

NOAA Technical Memorandum NWS WR-274
Climate of Prescott, Arizona

Bob Fogarty, Michael Staudenmaier Jr. ${ }^{1}$
September 2007
${ }^{1}$ National Weather Service Office, Flagstaff, Arizona

And is approved for publication by Scientific Services Division

Western Region

Andy Edman, Chief
Scientific Services Division
Salt Lake City, UT
I. Climate of Prescott, Arizona 1
Climate Summary 5
II. Temperature Records
Daily Maximum and Minimum Temperature Extremes. 7
Highest and Lowest Average Temperatures by Month 19
Warmest and Coldest Winter, Spring, Summer, and Fall 22
Highest and Lowest Annual Temperatures 24
Average Number of Days Per Year with Maximum Temperatures 85, 90, and 95 Degrees or Higher 24
Average Number of Days Per Year with Minimum Temperatures 40, 32, and 10 Degrees or Lower. 25
Freeze and Growing Season Data 25
Greatest Number of Consecutive Days with Maximum Temperatures 90 degrees or Higher 26
Greatest Number of Consecutive Days with Maximum Temperatures 95 degrees or Higher 26
Greatest Number of Consecutive Days with Maximum Temperatures 100 degrees or Higher 27
Greatest Number of Consecutive Days with Minimum Temperatures 10 degrees or Lower 27
III. Precipitation Records
Greatest Daily 24-Hour Precipitation (7 A.M. to 7 A.M.) 29
Maximum and Minimum Precipitation by Months 32
Wettest and Driest Seasons 34
Yearly Precipitation Totals 36
15 Wettest and Driest Precipitation Years 37
Greatest Number of Days with 0.01 Inch and 0.10 Inch or More, with Average Number of Days 38
Greatest Number of Days with 0.25 Inch and 0.50 Inch or More, with Average Number of Days 38
Greatest Number of Consecutive Days with 0.01 Inch and 0.25 Inch or More. 39
Greatest Number of Consecutive Days with 0.50 Inch and 0.75 Inch or More 40
Greatest Number of Consecutive Days without Measurable Precipitation 40
Excessive Storms 41
Greatest Daily 24-Hour Snowfall 42
Maximum Monthly Snowfalls 45
First and Last Snowfalls 46
Seasonal Snowfall Totals 47
15 Snowiest and Least Snowy Seasons 48Greatest Number of Days with Snowfall of One Inch or More and
Three Inches or More 49
Greatest Number of Days with Snowfall of Six Inches or More 49
Snowiest Calendar Days 50
Snowiest Consecutive Two Calendar Days 50
Excessive Snowstorms 51
Number of Days with Snowfall of 1 Inch or More 51
IV. Miscellaneous Information
Normal Heating and Cooling Degree Days 53
Monsoon Statistics 54
Normal Daily Maximum, Minimum, and Mean Temperatures 55
Sunrise and Sunset Table 68
I. NARRATIVE GEOGRAPHICAL AND CLIMATOLOGICAL SUMMARY

CLIMATE OF PRESCOTT, ARIZONA

Prescott is located at the foot of the northern end of the Bradshaw Mountains in central Arizona at 5200 feet elevation. To the south of the city the mountains rise to peaks of 7900 feet; to the north the terrain slopes gently down the valley of Granite Creek to its junction with the Verde River.

Prescott's elevation of 5200 feet assures a variety of weather including cool winters, warm summers, moderate humidity, and considerable diurnal temperature changes. Only limited farming is carried on because of the relatively short of the growing season. The average date of the last occurrence of $32^{\circ} \mathrm{F}$ in the spring is May 16 and that of the first $32^{\circ} \mathrm{F}$ temperature in the fall is October 10. The average precipitation for Prescott is 19.19 inches.

Summers in Prescott have an average maximum temperature (average maximum for June, July and August) of $86.2^{\circ} \mathrm{F}$ (the all-time record high is $105^{\circ} \mathrm{F}$). On average, only 37 days in the summer have maximum temperatures of $90^{\circ} \mathrm{F}$ or higher. Summer minimum temperatures are cool and refreshing with low temperatures mainly in the 50s.

The moderate summer heat gives way to a cooler but nonetheless pleasant fall period with average maximum temperatures generally ranging from $80^{\circ} \mathrm{F}$ down to $50^{\circ} \mathrm{F}$ by the end of the season and minimum temperatures normally falling below freezing by the middle of October.

Winter weather typically begins
by November and becomes well entrenched by December, with increasingly colder weather. By December, minimum temperatures are generally in the low 20s; however afternoon maximum temperatures still average in the 50 s, due to the amount of sunshine the station receives.

By mid-April, winter weather usually begins to break, and warm spells become more frequent. Spring in Prescott is typically breezy and dry with little precipitation occurring in May and early June.

There are two distinct periods of precipitation in Prescott. One occurs during the winter months from November through April when the jet stream is located over the state, allowing moist Pacific storm systems to move over the area. The other distinct period is classified as the summer rainy season, or 'summer monsoon.' The monsoon rainy period usually occurs during July and August when most of Arizona is subjected to widespread thunderstorm activity. These thunderstorms are extremely variable in intensity and location and occur mainly between the hours of 12 p.m. and 8 p.m.

Since there is no concentration of industry, smoke pollution is almost nonexistent, and the air is remarkably free of contaminants of any kind, although smoke from resident's fireplaces can accumulate on some of the colder nights due to strong radiational inversions that develop. Smoke from prescribed burning, and more rarely a forest fire, can also be an occasional issue during the spring, early summer and later in the fall.

A HISTORY OF WEATHER OBSERVATIONS AT PRESCOTT

The first official weather station
in Prescott was established May 1, 1898. The office was located at 140 South McCormick Street. The first observer was Dr. Warren E. Day.

In May 1908, the station was moved to the Pamsetgaaf Sanitorium, which was one-half mile west southwest of the previous location. The word Pamsetgaaf is an acronym for Pure Air, Maximum Sunshine, Equable Temperature, Good Accommodation, and Food. The station was moved to a slightly lower elevation site in 1924, but remained on the sanitorium grounds.

On December 21, 1937, the weather station was moved to 617 East Willis Street.

During the 1940s the station experienced several moves. The first occurred on June 1, 1940 to 233 North Virginia. Then on July 5, 1944, the location was moved to the Arizona Highway Department about one-half mile southeast of the previous location on North Virginia.

On August 12, 1945, the weather station moved to the Prescott Fire Hall on Cortez Street where it stayed until 1956. On February 24 of that year the observing location moved to Radio Station KYCA one mile northeast of the Prescott post office.

On January 1, 1970, the weather station moved to 601 Flora Street. It remained on Flora Street until 1983 when it made one final move on April 25 to the Sun Dog Wastewater Treatment

Plant on Sun Dog Ranch Road. This is where the observations are taken today.

In addition to this station there is an automated site at Love Field. Observations have been taken there since July 2, 1948. On February 3, 1999 the Automated Surface Observing System (ASOS) was installed and continues to provide 24 hours per day observations.

SOME HIGHLIGHTS OF THE WEATHER RECORDS IN PRESCOTT

Many unusual weather events have taken place in Prescott since official weather observations began on May 1, 1898. The following is a brief description of some of the more extreme conditions recorded.

The all-time record high temperature for Prescott of $105^{0} \mathrm{~F}$ occurred on July 17, 1925. It occurred during a short heat wave. Four days out of the six day period from the $13^{\text {th }}$ through the $18^{\text {th }}$ had high temperatures of $100^{0} \mathrm{~F}$ or greater, and on the $17^{\text {th }}$ Prescott also set a record high low temperature of $70^{\circ} \mathrm{F}$.

The all-time record warmest minimum temperature for Prescott was first set on July 15, 2003 when the mercury fell to only $76^{\circ} \mathrm{F}$. It was then tied on July 6, 2007 when the same temperature was recorded for the minimum temperature.

The longest consecutive stretch of days with maximum temperatures of $95^{0} \mathrm{~F}$ or greater in Prescott was 17 days. This occurred during June 20 - July 6, 1929. The highest temperature reached
during this longest stretch of warm weather was $103^{0} \mathrm{~F}$.

The longest consecutive stretch of days with maximum temperatures of $90^{\circ} \mathrm{F}$ or greater in Prescott was 33 days. This occurred during June 18 - July 20, 1905.

The maximum number of days in a calendar year with temperatures of $95^{\circ} \mathrm{F}$ or greater was 35 set in 1905 . The maximum number of days in a year with temperatures of $90^{\circ} \mathrm{F}$ or greater was 81 days which was set in 1933

The coldest temperature ever recorded in Prescott was $-21^{0} \mathrm{~F}$ which was observed on January 22, 1937. Although the temperature warmed 47 degrees that afternoon, the maximum of $26^{\circ} \mathrm{F}$ was still the record low maximum for the date.

The maximum number of consecutive days with minimum temperatures of $10^{0} \mathrm{~F}$ or lower was 12 days. This has happened twice; first from December 15-26, 1928 and again from December 28, 1932-January 8, 1933.

The maximum number of days in a calendar year with temperatures of $10^{0} \mathrm{~F}$ or lower was 32 days set in 1933. The maximum number of days in any month with temperatures of $10^{\circ} \mathrm{F}$ or lower was 23 days set in the extremely cold month of January 1937. The average minimum temperature that month was $3.8^{0} \mathrm{~F}$ which was about 20 degrees below normal. Of those 23 days, 14 had low temperatures equal to or below $0^{0} \mathrm{~F}$ and included the all time record low temperature.

The most precipitation ever recorded in one calendar year at Prescott was 39.47 inches, set during 1905. The least precipitation recorded in one calendar year at Prescott was 3.41 inches, set in 1907. The average annual precipitation for Prescott is 19.19 inches.

The all-time record for heaviest precipitation during any calendar day at Prescott was 4.28 inches which was set on November 27, 1919. This day was in the middle of one the wettest periods of Prescott's weather history during which 5.23 inches fell in a six day period. The entire event ended with an accumulation of 13 inches of snow.

The most precipitation to occur within a continuous stormy period occurred from February 11-19, 1927 when in excess of 10.59 inches fell. The exact total is not known, because on the $13^{\text {th }}$ the record shows there were 5.0 inches of snowfall and 0.00 inches of precipitation. It is possible that the actual total for the nine day period was between 11 and 12 inches.

Because of this excessive precipitation event, February 1927 was the wettest month on record, with 10.59 inches of precipitation falling during the month.

The average yearly snowfall in Prescott is 20.4", but is extremely variable from year to year. The most snowfall ever recorded during the snow season (July - June) was 97.4 inches in 1931-32. On the other extreme, several seasons have recorded no snowfall, the most recent in 1913-14.

The snowiest day in Prescott’s weather history was January 11, 1930 when 21.8 " fell. This was in the middle of the most snowfall to occur within a continuous stormy period. From January 10-13, 1930 there was $39.5^{\prime \prime}$ of snow measured.

January 1949 was the snowiest month with 53.0" recorded.

The greatest number of consecutive days without measurable precipitation was recorded from September 25, 1999 - January 1, 2000, a
total of 99 days! The greatest number of consecutive days with measurable precipitation was 13 set during the period of July 6-18, 1953, when a total of 5.42 " of precipitation fell.

The greatest number of consecutive days with measurable snowfall was 6 days set three times, most recently from February 11-16, 1978. Interestingly, there were only 6.0" of snow during this period. The other two six day periods are on the list of excessive snow storms.

CLIMATE SUMMARY

TEMPERATURE*

MONTH	RECORD MAX	NORMAL 1 MAX	NORMAL 1 AVG	NORMAL 1 MIN	RECORD MIN
JANUARY	73	50.9	37.1	23.3	-21
FEBRUARY	77	54.2	39.9	25.6	-12
MARCH	81	57.9	43.8	29.7	2
APRIL	87	65.2	50.2	35.2	11
MAY	97	73.8	58.3	42.8	20
JUNE	103	84.6	67.9	51.2	25
JULY	105	88.3	73.4	58.5	34
AUGUST	102	85.7	71.4	57.0	32
SEPTEMBER	98	80.8	65.5	50.1	26
OCTOBER	92	71.4	55.3	39.1	13
NOVEMBER	83	59.6	44.1	28.5	-1
DECEMBER	78	51.6	37.5	23.3	-9
ANNUAL	105				
					-21

1 Climatological normals 1971-2000.

* All values are ${ }^{\circ} \mathrm{F}$.

MONTH	PRECIPITATION**		SNOWFALL**	
	RECORD			RECORD
	NORMAL ${ }^{1}$	MAX	NORMAL ${ }^{1}$	MAX
JANUARY	1.58	7.79	4.1	53.0
FEBRUARY	1.87	10.59	4.6	37.5
MARCH	1.91	7.11	5.7	34.2
APRIL	0.76	6.90	1.5	9.8
MAY	0.64	2.35	0.0	6.0
JUNE	0.40	2.46	0.0	0.0
JULY	2.87	8.80	0.0	0.0
AUGUST	3.28	10.51	0.0	0.0
SEPTEMBER	2.07	10.02	0.0	0.0
OCTOBER	1.28	7.82	0.2	5.0
NOVEMBER	1.25	8.68	1.4	21.3
DECEMBER	1.28	6.96	2.7	46.0
ANNUAL	19.19	39.47	20.4	97.4

1 Climatological normals 1971-2000.
** All values are inches.

II. TEMPERATURE RECORDS

DAILY MAXIMUM AND MINIMUM TEMPERATURE EXTREMES

MAY 1898 - JULY 2007

MONTH: January

Date	High Max	Year	Low Max	Year	High Min	Year	Low Min	Year
1	69	1918	30	$1960+$	39	$1982+$	-5	1924
2	69	1918	26	1907	40	1938	-5	1960
3	72	1918	24	1949	49	1997	-15	1937
4	70	1948	22	1949	39	1900	-8	1937
5	73	1927	21	1910	38	$1991+$	-6	1937
6	68	2003	22	1913	39	1991	-6	1910
7	69	1948	25	1971	37	$1993+$	-7	1913
8	70	1969	30	$1971+$	43	1993	-2	1971
9	68	$2002+$	34	1989	41	1957	-6	1899
10	69	1953	31	1937	41	$2005+$	-14	1937
11	70	1953	31	1913	45	2005	-7	$1937+$
12	66	1990	26	1963	41	1940	-5	1913
13	66	$2002+$	26	1963	44	1957	-3	1963
14	69	1943	32	1930	45	1980	3	1964
15	71	1943	33	2007	40	1938	-5	1962
16	71	1975	30	$1960+$	40	$1911+$	1	$1949+$
17	71	1974	27	1960	43	2000	-4	1928
18	71	1971	32	1987	40	$2000+$	0	$1937+$
19	73	1971	27	1935	38	$1959+$	-8	1935
20	72	1971	25	1937	39	1965	-5	1935
21	72	1971	21	1937	42	1971	1	1937
22	66	$2000+$	26	1937	44	1967	-21	1937
23	70	1910	25	1937	37	$1956+$	-4	1937
24	69	$1970+$	30	$1949+$	40	1950	-8	1929
25	68	$1951+$	30	1929	41	1995	-9	1937
26	70	1975	35	1902	40	$2000+$	-9	1937
27	66	$1942+$	35	$1979+$	42	1975	2	1979
28	68	2003	30	1949	40	1901	0	1949
29	69	1986	29	$1979+$	40	1936	1	$1949+$
30	69	$1971+$	30	1979	39	$1963+$	-8	1949
31	69	1971	22	1916	41	1963	-1	$1979+$
$70 n t h$	73	$1971+$	21	$1937+$	49	1997	-21	1937

+ Also occurred in prior years.

DAILY MAXIMUM AND MINIMUM TEMPERATURE EXTREMES

MAY 1898 - JULY 2007

MONTH: February

Date	High Max	Year	Low Max	Year	High Min	Year	Low Min	Year
1	70	$2003+$	25	1985	46	1963	-2	1949
2	70	2003	27	1985	39	1936	0	$1939+$
3	72	1934	25	1985	36	1989	-10	1922
4	75	1963	31	1985	40	1928	-7	1933
5	74	1963	32	1985	40	1935	-5	1985
6	76	1963	33	1985	38	1978	-12	1899
7	74	$1963+$	26	1989	42	1950	-6	$1903+$
8	72	1963	24	1933	41	1957	-9	1929
9	74	1996	31	1939	43	1976	-9	1929
10	76	1926	32	1965	40	$1978+$	-8	1933
11	70	1926	29	1965	42	1919	5	$1939+$
12	70	1910	31	1948	44	1916	4	1965
13	74	1957	28	1905	44	2003	9	$2004+$
14	74	1957	20	1905	42	2003	0	1905
15	71	1971	25	1905	39	1980	1	1942
16	71	1996	30	1905	38	1962	5	1990
17	72	1977	32	1905	46	1955	6	1911
18	72	1977	34	1917	43	1986	12	$1975+$
19	72	$1935+$	30	1955	42	$1986+$	10	1933
20	75	1981	31	1913	48	1996	5	1955
21	73	1977	33	1913	48	1996	5	1955
22	70	$1982+$	31	1913	44	1901	4	1953
23	71	2002	37	1969	44	1918	-2	1913
24	71	$1989+$	35	1960	44	1918	10	$1960+$
25	75	1921	30	1987	44	1910	10	$1977+$
26	75	1986	32	1987	40	$1940+$	9	1912
27	77	1986	30	1962	42	$1988+$	5	1996
28	74	1986	35	1996	44	1938	-2	1913
29	74	1972	38	2004	37	1932	14	1904
Month	77	1986	20	1905	48	$1996+$	-12	1899

+ Also occurred in prior years.

DAILY MAXIMUM AND MINIMUM TEMPERATURE EXTREMES

MAY 1898 - JULY 2007

MONTH: March

Date	High Max	Year	Low Max	Year	High Min	Year	Low Min	Year
1	74	1967	35	1953	43	$1938+$	2	1913
2	76	1910	30	$1971+$	44	1920	10	1971
3	77	1910	32	1966	43	$1986+$	3	1966
4	79	1910	32	1976	42	1995	4	1966
5	78	1910	34	1976	43	1995	11	1948
6	77	1910	40	1945	51	2001	9	1945
7	76	1972	34	2000	44	2001	10	1945
8	76	1972	37	1935	45	1960	11	$1969+$
9	76	$1972+$	37	1935	47	$1954+$	13	1922
10	79	1989	38	$1962+$	47	1954	8	1935
11	78	$1989+$	34	1952	45	1985	12	1948
12	80	1900	35	2006	49	1960	12	1969
13	78	1900	35	2006	43	2004	11	$1956+$
14	77	2007	34	1973	43	1984	9	1952
15	78	1934	37	1969	43	1961	7	1924
16	78	$2007+$	40	1991	41	2003	10	1917
17	81	2007	36	1991	42	1994	16	$1925+$
18	83	2007	39	1986	42	1993	11	1899
19	76	2004	40	1935	45	$1959+$	11	1935
20	77	2004	39	$1985+$	45	$1939+$	12	1904
21	81	2004	39	1952	47	$2001+$	10	1904
22	80	$2004+$	36	$1991+$	48	2001	14	1923
23	79	2004	37	1980	46	2001	12	1917
24	79	1940	36	1913	46	$2001+$	13	1929
25	77	2001	35	1913	49	1998	11	1964
26	77	1925	38	1902	47	$2001+$	10	1902
27	78	1988	33	1975	49	2001	13	$1942+$
28	78	1986	34	1975	49	1963	9	1975
29	78	1934	38	1973	50	2001	12	1975
30	80	1934	38	1998	43	1946	17	$1976+$
31	81	1934	43	1912	51	1971	16	$1938+$
Month	81	1934	30	$1971+$	51	$2001+$	2	1913

+ Also occurred in prior years.

DAILY MAXIMUM AND MINIMUM TEMPERATURE EXTREMES

MAY 1898 - JULY 2007

MONTH: April

Date	High Max	Year	Low Max	Year	High Min	Year	Low Min	Year
1	81	1966	43	1949	49	2001	16	1904
2	81	$1959+$	38	1999	51	2001	15	1975
3	82	1961	40	1999	50	2001	15	1955
4	83	1961	38	1964	49	$1967+$	16	1955
5	79	$1960+$	36	1999	52	1961	15	1921
6	80	$1972+$	40	1922	49	1972	21	$1955+$
7	84	1930	45	1922	46	1994	16	1929
8	84	$1989+$	37	1975	49	2001	15	1901
9	84	1989	36	1919	51	2007	15	1928
10	83	1989	38	1965	49	1960	15	1933
11	83	1934	43	2001	56	1989	15	1933
12	85	1934	38	$1965+$	54	1982	14	1953
13	85	$1937+$	42	1927	50	1919	15	1927
14	85	1936	45	1976	52	2000	16	1972
15	87	1936	45	1976	51	2002	18	1970
16	86	1948	44	1998	51	1914	11	1924
17	86	1936	37	1976	49	$1987+$	19	1922
18	86	1962	43	$1995+$	52	1919	16	1922
19	85	1989	39	1968	51	2001	17	1922
20	84	1930	42	1971	58	1938	19	1933
21	84	$1965+$	47	$1995+$	53	1997	21	1923
22	84	$1989+$	42	1925	57	1958	17	1963
23	86	1949	34	1925	58	1919	22	$1967+$
24	87	1949	40	1925	58	1919	20	1960
25	85	1927	53	1999	56	2002	20	1904
26	85	$1996+$	47	1963	49	1910	11	1899
27	87	$2000+$	43	1985	57	1996	19	1899
28	86	2000	44	1900	53	$1999+$	22	1970
29	85	$2007+$	38	1970	55	1990	19	1970
30	87	1943	41	1915	55	1995	22	$1904+$
								$1925+$
Month	87	$2000+$	34	1925	58	$1938+$	11	1920

+ Also occurred in prior years.

DAILY MAXIMUM AND MINIMUM TEMPERATURE EXTREMES MAY 1898 - JULY 2007

MONTH: May

Date	High Max	Year	Low Max	Year	High Min	Year	Low Min	Year
1	89	1947	41	1915	54	1997	21	1967
2	93	1947	41	1915	54	1996	24	1915^{*}
3	95	1947	53	1905	53	1989	20	1915^{*}
4	94	1947	50	$1959+$	58	1933	25	1969^{*}
5	93	1947	44	1930	52	$2004+$	25	1950^{*}
6	91	1947	46	1930	54	1989	21	1899^{*}
7	89	1934	49	$1971+$	53	$1997+$	23	1899^{*}
8	93	1934	51	1986	57	2000	21	1930
9	96	1934	50	1979	56	1991	24	1930^{*}
10	92	1934	47	1979	60	1962	23	1899^{*}
11	89	1960	52	1957	53	1962	22	1899^{*}
12	93	1996	50	1933	56	1993	24	1899^{*}
13	94	1996	55	1933	60	$1996+$	23	1962
14	92	1938	43	1951	58	1984	21	1933
15	94	1927	48	1951	55	1938	27	1968
16	91	1927	55	1944	60	1996	26	1955
17	92	1927	57	1981	55	$2001+$	24	1903^{*}
18	90	1934	58	$1977+$	56	1948	24	1977^{*}
19	92	1934	52	1917	60	1934	26	1921^{*}
20	92	1934	50	1917	56	1958	27	1974^{*}
21	90	1942	53	1979	57	1968	26	1962^{*}
22	92	2005	54	1975	57	$2006+$	24	1927^{*}
23	93	$2005+$	60	1971	57	1984	25	1899^{*}
24	93	2000	54	1965	59	1943	27	1960
25	91	$2001+$	51	1977	61	2001	24	1980
26	93	1951	58	1996	60	1943	27	1916^{*}
27	92	$1974+$	60	1987	59	2005	30	1911^{*}
28	95	$2003+$	62	1909	59	2003	26	1929^{*}
29	97	1910	61	1971	62	1986	28	1953
30	96	1910	52	1971	58	$1984+$	27	$1918+$
31	96	1910	61	1917	61	1994	29	$1921^{*}+$
								195^{*}
Month	97	1910	41	$1915+$	62	1986	20	1915^{*}

+ Also occurred in prior years.
* 1899 data considered suspect. See note on page 19.

DAILY MAXIMUM AND MINIMUM TEMPERATURE EXTREMES
 MAY 1898 - JULY 2007

MONTH: June

Date	High Max	Year	Low Max	Year	High Min	Year	Low Min	Year
1	94	2002	59	1991	65	1910	28	1923
2	95	1926	59	1991	63	1910	25	1899
3	94	1922	64	$1999+$	68	1924	31	1929
4	95	$1996+$	57	1915	62	$1956+$	28	1908
5	96	1996	57	1999	62	2006	29	1925
6	95	$2006+$	59	1925	63	2006	33	1933
7	98	1928	60	1993	64	2006	32	$1954+$
8	100	1955	67	1995	65	2000	30	1950
9	96	$1996+$	64	1995	63	1990	33	1950
10	98	1921	62	1968	61	1996	35	$1968+$
11	97	1936	69	$1976+$	62	1921	32	1954
12	100	1933	67	1928	65	1918	32	1947
13	101	1933	63	1955	65	1959	36	$1950+$
14	100	$1940+$	65	1921	68	1999	35	$1970+$
15	99	1940	72	$1973+$	64	$1960+$	33	1901
16	98	1940	62	1921	72	2000	34	1901
17	100	1940	63	1995	66	2000	28	1923
18	101	1936	65	1995	67	1963	33	$1939+$
19	100	$1940+$	66	1967	66	1925	35	1923
20	100	1936	69	1975	65	1989	38	1921
21	102	$1936+$	70	1975	67	1988	33	1923
22	101	1954	74	1994	65	2005	38	1947
23	101	1929	77	$1972+$	66	1937	38	$1948+$
24	102	1929	76	1972	68	2006	38	$1930+$
25	103	1929	74	1965	65	$2006+$	38	1941
26	101	1929	71	1965	67	1981	35	1901
27	101	$1994+$	76	1913	66	2000	38	1965
28	102	1900	77	1910	70	2000	34	1941
29	101	1924	71	1988	70	1958	36	1913
30	103	$1994+$	76	$1986+$	70	1990	40	$1933+$
Month	103	$1994+$	57	$1999+$	72	2000	25	1899

+ Also occurred in prior years.

DAILY MAXIMUM AND MINIMUM TEMPERATURE EXTREMES MAY 1898 - JULY 2007

MONTH: July

+ Also occurred in prior years.

DAILY MAXIMUM AND MINIMUM TEMPERATURE EXTREMES MAY 1898 - JULY 2007

MONTH: August

Date	High Max	Year	Low Max	Year	High Min	Year	Low Min	Year
1	101	1938	75	$1963+$	68	2002	46	$1950+$
2	99	$1993+$	72	$2003+$	70	1938	45	1903
3	98	1918	71	1951	70	1934	46	1903
4	99	1904	72	1997	68	1957	45	1976
5	99	1994	71	1909	60	2004	41	1924
6	102	1905	71	1967	69	1994	43	1928
7	98	1905	77	1931	66	1994	43	1928
8	98	1995	75	1968	68	1969	47	$1951+$
9	101	1928	68	1930	69	1961	49	$1949+$
10	97	$1937+$	71	1918	66	$1995+$	44	1949
11	101	1937	69	1923	67	1956	41	1949
12	99	$1937+$	73	1923	67	1994	42	$1949+$
13	100	1933	63	1979	68	2002	45	$1949+$
14	99	1933	68	1916	68	$2002+$	42	1899
15	98	1898	67	1961	70	1962	40	1968
16	97	1898	69	1947	64	$1992+$	42	1918
17	100	1905	73	1977	67	1911	40	1899
18	100	1905	66	1983	65	2002	40	$1938+$
19	99	1928	71	1983	69	2002	41	1899
20	100	1928	72	1957	66	1960	37	1909
21	96	1938	71	1984	66	1997	42	1979
22	94	$1991+$	73	1988	66	1991	43	1979
23	97	1936	64	1992	66	2005	32	1968
24	96	$1931+$	58	1992	65	$2006+$	40	1968
25	97	1985	69	1917	67	1964	43	1948
26	98	1924	73	1993	65	1994	41	1940
27	97	1924	69	1993	63	1988	41	1954
28	97	1924	71	$1988+$	63	2001	41	$1932+$
29	96	$1998+$	66	1951	63	1901	42	1920
30	95	1950	68	2000	64	1924	42	1964
31	98	1950	67	$1913+$	65	2006	38	1957
Month	102	1905	58	1992	70	$1962+$	32	1968
+ Also occurred in prior years.								
August 1904 data not included due to potential	errors - see page 19.							

DAILY MAXIMUM AND MINIMUM TEMPERATURE EXTREMES MAY 1898 - JULY 2007

MONTH: September

Date	High Max	Year	Low Max	Year	High Min	Year	Low Min	Year
1	98	1950	69	$1967+$	67	1995	38	1957
2	98	1948	71	$1967+$	62	1995	39	1951
3	96	1948	71	1936	63	$2002+$	41	$1964+$
4	96	1947	70	1912	64	1963	36	1961
5	96	1932	68	1909	63	1995	35	$1961+$
6	94	$1955+$	67	1970	64	2002	38	1936
7	96	1936	57	1981	62	1899	42	$1948+$
8	95	1932	68	1911	66	2005	36	1935
9	94	$1947+$	66	1912	64	2003	38	1941
10	96	1932	70	2003	66	1957	35	1912
11	93	$1990+$	71	1996	63	1969	36	$1912+$
12	94	$1948+$	65	1982	61	$1993+$	34	1906
13	96	1905	67	1927	62	$1967+$	32	1952
14	95	1905	65	1911	61	1990	36	1930
15	94	2000	62	1906	62	1997	28	1903
16	96	1932	70	1906	62	1997	26	1903
17	95	1928	64	1940	62	1971	27	1903
18	94	1956	58	1965	63	1943	30	1903
19	94	1934	56	1965	61	1943	30	$1978+$
20	92	$1928+$	66	1978	61	1983	27	1978
21	92	$1943+$	65	1965	62	2000	30	1978
22	93	1899	66	$2004+$	59	1967	30	1912
23	95	1899	60	1986	58	$1954+$	30	1901
24	97	1899	62	$1986+$	59	2003	28	1923
25	94	1899	52	1986	60	$2003+$	27	1917
26	95	1899	58	1986	60	$1997+$	27	1924
27	91	1921	63	1986	61	1909	28	$1924+$
28	91	2003	61	1982	60	1940	27	$1934+$
29	91	1933	60	1905	55	$1951+$	29	1900
30	90	1933	54	1971	58	1956	30	$1965+$
Month	98	$1950+$	52	1986	67	1995	26	1903
+ Also occured in prior years.								

DAILY MAXIMUM AND MINIMUM TEMPERATURE EXTREMES
 MAY 1898 - JULY 2007

MONTH: October

Date	High Max	Year	Low Max	Year	High Min	Year	Low Min	Year
1	91	1980	58	1919	57	1933	25	1927
2	92	1980	59	$1959+$	60	2003	26	1924
3	92	1980	53	$1941+$	61	2003	25	1903
4	91	1980	54	1968	56	1940	24	1908
5	89	$1980+$	47	1912	55	$1963+$	24	1969
6	90	1934	54	1912	56	$2006+$	21	1913
7	89	$2000+$	58	$1993+$	52	$1975+$	23	1913
8	88	1944	54	1923	57	1945	25	1927
9	88	$1996+$	47	1961	54	1945	24	1949
10	90	1996	56	1912	54	$1905+$	24	$1982+$
11	89	1996	56	1985	52	$1996+$	20	1924
12	88	1950	49	1986	52	1908	24	1946
13	87	1992	50	1928	55	1905	25	1969
14	87	1918	50	1899	52	$1996+$	25	1920
15	88	1905	43	1960	55	1929	24	$1966+$
16	87	1991	45	1994	54	1936	24	1981
17	85	1924	47	1971	48	$2005+$	22	$1938+$
18	86	$2003+$	43	1971	51	2005	20	1917
19	87	1921	41	1971	51	1979	21	1932
20	87	$2003+$	39	1949	51	2004	14	1949
21	85	2003	49	$1920+$	50	2004	16	1949
22	88	2003	44	1969	47	2001	16	1908
23	85	2003	50	1935	51	1942	16	1906
24	87	1959	47	1919	49	1960	18	1975
25	85	1959	52	1921	49	1939	19	1975
26	83	$1959+$	50	1971	46	1982	22	$1953+$
27	84	1926	43	1996	50	1905	23	1917
28	81	1937	46	1996	48	$2001+$	15	1970
29	83	1962	40	1901	51	1987	18	1961
30	80	1966	34	1971	50	1963	14	1971
31	78	$2001+$	42	1972	50	2003	13	1935
Month	92	$1980+$	34	1971	61	2003	13	1935
+ Also 0ccurred in prior years.								

DAILY MAXIMUM AND MINIMUM TEMPERATURE EXTREMES
 MAY 1898 - JULY 2007

MONTH: November

Date	High Max	Year	Low Max	Year $\begin{gathered}\text { High } \\ \text { Min }\end{gathered}$		Low		
						Year	Min	Year
1	79	1916	40	1972+	50	2003	15	1929
2	80	1931+	46	1936	47	1978	18	1956
3	80	1924	42	1974+	47	1953	15	1956
4	79	1924	41	1974	55	1960	12	1935
5	78	1988+	43	1957	50	2001	11	1935
6	79	1934	44	2000+	49	1960	12	1947+
7	78	1924	45	2000	47	1970	11	1938
8	79	1926	43	1919	47	2004	15	1945
9	78	1973+	42	1966	47	2002	12	1948
10	78	1980+	43	1915	47	1995+	14	1946
11	78	1934	44	2000	46	1978+	14	1950+
12	78	1973	39	1972	47	1983	10	1929
13	77	1999	35	1985	51	1983	7	1916
14	76	1999+	38	1985	45	1962	6	1916
15	76	1999+	32	1964	47	1942	11	1956+
16	83	1933	33	1964+	42	1913	11	1964+
17	76	1999	31	1958	42	1965	3	1964+
18	75	1898	34	1964	42	1982	5	1958
19	79	1936	33	1930	44	1977+	9	1964
20	74	1996+	31	1994	42	1909	8	1956
21	74	1995	39	1979	44	1955	10	1956+
22	75	1917	39	1947+	42	1900	4	1929
23	74	1924	30	1931	50	1909	3	1931
24	75	1933	30	1931	49	1965	-1	1931
25	76	1970	36	1931	43	1921+	7	1931
26	76	1950	34	1988	44	1958	10	1902
27	77	1933	34	1973+	42	1926	10	1973
28	73	1998	36	1919+	37	1936	9	1948
29	72	1980+	37	1975+	40	1970+	3	1919
30	73	1980	32	2006	41	1961	5	1975
Month	83	1933	30	1931	55	1960	-1	1931

+ Also occurred in prior years.

DAILY MAXIMUM AND MINIMUM TEMPERATURE EXTREMES
 MAY 1898 - JULY 2007

MONTH: December

+ Also occurred in prior years.

HIGHEST AND LOWEST AVERAGE TEMPERATURES BY MONTH WITH YEAR OF OCCURRENCE (May 1898 - July 2007)

Month	Normal* Monthly	Highest Average	Year	Lowest Average	Year
January	37.1	44.3	2003	20.0	1937
February	39.9	46.1	1995	28.7	1933
March	43.8	53.4	2001	37.2	1952
April	50.2	57.9	1898	43.6	1975
May	58.3	65.9	1984	50.7	$1917 *$
June	67.9	73.7	2006	61.5	1965
July	73.4	78.6	2003	67.4	1903
August	71.4	82.5	1904	66.0	1968
September	65.5	69.7	2001	59.0	1912
October	55.3	62.8	2003	47.9	1919
November	44.1	51.2	1995	38.5	1947
December	37.5	43.8	1980	28.7	1932

* Climatological normals from the years 1971-2000.
* The record shows that 20 days during May 1899 had a record low minimum for the entire period of record. This seems highly unlikely. In addition to the large number of days, more than half of them had a record low that was 5 or more degrees lower than the next lowest temperature for the date. It seems likely that many of the record lows recorded in May 1899 are erroneous. So, if the low temperature on a day in May 1899 was more than 3 degrees lower than the next lowest temperature, it was replaced with the second lowest temperature. The dates marked with an * on page 10 and above utilize this methodology.

Additionally, during the month of August 1904, all overnight minimum temperatures were record maximum values for the entire period of record, which is also highly unlikely. These data have not been used for purposes of ranking in this book.

HIGHEST AND LOWEST MONTHLY AVERAGE TEMPERATURES (May 1898 - July 2007)

Month	Normal*	Highest Monthly Average Temperature		Lowest Monthly Average Temperature	
		Temp	Year	Temp	Year
January	37.1	44.3	2003	20.0	1937
		43.4	1986	25.3	1949
		42.2	1953	28.0	1933
		41.7	1956	28.4	1932
		41.6	2000	30.0	1924
February	39.9	46.1	1995	28.7	1933
		45.0	1957	30.5	1939
		44.8	1996	31.4	1905
		44.7	1963	31.7	1903
		44.1	1991	32.0	1949
March	43.8	53.4	2001	37.2	1952
		52.5	2004	37.5	1973
		51.8	1972	37.9	1945
		50.8	1934	38.1	1902
		48.9	1989	38.1	1913
April	50.2	57.9	1989	43.6	1975
		56.6	2002	44.3	1941
		56.6	2001	44.8	1912
		56.3	1992	45.1	1967
		56.1	2000	45.2	1970
May	58.3	65.9	1984	50.7	1917**
		65.7	2001	52.0	1980
		65.0	2000	52.1	1977
		64.8	2006	52.3	1953
		64.7	1997	52.7	1933
June	67.9	73.7	2006	61.5	1965
		73.2	2002	61.9	1923
		72.7	1994	62.7	1941
		72.6	2000	62.7	1967
		72.5	1960	63.4	1982

* Monthly normals based on climatological normals 1971-2000.
** See note on page 18 regarding May 1899.

HIGHEST AND LOWEST MONTHLY AVERAGE TEMPERATURES

 (May 1898 - July 2007)| Month | Normal* | Highest Monthly Average Temperature | | Lowest Monthly Average Temperature | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | Temp | Year | Temp | Year |
| July | 73.4 | 78.6 | 2003 | 67.4 | 1903 |
| | | 77.3 | 2007 | 67.5 | 1912 |
| | | 77.2 | 2005 | 69.2 | 1944 |
| | | 77.2 | 2002 | 69.3 | 1913 |
| | | 76.8 | 2006 | 69.3 | 1955 |
| August | 71.4 | 82.5 | 1904 | 66.0 | 1968 |
| | | 75.9 | 1995 | 67.4 | 1900 |
| | | 75.5 | 2002 | 67.5 | 1912 |
| | | 75.2 | 1994 | 67.6 | 1899 |
| | | 74.4 | 1996 | 68.0 | 1916 |
| September | 65.5 | 69.7 | 2001 | 59.0 | 1912 |
| | | 69.3 | 1956 | 59.5 | 1900 |
| | | 69.1 | 1997 | 60.8 | 1986 |
| | | 69.1 | 1983 | 61.0 | 1901 |
| | | 69.1 | 1943 | 61.1 | 1923 |
| October | 55.3 | | | | |
| | | 61.2 | 1988 | 48.6 | 1923 |
| | | 60.0 | 2001 | 49.0 | 1946 |
| | | 59.5 | 1987 | 49.1 | 1903 |
| | | 59.5 | 1950 | 49.2 | 1971 |
| November | 44.1 | 51.2 | 1995 | 38.5 | 1947 |
| | | 50.5 | 1999 | 38.7 | 1922 |
| | | 50.2 | 1949 | 38.8 | 1931 |
| | | 49.1 | 1942 | 38.9 | 1948 |
| | | 48.6 | 2006 | 39.0 | 2000 |
| December | 37.5 | 43.8 | 1980 | 28.7 | 1932 |
| | | 43.2 | 1977 | 29.5 | 1967 |
| | | 43.0 | 1950 | 29.6 | 1911 |
| | | 42.6 | 1939 | 30.5 | 1931 |
| | | 42.1 | 1958 | 31.4 | 1928 |

* Monthly normals based on climatological normals 1971-2000.

WARMEST AND COLDEST WINTER, SPRING, SUMMER, FALL
 (May 1898 - July 2007)

WINTER
(December 21-March 20)
Average = 39.2*

SPRING
(March 21-June 20)
Average = 55.9*

	Warmest		Coldest		
Temp		Year	Temp		Year
61.1		1996	51.6		1917
60.6		2002	51.7		1975
60.1		1989	52.0		1980
60.0		2006	52.3		1967
60.0		2004	52.3		1899
60.0		1943	52.5		1912
59.5		1940	52.8		1903
59.5		1934	52.8		1904
59.4		2007	52.8		1913
59.0		1985	53.0		1973

* Averages based on climatological normals 1971-2000.

WARMEST AND COLDEST WINTER, SPRING, SUMMER, FALL
 (May 1898 - July 2007)

SUMMER
(June 21-September 20)
Average $=71.0^{*}$

Temp	Warmest			Coldest		
	Year	Temp	Year			
73.9	2002	65.9	1912			
73.8	1943	67.1	1903			
73.8	1995	68.0	1913			
73.5	1994	68.0	1941			
73.2	2003	68.2	1916			
73.1	1933	68.4	1950			
72.9	1960	68.4	1923			
72.9	2001	68.4	1911			
72.8	1998	68.6	1982			
	$2006!$	68.7	1906			

FALL
(Sept 21-Dec 20)
Average = 48.6*

	Warmest	
Temp		Year
53.2		1995
52.5		1942
52.3		1950
51.9		2003
51.8		1999
51.4		1977
51.0		1988
50.9		1962
50.7		1954
50.7		1921

Temp	Coldest	Year
43.3		1971
44.1		1923
44.6		1912
44.9		1972
45.0		1916
45.0		1902
45.5		1911
45.5		1920
45.6		1908
45.6		1913

* Averages based on climatological normals 1971-2000.
! Also occurred in prior year(s)

HIGHEST AND LOWEST ANNUAL TEMPERATURE (1899-2006)

Highest Annual Average		Lowest Annual Average	
Temp	Year	Temp	Year
57.4	1908	44.4	1907
56.9	2001	50.0	1913
56.6	2003	50.2	1903
56.5	1996	50.2	1912
56.5	1943	50.2	1919
56.2	2000	51.0	1923
56.0	2002	51.0	1945
55.7	1995	51.4	1902
55.6	2005	51.4	1911
55.6	1989	51.4	1915

* Average based on climatological normals 1971-2000.

AVERAGE NUMBER OF DAYS PER YEAR WITH MAXIMUM TEMPERATURES 85, 90 AND 95 DEGREES OR HIGHER
 (1971 - 2000)

85 Degrees or higher...................... 73
90 Degrees or higher....................... 32
95 Degrees or higher........................ 8

AVERAGE NUMBER OF DAYS PER YEAR WITH MINIMUM TEMPERATURES 40, 32 AND 10 DEGREES OR LOWER (1971-2000)

40 Degrees or lower. 199
32 Degrees or lower 139
10 Degrees or lower 4
FREEZE AND GROWING SEASON DATA (1898-2006)
Longest growing season on record 203 days in 1987*
Shortest growing season on record 97 days in 1968*
Average growing season 147 days
Average date of last spring frost (32 degrees) May 15
Earliest date of last spring frost (32 degrees) April 11, 2004
Latest date of last spring frost (32 degrees) June 17, 1923
Average date of first fall frost (32 degrees) October 10
Earliest date of first fall frost (32 degrees) .August 23, 1968
Latest date of first fall frost (32 degrees). November 15, 1988
Average date of last spring freeze (28 degrees) April 28
Earliest date of last spring freeze (28 degrees) February 24, 2001
Latest date of last spring freeze (28 degrees) June 17, 1923
Average date of first fall freeze (28 degrees). October 21
Earliest date of first fall freeze (28 degrees)..November 22, 1999

[^0]
GREATEST NUMBER OF CONSECUTIVE DAYS WITH MAXIMUM TEMPERATURES 90 DEGREES OR HIGHER
 (May 1898 - July 2007)

Days	Dates
33	June 18 - July 20, 1905
30	June 9 - July 8, 1936
26	June 26 - July 21, 1901
24	June 30 - July 23, 2005
24	June 13 - July 6, 1960
23	June 23 - July 15, 2002
22	June 27 - July 18, 2003
21	June 11 - July 1, 1974
20	July 24 - August 12, 1995
20	June 13 - July 2, 1961
20	June 27 - July 16, 1934
20	June 19 - July 8, 1929

Only periods with 20 or more days are tabulated.

GREATEST NUMBER OF CONSECUTIVE DAYS WITH MAXIMUM TEMPERATURES 95 DEGREES OR HIGHER
 (May 1898 - July 2007)

Days	Dates
17	June 20 - July 6, 1929
15	July 4 - July 18, 2003
12	June 21 - July 2, 1990
11	July 13 - July 23, 1936
11	July 6 - July 16, 1934
11	June 27 - July 7, 1930
11	July 3 - July 13, 1905
10	July 3 - July 12, 1940
9	June 18 - June 26, 1961
9	June 12 - June 20, 1940
9	July 7 - July 15, 1939
9	June 21 - June 29, 1932

Only periods with 9 or more days are tabulated.

GREATEST NUMBER OF CONSECUTIVE DAYS WITH MAXIMUM TEMPERATURES 100 DEGREES OR HIGHER

(May 1898 - July 2007)

Days	Dates
6	June 21 - June 26, 1929
4	July 10 - July 13, 2003
4	June 18 - June 21, 1936
4	July 10 - July 13, 1934
4	July 6 - July 9, 1905
4	July 9 - July 12, 1900
3	July 4 - July 6, 2007
3	June 26- June 28, 1990
3	July 10 - July 12, 1958
3	June 17 - June 19, 1940
3	July 12 - July 14, 1939
3	July 16 - July 18, 1925
3	June 27 - June 29, 1900

Only periods with 3 or more days are tabulated.

GREATEST NUMBER OF CONSECUTIVE DAYS WITH MINIMUM TEMPERATURES 10 DEGREES OR LOWER

(May 1898 - July 2007)

Days	Dates
12	December 15 - December 26, 1928
12	December 28, 1932 - January 8, 1933
9	January 20 - January 28, 1937
8	December 23 - December 30, 1903
8	January 21 - January 28, 1904
8	January 19 - January 26, 1926
8	January 26 - February 2, 1949
8	December 27, 1966 - January 3, 1967
7	January 27 - February 2, 1902
7	January 3 - January 9, 1902

Only periods with 7 or more days are tabulated.

III. PRECIPITATION RECORDS

GREATEST DAILY 24 HOUR PRECIPITATION (INCHES)
 (7 A.M - 7 A.M.)
 May 1898 - July 2007

	January		February		March		April	
	24 Hr		24 Hr		24 Hr		24 Hr	
Date	Pcpn	Year	Pcpn	Year	Pcpn	Year	Pcpn	Year
1	1.30	1937	1.13	1940	1.58	1991	1.75	1905
2	1.16	1922	2.60	1919	1.70	1991	1.40	1946
3	0.60	1910	0.96	1988	3.21	1938	0.77	1997
4	1.69	1922	1.50	1958	2.10	1905	1.16	1965
5	1.06	1995	1.12	1976	0.68	1927	2.01	1926
6	1.26	1965	1.40	1965	1.02	1981	0.94	2004
7	1.25	1937	3.81	1937	0.51	1998	0.57	1946
8	1.88	1957	1.13	1994	2.80	1918	0.79	1926
9	1.00	1957	2.05	1932	1.00	1905	0.76	1965
10	2.90	1911	0.92	1963	2.17	1912	0.57	1994+
11	2.18	1930	1.38	1982	1.12	1952	0.90	1912
12	1.00	2005	1.39	2005	2.06	1982	1.66	1905
13	1.30	1997	1.43	1931	1.00	1918	0.67	1941
14	0.95	1997	1.27	1937	0.71	1941	0.47	1941
15	0.67	1978	2.50	1927	0.43	1924	0.26	2003
16	0.85	1916	3.00	1927	1.80	1930	0.75	1976
17	2.00	1905	2.64	1927	1.27	1937	3.40	1917
18	1.60	1916	0.58	1917	1.20	1905	0.72	1917
19	0.86	1993	0.90	1990	0.61	1982	1.01	1990
20	1.18	1917	2.25	1993	0.95	1905	0.58	1926
21	1.19	1933	1.83	1920	0.72	1991	1.17	1925
22	0.85	1982	2.15	1920	1.02	1954	1.31	1988
23	1.18	1943	0.59	1957	1.16	1954	0.68	1942
24	0.68	1944	1.84	1987	1.40	1906	1.11	1990
25	1.60	1923	1.10	1958	1.10	1906	0.26	1994+
26	1.30	1995	0.95	2003	1.31	1989	0.80	1963
27	1.80	1957	0.37	1942	1.03	1924	0.60	1900
28	1.90	1968	1.44	1997*	0.36	1973	0.50	1953
29	1.59	1915	0.45	1960	1.10	1961	0.71	1951
30	2.35	1980			0.89	1967	0.84	1915
31	1.51	1922			1.55	1903		
Month	2.90	1911	3.81	1937*	3.21	1938	3.40	1917

+ Also occurred in prior years.
* There is a report of 7.92 inches on the $28^{\text {th }}$ in 1905 . However, there is no other precipitation reported on any other day for the month in that year. It seems likely that the monthly total has been reported on that day and that 7.92 inches did not fall in 24 hours.

GREATEST DAILY 24 HOUR PRECIPITATION (INCHES)
 (7 A.M - 7 A.M.)
 May 1898 - July 2007

Date	May		June		July		August	
	24 Hr		24 Hr		24 Hr		24 Hr	
	Pcpn	Year	Pcpn	Year	Pcpn	Year	Pcpn	Year
1	0.56	1978	0.37	1973	1.18	1994	2.65	1984+
2	0.45	1981	0.80	1972+	0.80	1961	1.09	1926
3	0.29	1930	0.36	1973	1.75	1961	1.90	1971
4	0.33	1982	0.80	1932	0.75	1918	1.81	1934
5	0.84	1982	0.27	1932	0.91	1952	1.66	1934
6	0.63	1973	0.20	1993	1.05	1927	1.00	1986+
7	1.03	1921	0.30	1948+	1.00	1906	1.60	1919
8	0.59	1976	0.17	1972	0.60	1913	1.92	1971
9	0.69	1912	0.65	1957	1.78	1983	1.46	1994
10	1.30	1922	0.40	1968	1.70	1985	1.36	2001
11	0.47	1933	0.30	1927	1.62	1965	1.85	1960
12	0.70	1957	0.72	1955	0.84	1973	2.08	1984
13	0.08	1965+	0.96	1955	1.06	1935	1.20	1964
14	0.37	1989	0.65	1918	1.11	1942	1.47	1931
15	0.17	1951	0.30	1918	1.23	1903	1.26	1961
16	0.58	1993	0.87	1972	1.36	1908	1.60	1927
17	0.48	1995+	0.28	1949	1.40	1909	1.21	1998
18	0.18	1921	0.92	1967	1.17	1954	1.51	1971
19	0.49	1993	0.26	1967+	1.31	1930	1.13	1903
20	0.58	1917	0.18	1918	1.86	1974	1.51	1963
21	0.38	1920	1.05	1958	1.70	1904	1.07	1911
22	0.42	1920	0.64	2000	1.28	1901	3.15	1960
23	0.62	1940	0.53	1965	1.10	1923	1.75	1992
24	0.34	1965	0.17	2005	2.96	1970	1.09	1959
25	0.28	1979	0.20	1954	1.40	1926	1.20	1904
26	1.22	1919	1.35	1954	2.55	1958	1.28	1963
27	0.21	1979	0.70	1910	1.49	1987	1.10	1958
28	0.30	1937	0.68	1938	1.06	1945	2.10	1925
29	0.97	1934	0.75	2000	1.31	1985	2.00	1951
30	0.25	1992	1.10	1966	1.77	1977	0.47	1925
31	0.83	1986			2.02	1921	0.95	1919
Month	1.30	1922	1.35	1954	2.96	1970	3.15	1960

GREATEST DAILY 24 HOUR PRECIPITATION (INCHES)
 (7 A.M - 7 A.M.)
 May 1898 - July 2007

	September		October		November		December	
Date	Pcpn	Year	Pcpn	Year	Pcpn	Year	Pcpn	Year
1	1.27	1922	0.47	1959+	1.43	1987	1.75	1982
2	0.78	1984	0.79	1990	1.60	1957	1.43	1947
3	2.55	1965	1.03	1914	0.55	1957	2.02	1908
4	2.41	1990	1.23	1940	0.70	1905	0.75	1992
5	1.35	1994	1.88	1912	0.85	1905	1.37	1972
6	1.07	1939	2.40	1916	1.36	1987	1.68	1966
7	1.61	1927	1.88	1972	0.80	1905	1.31	1966
8	1.29	1933	0.65	2001	1.32	2004	0.90	1926
9	1.26	1986	0.60	1960	0.79	1982	0.93	1965
10	0.73	1996	0.93	1960	1.10	1902	1.79	1965
11	0.79	1984	1.00	1899	2.92	1978	1.44	1927
12	1.65	1958	1.46	1928	2.24	1978	0.94	1932
13	1.88	1941	0.32	1987	1.27	2003	1.21	1934
14	0.79	1962	0.49	1925	0.92	1955	1.16	1967
15	1.10	1999	0.72	1980	1.10	1899	1.51	1908
16	1.50	1925	0.61	1994	1.00	1952	1.80	1908
17	1.90	1983	0.72	1971	0.85	1900	0.63	1914
18	2.00	1923	1.27	1949	1.32	1930	1.46	1967
19	0.79	1914	1.62	1972	0.78	1984	1.70	1967
20	1.45	1952	0.87	1920	1.10	1902	0.83	1938
21	0.65	1991	1.26	1979	1.04	1963	1.28	1938
22	0.27	1913	1.65	2000	0.50	1905	1.71	1921
23	2.17	1983	0.43	1974	3.01	1965	2.18	1945
24	3.08	1983	1.23	1919	0.70	1906	1.37	1940
25	1.93	1943	2.00	1919	1.24	1965	1.44	1959
26	2.00	1997	0.78	1940	1.65	1985	2.25	1921
27	0.60	1962+	0.86	1912	4.28	1919	1.72	1923
28	1.24	1958	1.28	2004	1.63	1975	1.10	1992
29	0.80	1914	0.80	1936	1.90	1933	1.42	1936
30	2.25	1983	1.10	1987	1.15	1922	3.13	1951
31			1.45	1920			0.90	1948
Month	3.08	1983	2.40	1916	4.28	1919	3.13	1951

MAXIMUM AND MINIMUM PRECIPITATION BY MONTH WITH YEAR OF OCCURRENCE
 (May 1898 - July 2007)

	Maximum Monthly Precipitation			Minimum Monthly Precipitation	
	Normal*	Amount	Year	Amount	Year
JANUARY	1.58	7.79	1916	0.00	1972
		7.55	1957	0.00	1945
		6.53	1949	0.00	1919
		5.91	1980	0.00	1912
		5.67	1911	0.03	2002
FEBRUARY	1.87	10.59	1927	0.00	2006
		7.92	1905	0.00	2002
		7.32	1920	0.00	1984
		7.17	1932	0.00	1967
		6.59	1980	0.00	1961!
MARCH	1.91	7.11	1918	0.00	1997
		6.35	1991	0.00	1972
		6.17	1905	0.00	1959
		6.04	1912	0.00	1956
		5.71	1906	0.00	1933
APRIL	0.76	6.90	1926	0.00	1993
		5.43	1917	0.00	1991
		4.53	1941	0.00	1989
		4.00	1965	0.00	1969
		3.81	1905	0.00	1966!
MAY	0.64	2.35	1992	0.00	2005
		1.73	1982	0.00	2004
		1.72	1919	0.00	2002
		1.65	1934	0.00	2000
		1.55	1993	0.00	1996!
JUNE	0.40	2.46	1972	0.00	2007
		2.13	1918	0.00	2004
		1.83	1955	0.00	2002
		1.65	1899	0.00	1998
		1.55	1954	0.00	1989!

* Monthly normals based on climatological normals 1971-2000.
! Also occurred in prior year(s).

MAXIMUM AND MINIMUM PRECIPITATION BY MONTH WITH YEAR OF OCCURRENCE
 (May 1898 - July 2007)

	Maximum Monthly Precipitation			Minimum Monthly Precipitation	
	Normal*	Amount	Year	Amount	Year
JULY	2.87	8.80	1908	0.00	1993
		7.46	1953	0.11	1905
		6.92	1970	0.28	1902
		6.19	1912	0.32	1997
		5.99	1931	0.41	1940
AUGUST	3.28	10.51	1971	0.11	2002
		8.82	1984	0.30	1996
		8.70	1934	0.30	1944
		8.39	1963	0.45	1945
		6.74	1904	0.51	1985
SEPTEMBER	2.07	10.02	1983	0.00	2000
		5.20	1965	0.00	1973
		4.91	1958	0.00	1968
		4.87	1927	0.00	1959
		4.45	1999	0.00	1953!
OCTOBER	1.28	7.82	1972	0.00	2003
		5.18	2000	0.00	1999
		4.22	1912	0.00	1995
		3.72	1960	0.00	1973
		3.47	1940	0.00	1952!
NOVEMBER	1.25	8.68	1905	0.00	1999
		5.97	1978	0.00	1989
		5.41	1919	0.00	1980
		5.40	1965	0.00	1976
		4.39	1985	0.00	1956!
DECEMBER	1.28	6.96	1965	0.00	2005
		6.08	1967	0.00	1999
		5.69	1908	0.00	1963
		5.42	1923	0.00	1958
		5.29	1921	0.00	1950!

* Monthly normals based on climatological normals 1971-2000.
! Also occurred in prior year(s).

WETTEST AND DRIEST WINTER, SPRING, SUMMER, FALL
 (May 1898 - July 2007)

WINTER
(December 21-March 20)
Average $=5.35^{*}$

SPRING
(March 21-June 20)
Average $=2.04 *$

Amount	Wettest	Year	Amount	Driest	Year
8.41		1926	0.06		1966
6.65		1917	0.13		1974
5.06		1941	0.15		1913
4.98		1965	0.30		2003
4.95		1903	0.31		1938
4.79		1905	0.33		1943
4.77		1906	0.35		1956
4.73		1973	0.39		1996
4.13		1990	0.41		1948
3.86		1912	0.42		1984

* Averages based on climatological normals 1971-2000.

WETTEST AND DRIEST WINTER, SPRING, SUMMER, FALL
 (May 1898 - July 2007)

SUMMER
(June 21-Sept 20)
Average = 7.98*

FALL
(Sept 21-Dec 20)
Average = 3.89*

* Averages based on climatological normals 1971-2000.

YEARLY PRECIPITATION RECORD (1899-2006)

1899	10.91				
1900	10.33	1940	22.31	1980	21.90
1901	12.77	1941	25.92	1981	18.23
1902	14.31	1942	9.36	1982	27.03
1903	16.74	1943	13.49	1983	23.99
1904	14.31	1944	11.28	1984	23.10
1905	39.47	1945	10.44	1985	20.20
1906	24.13	1946	22.65	1986	22.66
1907	M	1947	10.99	1987	21.54
1908	M	1948	13.09	1988	14.10
1909	21.81	1949	17.93	1989	12.21
1910	13.29	1950	11.65	1990	20.17
1911	22.59	1951	22.21	1991	24.17
1912	23.97	1952	19.57	1992	20.25
1913	13.93	1953	16.65	1993	19.83
1914	17.12	1954	16.91	1994	18.25
1915	19.95	1955	17.82	1995	16.15
1916	22.03	1956	6.88	1996	10.76
1917	16.65	1957	22.93	1997	16.19
1918	22.08	1958	24.48	1998	22.70
1919	28.81	1959	16.78	1999	16.52
1920	22.04	1960	18.91	2000	15.82
1921	21.16	1961	17.10	2001	12.81
1922	24.76	1962	15.77	2002	7.17
1923	24.00	1963	18.81	2003	15.43
1924	16.26	1964	13.20	2004	17.78
1925	21.57	1965	35.94	2005	17.28
1926	24.18	1966	14.75	2006	11.38
1927	33.97	1967	22.35		
1928	13.78	1968	11.84		
1929	15.88	1969	23.41		
1930	26.25	1970	21.11		
1931	24.56	1971	21.41		
1932	22.54	1972	24.88		
1933	17.31	1973	17.21		
1934	17.51	1974	16.08		
1935	23.52	1975	12.20		
1936	19.49	1976	18.93		
1937	21.31	1977	14.08		
1938	23.01	1978	27.16		
1939	15.99	1979	13.55		

15 WETTEST YEARS

(January 1899 - December 2006)

Rank	Amount*	Year
1	39.47	1905
2	35.94	1965
3	33.97	1927
4	28.81	1919
5	27.16	1978
6	27.03	1982
7	26.25	1930
8	25.92	1941
9	24.88	1972
10	24.76	1922
11	24.56	1931
12	24.48	1958
13	24.18	1926
14	24.17	1991
15	24.13	1906

* All amounts are in inches.

15 DRIEST YEARS
(January 1899 - December 2006)

Rank	Amount*	Year
1	6.88	1956
2	7.17	2002
3	9.36	1942
4	10.33	1900
5	10.44	1945
6	10.76	1996
7	10.91	1899
8	10.99	1947
9	11.28	1944
10	11.38	2006
11	11.65	1950
12	11.84	1968
13	12.20	1975
14	12.21	1989
15	12.77	1901

* All amounts are in inches.

AVERAGE YEARLY PRECIPITATION: 19.19 INCHES*

* Based on the 30 year average yearly precipitation from 1971-2000.

GREATEST NUMBER OF DAYS WITH 0.01 INCHES OR MORE AND 0.10 INCHES OR MORE BY MONTH AND YEAR OF OCCURRENCE
(1899-2006)

	0.01 Inch or more		
Month	Average \# of Days	Greatest \# of Days	Year
January	5.3	16	$1993+$
February	5.4	14	$1993+$
March	5.6	18	1973
April	4.0	18	1926
May	2.6	12	1992
June	1.9	11	1972
July	9.8	21	1953
August	10.6	24	1971
September	5.4	15	1940
October	3.7	15	1972
November	4	13	1905
December	4.9	13	1965
Annual	$63.3!$	92	$1978+$

0.10 Inch or more			
Average \# of Days	Greatest \# of Days	Year	
3.6	12	1949	
3.5	11	$1941+$	
3.6	13	1973	
2.3	14	1926	
1.5	8	1992	
1.1	6	$1972+$	
6.4	15	1919	
6.6	17	1971	
3.4	9	$1958+$	
2.3	11	1972	
2.5	11	1905	
3.2	10	$1965+$	
$40.0!$	60	1941	

GREATEST NUMBER OF DAYS WITH 0.25 INCHES OR MORE AND 0.50 INCHES OR MORE BY MONTH AND YEAR OF OCCURRENCE
(1899-2006)

	0.25 Inch or more		
Month	Average \# of Days	Greatest \# of Days	Year
January	2.1	9	1916
February	2.2	8	1980
March	2.2	8	$1978+$
April	1.3	8	1926
May	0.7	4	1992
June	0.6	4	1918
July	3.8	12	1908
August	4.2	12	1904
September	2.2	7	1995
October	1.4	8	1972
November	1.5	11	1905
December	2.0	9	1926
Annual	$24.2!$	40	1965

0.50 Inch or more			
Average \# of Days	Greatest \# of Days	Year	
1.1	5	$1980+$	
1.1	6	$1927+$	
1.1	6	1918	
0.6	6	1926	
0.2	1	$1993+$	
0.2	2	$2000+$	
1.8	8	1991	
2.2	7	1963	
1.1	4	1983	
0.7	5	1972	
0.8	8	1905	
1.0	5	$1967+$	
$12.1!$	24	1991	

+ Also occurred in prior years.
! Total may be different than sum of average number of days due to rounding.

GREATEST NUMBER OF CONSECUTIVE DAYS WITH 0.01 INCHES OR MORE

(Periods with 9 or more days tabulated)
(May 1898 - July 2007)

Days	Period	Total Precipitation
13	July 6 - July 18, 1953	5.42
11	February 6 - February 16, 1978	1.68
11	August 20 - August 30, 1971	3.43
11	July 21 - July 31, 1904	4.57
10	July 30 - August 8, 1968	1.55
10	September 4 - September 13, 1939	3.36
10	February 6 - February 15, 1935	3.28
10	July 27 - August 5, 1930	1.26
9	August 23 - August 31, 2000	1.56
9	February 14 - February 22, 1980	6.59
9	August 1 - August 9, 1963	2.01
9	July 22 - July 30, 1952	1.23
9	July 18 - July 26, 1915	2.31

GREATEST NUMBER OF CONSECUTIVE DAYS WITH 0.25 INCHES OR MORE

(Periods with 4 or more days tabulated)
(May 1898 - July 2007)

Days	Period	Total Precipitation
5	July 20 - July 24, 1998	3.67
5	November 4 - November 8, 1905	3.35
4	July 28 - July 31, 1999	1.23
4	February 19 - February 22, 1980	2.94
4	February 14 - February 17, 1980	3.58
4	February 28 - March 3, 1978	3.01
4	October 4 - October 7, 1972	3.79
4	December 12 - December 15, 1967	2.63
4	December 14 - December 17, 1965	1.39
4	April 1 - April 4, 1965	2.63
4	August 2 - August 5, 1964	1.38
4	October 31 - November 3, 1957	3.16
4	January 7 - January 10, 1957	3.66
4	July 6 - July 9, 1953	2.09
4	April 11 - April 14, 1941	2.43
4	December 11 - December 14, 1932	2.42
4	February 14 - February 17, 1927	9.29
4	February 8 - February 11, 1920	2.37
4	January 16 - January 19, 1916	3.92
4	August 19 - August 22, 1904	2.10

GREATEST NUMBER OF CONSECUTIVE DAYS WITH 0.50 INCHES OR MORE
 (Periods with 4 or more days tabulated)

(May 1898 - July 2007)

Days	Period	Total Precipitation
5	July 20 - July 24, 1998	3.67
4	February 14 - February 17, 1927	9.29
4	November 4 - November 7, 1905	3.10

GREATEST NUMBER OF CONSECUTIVE DAYS WITH 0.75 INCHES OR MORE

(Periods with 3 or more days tabulated)
(May 1898 - July 2007)

Days	Period	Total Precipitation
4	February 14 - February 17, 1927	9.29
3	July 30 - August 1, 1991	2.68
3	January 11 - January 13, 1930	3.88
3	January 16 - January 18, 1916	3.67
3	March 24 - March 26, 1906	3.40
3	November 5 - November 7, 1905	2.40

GREATEST NUMBER OF CONSECUTIVE DAYS WITHOUT MEASURABLE PRECIPITATION (Less than 0.01 inches) DURING AN ENTIRE YEAR

(May 1898 - July 2007)

Days	Period
99	September 25, 1999 - January 1, 2000
97	October 8, 1917 - January 12, 1918
97	October 3, 1903 - January 7, 1904
96	April 3 - July 7, 1974
92	March 29 - June 28, 1966
87	January 2 - March 29, 2002
85	April 22 - July 15, 1902
84	April 6 - June 28, 1909
84	August 31 - November 22, 1898
80	April 25 - July 13, 2004

EXCESSIVE STORMS* 1898-2006
 (Tabulated only for storms* with 4.00 inches or greater)

Days	Period	Total Precip	Highest Daily Total
6	February 11 - February 19, 1927	$10.59 * *$	3.00
9	February 14 - February 22, 1980	6.59	2.35
13	July 6 - July 18, 1953	5.42	1.19
3	September 23 - September 25, 1983	5.32	3.08
5	November 11 - November 15, 1978	5.30	2.92
6	November 23 - November 28, 1919	5.23	4.28
7	July 19 - July 25, 1970	5.18	2.96
5	November 22 - November 26, 1965	4.93	3.01
7	February 27 - March 5, 1938	4.91	3.21
3	April 16 - April 18, 1917	4.80	3.40
3	January 10 - January 12, 1911	4.80	2.90
4	February 20 - February 23, 1920	4.77	2.15
11	July 21 - July 31, 1904	4.57	1.70
6	January 14 - January 19, 1916	4.28	1.60
5	December 26 - December 30, 1923	4.26	1.79
8	January 9 - January 16, 1949	4.17	2.37
8	July 24 - July 31, 1999	4.15	1.95
3	November 26 - November 28, 1905	4.13	1.90
3	February 6 - February 8, 1937	4.05	3.81

** The actual total for this period may be greater than that shown. On one day during the period the station reported 5.0 " snowfall, but 0.00 " precipitation.

* An excessive storm has been defined as a period of time where measurable precipitation falls on consecutive days, leading to 4.00 inches or greater accumulation by the time the precipitation ends.

GREATEST DAILY 24 HOUR SNOWFALL (INCHES)
 (7 A.M. - 7 A.M.)
 May 1898 - July 2007

Date	January 24 Hr Snow	Year	February 24 Hr Snow	Year	March 24 Hr Snow	Year	April 24 Hr Snow	Year
1	13.0	1937	6.5	1901	4.0	1915	1.0	1949+
2	2.5	1949	19.2	1919	8.0	1964	7.5	1977
3	6.0	1910	8.0	1985	3.8	1948	4.0	1964
4	5.0	1922	5.1	1946	9.0	1945	6.0	1965
5	5.0	1974	3.0	1904	2.0	1970	6.0	1921
6	9.0	1907	11.5	1929	12.0	1981	2.5	1906
7	12.5	1937	3.5	1901	3.0	2000	0.6	1975
8	6.0	1937	8.0	1939	15.0	1901	8.0	1978
9	5.8	1900	5.5	1959	11.0	1905	3.0	1944
10	9.5	1949	4.0	1985	2.5	1927	1.5	2001
11	21.8	1930	8.0	1923	8.0	1969+	2.0	1927
12	8.0	1930	2.8	1919	14.0	1922	5.0	1941
13	9.0	1930	5.0	1927	4.0	1990+	1.0	1967
14	4.0	1949	9.3	1932	6.0	1973	0.3	1976
15	3.0	1949	13.2	1932	2.0	1982+		
16	10.0	1917	3.0	1973	14.5	1930	5.0	1976
17	5.0	1935	3.0	1975+	8.0	1963	5.0	1917
18	11.3	1933	7.5	1917	7.0	1922	2.5	1917
19	3.5	1979	7.0	1990	5.0	1982	2.0	1968
20	6.0	1954	3.5	1971+	8.0	1991	2.0	1902
21	11.9	1933	6.0	1944	8.5	1991	5.0	1925
22	10.0	1982	5.5	1985	4.0	1991	2.5	1988
23	5.0	1902	4.0	1969+	6.0	1945	2.0	1942
24	9.0	1949	15.0	1987	4.0	1904	1.0	1980
25	7.0	1949	11.0	1987	13.0	1902		
26	10.0	1902	4.0	1987	4.5	1977	0.5	1951
27	14.0	1918	3.0	1951	4.5	1924	3.3	1932
28	2.0	2001+	8.0	1997	2.5	1909	1.0	1933
29	4.0	1902	0.0	2004+	9.0	1961	3.0	1906
30	2.0	1933+			0.5	1973	1.3	1915
31	15.0	1922			3.5	1949		
Month	21.8	1930	19.2	1919	15.0	1901	8.0	1978

GREATEST DAILY 24 HOUR SNOWFALL (INCHES)
(7 A.M. - 7 A.M.)
May 1898 - July 2007

Date	$\begin{gathered} \text { May } \\ 24 \mathrm{Hr} \\ \text { Snow } \end{gathered}$	Year	$\begin{aligned} & \text { June } \\ & 24 \text { Hr } \\ & \text { Snow } \end{aligned}$	Year	$\begin{gathered} \text { July } \\ 24 \text { Hr } \\ \text { Snow } \end{gathered}$	Year	$\begin{gathered} \text { August } \\ 24 \mathrm{Hr} \\ \text { Snow } \\ \hline \end{gathered}$	Year
1	3.0	1915						
2	3.0	1915						
3								
4	1.0	1950						
5								
6	1.5	1930						
7								
8								
9	1.0	1930						
10	3.0	1922						
11	4.7	1933						
12								
13								
14								
15								
16								
17								
18								
19								
20								
21								
22								
23								
24								
25								
26								
27								
28								
29								
30								
31								
Month	4.7	1933	0.0	ALL	0.0	ALL	0.0	ALL

GREATEST DAILY 24 HOUR SNOWFALL (INCHES)
 (7 A.M. - 7 A.M.)
 May 1898 - July 2007

Date	September 24 Hr Snow	Year	October 24 Hr Snow	Year	November 24 Hr Snow	Year	December 24 Hr Snow	Year
1					1.0	1961	2.5	1906
2							6.0	1906
3					4.5	1925	1.0	1944
4							4.0	1953
5							2.5	2004
6							7.0	1978
7							2.5	1926
8							6.5	1971
9					2.0	1946	7.5	1972
10					1.5	1946	14.5	1898
11					1.0	1982	4.1	1928
12					3.5	1972	9.4	1932
13					2.0	1947	10.0	1967
14					1.0	1922	11.0	1967
15			0.7	1980	9.0	1964	6.5	1915
16			0.5	1980	7.0	1964	2.5	1924+
17			0.8	1971			2.0	1949+
18			4.5	1908			3.0	1967
19			5.0	1949	3.0	1984	10.0	1967
20					13.0	1902	3.0	1968+
21			0.5	1920	4.0	1905	10.5	1909
22			1.0	1906	3.8	1931	6.0	1924
23					4.8	1940	4.0	1918
24					7.0	1906	3.0	1941
25					5.3	1918	7.5	1916
26					2.0	1983	3.0	1910
27					5.0	1909	4.0	1966
28					13.0	1919+	1.8	1935
29			2.0	1901	19.0	1933	9.1	1931
30			2.5	1974	8.5	1991	18.6	1915
31			1.0	1972			7.7	1915
Month	0.0	ALL	5.0	1949	19.0	1933	18.6	1915

+ Also occurred in prior years.

MAXIMUM MONTHLY SNOWFALL
WITH YEAR OF OCCURRENCE
(May 1898 - July 2007)

	Norma**	Amount**	Year
JANUARY	4.1	53.0	1949
		45.8	1930
		35.6	1937
		34.3	1933
		22.0	1922!
FEBRUARY	4.6	37.5	1932
		32.5	1987
		27.0	1919
		25.0	1901
		23.8	1939
MARCH	5.7	34.2	1973
		29.5	1991
		28.0	1952
		21.0	1930
		21.0	1922
APRIL	1.5	9.8	1965
		9.5	1977
		8.5	1917
		8.0	1978
		7.1	1906
MAY	0.0	6.0	1915
		4.7	1933
		3.0	1922
		2.5	1930
		1.0	1950
JUNE	0.0	0.0	ALL

* Monthly normals calculated from period 1971-2000.
** All amounts in inches.
! Also occurred in prior year(s).

MAXIMUM MONTHLY SNOWFALL WITH YEAR OF OCCURRENCE (May 1898 - July 2007)

	Normal*	Amount**	Year
JULY	0.0	0.0	ALL
AUGUST	0.0	0.0	ALL
SEPTEMBER	0.0	0.0	ALL
OCTOBER	0.2	5.0	1949
		4.5	1908
		2.5	1974
		2.3	1971
		2.0	1901
NOVEMBER	1.4	21.3	1906
		21.0	1933
		17.0	1902
		16.0	1964
		13.0	1919
DECEMBER	2.7	46.0	1967
		37.0	1915
		32.6	1932
		32.2	1931
		22.1	1909

* Monthly normals calculated from period 1971-2000.
** All amounts in inches.

FIRST AND LAST SNOWFALLS
 (1898 - 2007)

Average date of first measurable snowfall \qquad
Average date of last measurable snowfall.................................March 16
Average length of snowfall season.
118 days
Earliest date of first measurable snowfall........................October 15, 1980
Latest date of last measurable snowfall................................May 11, 1933

SEASONAL SNOWFALL (INCHES)

(1898-2007)

1899	32.0				
1900	5.8	1940	6.5	1980	16.2
1901	40.0	1941	16.3	1981	18.8
1902	44.0	1942	29.6	1982	29.4
1903	37.2	1943	2.4	1983	14.0
1904	10.5	1944	30.9	1984	5.0
1905	15.0	1945	26.2	1985	27.5
1906	32.6	1946	18.1	1986	7.5
1907	M	1947	5.5	1987	48.0
1908	M	1948	32.4	1988	20.5
1909	27.2	1949	69.3	1989	2.4
1910	42.6	1950	19.7	1990	22.5
1911	7.7	1951	30.1	1991	35.0
1912	2.4	1952	46.1	1992	14.3
1913	7.4	1953	20.0	1993	2.6
1914	0.0	1954	27.0	1994	6.5
1915	30.0	1955	19.0	1995	2.1
1916	53.7	1956	7.5	1996	2.5
1917	57.4	1957	8.0	1997	12.1
1918	24.0	1958	2.3	1998	14.1
1919	45.7	1959	10.5	1999	0.5
1920	29.6	1960	11.5	2000	10.5
1921	17.5	1961	10.0	2001	24.5
1922	54.0	1962	5.5	2002	2.0
1923	25.0	1963	10.5	2003	6.5
1924	20.0	1964	21.0	2004	5.0
1925	20.3	1965	34.6	2005	10.5
1926	10.7	1966	26.0	2006	12.3
1927	28.0	1967	14.2	2007	2.4
1928	8.5	1968	52.0		
1929	58.2	1969	37.0		
1930	71.8	1970	8.8		
1931	4.3	1971	16.3		
1932	97.4	1972	14.6		
1933	77.6	1973	60.7		
1934	24.3	1974	28.5		
1935	26.0	1975	25.6		
1936	12.3	1976	23.5		
1937	52.8	1977	26.1	26.8	
1938	7.0	1979	53.0		
1939	44.7				

Snowfall is for the period July through June ending the year indicated.

15 SNOWIEST YEARS

(July 1898 - June 2005)

Rank	Amount*	Year
1	97.4	1931-1932
2	77.6	1932-1933
3	71.8	1929-1930
4	69.3	1948-1949
5	60.7	1972-1973
6	58.2	1928-1929
7	57.4	1916-1917
8	54.0	1921-1922
9	53.7	1915-1916
10	53.0	1978-1979
11	52.8	1936-1937
12	52.0	1967-1968
13	48.0	1986-1987
14	46.1	1951-1952
15	45.7	1918-1919

15 LEAST SNOWY YEARS
(July 1898 - June 2005)

Rank	Amount*	Year
1		
2	0.0	$1913-1914$
3	0.5	$1998-1999$
4	2.0	$2001-2002$
5	2.1	$1994-1995$
6	2.3	$1957-1958$
7	2.4	$2006-2007$
8	2.4	$1988-1989$
9	2.4	$1942-1943$
10	2.4	$1911-1912$
11	2.5	$1995-1996$
12	2.6	$1992-1993$
13	4.3	$1930-1931$
14	5.0	$2003-2004$
15	5.0	$1983-1984$
	5.5	$1961-1962+$

* All amounts in inches.
+ Also occurred in prior years.

AVERAGE YEARLY SNOWFALL: 20.4 INCHES*

* Based on the 30 year average yearly snowfall from 1971-2000.

GREATEST NUMBER OF DAYS WITH SNOWFALL OF ONE INCH OR MORE AND THREE INCHES OR MORE BY MONTH AND YEAR OF OCCURRENCE

(June 1950 - July 2007)

Month	One Inch or more			Month	Three Inches or more		
	Average \# of days	Greatest \# of days	Year		Average \# of days	Greatest \# of days	Year
January	1.6	6	1955	January	0.5	4	1979
February	1.4	4	1998+	February	0.7	4	1985+
March	1.4	10	1973	March	0.8	5	1973
April	0.5	2	1988+	April	0.1	2	1965
May	0.1	0		May	0	0	
June	0	0		June	0	0	
July	0	0		July	0	0	
August	0	0		August	0	0	
September	0	0		September	0	0	
October	0.1	1	1974+	October	0	0	
November	0.5	3	1952	November	0.2	2	1965+
December	1.3	8	1967	December	0.4	5	1967
Annual	6.8!	18	1973	Annual	$2.7!$	9	1979+

GREATEST NUMBER OF DAYS WITH SNOWFALL OF SIX INCHES OR MORE BY MONTH AND YEAR OF OCCURRENCE

(June 1950 - July 2007)

	Six Inches or more		
Month	Average \# of days	Greatest \# of days	Year
January	0.3	1	$2001+$
February	0.2	2	1987
March	0.2	2	$1991+$
April	0	1	$1978+$
May	0	0	
June	0	0	
July	0	0	
August	0	0	
September	0	0	
October	0	0	
November	0.1	2	1965
December	0.2	4	1968
Annual	$1.0!$	4	1968

+ Also occurred in prior years.
! May be different than sum of average number of days due to rounding.

SNOWIEST CALENDAR DAYS

(May 1898 - July 2007)

Rank	Amount*	Date
1	21.8	January 11, 1930
2	19.2	February 2, 1919
3	19.0	November 29, 1933
4	18.6	December 30, 1915
5	15.0	February 24, 1987
5	15.0	January 31, 1922
5	15.0	March 8, 1901
8	14.5	March 16, 1930
8	14.5	December 10, 1898
10	14.0	March 12, 1922
10	14.0	January 27, 1918

SNOWIEST CONSECUTIVE TWO CALENDAR DAYS
 (May 1898 - July 2007)

Rank	Amount *	Dates
1	29.8	January $11-12,1930$
2	26.3	December $30-31,1915$
3	26.0	February $24-25,1987$
4	22.5	February $14-15,1932$
4	22.5	January $10-11,1930$
6	21.4	December 29-30, 1915
7	21.0	December $14-15,1967$
7	21.0	November $29-30,1933$
9	20.5	March $16-17,1930$
10	18.5	January $7-8,1937$
11	17.7	December $9-10,1931$
12	17.0	January $12-13,1930$
13	16.5	March 20-21,1991
14	16.4	December $12-13,1932$

[^1]
EXCESSIVE SNOWSTORMS*
 (May 1898 - July 2007)

(Tabulated only for storms* with 20 inches or greater)

	Period	Total Snow	Highest Daily Total
4	January 10 - January 13, 1930	39.5	21.8
5	December 12 - December 16, 1967	31.0	11.0
6	February 14 - February 19, 1932	31.0	13.2
3	February 24 - February 26, 1987	30.0	15.0
3	December 29 - December 31, 1915	29.1	18.6
6	December 9 - December 14, 1932	28.7	9.4
2	November 29 - November 30, 1933	21.0	19.0
3	March 16 - March 18, 1930	21.0	14.5
3	March 20 - March 22, 1991	20.5	8.5
3	January 23 - January 25, 1949	20.5	9.0

* An excessive snowstorm has been defined as a period of time where measurable snowfall occurs on consecutive days, leading to 20 inches or greater accumulation by the time the snowfall ends.

AVERAGE NUMBER OF DAYS WITH SNOWFALL OF 1 INCH OR MORE (1971-2000)

JANUARY	1.3
FEBRUARY	1.2
MARCH	1.7
APRIL	0.5
MAY	0
JUNE	0
JULY	0
AUGUST	0
SEPTEMBER	0
OCTOBER	0.1
NOVEMBER	0.4
DECEMBER	1.1
ANNUAL	6.1^{*}

* Annual average differs from sum of monthly averages due to rounding.

IV. MISCELLANEOUS INFORMATION

NORMAL HEATING DEGREE DAYS

(1971-2000)
JANUARY 866

FEBRUARY 703
MARCH 657
APRIL 449
MAY 249
JUNE 54
JULY 1
AUGUST 8
SEPTEMBER 65
OCTOBER 313
NOVEMBER 629
DECEMBER 855
ANNUAL 4849

NORMAL COOLING DEGREE DAYS
 (1971 - 2000)

JANUARY	0
FEBRUARY	0
MARCH	0
APRIL	5
MAY	42
JUNE	141
JULY	260
AUGUST	205
SEPTEMBER	78
OCTOBER	11
NOVEMBER	0
DECEMBER	0

ANNUAL 742
A degree day is a measure of the departure of the average daily temperature from 65 degrees. Each degree that the daily temperature is below 65 degrees is equal to one heating degree day. Each degree that the daily temperature is above 65 degrees is equal to one cooling degree day. For example, if the average temperature on a particular day was 55 degrees, the heating degree days would then be 65-55=10 heating degree days. If the average daily temperature was 72 degrees, the cooling degree days would then be 72-65=7 cooling degree days. Each day of the month would be calculated in the same fashion, with negative differences counted as zero.

Heating and cooling degree days are useful in the computation of fuel and power consumption and are used by utility companies to determine heating and cooling requirements.

MONSOON STATISTICS

(1948 - 2006)
(based on Phoenix Official Monsoon Data)
Average Starting Date of the Monsoon. \qquad .July 7
Average Ending Date of Monsoon...September 13
Based on criteria of three consecutive days with average dew point temperatures in Phoenix of 55 degrees or greater.

EARLIEST AND LATEST START DATES FOR THE MONSOON SEASON (1948-2007)
(based on Phoenix Official Monsoon Data)
\qquad
Earliest Start Date
June 17, 2000
June 19, 1958
June 21, 2001
June 23, 1954
June 25, 1999
June 25, 1984
June 27, 1966
June 27, 1962
June 28, 1959
June 29, 1990!

Latest Start Date
July 25, 1987
July 21, 1997
July 21, 1960
July 19, 2007
July 19, 1980
July 19, 1963
July 18, 2005
July 18, 2003
July 17, 1994
July 17, 1979

EARLIEST AND LATEST END DATES FOR THE MONSOON SEASON
(1948 - 2006)
(based on Phoenix Official Monsoon Data)

Earliest End Date
August 19, 2004
August 19, 1979
August 22, 1973
August 22, 1962
August 27, 1956
August 30, 1957
August 31, 2000
August 31, 1953
September 1, 1948
September 2, 1988!

Latest End Date
October 10, 1983
October 10, 1977
October 8, 1966
October 5, 1984
September 28, 1976
September 28, 1974
September 26, 1982
September 25, 1990
September 24, 1981
September 24, 1952
! Also occurred in prior year(s).

NORMALS PRESCOTT, AZ

1971 to 2000

$$
\begin{array}{lr}
\text { Latitude: } & 34^{\circ} 34^{\prime} \mathrm{N} \\
\text { Longitude: } & 112^{\circ} 25^{\prime} \mathrm{W} \\
\text { Elevation: } & 5205 \text { Feet }
\end{array}
$$

The daily values presented in these tables are not simple means of observed daily values. They are interpolated using a much less variable set of monthly normals calculated using the natural spline function.

In leap years, use the February 28th values for the 29th, and adjust the heating degree monthly totals accordingly.

Daily precipitation normals were also computed using the natural spline function and do not exhibit the typical daily random fluctuations. However, they may be used to compute normal precipitation over time intervals.

NORMALS PRESCOTT, AZ

1971 to 2000

Latitude: $\quad 34^{\circ} 34^{\prime} \mathrm{N}$
Longitude: $112^{\circ} 25^{\prime}$ W
Elevation: 5205 Feet

JANUARY

	TEMPERATURE				DEGREE DAYS	
DATE	MAX	MIN	AVG	HDD	CDD	DAILTATION
1	50	23	36	29	0	0.04
2	50	23	36	29	0	0.04
3	50	23	36	29	0	0.04
4	50	23	36	29	0	0.04
5	50	23	36	29	0	0.05
6	50	23	37	29	0	0.05
7	50	23	37	28	0	0.05
8	50	23	37	28	0	0.05
9	50	23	37	28	0	0.05
10	50	23	37	28	0	0.05
11	50	23	37	28	0	0.05
12	51	23	37	28	0	0.05
13	51	23	37	28	0	0.05
14	51	23	37	28	0	0.05
15	51	23	37	28	0	0.05
16	51	23	37	28	0	0.05
17	51	23	37	28	0	0.05
18	51	23	37	28	0	0.05
19	51	23	37	28	0	0.05
20	51	23	37	28	0	0.05
21	51	23	37	28	0	0.05
22	51	23	37	28	0	0.05
23	51	24	37	28	0	0.05
24	52	24	38	27	0	0.05
25	52	24	38	27	0	0.06
26	52	24	38	27	0	0.06
27	52	24	38	27	0	0.06
28	52	24	38	27	0	0.06
29	52	24	38	27	0	0.06
30	52	24	38	27	0	0.06
31	52	24	38	27	0	0.06
TOTAL				866	0	1.58
AVG	50.9	23.3	37.1			
						0

NORMALS PRESCOTT, AZ

1971 to 2000

$$
\begin{array}{lr}
\text { Latitude: } & 34^{\circ} 34^{\prime} \mathrm{N} \\
\text { Longitude: } & 112^{\circ} 25^{\prime} \mathrm{W} \\
\text { Elevation: } & 5205 \text { Feet }
\end{array}
$$

FEBRUARY

	TEMPERATURE			DEGREE DAYS		PRECIPITATION
DATE	MAX	MIN	AVG	HDD	CDD	DAILY
1	53	24	38	27	0	0.06
2	53	24	38	27	0	0.06
3	53	24	39	26	0	0.06
4	53	25	39	26	0	0.06
5	53	25	39	26	0	0.06
6	53	25	39	26	0	0.06
7	53	25	39	26	0	0.06
8	53	25	39	26	0	0.06
9	54	25	39	26	0	0.06
10	54	25	39	26	0	0.07
11	54	25	40	25	0	0.07
12	54	25	40	25	0	0.07
13	54	25	40	25	0	0.07
14	54	25	40	25	0	0.07
15	54	26	40	25	0	0.07
16	54	26	40	25	0	0.07
17	55	26	40	25	0	0.07
18	55	26	40	25	0	0.07
19	55	26	40	25	0	0.07
20	55	26	41	24	0	0.07
21	55	26	41	24	0	0.07
22	55	26	41	24	0	0.07
23	55	27	41	24	0	0.07
24	55	27	41	24	0	0.07
25	55	27	41	24	0	0.07
26	55	27	41	24	0	0.07
27	56	27	41	24	0	0.07
28	56	27	41	24	0	0.07
TOTAL				703	0	1.87
AVG	54.2	25.6	39.9			

NORMALS
 PRESCOTT, AZ

1971 to 2000

Latitude: $\quad 34^{\circ} 34^{\prime} \mathrm{N}$
Longitude: $112^{\circ} 25^{\prime}$ W
Elevation: 5205 Feet

MARCH

	TEMPERATURE			DEGREE DAYS		PRECIPITATION
DATE	MAX	MIN	AVG	HDD	CDD	DAILY
1	56	27	42	23	0	0.07
2	56	28	42	23	0	0.07
3	56	28	42	23	0	0.07
4	56	28	42	23	0	0.07
5	56	28	42	23	0	0.07
6	56	28	42	23	0	0.07
7	56	28	42	23	0	0.07
8	56	28	42	23	0	0.07
9	57	29	43	22	0	0.07
10	57	29	43	22	0	0.07
11	57	29	43	22	0	0.07
12	57	29	43	22	0	0.07
13	57	29	43	22	0	0.07
14	57	29	43	22	0	0.07
15	57	30	43	22	0	0.07
16	58	30	44	21	0	0.06
17	58	30	44	21	0	0.06
18	58	30	44	21	0	0.06
19	58	30	44	21	0	0.06
20	58	30	44	21	0	0.06
21	59	30	45	20	0	0.06
22	59	31	45	20	0	0.06
23	59	31	45	20	0	0.06
24	59	31	45	20	0	0.05
25	59	31	45	20	0	0.05
26	60	31	45	20	0	0.05
27	60	31	46	19	0	0.05
28	60	32	46	19	0	0.05
29	61	32	46	19	0	0.05
30	61	32	46	19	0	0.04
31	61	32	47	18	0	0.04
TOTAL				657	0	1.91
AVG	57.9	29.7	43.8			
						0

NORMALS
 PRESCOTT, AZ

1971 to 2000
Latitude: $\quad 34^{\circ} 34^{\prime} \mathrm{N}$
Longitude: $112^{\circ} 25^{\prime} \mathrm{W}$
Elevation: 5205 Feet

APRIL								
TEMPERATURE								DEGREE DAYS
:---:	PRECIPITATION							

NORMALS

PRESCOTT, AZ

1971 to 2000
Latitude: $\quad 34^{\circ} 34^{\prime} \mathrm{N}$ Longitude: $112^{\circ} 25^{\prime} \mathrm{W}$ Elevation: 5205 Feet

MAY

DATE	TEMPERATURE			DEGREE DAYS		PRECIPITATION DAILY
	MAX	MIN	AVG	HDD	CDD	
1	69	39	54	11	0	0.02
2	69	39	54	11	0	0.02
3	70	39	55	11	1	0.02
4	70	40	55	11	1	0.02
5	70	40	55	11	1	0.02
6	70	40	55	10	1	0.02
7	71	40	56	10	1	0.03
8	71	41	56	10	1	0.03
9	71	41	56	10	1	0.03
10	72	41	56	9	1	0.03
11	72	41	57	9	1	0.03
12	72	42	57	9	1	0.03
13	73	42	57	9	1	0.03
14	73	42	58	9	1	0.02
15	73	43	58	8	1	0.02
16	74	43	58	8	1	0.02
17	74	43	58	8	1	0.02
18	74	43	59	8	1	0.02
19	75	44	59	7	1	0.02
20	75	44	59	7	2	0.02
21	75	44	60	7	2	0.02
22	76	44	60	7	2	0.02
23	76	45	60	6	2	0.02
24	76	45	61	6	2	0.02
25	77	45	61	6	2	0.02
26	77	45	61	6	2	0.02
27	78	46	62	5	2	0.01
28	78	46	62	5	2	0.01
29	79	46	62	5	2	0.01
30	79	47	63	5	2	0.01
31	79	47	63	5	3	0.01
TOTAL				249	42	0.64
AVG	73.8	42.8	58.3			

NORMALS

PRESCOTT, AZ

1971 to 2000
Latitude: $\quad 34^{\circ} 34^{\prime} \mathrm{N}$
Longitude: $112^{\circ} 25^{\prime} \mathrm{W}$
Elevation: 5205 Feet

JUNE

| | TEMPERATURE | | | | DEGREE DAYS | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | PRECIPITATION

NORMALS
 PRESCOTT, AZ

1971 to 2000

Latitude: $\quad 34^{\circ} 34^{\prime} \mathrm{N}$
Longitude: $112^{\circ} 25^{\prime} \mathrm{W}$
Elevation: 5205 Feet

JULY

	TEMPERATURE			DEGREE DAYS		PRECIPITATION
DATE	MAX	MIN	AVG	HDD	CDD	DAILY
1	88	56	72	1	7	0.05
2	88	56	72	0	7	0.06
3	88	57	72	0	7	0.06
4	88	57	72	0	8	0.06
5	88	57	73	0	8	0.07
6	88	57	73	0	8	0.07
7	88	58	73	0	8	0.07
8	88	58	73	0	8	0.08
9	88	58	73	0	8	0.08
10	88	58	73	0	8	0.08
11	89	58	73	0	8	0.09
12	89	58	73	0	8	0.09
13	89	59	74	0	8	0.09
14	89	59	74	0	9	0.09
15	89	59	74	0	9	0.10
16	89	59	74	0	9	0.10
17	89	59	74	0	9	0.10
18	89	59	74	0	9	0.10
19	89	59	74	0	9	0.10
20	88	59	74	0	9	0.11
21	88	59	74	0	9	0.11
22	88	59	74	0	9	0.11
23	88	60	74	0	9	0.11
24	88	60	74	0	9	0.11
25	88	60	74	0	9	0.11
26	88	59	74	0	9	0.11
27	88	59	74	0	9	0.11
28	88	59	74	0	9	0.11
29	88	59	74	0	8	0.11
30	88	59	73	0	8	0.11
31	88	59	73	0	8	0.12
TOTAL				1	260	2.87
AVG	88.3	58.5	73.4			
					9	9

NORMALS
 PRESCOTT, AZ

1971 to 2000
Latitude: $\quad 34^{\circ} 34^{\prime} \mathrm{N}$
Longitude: $112^{\circ} 25^{\prime} \mathrm{W}$
Elevation: 5205 Feet

AUGUST

	TEMPERATURE				DEGREE DAYS	
DRRECIPITATION						
DATE	MAX	MIN	AVG	HDD	CDD	DAILY
1	88	59	73	0	8	0.12
2	87	59	73	0	8	0.11
3	87	59	73	0	8	0.11
4	87	59	73	0	8	0.11
5	87	59	73	0	8	0.11
6	87	59	73	0	8	0.11
7	87	58	73	0	8	0.11
8	87	58	73	0	8	0.11
9	87	58	72	0	8	0.11
10	86	58	72	0	7	0.11
11	86	58	72	0	7	0.11
12	86	58	72	0	7	0.11
13	86	58	72	0	7	0.11
14	86	57	72	0	7	0.11
15	86	57	72	0	7	0.11
16	86	57	72	0	7	0.11
17	86	57	71	0	7	0.11
18	86	57	71	0	6	0.11
19	85	57	71	0	6	0.11
20	85	56	71	0	6	0.11
21	85	56	71	0	6	0.10
22	85	56	71	0	6	0.10
23	85	56	70	0	6	0.10
24	85	56	70	1	6	0.10
25	85	56	70	1	5	0.10
26	84	55	70	1	5	0.10
27	84	55	70	1	5	0.10
28	84	55	70	1	5	0.10
29	84	55	69	1	5	0.09
30	84	55	69	1	5	0.09
31	84	54	69	1	5	0.09
TOTAL				8	205	3.28
AVG	85.7	57.0	71.4			

NORMALS PRESCOTT, AZ

1971 to 2000

Latitude: $\quad 34^{\circ} 34^{\prime} \mathrm{N}$
Longitude: $112^{\circ} 25^{\prime}$ W
Elevation: 5205 Feet

SEPTEMBER

| | TEMPERATURE | | | | DEGREE DAYS | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | PRECIPITATION

NORMALS
 PRESCOTT, AZ

1971 to 2000
Latitude: $\quad 34^{\circ} 34^{\prime} \mathrm{N}$
Longitude: $112^{\circ} 25^{\prime}$ W
Elevation: 5205 Feet

OCTOBER

	TEMPERATURE			DEGREE DAYS		PRECIPITATION
DATE	MAX	MIN	AVG	HDD	CDD	DAILY
1	77	45	61	5	1	0.05
2	76	45	61	5	1	0.05
3	76	44	60	6	1	0.05
4	76	44	60	6	1	0.05
5	75	43	59	6	1	0.04
6	75	43	59	7	1	0.04
7	75	43	59	7	1	0.04
8	74	42	58	7	1	0.04
9	74	42	58	8	1	0.04
10	74	41	58	8	1	0.04
11	73	41	57	8	1	0.04
12	73	41	57	9	0	0.04
13	73	40	57	9	0	0.04
14	72	40	56	9	0	0.04
15	72	39	56	10	0	0.04
16	72	39	55	10	0	0.04
17	71	39	55	10	0	0.04
18	71	38	55	11	0	0.04
19	70	38	54	11	0	0.04
20	70	38	54	11	0	0.04
21	70	37	53	12	0	0.04
22	69	37	53	12	0	0.04
23	69	36	53	12	0	0.04
24	68	36	52	13	0	0.04
25	68	36	52	13	0	0.04
26	68	35	51	14	0	0.04
27	67	35	51	14	0	0.04
28	67	34	51	14	0	0.04
29	66	34	50	15	0	0.04
30	66	34	50	15	0	0.04
31	66	33	49	16	0	0.04
TOTAL				313	11	1.28
AVG	71.4	39.1	55.3			

NORMALS PRESCOTT, AZ

1971 to 2000

$$
\begin{array}{lr}
\text { Latitude: } & 34^{\circ} 34^{\prime} \mathrm{N} \\
\text { Longitude: } & 112^{\circ} 25^{\prime} \mathrm{W} \\
\text { Elevation: } & 5205 \text { Feet }
\end{array}
$$

NOVEMBER

DATE	TEMPERATURE			DEGREE DAYS		PRECIPITATION DAILY
	MAX	MIN	AVG	HDD	CDD	
1	65	33	49	16	0	0.04
2	65	33	49	16	0	0.04
3	64	32	48	17	0	0.04
4	64	32	48	17	0	0.04
5	63	32	48	18	0	0.04
6	63	31	47	18	0	0.04
7	63	31	47	18	0	0.04
8	62	30	46	19	0	0.04
9	62	30	46	19	0	0.04
10	61	30	46	19	0	0.04
11	61	30	45	20	0	0.04
12	61	29	45	20	0	0.04
13	60	29	45	20	0	0.04
14	60	29	44	21	0	0.04
15	60	28	44	21	0	0.04
16	59	28	44	21	0	0.04
17	59	28	43	22	0	0.04
18	59	28	43	22	0	0.05
19	58	27	43	22	0	0.05
20	58	27	43	23	0	0.05
21	57	27	42	23	0	0.05
22	57	27	42	23	0	0.05
23	57	26	42	23	0	0.04
24	57	26	41	24	0	0.04
25	56	26	41	24	0	0.04
26	56	26	41	24	0	0.04
27	56	26	41	24	0	0.04
28	55	25	40	25	0	0.04
29	55	25	40	25	0	0.04
30	55	25	40	25	0	0.04
TOTAL				629	0	1.25
AVG	59.6	28.5	44.1			

NORMALS PRESCOTT, AZ

1971 to 2000

$\begin{array}{lr}\text { Latitude: } \quad 34^{\circ} 34^{\prime} \mathrm{N} \\ \text { Longitude: } & 112^{\circ} 25^{\prime} \mathrm{W} \\ \text { Elevation: } & 5205 \text { Feet }\end{array}$
DECEMBER

DATE	TEMPERATURE			DEGREE DAYS		PRECIPITATION DAILY
	MAX	MIN	AVG	HDD	CDD	
1	54	25	40	25	0	0.04
2	54	25	39	26	0	0.04
3	54	24	39	26	0	0.04
4	54	24	39	26	0	0.04
5	53	24	39	26	0	0.04
6	53	24	39	26	0	0.04
7	53	24	39	27	0	0.04
8	53	24	38	27	0	0.04
9	53	24	38	27	0	0.04
10	52	23	38	27	0	0.04
11	52	23	38	27	0	0.04
12	52	23	38	27	0	0.04
13	52	23	38	27	0	0.04
14	52	23	37	28	0	0.04
15	51	23	37	28	0	0.04
16	51	23	37	28	0	0.04
17	51	23	37	28	0	0.04
18	51	23	37	28	0	0.04
19	51	23	37	28	0	0.04
20	51	23	37	28	0	0.04
21	51	23	37	28	0	0.04
22	51	23	37	28	0	0.04
23	51	23	37	28	0	0.04
24	50	23	37	28	0	0.04
25	50	23	37	29	0	0.04
26	50	23	36	29	0	0.04
27	50	22	36	29	0	0.04
28	50	22	36	29	0	0.05
29	50	23	36	29	0	0.05
30	50	23	36	29	0	0.05
31	50	23	36	29	0	0.05
TOTAL	51.6	23.3	37.5	855	0	1.28

PRESCOTT, ARIZONA
Rise and Set for the Sun for 2008
Mountain Standard Time

	Jan		Feb		Mar		Apr		May		Jun		Jul		Aug		
Day	Rise	Set	Rise														
	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m
1	737	1730	728	1759	658	1826	616	1851	539	1915	518	1938	521	1947	541	1931	603
2	737	1731	727	1800	657	1827	615	1852	538	1916	518	1938	522	1946	541	1930	604
3	737	1732	727	1801	656	1828	614	1853	537	1917	518	1939	522	1946	542	1929	605
4	737	1732	726	1802	654	1829	612	1854	536	1917	517	1939	522	1946	543	1928	606
5	737	1733	725	1803	653	1830	611	1855	535	1918	517	1940	523	1946	544	1928	606
6	737	1734	724	1804	652	1831	609	1855	534	1919	517	1941	523	1946	544	1927	607
7	737	1735	723	1805	651	1832	608	1856	534	1920	517	1941	524	1946	545	1926	608
8	737	1736	723	1806	649	1832	607	1857	533	1921	517	1942	525	1945	546	1925	608
9	737	1737	722	1807	648	1833	606	1858	532	1921	517	1942	525	1945	547	1923	609
10	737	1738	721	1808	647	1834	604	1858	531	1922	517	1942	526	1945	547	1922	610
11	737	1739	720	1809	645	1835	603	1859	530	1923	517	1943	526	1944	548	1921	610
12	737	1739	719	1810	644	1836	602	1900	529	1924	517	1943	527	1944	549	1920	611
13	737	1740	718	1811	642	1836	600	1901	528	1924	517	1944	528	1944	550	1919	612
14	737	1741	717	1812	641	1837	559	1902	528	1925	517	1944	528	1943	550	1918	613
15	737	1742	716	1813	640	1838	558	1902	527	1926	517	1944	529	1943	551	1917	613
16	736	1743	715	1814	638	1839	557	1903	526	1927	517	1945	529	1942	552	1916	614
17	736	1744	714	1815	637	1840	555	1904	526	1928	517	1945	530	1942	553	1915	615
18	736	1745	713	1816	636	1840	554	1905	525	1928	517	1945	531	1941	553	1913	615
19	735	1746	711	1817	634	1841	553	1905	524	1929	517	1946	531	1941	554	1912	616
20	735	1747	710	1817	633	1842	552	1906	524	1930	517	1946	532	1940	555	1911	617
21	735	1748	709	1818	631	1843	550	1907	523	1930	518	1946	533	1940	555	1910	618
22	734	1749	708	1819	630	1844	549	1908	522	1931	518	1946	533	1939	556	1908	618
23	734	1750	707	1820	629	1844	548	1909	522	1932	518	1946	534	1938	557	1907	619
24	733	1751	706	1821	627	1845	547	1909	521	1933	518	1946	535	1938	558	1906	620
25	733	1752	704	1822	626	1846	546	1910	521	1933	519	1946	536	1937	558	1905	620
26	732	1753	703	1823	625	1847	545	1911	520	1934	519	1947	536	1936	559	1903	621
27	731	1754	702	1824	623	1848	544	1912	520	1935	519	1947	537	1935	600	1902	622
28	731	1755	701	1825	622	1848	542	1913	520	1935	520	1947	538	1935	601	1901	623
29	730	1756	700	1826	620	1849	541	1913	519	1936	520	1947	538	1934	601	1859	623
30	730	1757			619	1850	540	1914	519	1937	520	1947	539	1933	602	1858	624
31	729	1758			618	1851			518	1937			540	1932	603	1857	

NOAA TECHNICAL MEMORANDA National Weather Service, Western Region Subseries

The National Weather Service (NWS) Western Region (WR) Subseries provides an informal medium for the documentation and quick dissemination of results not appropriate, or not yet ready, for formal publication. The series is used to report on work in progress, to describe technical procedures and practices, or to relate progress to a limited audience. These Technical Memoranda will report on investigations devoted primarily to regional and local problems of interest mainly to personnel, and hence will not be widely distributed.

Papers 1 to 25 are in the former series, ESSA Technical Memoranda, Western Region Technical Memoranda (WRTM); papers 24 to 59 are in the former series, ESSA Technical Memoranda, Weather Bureau Technica Memoranda (WBTM). Beginning with 60, the papers are part of the series, NOAA Technical Memoranda NWS. Out-of-print memoranda are not listed.

Papers 2 to 22, except for 5 (revised edition), are available from the National Weather Service Western Region, Scientific Services Division, 125 South State Street - Rm 1311, Salt Lake City, Utah 84138-1102. Paper 5 (revised edition), and all others beginning with 25 are available from the National Technical Information Service, U.S. Department of Commerce, Sills Building, 5285 Port Royal Road, Springfield, Virginia 22161. Prices vary for all paper copies; microfiche are $\$ 3.50$. Order by accession number shown in parentheses at end of each entry.

ESSA Technical Memoranda (WRTM)

 Miller, December 19653 Western Region Pre- and Post-FP-3 Program, December 1, 1965, to February 20, 1966. Edward D. Diemer, March 1966.
5 Station Descriptions of Local Effects on Synoptic Weather Patterns Philip Williams, Jr., April 1966 (Revised November 1967, Octobe 1969). (PB-17800)

8 Interpreting the RAREP. Herbert P. Benner, May 1966 (Revised January 1967).
Some Electrical Processes in the Atmosphere. J. Latham, June 1966 17 A Digitalized Summary of Radar Echoes within 100 Miles of Sacramento, California. J. A. Youngberg and L. B. Overaas, December 1966
21 An Objective Aid for Forecasting the End of East Winds in the Columbia Gorge, July through October. D. John Coparanis, Apri 1967.

22 Derivation of Radar Horizons in Mountainous Terrain. Roger G. Pappas, April 1967.

ESSA Technical Memoranda, Weather Bureau Technical Memoranda

 (WBTM)Verification of Operation Probability of Precipitation Forecasts, April 1966-March 1967. W. W. Dickey, October 1967. (PB-176240)
26 A Study of Winds in the Lake Mead Recreation Area. R. P. Augulis January 1968. (PB-177830)
28 Weather Extremes. R. J. Schmidli, April 1968 (Revised March 1986). (PB86 177672/AS). (Revised October 1991 - PB92-115062/AS)
9 Small-Scale Analysis and Prediction. Philip Williams, Jr., May 1968 (PB178425)
30 Numerical Weather Prediction and Synoptic Meteorology. CPT Thomas D. Murphy, USAF, May 1968. (AD 673365)
31 Precipitation Detection Probabilities by Salt Lake ARTC Radars Robert K. Belesky, July 1968. (PB 179084)
32 Probability Forecasting--A Problem Analysis with Reference to the Portland Fire Weather District. Harold S. Ayer, July 1968. (PB 179289)

36 Temperature Trends in Sacramento--Another Heat Island. Anthony D Lentini, February 1969. (PB 183055)
7 Disposal of Logging Residues Without Damage to Air Quality. Owen P. Cramer, March 1969. (PB 183057)

39 Upper-Air Lows Over Northwestern United States. A.L. Jacobson April 1969. PB 184296)
40 The Man-Machine Mix in Applied Weather Forecasting in the 1970s L.W. Snellman, August 1969. (PB 185068)

3 Forecasting Maximum Temperatures at Helena, Montana. David E. Olsen, October 1969. (PB 185762)
44 Estimated Return Periods for Short-Duration Precipitation in Arizona Paul C. Kangieser, October 1969. (PB 187763)
46 Applications of the Net Radiometer to Short-Range Fog and Stratus Forecasting at Eugene, Oregon. L. Yee and E. Bates, December 1969. (PB 190476)

47 Statistical Analysis as a Flood Routing Tool. Robert J.C. Burnash December 1969. (PB 188744)
48 Tsunami. Richard P. Augulis, February 1970. (PB 190157)
49 Predicting Precipitation Type. Robert J.C. Burnash and Floyd E. Hug, March 1970. (PB 190962)
50 Statistical Report on Aeroallergens (Pollens and Molds) Fort Huachuca, Arizona, 1969. Wayne S. Johnson, April 1970. (PB 191743)

51 Western Region Sea State and Surf Forecaster's Manual. Gordon C Shields and Gerald B. Burdwell, July 1970. (PB 193102)
52 Sacramento Weather Radar Climatology. R.G. Pappas and C. M Veliquette, July 1970. (PB 193347) Precipitation. Barry B. Aronovitch, August 1970
5 Application of the SSARR Model to a Basin without Discharge Record Vail Schermerhorn and Donal W. Kuehl, August 1970. (PB 194394)
56 Areal Coverage of Precipitation in Northwestern Utah. Philip Williams Jr., and Werner J. Heck, September 1970. (PB 194389)
57 Preliminary Report on Agricultural Field Burning vs. Atmospheric Visibility in the Willamette Valley of Oregon. Earl M. Bates and David O. Chilcote, September 1970. (PB 194710) Air Pollution by Jet Aircraft at Seattle-Taco
Application of PE Model Forecast Parameters to Local-Area Forecasting. Leonard W. Snellman, October 1970. (COM 71 00016) Arthur W. Fritz, October 1970. (COM 71 00120)
. 700-mb Warm Air Advection as a Forecasting Tool for Montana and Northern Idaho. Norris E. Woerner, February 1971. (COM 71 00349) 64 Wind and Weather Regimes at Great Falls, Montana. Warren B. Price, March 1971
5 Climate of Sacramento, California. Laura Masters-Bevan. NWSO Sacramento, November 1998 (6 ${ }^{\text {th }}$ Revision. (PB99-118424) A Preliminary Report on Correlation of ARTCC Radar Echoes and Precipitation. Wilbur K. Hall, June 1971. (COM 71 00829) August 1971. (COM 71 00956)
71 Western Region Synoptic Analysis-Problems and Methods. Philip Williams, Jr., February 1972. (COM 72 10433)
74 Thunderstorms and Hail Days Probabilities in Nevada. Clarence M. Sakamoto, April 1972. (COM 72 10554)
75 A Study of the Low Level Jet Stream of the San Joaquin Valley Ronald A. Willis and Philip Williams, Jr., May 1972. (COM 72 10707)
76 Monthly Climatological Charts of the Behavior of Fog and Low Stratus at Los Angeles International Airport. Donald M. Gales, July 1972. (COM 72 11140)
77 A Study of Radar Echo Distribution in Arizona During July and August. John E. Hales, Jr., July 1972. (COM 72 11136)
78 Forecasting Precipitation at Bakersfield, California, Using Pressure Gradient Vectors. Earl T. Riddiough, July 1972. (COM 72 11146)
79 Climate of Stockton, California. Robert C. Nelson, July 1972. (COM 72 10920)
80 Estimation of Number of Days Above or Below Selected Temperatures. Clarence M. Sakamoto, October 1972. (COM 72 10021)

81 An Aid for Forecasting Summer Maximum Temperatures at Seattle, Washington. Edgar G. Johnson, November 1972. (COM 73 10150)
82 Flash Flood Forecasting and Warning Program in the Western Region. Philip Williams, Jr., Chester L. Glenn, and Roland L. Raetz, December 1972, (Revised March 1978). (COM 73 10251)
83 A comparison of Manual and Semiautomatic Methods of Digitizing Analog Wind Records. Glenn E. Rasch, March 1973. (COM 73 10669)

86 Conditional Probabilities for Sequences of Wet Days at Phoenix Arizona. Paul C. Kangieser, June 1973. (COM 73 11264)
87 A Refinement of the Use of K-Values in Forecasting Thunderstorms in Washington and Oregon. Robert Y.G. Lee, June 1973. (COM 73 11276)

89 Objective Forecast Precipitation Over the Western Region of the United States. Julia N. Paegle and Larry P. Kierulff, September 1973. (COM 73 11946/3AS)

91 Arizona "Eddy" Tornadoes. Robert S. Ingram, October 1973. (COM 73 10465)
92 Smoke Management in the Willamette Valley. Earl M. Bates, May 1974. (COM 74 11277/AS)

93 An Operational Evaluation of 500-mb Type Regression Equations Alexander E. MacDonald, June 1974. (COM 74 11407/AS)
94 Conditional Probability of Visibility Less than One-Half Mile in Radiation Fog at Fresno, California. John D. Thomas, August 1974. (COM 74 11555/AS)
95 Climate of Flagstaff, Arizona. Paul W. Sorenson, and updated by Reginald W. Preston, January 1987. (PB87 143160/AS) (Revised August $20023^{\text {rd }}$ Revision)
96 Map type Precipitation Probabilities for the Western Region. Glenn E Rasch and Alexander E. MacDonald, February 1975. (COM 75 10428/AS)
97 Eastern Pacific Cut-Off Low of April 21-28, 1974. William J. Alder and George R. Miller, January 1976. (PB 250 711/AS)
98 Study on a Significant Precipitation Episode in Western United States Ira S. Brenner, April 1976. (COM 75 10719/AS)
99 A Study of Flash Flood Susceptibility-A Basin in Southern Arizona Gerald Williams, August 1975. (COM 75 11360/AS)
102 A Set of Rules for Forecasting Temperatures in Napa and Sonoma Counties. Wesley L. Tuft, October 1975. (PB 246 902/AS)
103 Application of the National Weather Service Flash-Flood Program in the Western Region. Gerald Williams, January 1976. (PB 253 053/AS)
104 Objective Aids for Forecasting Minimum Temperatures at Reno Nevada, During the Summer Months. Christopher D. Hill, January 1976. (PB 252 866/AS)

105 Forecasting the Mono Wind. Charles P. Ruscha, Jr., February 1976.
(PB 254 650)
106 Use of MOS Forecast Parameters in Temperature Forecasting. John C. Plankinton, Jr., March 1976. (PB 254 649)

107 Map Types as Aids in Using MOS PoPs in Western United States. Ira S. Brenner, August 1976. (PB 259 594)

108 Other Kinds of Wind Shear. Christopher D. Hill, August 1976. (PB 260 437/AS)
109 Forecasting North Winds in the Upper Sacramento Valley and Adjoining Forests. Christopher E. Fontana, September 1976. (PB 273 677/AS)
110 Cool Inflow as a Weakening Influence on Eastern Pacific Tropical Cyclones. William J. Denney, November 1976. (PB 264 655/AS)
112 The MAN/MOS Program. Alexander E. MacDonald, February 1977. (PB 265 941/AS)
113 Winter Season Minimum Temperature Formula for Bakersfield California, Using Multiple Regression. Michael J. Oard, February 1977. (PB 273 694/AS)

114 Tropical Cyclone Kathleen. James R. Fors, February 1977. (PB 273 676/AS)
116 A Study of Wind Gusts on Lake Mead. Bradley Colman, April 1977. (PB 268 847)
117 The Relative Frequency of Cumulonimbus Clouds at the Nevada Test Site as a Function of K-Value. R.F. Quiring, April 1977. (PB 272 831)

118 Moisture Distribution Modification by Upward Vertical Motion. Ira S Brenner, April 1977. (PB 268 740)
119 Relative Frequency of Occurrence of Warm Season Echo Activity as a Function of Stability Indices Computed from the Yucca Flat, Nevada, Rawinsonde. Darryl Randerson, June 1977. (PB 271 290/AS)
121 Climatological Prediction of Cumulonimbus Clouds in the Vicinity of the Yucca Flat Weather Station. R.F. Quiring, June 1977. (PB 271 704/AS)
122 A Method for Transforming Temperature Distribution to Normality. Morris S. Webb, Jr., June 1977. (PB 271 742/AS)
124 Statistical Guidance for Prediction of Eastern North Pacific Tropical Cyclone Motion - Part I. Charles J. Neumann and Preston W. Leftwich, August 1977. (PB 272 661)
125 Statistical Guidance on the Prediction of Eastern North Pacific Tropical Cyclone Motion - Part II. Preston W. Leftwich and Charles J. Neumann, August 1977. (PB 273 155/AS)

126 Climate of San Francisco. E. Jan Null, February 1978. (Revised by George T. Pericht, April 1988 and January 1995). (PB88 208624/AS)
127 Development of a Probability Equation for Winter-Type Precipitation Patterns in Great Falls, Montana. Kenneth B. Mielke, February 1978. (PB 281 387/AS)

128 Hand Calculator Program to Compute Parcel Thermal Dynamics. Dan Gudgel, April 1978. (PB 283 080/AS)
129 Fire whirls. David W. Goens, May 1978. (PB 283 866/AS)
130 Flash-Flood Procedure. Ralph C. Hatch and Gerald Williams, May 1978. (PB 286 014/AS)

131 Automated Fire-Weather Forecasts. Mark A. Mollner and David E. Olsen, September 1978. (PB 289 916/AS)
132 Estimates of the Effects of Terrain Blocking on the Los Angeles WSR74 C Weather Radar. R.G. Pappas, R.Y. Lee, B.W. Finke, October 1978. (PB 289767/AS)

133 Spectral Techniques in Ocean Wave Forecasting. John A. Jannuzzi, October 1978. (PB291317/AS)
134 Solar Radiation. John A. Jannuzzi, November 1978. (PB291195/AS)
135 Application of a Spectrum Analyzer in Forecasting Ocean Swell in Southern California Coastal Waters. Lawrence P. Kierulff, January 1979. (PB292716/AS)

136 Basic Hydrologic Principles. Thomas L. Dietrich, January 1979. (PB292247/AS)
137 LFM 24-Hour Prediction of Eastern Pacific Cyclones Refined by Satellite Images. John R. Zimmerman and Charles P. Ruscha, Jr., January 1979. (PB294324/AS)
138 A Simple Analysis/Diagnosis System for Real Time Evaluation of Vertical Motion. Scott Heflick and James R. Fors, February 1979. (PB294216/AS)
139 Aids for Forecasting Minimum Temperature in the Wenatchee Frost District. Robert S. Robinson, April 1979. (PB298339/AS)
140 Influence of Cloudiness on Summertime Temperatures in the Eastern Washington Fire Weather district. James Holcomb, April 1979. (PB298674/AS)
141 Comparison of LFM and MFM Precipitation Guidance for Nevada During Doreen. Christopher Hill, April 1979. (PB298613/AS)
142 The Usefulness of Data from Mountaintop Fire Lookout Stations in Determining Atmospheric Stability. Jonathan W. Corey, April 1979. (PB298899/AS)
143 The Depth of the Marine Layer at San Diego as Related to Subsequent Cool Season Precipitation Episodes in Arizona. Ira S. Subsequent Cool Season Precipitation
Brenner, May 1979. (PB298817/AS)
144 Arizona Cool Season Climatological Surface Wind and Pressure Gradient Study. Ira S. Brenner, May 1979. (PB298900/AS)
146 The BART Experiment. Morris S. Webb, October 1979. (PB80 155112)

147 Occurrence and Distribution of Flash Floods in the Western Region. Thomas L. Dietrich, December 1979. (PB80 160344)
149 Misinterpretations of Precipitation Probability Forecasts. Allan H. Murphy, Sarah Lichtenstein, Baruch Fischhoff, and Robert L. Winkler, February 1980. (PB80 174576)
150 Annual Data and Verification Tabulation - Eastern and Central North

Pacific Tropical Storms and Hurricanes 1979. Emil B. Gunther and Staff, EPHC, April 1980. (PB80 220486)

151 NMC Model Performance in the Northeast Pacific. James E. Overland, PMEL-ERL, April 1980. (PB80 196033)
152 Climate of Salt Lake City, Utah. William J. Alder, Sean T. Buchanan, William Cope (Retired), James A. Cisco, Craig C. Schmidt, Alexander R. Smith (Retired), Wilbur E. Figgins (Retired), February 1998 Seventh Revision (PB98-130727)
153 An Automatic Lightning Detection System in Northern California. James E. Rea and Chris E. Fontana, June 1980. (PB80 225592)
154 Regression Equation for the Peak Wind Gust 6 to 12 Hours in Advance at Great Falls During Strong Downslope Wind Storms. Michael J. Oard, July 1980. (PB91 108367)
155 A Raininess Index for the Arizona Monsoon. John H. Ten Harkel, July 1980. (PB81 106494)

156 The Effects of Terrain Distribution on Summer Thunderstorm Activity at Reno, Nevada. Christopher Dean Hill, July 1980. (PB81 102501)
157 An Operational Evaluation of the Scofield/Oliver Technique for Estimating Precipitation Rates from Satellite Imagery. Richard Ochoa, August 1980. (PB81 108227)
158 Hydrology Practicum. Thomas Dietrich, September 1980. (PB81 134033)

159 Tropical Cyclone Effects on California. Arnold Court, October 1980. (PB81 133779)
160 Eastern North Pacific Tropical Cyclone Occurrences During Intraseasonal Periods. Preston W. Leftwich and Gail M. Brown, February 1981. (PB81 205494)
161 Solar Radiation as a Sole Source of Energy for Photovoltaics in Las Vegas, Nevada, for July and December. Darryl Randerson, April 1981. (PB81 224503)

162 A Systems Approach to Real-Time Runoff Analysis with a Deterministic Rainfall-Runoff Model. Robert J.C. Burnash and R. Larry Ferral, April 1981. (PB81 224495)
163 A Comparison of Two Methods for Forecasting Thunderstorms at Luke Air Force Base, Arizona. LTC Keith R. Cooley, April 1981. (PB81 225393)
164 An Objective Aid for Forecasting Afternoon Relative Humidity Along the Washington Cascade East Slopes. Robert S. Robinson, April 1981. (PB81 23078)

165 Annual Data and Verification Tabulation, Eastern North Pacific Tropical Storms and Hurricanes 1980. Emil B. Gunther and Staff, May 1981. (PB82 230336)

166 Preliminary Estimates of Wind Power Potential at the Nevada Test Site. Howard G. Booth, June 1981. (PB82 127036)
167 ARAP User's Guide. Mark Mathewson, July 1981, Revised September 1981. (PB82 196783)
168 Forecasting the Onset of Coastal Gales Off Washington-Oregon. John R. Zimmerman and William D. Burton, August 1981. (PB82 127051)

169 A Statistical-Dynamical Model for Prediction of Tropical Cyclone Motion in the Eastern North Pacific Ocean. Preston W. Leftwich, Jr., October 1981. (PB82195298)
170 An Enhanced Plotter for Surface Airways Observations. Andrew J. Spry and Jeffrey L. Anderson, October 1981. (PB82 153883)
171 Verification of 72-Hour 500-MB Map-Type Predictions. R.F. Quiring, November 1981. (PB82-158098)
172 Forecasting Heavy Snow at Wenatchee, Washington. James W. Holcomb, December 1981. (PB82-177783)
173 Central San Joaquin Valley Type Maps. Thomas R. Crossan, December 1981. (PB82 196064)
174 ARAP Test Results. Mark A. Mathewson, December 1981. (PB82 198103)

176 Approximations to the Peak Surface Wind Gusts from Desert Thunderstorms. Darryl Randerson, June 1982. (PB82 253089)
177 Climate of Phoenix, Arizona. Robert J. Schmidli and Austin Jamison, April 1969 (Revised July 1996). (PB96-191614)
178 Annual Data and Verification Tabulation, Eastern North Pacific Tropical Storms and Hurricanes 1982. E.B. Gunther, June 1983. (PB85 106078)
179 Stratified Maximum Temperature Relationships Between Sixteen Zone Stations in Arizona and Respective Key Stations. Ira S. Brenner, June 1983. (PB83 249904)

180 Standard Hydrologic Exchange Format (SHEF) Version I. Phillip A. Pasteris, Vernon C. Bissel, David G. Bennett, August 1983. (PB85 106052)

181 Quantitative and Spacial Distribution of Winter Precipitation along Utah's Wasatch Front. Lawrence B. Dunn, August 1983. (PB85 106912)

182500 Millibar Sign Frequency Teleconnection Charts - Winter. Lawrence B. Dunn, December 1983. (PB85 106276)
183500 Millibar Sign Frequency Teleconnection Charts - Spring. Lawrence B. Dunn, January 1984. (PB85 111367)
184 Collection and Use of Lightning Strike Data in the Western U.S. During Summer 1983. Glenn Rasch and Mark Mathewson, February 1984. (PB85 110534)

185500 Millibar Sign Frequency Teleconnection Charts - Summer. Lawrence B. Dunn, March 1984. (PB85 111359)
186 Annual Data and Verification Tabulation eastern North Pacific Tropical Storms and Hurricanes 1983. E.B. Gunther, March 1984. (PB85 109635)

187500 Millibar Sign Frequency Teleconnection Charts - Fall. Lawrence B. Dunn, May 1984. (PB85-110930)

188 The Use and Interpretation of Isentropic Analyses. Jeffrey L Anderson, October 1984. (PB85-132694)
189 Annual Data \& Verification Tabulation Eastern North Pacific Tropical Storms and Hurricanes 1984. E.B. Gunther and R.L. Cross, April 1985. (PB85 1878887AS)

190 Great Salt Lake Effect Snowfall: Some Notes and An Example. David M. Carpenter, October 1985. (PB86 119153/AS)

191 Large Scale Patterns Associated with Major Freeze Episodes in the Agricultural Southwest. Ronald S. Hamilton and Glenn R. Lussky, December 1985. (PB86 144474AS)
192 NWR Voice Synthesis Project: Phase I. Glen W. Sampson, January 1986. (PB86 145604/AS)

193 The MCC - An Overview and Case Study on Its Impact in the Western United States. Glenn R. Lussky, March 1986. (PB86 170651/AS)
194 Annual Data and Verification Tabulation Eastern North Pacific Tropical Storms and Hurricanes 1985. E.B. Gunther and R.L. Cross, March 1986. (PB86 170941/AS)

195 Radid Interpretation Guidelines. Roger G. Pappas, March 1986. (PB86 177680/AS)
196 A Mesoscale Convective Complex Type Storm over the Desert Southwest. Darryl Randerson, April 1986. (PB86 190998/AS)
197 The Effects of Eastern North Pacific Tropical Cyclones on the Southwestern United States. Walter Smith, August 1986. (PB87 106258AS)
198 Preliminary Lightning Climatology Studies for Idaho. Christopher D. Hill, Carl J. Gorski, and Michael C. Conger, April 1987. (PB87 180196/AS)
199 Heavy Rains and Flooding in Montana: A Case for Slantwise Convection. Glenn R. Lussky, April 1987. (PB87 185229/AS)
200 Annual Data and Verification Tabulation Eastern North Pacific Tropical Storms and Hurricanes 1986. Roger L. Cross and Kenneth B. Mielke, September 1987. (PB88 110895/AS)
201 An Inexpensive Solution for the Mass Distribution of Satellite Images. Glen W. Sampson and George Clark, September 1987. (PB88 114038/AS)
202 Annual Data and Verification Tabulation Eastern North Pacific Tropical Storms and Hurricanes 1987. Roger L. Cross and Kenneth B. Mielke, September 1988. (PB88-101935/AS)
203 An Investigation of the 24 September 1986 "Cold Sector" Tornado Outbreak in Northern California. John P. Monteverdi and Scott A. Braun, October 1988. (PB89 121297/AS)
204 Preliminary Analysis of Cloud-To-Ground Lightning in the Vicinity of the Nevada Test Site. Carven Scott, November 1988. (PB89 128649/AS)
205 Forecast Guidelines For Fire Weather and Forecasters -- How Nighttime Humidity Affects Wildland Fuels. David W. Goens, February 1989. (PB89 162549/AS)
206 A Collection of Papers Related to Heavy Precipitation Forecasting. Western Region Headquarters, Scientific Services Division, August 1989. (PB89 230833/AS)

207 The Las Vegas McCarran International Airport Microburst of August 8, 1989. Carven A. Scott, June 1990. (PB90-240268)

208 Meteorological Factors Contributing to the Canyon Creek Fire Blowup, September 6 and 7, 1988. David W. Goens, June 1990. (PB90245085)

209 Stratus Surge Prediction Along the Central California Coast. Peter Felsch and Woodrow Whitlatch, December 1990. (PB91-129239)
210 Hydrotools. Tom Egger. January 1991. (PB91-151787/AS)
211 A Northern Utah Soaker. Mark E. Struthwolf, February 1991. (PB91168716)

212 Preliminary Analysis of the San Francisco Rainfall Record: 18491990. Jan Null, May 1991. (PB91-208439)

213 Idaho Zone Preformat, Temperature Guidance, and Verification. Mark A. Mollner, July 1991. (PB91-227405/AS)

214 Emergency Operational Meteorological Considerations During an Accidental Release of Hazardous Chemicals. Peter Mueller and Jerry Galt, August 1991. (PB91-235424)
215 WeatherTools. Tom Egger, October 1991. (PB93-184950)
216 Creating MOS Equations for RAWS Stations Using Digital Model Data. Dennis D. Gettman, December 1991. (PB92-131473/AS)
217 Forecasting Heavy Snow Events in Missoula, Montana. Mike Richmond, May 1992. (PB92-196104)
218 NWS Winter Weather Workshop in Portland, Oregon. Various Authors, December 1992. (PB93-146785)
219 A Case Study of the Operational Usefulness of the Sharp Workstation in Forecasting a Mesocyclone-Induced Cold Sector Tornado Event in California. John P. Monteverdi, March 1993. (PB93-178697)
220 Climate of Pendleton, Oregon. Claudia Bell, August 1993. (PB93227536)

221 Utilization of the Bulk Richardson Number, Helicity and Sounding Modification in the Assessment of the Severe Convective Storms of 3 August 1992. Eric C. Evenson, September 1993. (PB94-131943)
222 Convective and Rotational Parameters Associated with Three Tornado Episodes in Northern and Central California. John P. Monteverdi and John Quadros, September 1993. (PB94-131943)
223 Climate of San Luis Obispo, California. Gary Ryan, February 1994 (PB94-162062)
224 Climate of Wenatchee, Washington. Michael W. McFarland, Roger G. Buckman, and Gregory E. Matzen, March 1994. (PB94-164308)
225 Climate of Santa Barbara, California. Gary Ryan, December 1994 (PB95-173720)
226 Climate of Yakima, Washington. Greg DeVoir, David Hogan, and Jay Neher, December 1994. (PB95-173688)

227 Climate of Kalispell, Montana. Chris Maier, December 1994. (PB95169488)

228 Forecasting Minimum Temperatures in the Santa Maria Agricultura District. Wilfred Pi and Peter Felsch, December 1994. (PB95171088)

229 The 10 February 1994 Oroville Tornado--A Case Study. Mike Staudenmaier, Jr., April 1995. (PB95-241873)
230 Santa Ana Winds and the Fire Outbreak of Fall 1993. Ivory Small, June 1995. (PB95-241865)
231 Washington State Tornadoes. Tresté Huse, July 1995. (PB96107024)

232 Fog Climatology at Spokane, Washington. Paul Frisbie, July 1995. (PB96-106604)
233 Storm Relative Isentropic Motion Associated with Cold Fronts in Northern Utah. Kevin B. Baker, Kathleen A. Hadley, and Lawrence B. Dunn, July 1995. (PB96-106596)

234 Some Climatological and Synoptic Aspects of Severe Weather Development in the Northwestern United States. Eric C. Evenson and Robert H. Johns, October 1995. (PB96-112958)
235 Climate of Las Vegas, Nevada. Paul H. Skrbac and Scott Cordero, December 1995. (PB96-135553)
236 Climate of Astoria, Oregon. Mark A. McInerney, January 1996.
237 The 6 July 1995 Severe Weather Events in the Northwestern United States: Recent Examples of SSWEs. Eric C. Evenson, April 1996.
238 Significant Weather Patterns Affecting West Central Montana. Joe Lester, May 1996. (PB96-178751)
239 Climate of Portland, Oregon. Clinton C. D. Rockey, May 1996. (PB9617603) - First Revision, October 1999

240 Downslop Winds of Santa Barbara, CA. Gary Ryan, July 1996. (PB96-191697)
241 Operational Applications of the Real-time National Lightning Detection Network Data at the NWSO Tucson, AZ. Darren McCollum, David Bright, Jim Meyer, and John Glueck, September 1996. (PB97108450)

242 Climate of Pocatello, Idaho. Joe Heim, October 1996. (PB97114540)

243 Climate of Great Falls. Montana. Matt Jackson and D. C. Williamson, December 1996. (PB97-126684)
244 WSR-88D VAD Wind Profile Data Influenced by Bird Migration over the Southwest United States. Jesus A. Haro, January 1997. (PB97135263)

245 Climatology of Cape for Eastern Montana and Northern Wyoming Heath Hockenberry and Keith Meier, January 1997. (PB97-133425)
246 A Western Region Guide to the Eta-29 Model. Mike Staudenmaier, Jr., March 1997. (PB97-144075)
247 The Northeast Nevada Climate Book. Edwin C. Clark, March 1997. (First Revision - January 1998-Andrew S. Gorelow and Edwin C. Clark - PB98-123250)
248 Climate of Eugene, Oregon. Clinton C. D. Rockey, April 1997. (PB97-155303)
249 Climate of Tucson, Arizona. John R. Glueck, October 1997
250 Northwest Oregon Daily Extremes and Normans. Clinton C. D. Rockey, October 1997
251 A Composite Study Examining Five Heavy Snowfall Patterns for South-Central Montana. Jonathan D. Van Ausdall and Thomas W. Humphrey. February 1998. (PB98-125255)
252 Climate of Eureka, California. Alan H. Puffer. February 1998. (PB98130735)

253 Inferenced Oceanic Kelvin/Rossby Wave Influence on North American West Coast Precipitation. Martin E. Lee and Dudley Chelton. April 1998. (PB98-139744)

254 Conditional Symmetric Instability-Methods of Operational Diagnosis and Case Study of 23-24 February 1994 Eastern Washington/Oregon Snowstorm. Gregory A. DeVoir. May 1998. (PB98-144660)
255 Creation and Maintenance of a Comprehensive Climate Data Base Eugene Petrescu. August 1998. (PB98-173529)
256 Climate of San Diego, California. Thomas E. Evans, III and Donald A. Halvorson. October 1998. (PB99-109381)
257 Climate of Seattle, Washington. Dana Felton. November 1998. (PB99-113482)
258 1985-1998 North Pacific Tropical Cyclones Impacting the Southwestern United States and Northern Mexico: An Updated Southwestern United States and Northern Mexico: An Upda
Climatology. Armando L. Garza. January 1999. (PB99-130502)
259 Climate of San Jose, California. Miguel Miller. April 1999. (PB99145633)

260 Climate of Las Vegas, Nevada. Paul H. Skrbac. December 1999
261 Climate of Los Angeles, California. David Bruno, Gary Ryan, with assistance from Curt Kaplan and Jonathan Slemmer. January 2000
262 Climate of Miles City, Montana. David A. Spector and Mark H. Strobin. April 2000
263 Analysis of Radiosonde Data for Spokane, Washington. Rocco D. Pelatti. November 2000
264 Climate of Billings, Montana. Jeffrey J. Zeltwanger and Mark H. Strobin. November 2000
265 Climate of Sheridan, Wyoming. Jeffrey J. Zeltwanger, Sally Springer, Mark H. Strobin. March 2001
266 Climate of Sacramento, California. Laura Masters-Bevan. December 2000 (7th Revision)
267 Sulphur Mountain Doppler Radar: A Performance Study. Los Angeles/Oxnard WFO. August 2001
268 Prediction of Heavy Snow Events in the Snake River Plain Using Pattern Recognition and Regression Techniques. Thomas Andretta
and William Wojcik. October 2003
269 The Lewis and Clark Expedition 18-03-1806, Weather, Water and Climate, Vernon Preston, Pocatello Idaho, December 2004.
270 Climate of San Diego, California, Emmanuel M. Isla, September 2004 (2 ${ }^{\text {nd }}$ Edition)
271 Climate of Las Vegas, Nevada, Andrew S. Gorelow, January 2005, ($2^{\text {nd }}$ Edition)

272 Climate of Sacramento, California, Revised by: Laura A. Bevan and George Cline, June 2005

273 Climate of Flagstaff, AZ $4^{\text {th }}$ Revision. Mike Staudenmaier, Jr,
Reginald Preston(R)
Paul Sorenson (R), August 2005
274 Climate of Prescott, AZ, Bob Fogarty, Mike Staudenmaier Jr., Flagstaf WFO, AZ, August 2005.

275 Climate of San Diego, CA, $3^{\text {rd }}$ Revision. Noel M. Isla, Jennifer Lee, March 2006
276 Climate of Reno, NV, Brian Ohara, Reno, NV October 2006
277 Forecaster's Handbook for Extreme Southwestern California Based On Short Term Climatalogical Approximations: Part I - The Marine Layer and Its Effect On Precipitation and Heating Ivory J. Small, Layer and Its
278 Forecaster's Handbook for Extreme Southwestern California Based On Short Term Climatalogical Approximations: Part II - Wind Effects on Terrestrial and Marine Environments Ivory J. Small, December 2006
279 Effects of Wildfire in the Mountainous Terrain of Southeast Arizona An Empirical Formula to Estimate 5-Year Peak Discharge from Small Post-Burn Watersheds, William B. Reed and Mike Schaffner, June 2007

NOAA SCIENTIFIC AND TECHNICAL PUBLICATIONS

The National Oceanic and Atmospheric Administration was established as part of the Department of Commerce on October 3, 1970. The mission responsibilities of NOAA are to assess the socioeconomic impact of natural and technological changes in the environment and to monitor and predict the state of the solid Earth, the oceans and their living resources, the atmosphere, and the space environment of the Earth.

The major components of NOAA regularly produce various types of scientific and technical information in the following kinds of publications.

PROFESSIONAL PAPERS--Important definitive research results, major techniques, and special investigations.

CONTRACT AND GRANT REPORTS--Reports prepared by contractors or grantees under NOAA sponsorship.

ATLAS--Presentation of analyzed data generally in the form of maps showing distribution of rainfall, chemical and physical conditions of oceans and atmosphere, distribution of fishes and marine mammals, ionospheric conditions, etc.

TECHNICAL SERVICE PUBLICATIONS -Reports containing data, observations, instructions, etc. A partial listing includes data serials; prediction and outlook periodicals; technical manuals, training papers, planning reports, and information serials; and miscellaneous technical publications.

TECHNICAL REPORTS--Journal quality with extensive details, mathematical developments, or data listings

TECHNICAL MEMORANDUMS--Reports of preliminary, partial, or negative research or technology results, interim instructions, and the like.

Information on availability of NOAA publications can be obtained from: NATIONAL TECHNICAL INFORMATION SERVICE

U. S. DEPARTMENT OF COMMERCE

5285 PORT ROYAL ROAD
SPRINGFIELD, VA 22161

[^0]: * Based on the last day of 32 degrees in the spring and the first day of 32 degrees in the fall.

[^1]: * All values in inches.

