimilarity is then defined as the weighted sum: 

 
Figure 5.24:  Distribution of dissimilarity values.

 

Figure 5.25. Hierarchical RF retrieval model 
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Doverall = W1DWSM +W2DPSM   (5) 
 
The dissimilarities on each level are all normalized to be in the range of (0-1). The weight 
represents the importance of the corresponding component, representation, or method, which is 
indirectly adjusted through relevance feedback. 
 
The RF approach displays the N most similar objects to the user for feedback. The user groups 

the N objects into, say, 3 categories: relevant, no-
opinion, or non-relevant. Two different weight-
updating approaches are taken for the feature level 
and the component level, respectively. For the 
component level, the weights are updated as the 
reciprocal of the standard deviation of the 
component similarity value sequence from the 
relevant set specified by the user. While this is a 
reasonable approach, it is very likely that one 
component, which is able to differentiate the 

relevant sets from the irrelevant sets, has a larger deviation within the relevant sets than another 
component, which is not able to achieve the same level of differentiation. This is illustrated in 
Figure 5.24. The overlapping relevant and irrelevant region is referred to as the ambiguous 
range. Furthermore, the weights for the feature level and the component level are updated 
independently. Either case causes retrieval inefficiency. To address this, a bottom-up method is 
employed during the weight-updating procedure. Specifically, the weights of the components are 
updated first, and then the dissimilarity value of the corresponding representation is updated 
using the new weights for its components. Once the weights of all the components are updated 
according to feedback, the dissimilarity values of all the representations are all updated as well. 
In addition, at each level the ambiguous range is examined for each component and relative 
weighting is applied to enhance those components with better separation. 
 

Hybrid approach. Traditional RF approaches usually 
employ just the relevance feedback information from 
the current iteration to refine the CBIR results, which 
are considered the final retrieval results, as shown in 
Figure 5.26 by the solid path. We propose inclusion 
of an STM in the retrieval model which is cleared at 
the beginning of each query. At each feedback 
iteration, the retrieved images and the corresponding 
user feedback are updated in STM. Thus instead of 
using the feedback information from only the current 
iteration, the modified approach uses all available 
relevance feedback up to the current iteration to 
update the weights. In addition this approach provides 
greater efficiency by ignoring all positive feedback 
images stored in the STM in future iterations. Also, as 
the following evaluation of this method shows, the 
results are much improved since they are sourced 
from the STM which contains all positive images. 

 

Figure 5.26. Model of Hybrid RF with Memory 

Figure 5.27: Feedback screen in spine x-ray 
CBIR with RF. 
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Evaluation and Results. RF was evaluated on the dataset used for evaluation of Procrustes 
distance PSM method described in Section 5.2.2.2. Selected for evaluation was a set of 21 
queries, one for each unique combination of the severity levels (slight, moderate, and severe), 
Macnab types (claw and traction), locations of the osteophytes (superior and inferior) and image 
types (cervical and lumbar). For all 21 other queries, we performed two independent sets of 
evaluations as shown in Table 6. For the Severity column, a shape was considered to be a good 
match if it had the same severity level as the query according to the ground truth. Therefore 
during the relevance feedback process, such shapes were considered as “relevant” and all the 
others were considered as “irrelevant”. In this case, the provided RF was insensitive to type. The 
same strategy applied to the Type column. Normal shapes are considered as “relevant” to any 
slight shape even though slight claw shape is still considered as “irrelevant” to slight traction 
shape in the evaluation corresponding to the Type column. 
 

Table 6. RF Recall Results 
 Severity Retrieval Recall (%) 

(RF insensitive to Type, Position, and 
Location) 

Type Retrieval Recall (%) 
(RF insensitive to Severity, 

Position, and Location) 
 Severe Moderate Slight Overall Claw Traction Overall 

Without Feedback 47.14 48.33 85.00 60.75 74.44 79.55 77.25 
After 1st RF Iteration 55.71 62.50 97.14 72.25 82.78 90.45 87.00 
After 2nd RF Iteration 68.57 79.17 100.00 82.75 88.889 99.55 94.75 
Overall Improvement 21.43 30.84 15.00 22.00 14.45 20 17.50 

 
For both sets of testing, i.e., Severity and Type, up to 2 iterations of relevance feedback were 
conducted. For each query, the top 20 matches were retrieved for study. The recall percentage 
was computed at each feedback iteration. In the Severity column, recall is defined as the 
percentage of the shapes with the same severity level as the query among the top 20 matches; in 
the Type column, recall is defined as the percentage of the shapes with the same Macnab type as 
the query among the top 20 matches. In both the Severity and Type columns, the results are 
presented as recall percentage by query type as well as overall average recall for all 21 queries. 
For instance, in the Severity column, average recall percentages are calculated for all the severe, 
moderate, slight, and 21 queries, respectively. Similarly, in the Type column, recall results are 
calculated for all the claw, traction, and 21 queries, respectively. Note that RF does not provide 
performance gains when the database has insufficient samples. This is observed in “Slight” and 
“Claw” columns in Table 6. 
 
Overall, in both sets of experiments, our hybrid approach showed significant improvements in 
only two feedback iterations. The overall improvement for the Severity test was 22.00% with an 
82.75% recall percentage after the second feedback iteration, and the overall improvement for 
the Type test was 17.50% with a high 94.75% recall percentage after the second feedback 
iteration. Efforts are in progress to make this available on SPIRS for evaluation on a larger 
validated shape dataset. 
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5.2.3 Evaluation of image-derived graphical knowledge 

5.2.3.1 Expert data acquisition 
 
The development of algorithms for indexing or retrieving images by CBIR, or indeed for any 
automated processing tasks, requires ground truth, i.e. data validated by content experts.  
Validation, by definition, is a manual step and therefore expensive. We describe here tools 

developed to reduce the burden on 
experts while they provide the necessary 
data.   

5.2.3.1.1 Spine x-rays 
 
In our CBIR work with spine x-ray 
images we require medically valid data 
on the segmented boundaries of 
vertebral bodies and the pathologies 
indicated. We have developed the 
PathVa (Pathology Validation) image 
validation tool [81] in Java to collect 
ground truth data. It also enables 
verification of the segmented vertebral 
boundaries and collection of pertinent 
pathologies from the image as a whole, 
in addition to those local to a particular 
vertebra. Screenshots of the tool are 
shown in Figure 5.28 and Figure 5.29. It 
is designed to allow content experts to 
remotely log into our database, review 
images, mark the pathology data, and 
validate or create boundary 
segmentations. The tool also 
incorporates the Web-interface to 
LiveWire segmentation discussed earlier 
in Section 5.2.2.1. 
 
The design of PathVa has taken into 
account the typical workflow of the 
radiologists providing validation data. In 
addition, the tool has been developed to 
include image enhancement features 

such as level control, unsharp masking, and image negation. Additionally, features such as 
outlining vertebral column, overlapping boundary segmentations for comparison, and capturing 
local pathology as free-form text are aimed at improving the quality of validated data. The tool 
also ensures that every vertebra is validated before the image can be tagged as complete. 

 
Figure 5.28: PathVa: spine x-ray expert data collection tool 
 

 

Figure 5.29: PathVa, vertebra pathology collection. 
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Until recently the anterior osteophytes, disc space narrowing, subluxation, and spondylolisthesis 
were our primary focus for shape-based spine image retrieval. Our use of image enhancement 
techniques in this tool has helped a group of board certified radiologists to find other pathologies 
such as spinal stenosis caused by posterior osteophytes. Correlating these pathology labels to 
segmented image features and the corresponding health survey data can be used to build 
knowledge models and further enhance our multimedia database. These steps not only enhance 
the value of CBIR, but could also provide tools to assist research and education in medicine. 

5.2.3.1.2 Uterine Cervix images 
 
Expert data for the uterine cervix has been acquired through use of the Boundary Marking Tool 
described in Section 5.1.1.  An example of the graphical data acquired is Study 1, where, for 939 
images, the cervix region-of-interest and acetowhite lesions were manually drawn on the images 
and a visual diagnosis was entered for the patient (see Table 1). 

5.2.3.2 Algorithm and Human Performance Evaluation 
 
Technical evaluations have been carried out for several purposes, including (1) to make a 
contribution to the challenging problem of assessing human and algorithm performance in image 
segmentation, in view of the large intra- and inter-observer variability that is known to exist; the 
difficulty of rationally interpreting and deriving knowledge from segmentations by multiple 
expert observers, and the related problem of evaluating segmentation algorithms with reference 
to this derived knowledge, have presented challenges to the image processing community for 
years and are a recurring topic in published research [82-85]; (2) to contribute to the 
establishment of “truth sets” of image segmentation that incorporate this variability among 
experts; (3) to make intelligent choices among competing algorithms for image processing; and 
(4) to make intelligent choices among parameters to be used for image digitizing and 
compression.  

5.2.3.2.1 STAPLE 
 
To evaluate the performance of content experts we use the Simultaneous Truth and Performance 
Level Estimation (STAPLE) [86] procedure. STAPLE is a method for producing a probabilistic 
map of segmentation ground truth, based on a set of segmentations created by multiple 
observers, simultaneously with estimates of the performance of those observers relative to the 
output truth segmentation.  Performance for each observer is characterized as a (sensitivity, 
specificity) pair, denoted (p,q).  Inputs to the algorithm are (1) the set of segmentations from the 
observers, (2) initial performance estimates for each observer, and (3) a priori characterization of 
the segmentation. Figure 5.30 provides illustrations of STAPLE output.  Figure 5.30 (a) and (b) 
show multiple observer segmentations of acetowhite tissue, for two different images.  For the 
first image, there were 10 observers (i.e., experts) and, for the second image, 20 observers.  
Figure 5.30 (c) and (d) show the respective probabilistic “truth segmentations” output by 
STAPLE for the segmentations in (a) and (b), with the redder colors corresponding to pixels with 
a higher probability for being in the truth segmentation.  We infer that a standard entropy 
calculation for these probabilistic segmentations is an indicator of the complexity of the 
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segmentation task for a particular image, with higher entropy values corresponding to more 
complex tasks.  The entropy values for the segmentations output by STAPLE in (c) and (d) are 
also given in Figure 5.30.  Figure 5.31 provides summary statistics for 20 experts who segmented 
acetowhite regions in 20 images.  Figure 5.31 (a) shows the mean sensitivies p calculated for 
each expert, with one standard deviation error bars and Figure 5.31 (b) shows the mean 
specificities q for each expert.   
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(c) (d) 
Entropy = 0.602 Entropy = 0.879 

Figure 5.30: Acetowhite region: examples of two different marked images, as marked by multiple 
experts: (a),(b); each expert’s marking has a unique color. The matching multi-expert probabilistic 
ground truths computed with STAPLE: (c), (d). Redder regions have higher probability of being in 
the “Entropy measure is computed for each multi-expert ground truth.  Higher entropy implies 
more “complexity” of the segmentation task. 

 
Figure 5.32 illustrates the use of STAPLE to evaluate a non-human “expert”, i.e., a computer 
algorithm; the segmentation from this “expert” has been pooled with two human experts in two 
different segmentations (two different images) of the cervix ROI, and performance parameters 
have been computed for all three segmentors.  The segmentation of the algorithm is shown in 
red, superimposed on the probabilistic segmentation output by STAPLE, in Figure 5.32 (a) and 
Figure 5.32 (b).  Here the whiter colors indicate pixels that have higher probabilities of being in 
the truth segmentation. In Figure 5.32 (c) and Figure 5.32 (d), the performance parameters p and 
q are shown.  In the first case [Figure 5.32 (a) and Figure 5.32 (c)] the algorithm boundary 
uniformly lies close to the brighter areas in the probabilistic map, and both its sensitivity and 
specificity lie within the range of sensitivities and specificities for the human “experts”.  In this 
case the algorithm may be said to have performed as well as the human experts, as evaluated by 
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STAPLE outputs.  In the second case [Figure 5.32 (b) and Figure 5.32 (d)], the algorithm 
boundary deviates considerably from the brighter areas in the probabilistic map in at least one 
area, and its specificity q lies outside the specificities of the human experts.  This illustrates the 
use of STAPLE to evaluate the performance of automated segmentation algorithms, relative to a 
pool of human experts. 
 

  
(a) (b) 

 
Figure 5.31: Performance of 20 experts for marking acetowhite regions, over a 20-image set.  Mean 
sensitivity p for each expert (a).  Mean specificity q for each expert (b). 

 

  
(a) (b) 

 
 p q 
1st expert 0.998 0.945 
2nd expert 0.775 0.999 
Automated 
Algorithm 

0.914 0.959 
 

 p q 
1st expert 0.623 1 
2nd expert 1 0.937 
Automated
Algorithm 

0.958 0.91 
 

(c) (d) 
Figure 5.32: Human expert versus computer marking of the cervix boundary.  Levels of gray correspond to 
the probabilistic “truth” segmentation output by STAPLE: (a), (b); whiter areas have greater probability of 
being in the truth segmentation. Algorithm boundary marking is shown in red.  Performance measures p 
and q (sensitivity and specificity, respectively), as output by STAPLE for each expert (and the algorithm) 
are given in (c), (d). 

5.2.3.2.2 Comparative algorithm analysis 
 
In this section we discuss a comparative performance analysis of cervix ROI extraction and 
Specular Reflection (SR) removal algorithms [68, 87] for uterine cervix image indexing. Within 
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the cervicographic images, only the region containing the cervix is significant for our purpose. 
Hence, it is important to isolate this cervix region-of-interest (ROI) from exterior visual features, 
which include vaginal walls and other non-cervix anatomy, instruments such as the speculum 
and sometimes a swab, and text labeling or other markings that have been superimposed on the 
film. It is also important to isolate regions in which reflections from the camera flash are of such 
high intensity that they obscure other visual features. For these reasons, these images need to be 
preprocessed for cervix region-of-interest extraction and specular reflection (SR) removal before 
automated lesion detection can be performed. Several approaches have been taken for automated 
cervix ROI detection and SR removal. In this section we present a qualitative and quantitative 
performance evaluation of these techniques on a subset of data obtained by a multi-year cervical 
cancer study carried out by NCI. 
 
Evaluation of cervix ROI extraction 
The cervix ROI segmentation consists of five phases: feature extraction, feature normalization, 
feature weighting, classification, and post-processing. The features used to extract the cervix 
ROI are based on color and shape information. As mentioned in Section 5.2.2.3, the cervix color 
tends to take on red hues in the spectrum, which suggests using the a channel of Lab color space 
to capture the dominant color information; the cervix region tends to be somewhat circular in 
shape and to be located approximately at the image center; this observation suggests 
incorporating a distance feature d, with d being distance to center of the image. Some 
normalization is required to compensate for the scale disparity between these two feature 
components that are defined in different domains. Two normalization methods investigated are 
linear scaling to unit range and linear scaling to unit variance. Feature weighting is used to allow 
tuning of the algorithm, based on empirical results. For classification, two unsupervised 
clustering techniques are used: k-means and Gaussian Mixture Modeling (GMM).   
 
Eight experiments that combine different options for each step described above are used to 
evaluate the approach. Each experiment is run on a dataset of 120 cervigrams. The results 
obtained by these experiments are visually and quantitatively evaluated and compared using 
ground truth segmentations created by experts, using the Boundary Marking Tool. The 
evaluation criterion used is that the extracted ROI should enclose the entire cervix region while 
removing the irrelevant information. 
 
As quality measures for the evaluation, four quantitative measures are used. Three of these 
shown below are area measurements and one is a distance measurement.  
 

• True positive fraction (sensitivity): 
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where R denotes the cervix region marked by experts, R denotes its complement, S denotes the 
cervix ROI generated by automatic approach, ( Nsss ,...,, 21 ) denote the pixels on the boundary of S, 
and ( Nrrr ,...,, 21 ) denote the pixels on the boundary of R. 
 
The true positive fraction (sensitivity) is the fraction of the true cervix region that is included in 
the extracted ROI region. A value of 1.0 indicates that all cervix pixels are included in the 
segmented region. The false positive fraction, overlap metric and mean distance measure the 
amount of irrelevant regions that are included. Higher value of overlap metric and lower values 
of false positive fraction and mean distance indicate better performance.  
 
Cervix ROI extraction: preliminary results and discussion 
 
As mentioned, by choosing different methods for feature normalization, feature weighting, and 
clustering, we devised eight experiments to apply to the entire data set. In these experiments, 
performance is evaluated by visual inspection and by quantitative analysis using the four 
measures defined above. The mean values of the four quality measures yielded by the 
experiments are shown in Table 7. 

 
With regard to feature weighting, we observed that, while weighting the ‘a’ color feature more 
than the ‘d’ distance feature improves overall accuracy of segmentation results especially in 
cases where the cervix region is off-center in the image. There were several cases (in which the 

cervix color is similar to its surrounding tissues) where the segmented ROI is much larger than 
the true cervix region. In a few cases when a swab placed across the cervix boundary is imaged, 
a higher weighted ‘a’ feature may result in a ROI where part of the boundary is the edge of the 
swab; this conflicts with the expert-marked ground truth. With regard to feature normalization, 
we observed that, for most cases, when tested without feature weighting (i.e., features were 
weighted equally), Gaussian normalization (linear scaling by unit variance) performs better or 
comparable to linear normalization (linear scaling by unit range). With regard to classification 
(clustering) methods, we similarly observed that the performance of k-means clustering is better 
for linear normalization, but the performance of the two clustering methods is comparable for 
Gaussian normalization.  
 
Based on both visual evaluation and quantitative assessment, the results suggest that the 
preferred combination of choices of methods is (features: a-d feature set; normalization: 
Gaussian normalization; weighting: none; clustering: k-means). This approach appears to yield 
best accuracy, and also has some possible advantages in robustness and simplicity. Figure 5.33 
(a) shows the original cervigram with the cervix boundary marked by an expert, and Figure 5.33 
(b) depicts one example of a cervix ROI extraction obtained by our automated approach, using 
this combination of methods. 

Table7.  Quantitative evaluation of cervix ROI extraction
Experiments  

Measure 1 2 3 4 5 6 7 8 
mean(tpf) 0.9968 0.9998 0.9892 0.9898 0.9998 0.9994 0.9996 0.9992 
mean(fpf) 0.3684 0.3632 0.3913 0.3941 0.3487 0.3736 0.3498 0.3946 

mean(overlap) 0.3829 0.4025 0.3776 0.3944 0.4050 0.3972 0.4103 0.3924 
mean(md) 75.38 74.65 78.74 79.77 72.21 77.35 72.17 80.30 
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a) Expert-marked cervix region b) Automated cervix ROI extraction 

 
Figure 5.33: Cervix ROI extraction result 

 
Evaluation of SR Removal 
 
SR removal consists of two steps: detection of SR regions and filling of these regions. For SR 
region segmentation, two approaches are being considered for evaluation:  
 

1. GMM clustering:  SR candidate region boundaries are identified as pixels with high 
brightness (I) and low color saturation (S) values, that are in the neighborhood of high 
gradients. The pixels inside these candidate regions are mapped into a 2D S-I feature 
space and organized into four clusters using a Gaussian Mixture Model (GMM) based 
clustering method. The regions corresponding to the two Gaussians with the highest 
mean intensity are labeled as specular reflection. 

2. Morphological top-hat transform:  A predetermined structuring element representing the 
largest expected SR region (its size determined by visually inspecting images and 
sampling manually-classified SR regions) is used to apply morphological top-hat 
transform to the intensity channel of the color image. The SR regions are then obtained 
by thresholding the top-hat transformed grayscale image with the threshold found by the 
Otsu method [88].  

 
For SR region filling, the following methods were studied: 
 

1. Mean color filling: each pixel inside the SR region is assigned with the mean color of its 
non-zero neighbors in an iterative process starting from the boundary of the SR region.  

2. Weighted color filling: each pixel inside the SR region is assigned with the weighted 
color values of its neighboring pixels which are located in a direction determined by the 
gradient direction of the SR region. 

 
SR removal: preliminary results and discussion 
The dataset used for cervix ROI extraction is also used for SR removal analysis. However, only 
the pixels inside the expert-marked cervix region are considered, as shown in Figure 5.34 (a) and 
Figure 5.34 (b). No expert-marked ground truth is available for SR regions. Not only is it a 
tedious and error-prone process to mark them, but it is difficult to work this into the clinical 
workflow of the medical experts. SR removal is, however, important for further analysis of these 
images. Therefore, the performance of SR detection algorithms was evaluated visually by three 
NLM researchers with experience with the visual characteristics of these images. A visual 
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comparison of the results is facilitated by recording the number of SR pixels labeled by each 
approach and generating a color-coded difference image. The color codes are defined in Table 8. 
For almost all the 120 cervigrams, both SR detection approaches are found to be effective, 
reliable, accurate and comparable based on the judgment of the three experienced researchers. 
The result for one example of SR region detection and its corresponding difference image are 
shown in Figure 5.34 (c) to Figure 5.34 (e). It is found that for a few cases, the SR region is 
unsatisfactorily over-segmented.  
 
In this experiment, the filling quality is quantitatively assessed by considering the effect of SR 
elimination on intensity gradients. The measure used is the gradient index (gi) which is the mean 
value of the Sobel gradient map of the intensity of the extracted cervix ROI region: 
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This evaluation criterion is based on the idea that a good SR filling algorithm should reduce the 
strong gradients associated with the SR, while preserving the original texture. The lower the 
value of gi, the smoother is the filled image. It should be noted, however, that a low value of gi 
does not always indicate better performance because it is affected by the accuracy of SR 
detection: if the SR regions are over-segmented heavily, gi might be low. So, the reliability of 
the gi index depends on the accuracy of the SR segmentation. To evaluate the SR filling 
algorithm, we use the more accurate SR detection result among the two approaches (GMM 
clustering and Morphological top-hat transform) as the input for SR filling. Since the SR 
segmentation result is accurate enough, gi is a reliable index for measuring the filling 
performance from the viewpoint of reducing strong gradients associated with the SR. Table 9 
lists the mean gradient index of the whole data set for both filling approaches. Both approaches 
attenuate the effect of SR on the gradients in the image based on the index values and visual 
inspection.  

 

     
(a) Cropped 
image (b) Cervix mask (c) SR mask 

 (approach 1) 
(d) SR mask 
 (approach 2) 

(e) Difference 
image  

Figure 5.34: SR detection results 

 

Table 8: Color code definitions for difference images in SR classification  
Pixel color Indicates 
Blue SR pixels labeled by both approaches 
Green SR pixels labeled by GMM method but not by the morphological method 
Red SR pixels labeled by the morphological method but not by GMM  
Black Pixels not labeled as SR by both methods. 
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Table 9: SR filling evaluation 
 Original Approach 1 Approach 2 
mean(gi) 16.86 13.46 13.68 

 
As noted earlier, it is difficult to quantitatively evaluate the SR segmentation and filling quality. 
Since the removal of SR regions is a first step to further image analysis, we propose a future 
study to evaluate performance of subsequent segmentation stages as a function of SR removed 
images.  
 
5.3 Other Technological Contributions 

5.3.1 Image compression 
 
In collaboration with CEB, researchers at Texas Tech University have developed a new Wavelet-
based compression method [11]. This new “TTC” compression/decompression algorithm (or 
“codec”) incorporates both vector and scalar quantization, along with a new method for coding 
Wavelet tree coefficients which allows significant speed-up in decompression times. Figure 5.35 
illustrates both grayscale and color images compressed/decompressed with this method and 
compared to the original and to images similarly processed with JPEG2000. 
 

  
Cervical Spine X-Ray Uterine Cervix Cervicography Image 

Figure 5.35:  TTC Compression/Decompression Comparisons. Upper Left: Original; Upper Right:  TTC.  
Lower Right: JPEG 2000. 
 

5.3.2 Quality control for digital data acquisition 
 
The NCI Guanacaste image data included 60,000 35 mm color slides that were digitized with a 
Nikon Coolscan scanner.  In collaboration with NCI researchers, we conducted small sample 
human observer studies [89] to acquire multiple expert judgments on image quality as a function 
of scanning level (DPI—dots per inch) for the purpose of guiding the selection of the final 
scanning level used.  The selected scanning level (2000 DPI) was used to digitize the 60,000 
Guanacaste cervicogrpahy images and is being used for the current digitization of the 40,000 
cervicography images from the NCI ALTS project. 



 

54 

6 Evaluation Approach 

We are approaching the evaluation of the effectiveness of the tools and technologies being 
developed by (1) developing working relationships with end-users and content experts within the 
fields of oncological gynecology (for the uterine cervix related work) and 
osteoarthritis/degenerative disc disease/spine morphometry (for the spine x-ray related work), (2) 
soliciting incremental, informal evaluations of testbed algorithm and system implementations to 
guide our development while it is in progress, and (3) working with these experts to identify 
medical sites and participants willing to provide more systematic and formal system evaluations 
for problems of importance in routine medical research or clinical practice. 

7 Project Schedule 

We anticipate a series of releases of software tools for the collection, dissemination, and analysis 
of the uterine cervix images in fiscal years (FY)  2007-2008.  These will include the Boundary 
Marking Tool, the Multimedia Database Tool, the Virtual Microscope, and the Teaching Tool.  
Concomitantly, we expect to release and update our Web-based CBIR tools, beginning with 
Web-based CBIR for spine x-rays, and continuing with CBIR for uterine cervix images.  We 
project that our basic research work to continue in FY 2007-2010 period. 

8 Summary and Next steps 

NLM is recognized worldwide for the quality and value of its information services to biomedical 
research and practice. We have the opportunity to advance the value of these and future services, 
possibly augmented by biomedical images, by conducting the required research and development 
toward:  (1) integrating existing technologies to make images more readily available, along with 
associated descriptive information, within integrated multimedia management systems, and to 
allow the collection of interpretive information (including graphical information) from these 
images; and (2) creating advanced methods for indexing, classifying, and retrieving images, 
based not only on what has been recorded about the images, but on the image contents 
themselves. 
 
Toward this goal, our planned next steps include the following: 
 
For Multimedia Data Management, we will continue the development of the tools described in 
this report, continue engagement with NCI in support of biomedical studies with these tools, and 
expand our working databases to include all of the image and clinical data provided by NCI.   
 
The tools being developed are at various levels of maturity.  For example, the Boundary Marking 
Tool is mature with respect to the original requirements for uterine cervix data collection, but it 
requires some generalization for easy adaptation to studies with varying workflow requirements 
on the observers, and for studies with non-uterine cervix data (such as lesion studies for 
dermatology images). These factors motivate the work under way to generalize the specific fields 
collected and the workflow supported by BMT.   
 
For the Multimedia Database Tool, we will incorporate multi-modality image display for all of 
the NCI image types: cervigrams, histology, and Pap test images; in addition, we are 
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implementing a level-of-privileges capability for access to individual fields and tables in its 
database; and we are streamlining the procedures for a database administrator when adding new 
databases containing additional datasets of text and images. The current image sets being used by 
the Multimedia Database Tool are only a fraction (several thousand) of the images being made 
available by NCI.  In the near term, we will make available all 100,000 cervigrams, as well as all 
the histology and Pap test images, in the databases served by the MDT.   
 
Virtual Microscope work in the near future consists largely of implementing a custom-written 
Java application to eliminate its current dependence on the commercial Zoomify product.  
Finally, in the Teaching Tool, we will implement fine-grained test reporting capability, including 
reporting performance at the individual question level; also, the TT will be made operationally 
compatible with the training and testing infrastructure of the ASCCP. 
 
In addition to this development work, we will evaluate these tools as they are used by NCI 
collaborators for multi-observer, Web-based biomedical research for cancer understanding and 
prevention. Our evaluation (and enhancement) of these tools relies in large part on direct 
feedback from medical experts using the tools in their studies. 
 
In the area of Advanced Techniques for Biomedical Image Knowledge Extraction,  the near-term 
work includes: continued research and development in image segmentation, which is crucial for 
image indexing; creating new CBIR capability for indexing and retrieval of uterine cervix 
images; opening up our CBIR work to a broader research community by providing Web access; 
and continued work to create sets of reference or “truth” data for the design and evaluation of 
image processing algorithms, as well as research into methods to intelligently interpret and use 
such data, given that it originates in high-variability sources, i.e., human observers. 
 
Our contribution to image segmentation research includes the development of a shape 
segmentation toolkit, to make available in one source a variety of algorithms, including the 
Generalized Hough Transform, ASM, AAM, Active Contours, and LiveWire. This toolkit will 
retain specialized functionality for segmentation of spine x-rays, but will also contain broader 
capability for shape segmentation of general grayscale or color images. In addition, work will 
continue toward the segmentation of columnar tissue and acetowhite lesions in uterine cervix 
images by color and texture. As this new segmentation capability for the uterine cervix matures, 
we will apply it to index these images for retrieval by the color and texture characteristics of 
tissue regions, and add this retrieval capability to our uterine cervix CBIR tool described in 
Section 5.2.2.3. 
 
In addition to these planned new algorithm capabilities, we are working to make current 
capabilities available over the Web. One of these efforts is the planned linkage between the 
IRMA system of Aachen University (Germany) and our facility to retrieve vertebrae by shape. 
With this linkage in place, a Web user will be able to do a shape query by accessing the IRMA 
system, and have the query served by a request from IRMA to a shape segmentation server 
running at NLM.  Not only will this add local-feature based CBIR to the global-feature based 
IRMA system, it will also enable us to gain research experience with a combined system that 
supports both types of CBIR.  A second Web effort is our continued development of SPIRS, the 
first Web-based CBIR system that will operate at NLM. 
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To increase our repositories of reference or “truth” data from biomedical images, we will 
continue to collect uterine cervix boundary data and associated interpretations with the BMT, 
and vertebral data and associated interpretations with the PathVa tool.  We are studying several 
methods for analyzing these multi-observer segmentation data, and using them to evaluate 
algorithms that perform automated or computer-assisted segmentation. In particular, we plan to 
investigate the STAPLE method as a potentially effective approach to evaluate both human and 
machine performance relative to a group of expert observers. 
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Appendix A  CBIR Primer 

Content-Based Image Retrieval [90] refers to the retrieval of images that are indexed by 
descriptors (features) derived “directly” from the image pixels. CBIR also implies novel query 
methods for retrieval, such as finding images similar to an example image, or to a sketch. CBIR 
descriptors may include texture, boundaries of objects, geometric relationships among objects, 
grayscale or color histograms, as well as more abstract descriptors, such as Fourier or Wavelet 
transform coefficients, or transformed and reduced boundary coordinates. CBIR is different from 
conventional image retrieval systems in two ways: first, in the methods used to index (a 
conventional system has a human indexer enter text that describes image contents), and 
secondly, in the methods used to retrieve (conventionally, retrieval of images is by relational 
database queries on the text used to index the image.) 
 
CBIR research is highly technical and mathematical, and requires the exploration of numerous 
alternative technical solutions. To maximize chances of success, alternatives may be pursued in 
parallel, with little a priori knowledge of the outcomes. For example, we have pursued several 
parallel strategies for x-ray segmentation, as will be shown. In addition, we have found it 
advantageous to conduct research activity in an order that may be logically out-of-sequence. For 
example, we have investigated the classification of vertebral shapes (by using manual 
segmentations of vertebrae) before solving the computer-assisted segmentation problem. 
 

 

Figure A.1: Overview of CBIR Indexing and Retrieval Phases 
CBIR comprises both indexing and retrieval phases, as shown in Figure A.1. The indexing phase 
involves the computer-assisted extraction of relevant image features and subsequent data 
reduction of the mathematical feature into a comparable entity. All these features are then 
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organized to assist in efficient retrieval since traditional text-based databases are not adequate for 
this purpose. Expert markup, text, and basic feature data are still indexed in traditional databases.  
 
The retrieval phase, on the other hand, covers the user interaction to retrieve desired images from 
the database.  The user can specify a query image and allow the system to automatically extract 
relevant features in a query-by-image-example paradigm or specify the feature on the image, as a 
sketch for example, in a query-by-image-feature paradigm. These features are then matched 
using specific similarity computation methods as distances between these computed features. In 
a way, the relevant information contained in the image is assumed to be coherently indicated by 
these features. The results from the feature comparison are then presented to the user. If the user 
specified additional query parameters, such as text, the results from these searches are combined 
before the results are presented.  
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Appendix B  Overview of prior CBIR R&D  

Our prior work has addressed several of the steps above and was detailed in the report to the 
Board of Scientific Counselors in 2002 [42]. These steps are highlighted below to place recent 
work described in this report in context. All previous work was limited to the NHANES spine x-
ray images. Current work expands on this with a focus on generalizing segmentation methods to 
different features extendible to a wider variety of images. 
 

• Segmentation: The segmentation problem has been recognized as one of the most urgent 
problems in digital imaging and remains as one of the grand challenges of the field. This 
implies a dearth of robust segmentation tools that are applicable generally to biomedical 
images. Instead, the most reliable and robust tools available are those developed for 
specific classes of biomedical images. Since there is no a priori knowledge of which 
specific techniques would prove most fruitful for our images, we have conducted several 
efforts in parallel. Our previous work in this area focused on the following: 

 
o Manual 9-point Segmentation: Coarse segmentations by medical experts acquired 

as reference data for validating segmentation algorithms. 
o Active Contour Segmentation: Computer-assisted semi-automated segmentation 

by mathematical energy model [43, 46]. 
o Active Shape Modeling (ASM): segmentation by deformable template created by 

statistical samples [19, 20, 45, 46]. 
o Generalized Hough Transform (GHT): segmentation by template matching using 

Hough bin counting [12, 20, 44]. 
o Computer-assisted “dense” (more than 9 points) manual segmentation: 

segmentation by manual point selection, edge detection, and spline curve fitting. 
 

• Feature extraction: The segmentation step, in the case of spine x-ray images, results in a 
vertebra shape boundary. These boundaries may be treated as closed polygons and 
qualify as valid features. But other techniques that can capture additional shape semantics 
are valuable for responding to user queries for “vertebral fracture”, “disc compression”, 
“Anterior Osteophytes of grade 3”, etc. Shape representation techniques express a shape 
boundary in a form suitable for archiving, indexing, and similarity matching. In this 
effort, earlier work included Polygon Approximation, Fourier Descriptors, and Geometric 
Shape Properties [42, 91].  

 
• Classification: Automated classification of NHANES II images for biomedical features 

by shape has been investigated  in [48, 49, 92], using artificial neural networks and 
clustering techniques. In [92] we have investigated the application of artificial neural 
networks to the discrimination of lumbar spine vertebrae for the presence of anterior 
osteophytes. Four geometric features were derived and tested individually. The most 
successful was obtained by first finding the exclusive-OR of a vertebral area and the area 
within the convex hull of the vertebra; and, for this region, finding the area of the largest 
connected component on the anterior side of the vertebra. In [49] we have applied k-
means and self-organizing map clustering techniques to the task of scoring adjacent 
vertebrae for disc space narrowing on a 0–3 scale, representing normality (0) to 
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maximum abnormality (3). Features were derived by first computing an separator curve 
equidistant between adjacent vertebrae and then measuring various quantities relative to 
this separator, such as minimum Euclidean distance from the separator to a vertebra, and 
normalizing the quantities to obtain features that are intended to be invariant with respect 
to vertebral size. Interactivity: None. Performance: For the lumbar spine anterior 
osteophyte discrimination, 572 vertebrae were used for training, with half known to be 
normal and half abnormal; 108 different vertebrae were used for testing, half normal and 
half abnormal. Twenty individual test and training sets where generated by randomly 
selecting 572/108 vertebrae from among the available vertebral data. The neural network 
used had a 4×4×1 architecture (four input nodes for the four features; one hidden layer; 
one output node), with sigmoid function at input and hidden layer nodes, and a linear 
transfer function at the output. The vertebrae were manually segmented, using the nine-
point radiologist marks as a guide. Results were as follows: the mean correct 
classification of normal vertebrae in the test set was 88.6%; the mean correct 
classification of abnormal vertebrae was 90.5%. For the work in classifying disc space 
narrowing by grade, 294 adjacent vertebral pairs (‘interfaces’) of the cervical spine were 
used. Twenty runs were made; for each run 80% of the data was randomly assigned to the 
training set, and the remaining 20% to the test set. The mean percentages of correct 
classifications over the 20 runs were, for grades 0–3, respectively, 90.4, 85.2, 93.8, and 
82.1%. 

  
• User query formulation: We have developed techniques for query-by-sketch and query-

by-image-example on target and category search paradigms for spine x-ray images with 
simple text filtering. This work has subsequently been extended to partial shape queries.  

 
• Similarity Matching: Similarity matching techniques tend to be closely related to the 

feature vectors captured during the indexing process. Similarity between two shapes is a 
function of the distance between their computed feature vectors. Earlier work covered 
what we now refer to as whole shape matching through application of Fourier 
Descriptors, Polygon Approximation, and Geometric Shape Properties. With these 
methods, the entire vertebral shape was matched with others without particular focus on 
intervals along the boundary where pathology may exist. Thee methods were applied to 
9-point and 36-point vertebral boundary shape descriptions.  9-point boundary comprises 
of landmarks made by radiologists and the 36-point boundary can be considered as an 
interpolation of that. The latter, however, deforms to fit the vertebral edge. 
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Appendix C Relevance feedback in CBIR: Literature survey 

Since the mid-90s, Relevance Feedback (RF) has been proposed to address the gap between low-
level image features and high-level human visual perception [74-77]. The fundamental concept 
of RF is to establish an interaction between the user and the retrieval system and to refine the 
retrieval results based on feedback provided by the user. The two major aspects of RF are (1) 
image selection strategy: the method of selecting images on which the user provides feedback 
and (2) learning strategy: the way in which relevance feedback is used to refine the retrieval 
results. In the literature, Neural Network (NN) and statistical approaches comprise the majority 
of RF learning schemes. NN-based approaches require an appropriate training set, and RF is 
performed during the network training process [75, 93, 94], making such approaches unsuitable 
for rapid refinement of the retrieval results. In most statistical approaches, however, RF occurs 
when the user is not satisfied with the retrieval results and desires to refine them. In this scenario, 
an image selection strategy is used to decide which images to show to the user for relevance 
feedback, and iterations on this interactive processing are typical. Our study has shown that the 
image selection strategy, a subject that has not received sufficient attention in the literature, is 
actually crucial to the performance of RF. In most prior work, only the images that are most 
similar to the user query are retrieved by the system and selected for feedback. However, if the 
retrieval accuracy for one specific query increases from iteration to iteration, there will be a large 
overlap between the image sets that are selected at each step. Such methods possess low 
efficiency and can possibly lead to “over-learning”. They also ignore the useful information that 
can be obtained from negative feedback, i.e., the irrelevant images retrieved by the system. 
 
The image selection strategies can be different for target search and category search retrieval 
systems. A target search system such as [95, 96] searches for a specific target image in the 
database. A category search system searches for a certain number of images that are most similar 
to the query, i.e. it retrieves images most similar to the query's ``class'', e.g. pathology, type, or 
modality, etc. The display updating scheme for the target search retrieval system in [95] decides 
how to choose DN  images for the next display to the user, a process which essentially serves the 
same purpose as the image selection strategies in RF. In an attempt to minimize the number of 
iterations required to search for the target, a Maximum Entropy method was employed for 
display in [95, 96]; it claims to maximize and fully utilize the information possibly elicited from 
the user and is referred to as the ``most-informative scheme''. A Monte Carlo approach was 
implemented as an alternate solution because of the high level of complexity of this approach. 
Although it appears to be an optimal display scheme, the most-informative approach is far too 
complicated (consider alternative wording for “far too complicated”) for category search 
retrieval systems such as our spine x-ray image retrieval system. 
 
Compared to algorithms for image selection, more research effort has been devoted to learning 
strategies that use both positive and negative samples identified by the user [97, 98]. Besides NN 
approaches which as mentioned earlier are not suitable for online RF, there are various statistical 
approaches for RF learning. For example, Rui et al have proposed a straightforward and effective 
method based on hierarchical weight updating [74]. However, there are some evident 
deficiencies with this method which are addressed in detail in Section III. Probability-estimating 
approaches have also gained considerable research interest [77, 95, 96]. In the target search 
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retrieval system proposed in [95], a Bayesian rule was used to estimate the probability of each 
image being the user's query, i.e., the target. The probability is conditioned on all the feedback 
history from the user and is updated globally at each feedback iteration. The resulting system is 
quite sophisticated, but the updating process is computationally expensive and proportional to 
the size of the image database. In addition, this Bayesian retrieval system is for target search 
only, and it is based on the assumption that the target is in the database. This assumption may not 
be applicable to medical image retrieval since most medical image retrieval systems require 
category search; i.e. the query is usually not in the database. 
 
Unlike the non-parametric-based Bayesian approach [95], Expectation Maximization (EM) has 
also been used to estimate the statistical parameters, i.e., the mean and variance of the user's 
target distribution, given a Gaussian distribution assumption [96]. The EM algorithm is applied 
to a maximum likelihood function chosen to make most images appear in the medium likelihood 
area. This method was only compared with Rui's method on synthetic data. An integrated 
probability function for calculating the similarity between images was introduced in [77]. It is 
based on a posterior probability estimator and a weight-updating scheme. RF from the user is 
used to update the weight and re-estimate the posterior probability. This method was tested on 
trademark images and demonstrated a retrieval performance improvement from 75% to 95% 
after two RF iterations. 
 
Optimal adaptive learning is another approach for relevance feedback that has appeared in the 
literature. In [99], adaptive filters were used to imitate the human vision system. Least Mean 
Square (LMS) and Recursive Least Square (RLS) algorithms were both proposed to approximate 
the optimal Wiener filter solution. The user's feedback is used as the ground truth to guide the 
algorithm to the optimal solution. These methods have been tested on real images and showed 
promising performance. 
 
RF methods have also been adapted and employed to derive semantics from the images [78, 100, 
101]. For example, in [101] a user feedback log was established to record the user's feedback 
information over time to learn both explicit and implicit semantics. Although learning semantics 
sounds appealing, it obviously requires a large amount of feedback input from the user, which is 
contrary to the efficiency goal of refinement based on fast retrieval results needed for an online 
system. The semantics may be overestimated when attempting to build a semantic relationship 
between any two images; on the other hand the accuracy achieved by low-level image features is 
often overlooked, which violates the initial intent of exploring CBIR instead of text-annotated 
image retrieval. 
 
Few existing RF methods have been applied to medical image databases. However, in order to 
provide subjectively accurate medical image retrieval information, RF becomes a necessary and 
indispensable part of an online medical image retrieval system. El-Naqa et. al. described a 
relevance feedback approach incorporated into a similarity learning-based framework for digital 
mammography in [102]. With the focus on similarity learning, a simple updating formula is 
employed to recompute the Similarity Coefficient. In their earlier paper [79], incremental 
learning was proposed to incorporate each of the user's feedback responses into an existing 
Support Vector Machine. However, the method was only tested on similarity data from 
experienced radiologists rather than extracted low-level image features. 
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