-
'-"'_lr'u':‘-

-
an influenza virus parti- r'
Credit: Jupiterimages.

loh electron mlcrograph (TEM) deplcts the uItrastru ct
cle. Credit: Cynﬁ"la G DC P cHeaIth Image library. The < z



CATCHES THE

y —\J\ — e f‘\ﬂ

—
BY KATHARINE MILLER

n 1918, the so-called Spanish flu killed more than

20 million people worldwide. Almost ninety years

later, we're faced with the possibility of a flu pan-

demic that could spread even faster in this global-
ly-connected world.

In preparation, researchers are racing to understand

hat makes one flu bug more infectious or more dead-

n another; how best to prevent or treat influen-

and epidemiological, computational biolo-
sists are teaming with experimentalists to
ackle tough questions about influenza

At all scales, complexity rules the
—making influenza an appealing tar-
for computational research. The
acy of viruses themselves, the many
active components of the human
une system, and the complicated

“Complexity really does matter,” says Ira
gini, Jr, PhD, a professor of biostatistics at
niversity of Washington School of Public
ealth with reference to his model of pandemic
flu spread in the United States, “And we have the

computational ability to handle it now.”
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The Bug:

he flu virus is an evolutionary mar-
vel. Teams of experts design an
appropriate flu vaccine annually just to
keep up with the microbe’s ability to
evade the human immune system.
Multiple strains circulate, and no one
can predict when a new strain will
emerge by mutation or recombination
with another strain so that it can jump
from another species to humans.
Computational biolo-
gists approach

Modeling Shape-Shifting Viruses

this ever-changing bug from several
angles: some simulate entire virus parti-
cles to detect their vulnerabilities; others
model viral evolution to predict future
strains; still others use bioinformatics
approaches to design better vaccines.

MODELING THE

VIRUS PARTICLE
Klaus Schulten, PhD, and col
leagues at the University of Illinois at
Urbana-Champaign recently simulated
an entire virus particle—the satellite
tobacco mosaic virus (STMV), one
of the smallest known
viruses (see the News

Bytes section of this
issue). Allowing all of
the virus’s one million
atoms to move for 10
nanoseconds showed
surprising features of
the tiny particle—and
hinted at possible
interventions to pre-
vent infection.
Wholewvirus simula-
tions for flu—1000
times bigger than
STMV-—are still a ways
off. But researchers
could simulate pieces
of the viral capsid—the
exterior casing that

holds a virus’s genetic
material—or they could
model some parts of

The HA protein from an avian flu virus (A/Vietnam/1203/2004) with one of the molecule's three
receptor binding sites highlighted as a surface representation (purple) and a close-up of the
receptor binding domain with key residues labeled. In her computational models, Robin Bush has
found that mutations around the HA binding pocket produce flu strains with greater long-term
fitness.Courtesy: James Stevens, PhD, assistant professor in the Department of Molecular Biology

at The Scripps Research Institute.
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the virus in atomic-level detail while leav-
ing other parts imprecise.

PREDICTING FLU
STRAIN FITNESS

Robin Bush, PhD, associate professor
of ecology and evolutionary biology at the
University of California, Irvine, is model-
ing how specific flu virus surface proteins
evolve. For flu, evolutionary fitness is
largely determined by the virus’s ability to
evade the host’s immune system.

In a 1999 paper in Science, Bush pro-
posed a way to predict which of
the then-current lineages of
influenza A was evolutionarily
most fit—that is, likely to have
the most descendants.

“In H3N2 [a common strain
of influenza A], we have a long
skinny family tree with many lin-
eages that quickly go extinct,” she says.
“Why is this?” To answer that question,
Bush focused on the gene for haemagglu-
tinin (HA), a flu virus surface protein that
provokes a strong immune system
response. She found that the fit strains
exhibited changes in amino acids in the
HA binding pocket—the place where anti-
bodies of the immune system latch onto
the flu virus.

www.biomedicalcomputationreview.org

“It doesn’t take much in the way of
amino acid changes to keep an antibody
from binding again,” she says.
“Antibodies are very specific. So it’s not
surprising that changes around the bind-
ing pocket affect the fitness of the virus.”

Bush then attempted to computation-
ally model which mutations around the
HA binding pocket would lead to long-
term fitness. In 9 of 11 simulations, she
found that mutations in any of 18 specif-
ic amino acids predicted that a strain’s
descendants would continue to infect

humans in ensuing years. But, Bush says,
she is unable to predict if or when those
expected descendants would appear.
Bush also cautions that her work is
not likely to contribute greatly to annual
flu vaccine design. Such vaccines con-
tain three different flu viruses, and deci-
sions about which lineage of each to
include are made by experts based on
many factors. If there was no other way

Traditional approach:
screen in the lab.
Immunoinformatics
approaches reduce

that number to
~1000.

Assays identify
~b0 epitopes that

of the immunome.
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~100,000 peptides to

constitute ~90 percent

to pick one strain over another, she says,
“you might pick the one that had the pre-
dicted binding pocket changes.”

FILTERING THE

VIRAL GENOME TO

DESIGN VACCINES
Anne De Groot, MD, associate pro-
fessor of medicine at Brown University,
is tackling vaccine development head
on. She’s using bioinformatics to ration-

ally design vaccines.

Annual flu vaccines are produced by

growing viruses in eggs, killing them,
and then combining the dead viruses
with other ingredients known as adju-
vant. The process is slow, so vaccines
must be designed several months before
the flu season begins, with strains from
the prior flu season. Vaccines contain-
ing the entire contents of dead viruses—
including tens of thousands of proteins
with unknown side effects—can also be
risky. “You have to be very care-
ful about what you put in a vac-
cine,” says De Groot, pointing
to the Lyme disease vaccine that
appears to have caused arthritis
in some patients. “We've been
lucky with some other whole-
virus vaccines such as polio and
cholera that have not produced
deleterious effects, but all of the
proteins produced by a virus
have potential cross-reactivity.
When you create an immune
response to them, you could be

The traditional approach to epi-
tope-mapping a typical pathogen
genome could involve synthesiz-
ing 100,000 overlapping peptides.
An immunoinformatics approach
remarkably reduces that figure to
~1000, accelerating the discovery
of ~50 epitopes that comprise
over 90 percent of the immunome
in an actual infection. Courtesy of
Anne S. De Groot.

BIOMEDICAL COMPUTATION REVIEW 19



20 BIOMEDICAL COMPUTATION REVIEW

creating auto-immunity or pre-setting an
immune response that you don’t want.”

A different approach is to put the vac-
cine together one piece at a time, so you
know exactly what’s going on, De Groot
says. In addition to being safer, this
approach should allow development of a
vaccine in response to the current flu
strain (rather than last year’s) because
individual pieces (peptides) can be rap-
idly manufactured.

EpiVax, a Rhode Island biotech com-
pany founded by De Groot in 1998, uses
computational tools to design peptide-
based vaccines. They use a process called
fishing for antigens using epitopes as
bait. “It’s a way of filtering genome infor-
mation to find what’s immunologically
relevant,” says De Groot. In the 1990s,
researchers developed algorithms that
can pick out gene motifs that are likely
to stimulate the immune system. Using
their own version of such algorithms,
known as EpiMatrix, Epivax filters a par-
ticular pathogen’s genome to pick out
snippets likely to produce immuno-stim-
ulatory peptides known as epitopes.
These peptides can then be synthesized
in a lab and mixed with blood from peo-
ple who have been previously exposed to
the particular pathogen. The epitopes
that successfully “fish out” responses in
the blood are presumably part of an anti-
gen—one of the viral or bacterial pro-
teins to which the person’s immune sys-
tem responded during the earlier infec-
tion. Such antigens and/or their epi-
topes are potential ingredients in a vac-
cine, since they produce valuable
immune responses. This approach has
led to potential vaccines for HIV and
meningitis that are now in clinical trials.

A bioinformatics approach might also
contribute to development of a universal
flu vaccine, De Groot says. Algorithms
can screen the genomes of all the various
flu strains to look for genomic sections
that are pretty short and don’t change.
“They're kind of like the flu thumb or
index finger: they are critically important
to the function of the virus,” De Groot
says. Running these regions through
another algorithm will reveal whether
they stimulate the immune system. If they
do, then a flu vaccine containing these
proteins might induce immunity to a
group of flu strains rather than just one.

Summer 2006

The Host:

Modeling the Immune System

Using computation to understand
the flu virus and its proteins only
covers half the story. The T-cell mapping
interface used by De Groot hints at the
other half: the host immune system.
When a virus or bacterium invades
the human body, it stimulates a cascade
of immune system events to fend off the
intruder. Over the last hundred years,
experimentalists have cleverly studied
these events in contexts where only one
component changes at a time. It's work

tional immunology comes from HIV
work published in 1995 by Alan
Perelson, PhD, and David Ho, MD. It
led directly to the realization that HIV
could be treated with cocktails of drugs—
an approach that has greatly reduced the
number of deaths due to AIDS.

This research demonstrated that it’s
not too soon to take computational
immunology seriously, Kepler says.
Moreover, he adds, “the rate of accumula-
tion of new information is so fast, that if

“Computation is a way to take all these

objects [the pieces of the Immune system]

and put them back together into a form

where the goal Is not to minimize variation

but to keep track of it,” says Thomas Kepler.

that has generated huge amounts of data
about more than 20 different types of
immune cells and a few thousand par-
ticipating molecules. But what’s missing,
say computational immunologists, is an
integrated view of the puzzle.

“Computation is a way to take all
these objects and put them back togeth-
er into a form where the goal is not to
minimize variation but to keep track of
it,” says Thomas Kepler, PhD, profes-
sor of biostatistics and bioinformatics at
Duke University.

The current poster-child of computa-

we don’t start now, we’'ll never catch up.”

It’s a view shared by leaders at The
National Institute of Allergy and
Infectious Diseases (NIAID) who, in
2004 and 2005, funded four computa-
tional immunology projects. Three of
these are using flu as a model pathogen.

THE IMMUNE SYSTEM
As A BLAck Box
Under an NIAID grant to Penelope
Morel, MD, associate professor of
immunology at the University of
Pittsburgh, researchers are modeling

www.biomedicalcomputationreview.org



how respiratory infections (influenza,
tuberculosis and tularemia) affect the
local immune response in the lungs. The
group will be gathering data about how
macrophages in the lung respond to
each virus by measuring such things as
secretions (cytokines) and cell surface-
markers as they change through time.
But the goal is to take the experimental
measurements and plug them into com-
putational models. “If your model does-
n’t match the data, then you know some-
thing’s missing,” says Morel. “That exer-
cise is a highly valuable one.”

The project’s flu modeler, Shlomo
Ta’asan, PhD, professor of mathemati-
cal sciences at Carnegie Melon
University, is taking a highly mathemati-
cal approach: He will look at the
immune system as a black box, without

making assumptions about the biology.
“We don’t put anything into the
model except the data that come out of
the experiments,” he says. “Our algo-
rithm will spit out something that might
be intuitive for biologists, and it might
not.” He hopes to find out if math can
cut through biological intuition to gain

some new truth. After creating a model
that seems to reproduce the experimen-
tal results for macrophage responses,
Ta’asan says, “Then we want to see how
to manipulate it with various drugs.”

The biggest challenges to Ta’asan’s
model are practical ones. One mouse
doesn’t have enough blood to cover all
the necessary tests and must be sacri-
ficed to get certain measurements. In
addition, microarray data are highly
variable and there is fuzziness in the
measurements. Ta’asan says some peo-
ple simply ignore that variability, but he
thinks it says a lot about the system and
should be accounted for mathematical-
ly. “We're thinking about using some
fuzzy logic ideas or probabilistic
approaches,” he says. “We don’t want to
pretend it’s not a problem.”

This 1976 photograph shows an elderly female receiving a vaccination by a public health clinician during the nationwide swine flu vac-
cination campaign, which began October 1, 1976. Courtesy: Centers for Disease Control and Prevention.
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MODELING THE IMMUNE
SYSTEM USING EXPERTISE
Hulin Wu, PhD, professor of biosta-

tistics and computational biology at the
University of Rochester shares these con-
cerns. He, like Ta’asan, received an NIAID
grant and is modeling the immune system
response to flu. But Wu is taking a more
traditional approach: He develops his
models based on immunologists’ and
virologists’ current theories about flu infec-
tion. And he needs lots of data on the
kinetics of the virus and the cells with
which it interacts. For example, he needs
to know how fast the flu virus proliferates
and dies; the infection rate for various cell
types; and the rate of production of T-cells,
antibodies, CD4 and CD8 cells, and lym-
phocytes. On top of that, he needs this
data from several different locations (lung
and lymph nodes, for example) at various
time points so that he can model the host
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reaction as the virus and
immune cells migrate
between compartments.

But he’s finding
that such data just
doesn’t exist for flu.
Coming from HIV
modeling, this can be
frustrating. “HIV is a
long-term
You can measure the
immune response over
many years,” he says.
“Flu lasts only one
week, and then every-
thing’s gone.” Getting
enough measurements
in a short time span is
challenging but essential. “The model is
easy to write out—to describe the inter-
actions between the virus and the
immune system in the lung, the spleen
and the lymph nodes. But there’s no val-
idation without data.”

The data-gathering problem would be
even worse in the event of a bioterrorist
event, he says. “How can we collect
enough information quickly to deal with
a new engineered virus!” That’s when an
immune system model would prove valu-
able. If there’s a model in place for an
existing flu virus, it can be quickly
adjusted to a new one, he says.

infection.

Stuart Sealfon.

MODELING MOLECULAR
LEVEL IMMUNE RESPONSES
Another NIAID group led by Stuart

Sealfon, MD, professor of neurology at
Mount Sinai School of Medicine in New
York City, is using computation to get a
handle on the immune system’s response
to flu at the molecular level. They are
modeling the ways that flu viruses evade
or undercut the immune system’s efforts,
specifically focused on the dendritic
cell—the transitional cell between the
innate and adaptive immune systems.
The team starts with experimental
work: They infect dendritic cells with non-
pathogenic viruses containing specific
components of the flu virus such as NS1
(a protein that shuts down some parts of

This is the graph of a preliminary 18-equation model of flu
virus antagonist effects on interferon production in dendrit-
ic cells. Both the graph and model were developed by Mount
Sinai researchers using BioPathwise, a signaling simulation
program developed by BioAnalytics Group LLC. Courtesy of

the normal signaling in such cells). This
generates large amounts of data on gene
and protein changes. The computer
model then tracks all of these changes at
once. “It’s difficult to understand parallel
events without the benefit of computa-
tional approaches.” Sealfon says.

One of the modeling challenges,
Sealfon says, is dealing with events that
occur on different time scales. Signaling
events take place over minutes, gene
induction occurs over hours or a few
days, and secretion and stimulation
occur throughout the infection period.
These multi-scale modeling problems
still need to be addressed, he says. But if
the challenges can be overcome, “ulti-
mately, this work can help us to develop
strategies to circumvent the virus’s
actions.” And in the event of a new
strain, the model can help identify the
evasive tactics used by the new flu bug,
which might lead to an appropriate ther-
apy or vaccine.

Computational immunology still has a
long way to go before it will fulfill its
promise, Kepler concedes. But the field is
really opening up, as technology provides
more and more ways to measure the many
complex interactions of the immune sys-
tem. “There has already been a lot of good
work in computational immunology,” he
says, “but it will have a very different fla-
vor in the next few years.”

www.biomedicalcomputationreview.org



The World:

Modeling Flu Spread

he field of computational epi- level. And the main computational
demiology is a much more mature  approaches to epidemiological prob-
field than computational immunology, lems—agentbased modeling and graph
Kepler says. Because epidemiologists have  theoretical methods—are well-established.
always dealt with disease spread across What is new, however, is the current
large populations, it’s not as big a leap to ~ United States effort to bring infectious dis-
computation on a national and global  ease modeling under one umbrella. In
2004, the National Institute of
General  Medical  Sciences
(NIGMS) within the NIH created
the Modeling of Infectious
Disease Agent Study (MIDAS), a
program that funds several epi-
demiologic modeling efforts, gives
them access to supercomputers,
and also coordinates them in
hopes of producing results that
will be useful to policymakers.
MIDAS literally gets every-
body in the room—program-
mers, data collectors, database
designers, biologists, epidemiol-
ogists and statisticians—to try to
iron out all the potential areas
of disagreement. In particular,
they try to reach consensus
about what parameters should
be part of the model. Telling
policymakers that one program

On day zero in these simulated
pandemic outbreaks (R, of 1.9),
infected individuals arrived at 14
major international airports in the
continental United States. The
number of ill people at a given
point in time is indicated by the
color scale from green (0.3 per-
cent) to red (3 percent) of the
population. More than 40 percent
of the entire U.S. population end
up getting ill with no interven-
tions (left). The use of antivirals
slows the spread (right) until the
stockpile of 20 million courses
runs out, at which point there’s a
delayed nationwide pandemic.
Courtesy: PNAS.
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gets one result and another program gets
a different result simply won’t do, says
Irene Eckstrand, PhD, scientific direc-
tor for the MIDAS program. “So we try
to work all those things out in-house.”

The end goal is for MIDAS to be able
to tell policy makers: Based on our mod-
els, a specific intervention in a specific
type of epidemic will likely have a specif-
ic effect. But, Eckstrand cautions, the
models are all stochastic—they don’t give
the exact same answer back twice.
Uncertainties are built into the models
because many parameters are probabilis-
tic. For example, the likelihood that a
person will stay home on a given date
rather than spread the disease to one or
more people can be assigned a specific
probability so that the outcome
will vary each time the model
runs. So each computer model
must be run multiple times on a
given set of parameters in order
to produce a distribution of
results that express the range of
possible outcomes as well as the
most likely outcomes.

Although  the MIDAS
approach could be applied to
any infectious disease, the
researchers decided early on—
before the current concern over avian
flu—that it would be interesting to
model pandemic influenza. “The timing
was pretty remarkable,” says Eckstrand.

Because of this fortuity, MIDAS models
published in Science and Nature in August
2005 and in Proceedings of the National
Academy of Sciences (PNAS) and Nature in
April 2006 were front page news.

MIDAS grantee Ira Longini co-
authored two of these high-profile
papers. His August 2005 paper in
Science looked at ways to stop an out-
break of flu in an imaginary population
of 500,000 people in Southeast Asia. He
and his colleagues found that an out-
break could be contained if a sufficient
stockpile of antiviral drugs could be
delivered rapidly enough—within three
weeks of the first human-to-human
transmissions. In practice such an
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approach would be difficult to imple-
ment in Southeast Asia but the model
will help policymakers plan for an effec-
tive response.

MODELING FLU_ACROSS
THE UNITED STATES

Longini’s April, 2006 model in
PNAS focused closer to home: What
interventions would help contain a flu
pandemic in the United States? Instead
of an imaginary population, this model
was built on census tract data for 281
million people and relied on extensive
knowledge about peoples’ travel and
activity patterns. “We're all pretty pre-
dictable, really,” he says. “We all get up,
go to work, go shopping, and get togeth-

er with our neighbors.” So Longini’s
model breaks down social contacts into
12-hour time periods (day and night) in
seven different (“mixing
groups”). In some contexts, close contact
occurs (home, work, schools); in others,
it’s more occasional (shopping malls).

The key variable for Longini’s model is
a number called Ry, which represents how
transmissible a strain will be. Specifically:
Ry is the number of people, on average,
that a typical infectious person infects dur-
ing the infectious period in a fully suscep-
tible population. If that number is bigger
than one, then the disease will spread.
Less than one and it will disappear.

No one really knows what the R, for
a new pandemic flu strain would be. It’s
thought that newly emerging strains that
haven’t had a chance to adapt to
humans might have a low Ry and there-

contexts

fore may die out. But no one has
observed an emerging infectious disease
before it becomes well adapted. “We
kind of missed HIV and SARS,”
Longini says. But now, with better sur-
veillance, virology and field epidemiolo-
gy, “Flu might be the first emerging dis-
ease where we really have an opportuni-
ty to watch what happens.”

In Longini’s computer model of the
United States, he’s assuming a well-adapt-
ed virus, so he starts with a pretty high R,
of 1.6 to 3.0 (the R for Smallpox is 5; for
the 1918 flu, about 2). But Ry is only the
starting point for the model. As different
intervention strategies are tried, the R
value changes. “These models aren’t
meant to be predictive tools,” he says.

“They are meant to evaluate
strategies for intervention.”

For a flu pandemic with an

Ry of 1.6, Longini and his col-

leagues found that any of several

individual strategies such as

antiviral drugs, child-first vacci-

nations or school closures could

be fairly effective in reducing

the incidence of flu below ten

percent (the rate for a typical

annual flu season). If the Ry is

higher than 1.9, however, only

vigorous application of multiple strate-

gies would reduce the outbreak’s impact.

Longini has been working directly
with the government on intervention
scenarios. For example, he can compare
the impact of stockpiling 10 million ver-
sus 100 million courses of Tamiflu. And
he can say closing schools is more effec-
tive than other social distancing meas-
ures while travel restrictions appear to
have little impact (findings confirmed by
the other MIDAS model for the United
States published in Nature). But he’s
quick to point out that the model can-
not predict what will actually happen.
“We can say one strategy might be better
than another or one might be totally
ineffective and another has a good
chance of being effective. So we can
make those sorts of statements, and
that’s about as far as we can go.”
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An aerial view of Portland, Oregon, in a simulated epidemic performed by Eubank and colleagues. In each image, red dots represent a loca-
tion with at least one infected person present at a set time on a given day. On the left is the baseline spread after 60 days. At right is what
happens if 75% of households make the decision to stay home during those 60 days. These simulations are not meant to represent what would
happen at a particular address, but to indicate the general consequences of such extreme behavioral modification. Courtesy: Stephen Eubank.

GETTING DowN
IN THE WEEDS

Despite the unifying influence of
MIDAS, its grantees still have their own
particular approaches to modeling epi-
demics, says Eckstrand. “There’s an
interesting discussion about how much
detail you need to know in order to
build higher level estimates,” she says.
Stephen Eubank, PhD, is a MIDAS
grantee who works with “down in the
weeds” information, Eckstrand says.

Eubank, project director of the
Network Dynamics and Simulation
Science Laboratory at the Virginia
Bioinformatics Institute, believes mod-
els need detail in order to best address
policymakers’ needs. To evaluate the rel-
ative effectiveness of strategies such as
telecommuting, limiting meeting sizes or
setting quotas on the number of people
in a grocery store, a model must contain
sufficient details about what individuals
are actually doing and where. Eubank’s
model consists of individual agents that
each represent a single person assigned a
set of activities at reasonable locations
given where they live. “So we don’t have
a knob in our model that says ‘reduce
contact rates by thirty percent,” he says.
“Instead we have knobs that say, keep
some people home from work; or don’t
let more than ten people in this room.”

Right now, Eubank’s models can
only be applied to one city at a time. “It’s
hard to support both the amount of
detail that we're talking about in our
model and the scale of the whole coun-
try. It becomes a question of computer
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resources.” For a city of a million or so,
each engaged in five to ten activities, a
simulation covering 60 days can take an
hour or two on 30 CPUs. But expand-
ing such detailed models nationwide
would require very large clusters of com-
puters and large quantities of data.
Eubank’s hope is to develop grid-based
platforms. “It’s unlikely that any one per-
son or organization would want
to model this much detail for
the whole United States,” he
says. “But at the local level,
there are good arguments for
why an urban area should have
such a model of itself.” It would
be useful not only in the event
of an epidemic, but for other
kinds of urban planning.

If cities participate in
Eubank’s plan, they could then
tie their models together in a
grid to create a nationwide,
detailed model. “So we’d have
this loose federation of urban
or regional models interacting
across the grid, each main-
tained by someone with a vested interest
in having a good model of their area.”

OPTIMIZING INTERVENTIONS

Catherine Dibble, PhD, assistant
professor in the department of geogra-
phy at the University of Maryland,
College Park, also offers a different per-
spective within MIDAS. As a collabora-
tor on the MIDAS grant headed up by
Donald Burke, PhD, at Johns Hopkins
University, she has developed tools for
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doing two things many others haven’t
done: risk analysis and optimization.
“Most pandemic modelers decide the
interventions and settings by hand and
run them through the simulations,” she
says. “We do that too, but we can also
optimize interventions and evaluate
their risks.”

So, while Longini and other MIDAS

Telling policymakers that
one program gets one result
and another program gets a
different result simply won't

do, says Irene Eckstrand,
“So we try to work all those

things out in-house.”

modelers (such as Neil Ferguson, PhD
and Mark Lipsitch, PhD; see www.epi-
models.org) recommend which local
interventions and combinations of inter-
ventions could be most effective, Dibble
has the capacity to evaluate the optimal
geographic deployment of those recom-
mended interventions and associated
scarce resources such as Tamiflu and vac-
cine supplies.

In addition, Dibble’s risk analysis
tools can evaluate the optimal strategies
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Catherine Dibble’s approach to flu
modeling is similar to her earlier work
with SARS (published in 2003). In this
simulated landscape of SARS spread,
each tower represents a population
center. Colors represent the health sta-
tus of individuals at each center:
green = healthy

pink = infectious

red = symptomatic

gray = deceased

white = recovered (now immune).

Contagious
Delay

A

contagious
A

dead

susceptible  infected

to see how well they deal with events that
don’t go as planned. As Dibble explains,
“some interventions might give a good
outcome under some conditions, but,
compared to other possible interven-
tions, might be more sensitive to chance
events that could work against them.”
But optimization and risk analysis
would require huge amounts of comput-
er resources if applied to the fully
detailed national models, Dibble says.
“Effective optimization requires a model
that represents key aspects of geographic
structure and travel behavior, yet is sim-
ple enough to run hundreds of thou-
sands of times to fully explore alternative
geographic deployments and to explore
uncertainties, sensitivities and risks.”
Dibble’s model is designed to evalu-
ate the effect of travel restrictions
between transportation hubs in the
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Recovered
and immune

event of pandemic flu. She created a net-
work with healthy individual agents
(green) distributed at each transporta-
tion hub all across the continental
United States. Each population center
can be visualized as a tower with its
height determined by its relative popula-
tion. “Then we drop one or more infect-
ed individuals into the landscape,” says
Dibble. “They are pink.”

As time goes by, different people make
different travel decisions (modeled using
actual airline routes and travel data) and
the infected agents start “sneezing” on
people (infecting them) at a rate consis-
tent with a particular Ry and whichever
interventions may be imposed.
Sometimes the epidemic fizzles out—the
equivalent of the infected person going
home and not giving the disease to any-
one. When it doesn’t fizzle out, pink

(infectious), red (sick), gray
(dead), and white (recovered)
people appear on the landscape,
with travel decisions leading to
diffusion among cities. “We
focus on evaluating the relative
pandemic risks across cities:
Which cities in the United
States are likely to be hit soonest
or more often,” she explains.

In the event of a pandemic,
her model can suggest how to
allocate the available (and limit-
ed) resources effectively, Dibble
says. Spreading interventions
uniformly over the population
might seem fair, but it might
not control the pandemic as
effectively as targeting the
resources to particular cities.

Convincing policymakers to
focus resources geographically
could be a big challenge, she says.
“If these models can be useful at all, peo-
ple need to be comfortable with them and
understand how a particular intervention
can help.” That kind of public awareness,
she says, will be key. According to her,
“Communication may turn out to be
more important than any particular
model, vaccine or resource.”

BRINGING BUG,
HosT AND
WORLD TOGETHER

As with many modeling endeavors,
the question arises: What if the models
could be integrated across the scales!? Will
we eventually model an evolving flu virus
interacting with the host immune system
in such a way as to predict, with reason-
able reliability, its effect on a population?
If so, that day is not near. But even now,
efforts by MIDAS researchers might help
stem the spread of a flu pandemic, poten-
tially saving millions of lives. Even if the
models don’t help, and a pandemic ram-
pages uncontrollably, the work will help
prepare us for the next time, and the one
after that. “Pandemic flu is a big threat,”
says Longini, “but it’s also a really impor-
tant scientific opportunity.” []
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