OCS Study MMS 2008-025

FINAL TASK 3.1 REPORT

Alternative Oil Spill Occurrence Estimators and their Variability for the Alaskan OCS – Fault Tree Method **UPDATE OF GOM OCS STATISTICS TO 2006** MMS Contract Number 1435-01-05-CT-39348

March 2008

By

Bercha International Inc. Calgary, Alberta, Canada

U.S. Department of the Interior Minerals Management Service Alaska Outer Continental Shelf Region

OCS Study MMS 2008-025

FINAL TASK 3.1 REPORT

Alternative Oil Spill Occurrence Estimators and their Variability for the Alaskan OCS – Fault Tree Method UPDATE OF GOM OCS STATISTICS TO 2006

March 2008

Principal Investigator: Dr. Frank G. Bercha, P.Eng.

Bercha International Inc. 2926 Parkdale Boulevard N.W. Calgary, Alberta, T2N 3S9, Canada Email: berchaf@berchagroup.com

This study was funded by the U.S. Department of the Interior, Minerals Management Service (MMS), Alaska Outer Continental Shelf Region, Anchorage, under Contract No. 1435-01-05-CT-39348, as part of the MMS Alaska Environmental Studies Program.

DISCLAIMER

The opinion, findings, conclusions, or recommendations expressed in this report or product are those of the authors and do not necessarily reflect the views of the U.S. Department of the Interior, nor does mention of products constitute endorsement or recommendations for use by the Federal Government.

EXECUTIVE SUMMARY

A. Introduction

Historical data and their statistical analyses are used as a starting point for fault tree application to oil spill indicator quantification for the Alaskan OCS. In the initial fault tree analysis¹, data from the GOM OCS were analyzed for the period from 1972 to 1999. Subsequently, a more refined publication of the data characteristics by MMS²has made it possible to conduct a more thorough statistical analysis as well as an update of the data and its analysis to 2006. This report generally discusses and gives data summaries as well as detailed statistical results for the re-analysis of the data, including an update of the GOM OCS data for platform and pipeline spills, including an update to 2006. The work is covered by MMS contract number 1435-01-05-CT-39348, and it is the first update under Task 3, and accordingly, is considered to be Task 3.1.

B. Pipeline Spills

The pipeline spill statistics generated in this update are basic spill statistics. First, the number of spills by size occurring for each causal category is given. Next, spill causes by two principal spill size categories are given, and transformed to spill frequencies per kilometer-year by dividing the number of kilometer-years exposure. And finally, the spill frequency distribution for spills of different size categories, by pipe diameter is determined. Table 1 summarizes the spill occurrences by size for each of the principal causes. These causes are those that are reported in the MMS database². Both the exact spill size in barrels and the spill size distribution by each of the spill size categories are given in Table 1.

Table 2 gives the pipeline hydrocarbon spill statistics by cause. These statistics are given as the probability of occurrence per kilometer-year of operating pipeline. Thus, for example, approximately 12.78 spills per 100,000 km-yrs in the small and medium size category are likely to occur. Of these, it is expected that approximately 1.1 per 100,000 km-yrs can be attributed to pipe corrosion.

Finally, Table 3 summarizes the pipeline hydrocarbon spill statistics by spill size and pipe diameter.

² MMS Website, <u>www.mms.gov/incidents/spills</u>.

 ¹ Bercha International Inc., "Alternative Oil Spill Occurrence Estimators for the Beaufort and Chukchi Seas
 – Fault Tree Method", Volume II, Appendix A – Historical Data, OCS Study MMS 2002-047, Final

Report to US Department of the Interior, Minerals Management Service, Alaska Outer Continental Shelf Region, August 2002.

CAUSE CLASSIFICATION	NUMBER OF							SP	ill Si BBL	IZE										۱ 0	ium F Si	iber Pill	≀ LS	
	SPILLS	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	S	М	L	Η	SM	LH
Corrosion	4																		1	2	1		3	1
External	1	80																	1				1	
Internal	3	100	5000	414																2	1		2	1
THIRD PARTY IMPACT	18																		2	6	7	3	8	10
Anchor Impact	12	19833	65	50	300	900	323	15576	2000	800	1211	2240	600						2	5	3	2	7	5
Jackup Rig or Spud Barge	1	3200																			1			1
Trawl/Fishing Net	5	4000	100	14423	4569	4533														1	3	1	1	4
OPERATION IMPACT	4																		3		1		3	1
Rig Anchoring	1	50																	1				1	
Work Boat Anchoring	3	50	5100	50															2		1		2	1
MECHANICAL	2																			2			2	
Connection Failure	1	135																		1			1	
Material Failure	1	210																		1			1	
NATURAL HAZARD	20																		6	11	3		17	3
Mud Slide	3	250	80	8212															1	1	1		2	1
Storm/ Hurricane	17	3500	671	126	200	260	250	1720	95	123	960	50	50	100	75	862	66	108	5	10	2		15	2
UNKNOWN	2	119	190																	2			2	
TOTALS	50																		12	23	12	3	35	15

Table 1Pipeline Hydrocarbon Spill Summary by Spill Size

		Small a	nd Medium Spi 50-999 bbl	ills	Large and Huge Spills >=1000 bbl						
CAUSE CLASSIFICATION	HIST. DISTRIBUTION %	NUMBER OF SPILLS	EXPOSURE [km-years]	FREQUENCY spill per 10^5km -year	HIST. DISTRIBUTION %	NUMBER OF SPILLS	EXPOSURE [km-years]	FREQUENCY spill per 10^5km -year			
CORROSION	8.57	3		1.0955	6.67	1		0.3652			
External	2.86	1		0.3652							
Internal	5.71	2		0.7303	6.67	1		0.3652			
THIRD PARTY IMPACT	22.86	8		2.9213	66.67	10		3.6517			
Anchor Impact	20.00	7		2.5562	33.33	5		1.8258			
Jackup Rig or Spud Barge					6.67	1		0.3652			
Trawl/Fishing Net	2.86	1		0.0365	26.67	4		1.4607			
OPERATION IMPACT	8.57	3		1.0955	6.67	1		0.3652			
Rig Anchoring	2.86	1		0.3652							
Work Boat Anchoring	5.71	2		0.7303	6.67	1		0.3652			
MECHANICAL	5.71	2		0.7303							
Connection Failure	2.86	1	273847	0.3652			273847				
Material Failure	2.86	1	273047	0.3652			2/304/				
NATURAL HAZARD	48.57	17		6.2078	20.00	3		1.0955			
Mud Slide	5.71	2		0.7303	6.67	1		0.3652			
Storm/ Hurricane	42.86	15		5.4775	13.33	2		0.7303			
ARCTIC											
Ice Gouging											
Strudel Scour											
Upheaval Buckling											
Thaw Settlement											
Other Arctic											
UNKNOWN	5.71	2		0.7303							
TOTALS	100.00	35		12.7809	100.00	15		5.4775			

Table 2Pipeline Hydrocarbon Spill Statistics by Cause

Table 3
Pipeline Hydrocarbon Spill Statistics by Spill Size and Pipe Diameter

GO		ineline Snills	Spill Statistics	Exposure	Frequency	
Ca	itegorize	ed 1972-2006	Number of Spills	km-years	spills per 10 ⁵ km- years	
By Pine Diam	eter	<= 10"	30	187,984	15.9588	
by the blank		> 10"	20	85,863	23.2929	
		Small <100 bbl	12	273,847	4.3820	
By Spill Size		Medium 100 - 999 bbl	23	273,847	8.3989	
By Opin Oize		Large 1000 - 9999 bbl	12	273,847	4.3820	
		Huge >=10000 bbl	3	273,847	1.0955	
		Small <100 bbl	8	187,984	4.2557	
		Medium 100 - 999 bbl	14	187,984	7.4474	
	~=10	Large 1000 - 9999 bbl	7	187,984	3.7237	
By Diameter,		Huge >=10000 bbl	1	187,984	0.5320	
By Spill Size		Small <100 bbl	4	85,863	4.6586	
	> 10"	Medium 100 - 999 bbl	9	85,863	10.4818	
	> 10	Large 1000 - 9999 bbl	5	85,863	5.8232	
		Huge >=10000 bbl	2	85,863	2.3293	

Final Task 3.1 Report – P2704.03 MMS Contract No.: 1435-01-05-CT-39348

C. Platform Spills

The primary platform spill statistical information required is the spill frequency distribution by different causes and spill sizes, and the spill rate per well year. Table 4 summarizes the spill size distribution among the principal reported causes. As can be seen, the major cause attributable to almost 50% of the spills – at 35 out of 74 spills – is equipment failure. However, although hurricanes have only caused a relatively small number of spills, their total spill volumes are the largest, giving the largest spill volume total. The largest spill, however, is the tank failure which caused a spill of nearly 10,000 barrels.

The spill rate data, given per production well-year, is shown in Table 5, again, by causal distribution as well as two broad spill size categories of small and medium spills and large and huge spills. Here, it becomes immediately evident that the largest spill potential in terms of volume is attributable to hurricanes, which are responsible for roughly 43% of the large and huge spills.

 Table 4

 Summary of GOM OCS Platform Hydrocarbon Spills by Size and Cause

CAUSE CLASSIFICATION	NUMBER OF		SPILL SIZE BBL												NUMBER OF SPILLS						
	SPILLS	1	2	3	4	5	6	7	8	9	10	11	12	13	14	S	М	L	Н	SM	LH
Equipment failure	35															17	18			35	
Process Equipment	14	130	50	104	60	95	107	50	643	60	50	400	75	125	127	7	7			14	
Transfer Hose	12	321	118	50	400	228	214	540	125	77	200	77	58			4	8			12	
Incorrect Operation	9	300	70	83	58	60	50	280	436	60						6	3			9	
Human Error	12	239	95	120	286	100	64	600	170	200	262	429	60			3	9			12	
TANK FAILURE	3	9935	150	50												1	1	1		2	1
SHIP COLLISION	6	166	100	1500	320	95	119									1	4	1		5	1
WEATHER	10	7000	165	258	80	1456	66	89	105	100	105					3	5	2		8	2
HURRICANE	6	75	200	1536	954	3093	6897									1	2	3		3	3
other	2	64	100													1	1			2	
TOTALS	74															27	40	7		67	7

Table 5
GOM OCS Platform Hydrocarbon Spill Statistics (1973-2006)

		Small a	nd Medium Spi 50-999 bbl	ills	Large and Huge Spills >=1000 bbl						
CAUSE CLASSIFICATION	HIST. DISTRIBUTION %	NUMBER OF SPILLS	EXPOSURE [well-years]	FREQUENCY spill per 10^4well- year	HIST. DISTRIBUTION %	NUMBER OF SPILLS	EXPOSURE [well-years]	FREQUENCY spill per 10^4well- year			
Equipment failure	52.24	35		1.6434							
- Process Equipment	20.90	14		0.6574							
- Transfer Hose	17.91	12		0.5635							
- Incorrect Operation	13.43	9		0.4226							
HUMAN ERROR	17.91	12		0.5635							
TANK FAILURE	2.99	2	212971	0.0939	14.29	1	212971	0.0470			
SHIP COLLISION	7.46	5		0.2348	14.29	1		0.0470			
WEATHER	11.94	8		0.3756	28.57	2		0.0939			
HURRICANE	4.48	3		0.1409	42.86	3		0.1409			
OTHER	2.99	2		0.0939							
TOTALS	100.00	67		3.1460	100.00	7		0.3287			

ACKNOWLEDGEMENTS

Grateful acknowledgement for funding and direction is made to MMS Alaska OCS Region. In particular, the following MMS personnel are acknowledged together with their roles:

- Dr. Dick Prentki, Contracting Officer's Representative
- Dr. James Craig, Resource Evaluation Section
- Caryn Smith, Oil-Spill-Risk-Analysis Coordinator
- Cheryl Anderson, MMS Spill Database Coordinator
- Debra Bridge, Contracting Officer
- Dr. Warren Horowitz, Oceanographer

This work was carried out by Bercha International Inc. Key Bercha personnel on the project team were as follows:

- Dr. Frank G. Bercha, Project Manager and Principal Engineer
- Milan Cerovšek, Reliability Engineering Specialist
- Edmund A. Yasinko, Offshore Pipeline Specialist
- Wesley Abel, Offshore Engineering Specialist
- Susan Charlton, Editorial and Word Processing Manager

TABLE OF CONTENTS

SECTION

PAGE

Execut Acknow Table List of Glossa	ive Summaryi wledgementsvii of Contentsviii Tables and Figuresix ury of Terms and Acronymsx
1	Introduction
1.1	General Introduction1.1
1.2	Data Sources
1.3	Outline of Report
2	Pipeline Spills
2.1	Introduction on GOM OCS Pipeline Spills
2.2	Pipeline Exposure
2.3	All Pipeline Spills
2.4	Pipeline Hydrocarbon Spills
2.5	Pipeline Spill Statistics
3	Platform Spills
3.1	Introduction to Platform Spills
3.2	Platform Exposure
3.3	All GOM OCS Platform Spills
3.4	Platform Hydrocarbon Spills
3.5	Platform Spill Statistics
Refer	ences

LIST OF TABLES AND FIGURES

TABLE

PAGE

2.1	GOM OCS Pipeline Exposure Data (1972-2006)	2.2
2.2	GOM OCS Pipeline All Spill Data Summary	2.3
2.3	GOM OCS Pipeline Hydrocarbon Spill Data Summary	2.5
2.4	Pipeline Hydrocarbon Spill Summary by Spill Size	2.6
2.5	Pipeline Hydrocarbon Spill Statistics by Cause	2.7
2.6	Pipeline Hydrocarbon Spill Statistics by Spill Size and Pipe Diameter	2.8
3.1	Annual Number of Producing Wells in GOM OCS (1972-2006)	3.2
3.2	Summary of All GOM OCS Platform Spills (1973-2006)	3.4
3.3	Summary of GOM OCS Platform Hydrocarbon Spills (1973-2006)	3.9
3.4	Summary of GOM OCS Platform Hydrocarbon Spills by Size and Cause	3.11
3.6	GOM OCS Platform Hydrocarbon Spill Statistics (1973-2006)	3.12

FIGURE

PAGE

3.1 Annual Number of Producing Wells in GOM OCS (1972-2006) – Bar Chart Display ... 3.3

GLOSSARY OF TERMS AND ACRONYMS

Bbbl	Billion Barrels
CDF	Cumulative Distribution Function
Consequence	The direct effect of an accidental event.
GOM	Gulf of Mexico
Hazard	A condition with a potential to create risks such as accidental leakage of natural gas from a pressurized vessel.
KBpd	Thousand Barrels per day
LOF	Life of Field
MMbbl	Million Barrels
MMS	Minerals Management Service, Department of the Interior
Monte Carlo	A numerical method for evaluating algebraic combinations of statistical distributions.
OCS	Outer Continental Shelf
QRA	Quantitative Risk Assessment
Risk	A compound measure of the probability and magnitude of adverse effect.
RLS	Release
SINTEF	The Foundation of Scientific and Industrial Research at the Norwegian Institute of Technology
Spill Frequency	The number of spills of a given spill size range per year. Usually expressed as spills per 1,000 years (and so indicated).
Spill Frequency per Barrel Produced	The number of spills of a given spill size range per barrel produced. Usually expressed as spills per billion barrels produced (and so indicated).
Spill Index	The product of spill frequency for a given spill size range and the mean spill size for that spill size range.
Spill Occurrence	Characterization of an oil spill as an annual frequency and associated spill size or spill size range.
Spill Occurrence Indicator	Any of the oil spill occurrence characteristics; namely, spill frequency, spill frequency per barrel produced, or spill index (defined above).
Spill Sizes	Small (S): 50 - 99 bbl Medium (M): 100 - 999 bbl Large (L): 1,000 - 9,999 bbl Huge (H): >=10,000 bbl Significant (SG): >=1,000 bbl

SECTION 1 INTRODUCTION

1.1 General Introduction

Historical data and their statistical analyses are used as a starting point for fault tree application to oil spill indicator quantification for the Alaskan OCS. In the initial fault tree analysis [1]^{*}, data from the GOM OCS were analyzed for the period from 1972 to 1999. Subsequently, a more refined publication of the data characteristics by MMS [2] has made it possible to conduct a more thorough statistical analysis as well as an update of the data and its analysis to 2006. This report generally discusses and gives data summaries as well as detailed statistical results for the re-analysis of the data, including an update of the GOM OCS data for platform and pipeline spills, including an update to 2006. The work is covered by MMS contract number 1435-01-05-CT-39348, and it is the first update under Task 3, and accordingly, is considered to be Task 3.1.

1.2 Data Sources

The bulk of the data was obtained directly from the MMS website [2], and was generally collated and analyzed in a format similar to that of the earlier data analysis by Bercha International Inc. [1].

In addition to the data obtained directly from the MMS website, numerous clarifications and supplemental data was acquired through a meeting and a series of email discussions between Bercha investigators and MMS staff, between October 1 and 31, 2007.

1.3 Outline of Report

Following this brief introduction, Section 2 deals with the pipeline spill data and its analysis, while Section 3 deals with the platform spill data and its analysis.

^{*} Numbers in square brackets refer to publications listed in "References" section of this report.

SECTION 2

2.1

PIPELINE SPILLS

2.1 Introduction on GOM OCS Pipeline Spills

Subsea pipelines in the Gulf of Mexico (GOM) Offshore Continental Shelf (OCS) hold roughly 13 thousand kilometers in 2006, representing an exposure of nearly 300,000 kilometer-years between 1972 and 2006.

Spill reporting for spills greater than 50 barrels has been carried out over this period. Although in the subsequent variability analysis to be reported elsewhere, continuous spill volume distributions will be utilized, spill size characterization is reported according to the following spill size categories:

•	Small (S):	50 - 99 bbl
•	Medium (M):	100 - 999 bbl
•	Large (L):	1,000 - 9,999 bbl
•	Huge (H):	>= 10,000 bbl
•	Significant (SG):	>=1,000 bbl

In the balance of this section, all reported spills in the Alaskan GOM OCS are summarized; those containing hydrocarbons (crude oil, diesel, condensate) are extracted from these, and analyzed both by causal distribution and frequency distribution.

2.2 Pipeline Exposure

Table 2.1 summarizes the total length of GOM OCS subsea pipelines in operation between 1972 and 2006. In addition, it gives the total mile-years and kilometer-years and their distribution for pipelines of different nominal pipe size (NPS) – representing an approximate outside diameter. In the notes below Table 2.1, a comparison is made between the exposure data used in the previous report [1] (showing 187,183 km) and the current report (totaling 184,600 km) between 1972 and 1999. The figures in the main part of Table 2.1, of course, include lengths operating up to and including 2006.

2.3 All Pipeline Spills

Table 2.2 gives a summary of all pipeline liquid spills. As can be seen, not all of these are hydrocarbons, as some include methanol, ethylene glycol, and other liquids – although these other liquids are quite limited, and make only a small contribution. Nevertheless, all these spills have been shown in Table 2.2. It should be noted that minor updates on these spills were carried out through communications with MMS staff, October 19, 2007.

			Miles of O	CS OIL Pip	eline Segm	ents by Yea	r and Size				
Year	<=10" NPS	>10" NPS	Total	2"	3"	4"	5 - 6"	7 - 8"	9 - 10"	11 - 19"	20 - 36"
1972	1301	439	1740	59	84	289	468	276	125	439	0
1973	1418	514	1932	60	88	299	499	320	152	510	4
1974	1514	535	2049	66	90	304	507	395	152	531	4
1975	1590	610	2200	67	94	310	524	443	152	606	4
1976	1700	751	2451	73	98	317	533	521	158	639	112
1977	1784	779	2563	74	101	345	556	550	158	646	133
1978	1963	855	2818	74	109	361	620	592	207	722	133
1979	2089	867	2956	74	112	389	639	647	228	734	133
1980	2221	899	3120	76	119	406	658	708	254	766	133
1981	2404	939	3343	79	120	450	755	746	254	806	133
1982	2535	976	3511	79	124	468	838	767	259	843	133
1983	2684	1019	3703	79	142	483	929	792	259	886	133
1984	2889	1036	3925	79	155	555	994	823	283	903	133
1985	3025	1038	4063	79	175	585	1036	862	288	905	133
1986	3100	1138	4238	79	184	600	1072	877	288	1005	133
1987	3210	1135	4345	79	192	634	1091	891	323	1002	133
1988	3276	1175	4451	85	217	666	1088	892	328	1042	133
1989	3339	1223	4562	86	241	689	1092	903	328	1090	133
1990	3513	1224	4737	93	243	751	1161	926	339	1091	133
1991	3624	1212	4836	94	267	790	1178	948	347	1079	133
1992	3764	1215	4979	94	280	809	1210	1023	348	1082	133
1993	3807	1223	5030	88	290	829	1227	1025	348	1090	133
1994	3944	1343	5287	81	300	858	1285	1070	350	1210	133
1995	4059	1477	5536	82	306	886	1325	1104	356	1271	206
1996	4218	1930	6148	81	318	912	1425	1126	356	1416	514
1997	4338	2095	6433	80	320	950	1463	1140	385	1573	522
1998	4470	2283	6753	80	308	992	1538	1160	392	1725	558
1999	4622	2374	6996	80	307	1008	1585	1226	416	1816	558
2000	4731	2516	7247	71	306	1032	1606	1259	457	1959	557
2001	4892	2574	7466	70	300	1079	1685	1291	467	1998	576
2002	4988	2663	7651	67	297	1076	1702	1380	466	2087	576
2003	4966	2876	7842	64	270	1035	1747	1388	462	2264	612
2004	5006	3510	8516	57	272	1027	1760	1408	482	2512	998
2005	4914	3455	8369	57	257	1013	1727	1392	468	2457	998
2006	4910	3455	8365	57	257	1013	1727	1389	467	2457	998
TOTAL mileyrs	116808	53353	170161	2643	7343	24210	39250	32260	11102	43162	10191
TOTAL km-yrs	187984	85863	273847	4253	11817	38962	63167	51917	17867	69463	16401

Table 2.1GOM OCS Pipeline Exposure Data (1972-2006)

Note: For calculation used 1 mile = 1.609344 km and rounded to full number

Current: 1972-1999									
	<=10"	>10"	Total						
miles	82401	32304	114705						
km	132612	<u>51988</u>	184600						

Previou	Previous Report [1]: 1972-1999							
	<10"	>=10"	Total					
km	105336	81847	187183					

#	Year	Size bbl	NPS	Material	Cause	Water Depth (ft)
1	1972	100	12	Crude Oil	Internal Corrosion	140
2	1973	5000	16	Crude Oil	Corrosion	168
3	1974	19833	14	Crude Oil	Crude Oil Anchor	
4	1974	65	12	Crude Oil	Anchor and Storm	246
5	1974	3500	8	Crude Oil	Hurricane	141
6	1976	414	18	Crude Oil	Anchor and Corr.	160
7	1976	4000	10	Crude Oil	Shrimp Trawl	210
8	1977	250	13	Crude Oil	Mud Slide	105
9	19//	50	14	Crude Oil	Anchor	247
10	1977	300	8	Crude Oil	Anchor	210
11	1978	135	9	Crude Oil	Pipeline Clamp	1//
12	1978	900	9	Crude Oil	Anchor	103
13	19/9	50	8	Crude Oil	Anchor	300
14	1980	100	8	Condensate	Trawler Net	137
15	1981	80	4	Crude Oil	Ext Corr and Metal fatigue	54
16	1981	5100	8	Crude Oil	Anchor	190
1/	1983	80	8	Crude Oil	Storm and mud slide	184
18	1985	323	13	Crude Oil	Anchor	162
19	1985	50	12	Crude Oil	Anchor	17
20	1986	119	6	Crude Oil	Leak	27
21	1986	210	8	Crude Oil	Anchor or construction	300
22	1988	15576	14	Crude Oil	Human, Anchor and Judgment	75
23	1990	14423	4	Condensate	Fish Net or Anchor tie-in	197
24	1990	4569	8	Crude Oil	Pipeline Valve	230
25	1992	190	12	Crude Oil	Leak	90
26	1992	2000	20	Crude Oil	Hurricane	30
27	1993	50	4	Crude Oil	Anchor	116
28	1994	4533	4	Condensate	Trawler Net	197
29	1997	71.4	1	Methanol	Leak	5292
30	1998	800	14	Crude Oil	Anchor	150
31	1998	1211	16	Condensate	Anchor	264
32	1998	8212	10	Crude Oil	Hurricane	108
33	1999	3200	12	Crude Oil	External Damage	133
34	2000	2240	24	Crude Oil	External Damage - Anchor	435
35	2003	83	4	Ethylene	Human Error	479
36	2004	671	18	Crude Oil	Hurricane Ivan	200
37	2004	126	6	Crude Oil	Hurricane Ivan	305
38	2004	200	8	Crude Oil	Hurricane Ivan	244
39	2004	260	8	Crude Oil	Hurricane Ivan	255
40	2004	250	6	Crude Oil	Hurricane Ivan	255
41	2004	1720	6	Crude Oil	Hurricane Ivan	479
42	2004	95	8	Crude Oil	Hurricane Ivan	185
43	2004	123	10	Crude Oil	Hurricane Ivan	300
44	2004	4834	2	Methanol	Hurricane Ivan	1475
45	2005	960	8	Crude Oil	Hurricane Katrina	1100
46	2005	50	8	Crude Oil	Hurricane Katrina	340
47	2005	50	8	Condensate	Hurricane Katrina	48
48	2005	100	14	Condensate	Hurricane Rita	17
49	2005	75	4	Crude Oil	Hurricane Rita	180
50	2005	862	8	Crude Oil	Hurricane Rita	141
51	2005	66.5	12	Crude Oil	Hurricane Rita	152
52	2005	108	6	Crude Oil	Hurricane Rita	210
53	2006	600	14	Crude Oil	External Damage - Anchor	126

Table 2.2 GOM OCS Pipeline All Spill Data Summary

Notes: All Data from MMS Web site(GOM Region), October 1, 2007

March 2008

* = updated by Cheryl Anderson October 19, 2007

2.4 Pipeline Hydrocarbon Spills

Table 2.3 gives the same basic data, but only for hydrocarbon spills; that is, for crude oil and condensate spills from GOM OCS pipelines. The previous number of 53 spills, has now been reduced by 3 to 50 spills, showing a relatively insignificant contribution of the non-hydrocarbon spills. Table 2.3 is used as a basis of statistical analysis subsequently, and in the scenario simulations to be carried out in future studies. As can be seen, in addition to the year of occurrence, the reported spill size is given, the nominal pipeline size (NPS) in approximate inches, the spill material, and cause, as well as the water depth at which the spill occurs are all given.

2.4

2.5 **Pipeline Spill Statistics**

The pipeline spill statistics generated in this update are basic spill statistics. First, the number of spills by size occurring for each causal category is given. Next, spill causes by two principal spill size categories are given, and transformed to spill frequencies per kilometer-year by dividing the number of kilometer-years exposure. And finally, the spill frequency distribution for spills of different size categories, by pipe diameter is determined. Table 2.4 summarizes the spill occurrences by size for each of the principal causes. These causes are those that are reported in the MMS database [2]. Both the exact spill size in barrels and the spill size distribution by each of the spill size categories are given in Table 2.4.

Table 2.5 gives the pipeline hydrocarbon spill statistics by cause. These statistics are given as the probability of occurrence per kilometer-year of operating pipeline. Thus, for example, approximately 12.78 spills per 100,000 km-yrs in the small and medium size category are likely to occur. Of these, it is expected that approximately 1.1 per 100,000 km-yrs can be attributed to pipe corrosion.

Finally, Table 2.6 summarizes the pipeline hydrocarbon spill statistics by spill size and pipe diameter.

#	Year	Size bbl	NPS	Material	Cause	Water Depth (ft)
1	1972	100	12	Crude Oil	Internal Corrosion	140
2	1973	5000	16	Crude Oil	Internal Corrosion	168
3	1974	19833	14	Crude Oil	Anchor	240
4	1974	65	12	Crude Oil	Anchor and Storm	246
5	1974	3500	8	Crude Oil	Hurricane	141
6	1976	414	18	Crude Oil	Anchor and Corr.	160
7	1976	4000	10	Crude Oil	Shrimp Trawl	210
8	1977	250	13	Crude Oil	Mud Slide	105
9	1977	50	14	Crude Oil	Anchor	247
10	1977	300	8	Crude Oil	Anchor	210
11	1978	135	9	Crude Oil	Pipeline Clamp	177
12	1978	900	9	Crude Oil	Anchor	103
13	1979	50	8	Crude Oil	Anchor	300
14	1980	100	8	Condensate	Trawler Net	137
15	1981	80	4	Crude Oil	Ext Corr and Metal fatigue	54
16	1981	5100	8	Crude Oil	Anchor	190
17	1983	80	8	Crude Oil	Storm and mud slide	184
18	1985	323	13	Crude Oil	Anchor	162
19	1985	50	12	Crude Oil	Anchor	17
20	1986	119	6	Crude Oil	Leak	27
21	1986	210	8	Crude Oil	Anchor or construction	300
22	1988	15576	14	Crude Oil	Human Anchor and Judgment	75
22	1990	14423	4	Condensate	Fish Net or Anchor tie-in	197
23	1990	4569	8	Crude Oil	Pineline Valve	230
25	1992	190	12	Crude Oil	Leak	90
26	1992	2000	20	Crude Oil	Hurricane	30
20	1993	50	4	Crude Oil	Anchor	116
28	1994	4533	4	Condensate	Trawler Net	197
20	1008	800	1/	Crude Oil	Anchor	150
30	1008	1211	16	Condensate	Anchor	264
30	1008	8212	10	Crude Oil	Hurricano	108
37	1000	3200	12	Crude Oil	External Damage	133
<u>3</u> 2	2000	2240	24	Crude Oil	External Damage - Anchor	/35
33	2000	671	19	Crude Oil	Hurricane Ivan	200
35	2004	126	6	Crude Oil	Hurricane Ivan	200
36	2004	200	8	Crude Oil	Hurricane Ivan	2//
30	2004	260	8			244
30	2004	200	6	Crude Oil	Hurricane Ivan	200
20	2004	200	6			200
10	2004	05	0			4/7
40	2004	122	10			200
41	2004	060	0			300 1100
42	2005	900	0		Hurricopo Katrino	240
43	2005	50	Ö			340
44	2005	<u> </u>	0 14	Condensate		4ð 17
40	2005	75	14			100
40	2005	/5	4			141
4/	2005	802	<u>д</u>			141
48	2005	00.5	12		HUITICANE KILA	152
49	2005	108	6			210
50	2006	600	4	Crude Oil	External Damage - Anchor	126

Table 2.3 GOM OCS Pipeline Hydrocarbon Spill Data Summary

Notes: All Data from MMS Web site(GOM Region), October 1, 2007

* = updated by Cheryl Anderson October 19, 2007

<=10"	30
>10"	20

12	Small <100 bbl
23	Medium 100 - 999 bbl
12	Large 1000 - 9999 bbl
3	Huge >=10000 bbl

	8	Small <100 bbl				
~=10"	14	Medium 100 - 999 bbl				
<-10	7	Large 1000 - 9999 bbl				
	1	Huge >=10000 bbl				
	4	Small <100 bbl				
10"	9	Medium 100 - 999 bbl				
>10	5	Large 1000 - 9999 bbl				
	2	Huge >=10000 bbl				

CAUSE CLASSIFICATION	NUMBER OF							SP	ille Si BBL	ZE										۱ 0	ium F Si	iber Pill	₹ LS	
	SPILLS	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	S	М	L	Н	SM	LH
Corrosion	4																		1	2	1		3	1
External	1	80																	1				1	
Internal	3	100	5000	414																2	1		2	1
Third Party Impact	18																		2	6	7	3	8	10
Anchor Impact	12	19833	65	50	300	900	323	15576	2000	800	1211	2240	600						2	5	3	2	7	5
Jackup Rig or Spud Barge	1	3200																			1			1
Trawl/Fishing Net	5	4000	100	14423	4569	4533														1	3	1	1	4
OPERATION IMPACT	4																		3		1		3	1
Rig Anchoring	1	50																	1				1	
Work Boat Anchoring	3	50	5100	50															2		1		2	1
MECHANICAL	2																			2			2	
Connection Failure	1	135																		1			1	
Material Failure	1	210																		1			1	
NATURAL HAZARD	20																		6	11	3		17	3
Mud Slide	3	250	80	8212															1	1	1		2	1
Storm/ Hurricane	17	3500	671	126	200	260	250	1720	95	123	960	50	50	100	75	862	66	108	5	10	2		15	2
UNKNOWN	2	119	190																	2			2	
TOTALS	50																		12	23	12	3	35	15

Table 2.4Pipeline Hydrocarbon Spill Summary by Spill Size

		Small a	nd Medium Spi 50-999 bbl	ills		Large	and Huge Spill: >=1000 bbl	s
CAUSE CLASSIFICATION	HIST. DISTRIBUTION %	NUMBER OF SPILLS	EXPOSURE [km-years]	FREQUENCY spill per 10^5km -year	HIST. DISTRIBUTION %	NUMBER OF SPILLS	EXPOSURE [km-years]	FREQUENCY spill per 10^5km -year
CORROSION	8.57	3		1.0955	6.67	1		0.3652
External	2.86	1		0.3652				
Internal	5.71	2		0.7303	6.67	1		0.3652
THIRD PARTY IMPACT	22.86	8		2.9213	66.67	10		3.6517
Anchor Impact	20.00	7		2.5562	33.33	5		1.8258
Jackup Rig or Spud Barge					6.67	1		0.3652
Trawl/Fishing Net	2.86	1		0.0365	26.67	4		1.4607
OPERATION IMPACT	8.57	3		1.0955	6.67	1		0.3652
Rig Anchoring	2.86	1		0.3652				
Work Boat Anchoring	5.71	2		0.7303	6.67	1		0.3652
MECHANICAL	5.71	2		0.7303				
Connection Failure	2.86	1	272847	0.3652			272847	
Material Failure	2.86	1	2/304/	0.3652			2/304/	
NATURAL HAZARD	48.57	17		6.2078	20.00	3		1.0955
Mud Slide	5.71	2		0.7303	6.67	1		0.3652
Storm/ Hurricane	42.86	15		5.4775	13.33	2		0.7303
ARCTIC								
Ice Gouging								
Strudel Scour								
Upheaval Buckling								
Thaw Settlement								
Other Arctic								
UNKNOWN	5.71	2		0.7303				
TOTALS	100.00	35		12.7809	100.00	15		5.4775

Table 2.5 Pipeline Hydrocarbon Spill Statistics by Cause

2.7

Table 2.6	
Pipeline Hydrocarbon Spill Statistics by Spill Size and Pipe	e Diameter

GOM		ineline Snills	Spill Statistics	Exposure	Frequency
Ca	itegorize	ed 1972-2006	Number of Spills	km-years	spills per 10 ⁵ km- years
By Pipe Diam	otor	<= 10"	30	187,984	15.9588
by the blank		> 10"	20	85,863	23.2929
		Small <100 bbl	12	273,847	4.3820
By Snill Size		Medium 100 - 999 bbl	23	273,847	8.3989
By Opin Oize		Large 1000 - 9999 bbl	12	273,847	4.3820
		Huge >=10000 bbl	3	273,847	1.0955
		Small <100 bbl	8	187,984	4.2557
	~-10"	Medium 100 - 999 bbl	14	187,984	7.4474
	~=10	Large 1000 - 9999 bbl	7	187,984	3.7237
By Diameter,		Huge >=10000 bbl	1	187,984	0.5320
By Spill Size		Small <100 bbl	4	85,863	4.6586
	> 10"	Medium 100 - 999 bbl	9	85,863	10.4818
		Large 1000 - 9999 bbl	5	85,863	5.8232
		Huge >=10000 bbl	2	85,863	2.3293

SECTION 3

PLATFORM SPILLS

3.1 Introduction to Platform Spills

Generally, platform spills in the GOM OCS have been reported to occur due to equipment failure, human error, tank failure, ship collisions, and weather, including hurricanes. In the period from 1973 to 2006, approximately 200 platform spills have been reported, with roughly 74 spills of hydrocarbon fluids.

In the statistical analysis, the exposure factor utilized in the platform spill frequency computation is the number of active producing wells in any given time period. In the balance of this section, following a discussion of the exposure, all platform spills are summarized, followed by the platform hydrocarbon spill summaries, and the spill statistical analysis by both causal distribution and active well year.

3.2 Platform Exposure

The exposure factor utilized for the platforms is the number of active producing wells in any given time period. The definition of the number of active producing wells is *'the number of OCS GOM wells producing oil and/or condensate which reported production greater than 0 barrels in each year (or the relevant time period)*".

Table 3.1 summarizes the number of these active producing wells for each year between 1972 and 2006. The bar chart in Figure 3.1 simply illustrates these numbers of producing wells. A peak of roughly 7,000 producing wells in 1985, is followed by a gradual decline to the present number of approximately 4,800 producing wells in 2006.

3.3 All GOM OCS Platform Spills

All liquid spills reported from GOM OCS platforms between 1973 and 2006 are summarized in Table 3.2. As can be seen, numerous non-hydrocarbon spills such as zinc bromide, synthetic based muds, or methanol are included in this number of spills, which totals 190. As can be seen in the table, following the spill itemization number data given are the year of occurrence, the actual size in barrels, the material spilled, the reported cause, and the associated operation, as well as the water depth.

Table 3.1Annual Number of Active Producing Wells in GOM OCS (1972-2006)

Year	Wells
1972	4276
1973	4512
1974	4545
1975	4603
1976	4763
1977	4981
1978	5228
1979	5510
1980	5713
1981	5969
1982	6343
1983	6493
1984	6762
1985	7034
1986	6986
1987	6950
1988	6948
1989	6942
1990	6973
1991	6974
1992	6825
1993	6764
1994	6757
1995	6653
1996	6716
1997	6666
1998	6472
1999	6341
2000	6313
2001	6432
2002	6188
2003	6014
2004	5936
2005	5572
2006	4817
Total	212971

Figure 3.1 Annual Number of Active Producing Wells in GOM OCS (1972-2006) – Bar Chart Display

3.3

#	Year	Size bbl	Material	Cause	Operation	Water Depth ft		
1	1973	9935	Crude Oil	Tank ruptured	Production	110		
2	1973	7000	Crude Oil	Rough Seas	Production	61		
3	1973	239	Diesel	Human error	Drilling and Motor Vessel	300		
4	1973	95.2	Diesel	Human error	Drilling and Motor Vessel	103		
5	1974	130	Crude Oil	Liquid Level Control	Production	60		
6	1974	75	Crude Oil	Hurricane	Production	29		
7	1974	50	Crude Oil	Liquid Level Control	Production	27		
8	1974	120	Crude Oil	Human error	Production	140		
9	1974	200	Crude Oil	Hurricane	Drilling, Compl., or Workover	30		
10	1975	166	Diesel	Collision	Production and Motor Vessel	210		
11	1975	100	Diesel	Collision	Drilling and Motor Vessel	200		
12	1976	300	Diesel	Eq failure and Human Err	Drilling and Motor Vessel	127		
13	1977	70	Diesel	Eq failure and Human Err	Drilling and Motor Vessel	55		
14	1978	104	Crude Oil	Eq failure LACT	Production	105		
15	1979	321	Diesel	Eq failure Transfer hose	Drilling and Motor Vessel	311		
16	1979	165	Diesel	Weather related	Motor Vessel	228		
17	1979	60	Crude Oil	Liquid Level Control	Production	210		
18	1979	1500	Diesel	Collision -Hurricane	Drilling and Motor Vessel	280		
19	1980	286	Diesel	Human error	Drilling	156		
20	1980	258	Diesel	Weather related	Production and Motor Vessel	65		
21	1980	95	Diesel	Excessive wear	Drilling	140		
22	1980	150	Diesel	Tank ruptured	Motor Vessel	168		
23	1980	80	Diesel	Weather related	Drilling and Motor Vessel	220		
24	1980	83	Diesel	Eq failure and Human Err	Production	187		
25	1980	1456	Crude Oil	Weather related	Production	60		
26	1980	118	Diesel	Eq failure Transfer hose	Drilling and Motor Vessel	99		
27	1981	58	Crude Oil	Eq failure. Human error	Production	54		
28	1981	210	Mineral Oil	Tank ruptured	Drilling	49		
29	1981	50	Diesel	Eq failure Transfer hose	Drilling and Motor Vessel	350		
30	1981	64	Crude Oil	Not Indentified	Completion or Workover	340		
31	1982	400	Diesel	Eq failure Transfer hose	a failure Transfer hose Drilling and Motor Vessel			
32	1982	228	Diesel	Eq failure Transfer hose	Drilling and Motor Vessel	394		
33	1982	214.3	Diesel	Eq failure Transfer hose	Drilling and Motor Vessel	60		
34	1983	540	Diesel	Eq failure Transfer hose	Drilling and Barge	43		
35	1983	125	Crude Oil	Eq failure Transfer hose	Production	90		
36	1983	77	Diesel	Eq failure Transfer hose	Drilling and Motor Vessel	48		
37	1983	320.4	Diesel	Collision	Drilling and Motor Vessel	50		
38	1983	200	Diesel	Eq failure Transfer hose	Drilling and Motor Vessel	65		
39	1983	77	Diesel	Eq failure Transfer hose	Drilling and Motor Vessel	48		
40	1983	95	Diesel	Collision	Drilling and Motor Vessel	78		
41	1983	119	Diesel	Collision	Production and Motor Vessel	105		
42	1984	50	Crude Oil	Tank ruptured	Production	94		
43	1984	100	Diesel	Human error	Drilling and Motor Vessel	307		
44	1985	107.1	Diesel	Eq failure Pipe Flbow	Drilling	130		
45	1985	59.52	Diesel	Eq failure. Human error	Deactivation	50		
46	1985	50	Crude Oil	Eq failure	Workover	196		
47	1985	643	Diesel	Eg failure Flow meter	Drilling and Motor Vessel	3115		
48	1985	50	Mineral Oil	Tank ruptured	Drilling	200		
49	1985	66	Condensate	Weather related	Production	55		
50	1985	58	Diesel	Fo failure Transfer hose	Drilling and Motor Vessel	103		
51	1986	52	Hydraulic Fluid	Human error	Construction	750		
52	1987	60	Crude Oil	Fa failure BOP	Drilling	126		
53	1988	50	Crude Oil	Eq failure Human error	Production	172		
54	1988	64	Diesel	Human error	Drilling	200		
-	1700	-	510301	Leak Wellhead		200		
55	1988	50	Crude Oil	assembly	Production	140		
56	1989	400	Crude Oil	Eq failure Liquid Jevel	Production	112		

Table 3.2Summary of All GOM OCS Platform Spills (1973-2006)

#	Year	Size bbl	Material	Cause	Operation	Water Depth ft
57	1990	110	Zinc Bromide	Eq failure dump valve	Drilling	155
58	1991	280	Crude Oil	Eq failure, Human error	Production	50
59	1992	100	Condensate	Other, Inuff. Mud weight	Drilling	187
60	1994	62	Zinc Bromide	Eq failure Transfer hose	Fuel Transfer and Motor Vesel	240
61	1994	141	Zinc Bromide	Human error	Completion or Workover	113
62	1995	600	Condensate	Human error	Drilling and Motor Vessel	50
63	1995	75	Condensate	Eq failure	Production	116
64	1995	89	Diesel	Weather related	Drilling and Motor Vessel	430
65	1995	436	Condensate	Eq failure, Human error	Production	56
66	1996	104.8	Diesel	Weather related	Drilling and Motor Vessel	2096
6/	1996	60	Zinc Bromide	Eq failure	Production	276
68	1996	61.9	Hydraulic Fluid	Eq failure	Construction	/05
69	1997	80	Zinc Bromide	Human error	Completion	2096
70	1997	1/0		Human error	Production	40
71	1998	1012	Zinc Bromide	Human error Weather related	Draduction	700
72	1998	100	Diesei Ethylong Chycol	Vveather related	Production	700
73	1998	C0	Elliylerie Giycor	Eq Tallure Door docian	Production	2292
74	1998	04.8 170	Zinc Promido	Puul design	Completion	3214
75	1990	00	Zinc Dromide		Completion	1040
70	1990	00			Dreduction and Motor Vessel	202
70	1999	105.24	Condonsato	Fa failuro	Morkovor	392
70	1999	120	Synthotic Based Mud		Drilling	403 N/A
80	1999	360	Zinc Bromide	Human error	Workover and Motor Vessel	284
81	2000	1//0	Synthetic Based Mud	Human error	Drilling	6327
82	2000	165.6	Synthetic Based Mud	Fo failure	Drilling	3290
83	2000	114	Synthetic Based Mud	Eq failure	Drilling	3270
84	2000	200	Crude Oil	Human error	Drilling	2223
85	2000	573.6	Synthetic Based Mud	Human error	Drilling	2223
86	2000	60	Crude Oil	Eg failure. Human error	Production	172
87	2000	133.8	Synthetic Based Mud	Eq failure	Drilling	7500
88	2001	71.4	Synthetic Based Mud	Human error	Motor Vessel	1025
89	2001	122	Zinc Bromide	Eq failure	Drilling	1140
90	2001	127	Crude Oil	Eq failure	Production	243
91	2001	429	Zinc Bromide	Human error	Drilling	53
92	2001	332	Ethylene Glycol	Eq failure	Production	5292
93	2001	550	Synthetic Based Mud	Eq failure	Drilling	4479
94	2001	102	Synthetic Based Mud	Human error	Workover	184
95	2001	150	Synthetic Based Mud	Human error	Drilling and Motor Vessel	44
96	2001	270	Synthetic Based Mud	Human error	Motor Vessel	N/A
97	2002	51.5	Synthetic Based Mud	Operetional Discharge	Drilling	38
98	2002	267	Synthetic Based Mud	Eq failure	Drilling	3950
99	2002	1800	Synthetic Based Mud	Weather related	Drilling	8180
100	2002	350	Crude Oil	Hurricane	Production	50
101	2002	445.2	Diesel	Hurricane	Workover	37
102	2002	/41	Diesel	Hurricane	Urilling	94
103	2002	327	Zinc Bromide	Hurricane	Rig Recovery	94
104	2002	156	Zinc Bromide	Human error	Completion	2400
105	2002	60	Synthetic Based Mud	Eq tailure	Drilling	3338
106	2002	120	Synthetic Based Mud	Human error	Drilling	8334
10/	2002	3/5.5	Synthetic Based Mud	Human error	Drilling	4060
108	2002	00	Synthetic Based Mud		Dilling Motor Vaccol	1023
109	2003	201./	Diesel		Notor Vessel	105
110	2003	428.0	Diesei	Human end	IVIULUI VESSEI	140
111	2003	1421	Synthetic Based Mud	Fa failure Human orror	Drilling	0U4U 2642
112	2003	107	Dipsol		Motor Vessel	3043 NI/A
113	2003	00	Synthetic Recod Mud		Drilling	N/A 1100
114	2003	744	Synthetic Based Mud		Drilling	4400
110	2003	7/	Synthetic Based Mud	Fa failure	Drilling	4404
117	2003	14 127 5	Synthetic Based Mud	Eq failure	Drilling	4400
117	2003	107.0	Synancaic Daseu Muu		Drining	0040

Table 3.2 ~ *Continued* ~

#	Year	Size bbl	Material	Cause	Operation	Water Depth ft
118	2003	224	Synthetic Based Mud	Human error	Exploration	10
119	2003	123	Ethylene Glycol	Eq failure	Production	369
120	2004	95.7	Synthetic Based Mud	Human error	Drilling	3214
121	2004	1034	Synthetic Based Mud	Weather related	Drilling	4238
122	2004	184.8	Synthetic Based Mud	Eq failure, Human error	Drilling	5709
123	2004	202	Methanol	Eq failure	Production	2860
124	2004	52	Diesel	Hurricane Ivan	N/A	277
125	2004	55.3	Diesel	Hurricane Ivan	N/A	302
126	2004	133	Crude Oil	Hurricane Ivan	N/A	305
127	2004	102	Diesel	Hurricane Ivan	N/A	305
128	2004	21	Diosol	Humcane Ivan	N/A N/A	244
129	2004	21		Hurricane Ivan	N/A N/A	244
131	2004	21	Diesel	Hurricane Ivan	N/A	255
132	2004	410.2	Crude Oil	Hurricane Ivan	N/A	479
133	2004	55	Diesel	Hurricane Ivan	N/A	479
134	2004	537	Synthetic Based Mud	Human error	Drilling	4675
135	2004	75.9	Hydrate Inhibitor	Eq failure	Drilling	2861
136	2004	108	Synthetic Based Mud	Eq failure	Drilling	3338
137	2005	156	Synthetic Based Mud	Eq failure, Human error	Drilling	3341
138	2005	170	Synthetic Based Mud	Human error	Drilling	5785
139	2005	110	Synthetic Based Mud	Human error	Drilling	2945
140	2005	500	Calcium Bromide	Human error	Completion	2618
141	2005	426	Synthetic Based Mud	Weather related	Drilling	4400
142	2005	242	Crude Oil	Hurricane Katrina	N/A	83
143	2005	141	Crude Oil	Hurricane Katrina	N/A	86
144	2005	204.1	Crude Oil	Hurricane Katrina	N/A	91
145	2005	213.6	Crude Oil	Hurricane Katrina	N/A	88
146	2005	325	Crude Oil	Hurricane Katrina	N/A	1023
147	2005	380.2	Diesel	Hurricane Katrina	N/A	140
148	2005	106	Crude Oil	Hurricane Katrina	N/A	255
149	2005	100	Diesel Crudo Oil	Hurricane Katrina	N/A	255
150	2005	180	Crude Oil	Humicane Katrina	N/A N/A	340
151	2005	00 132	Crude Oil	Hurricane Katrina	N/A N/A	216
152	2005	55	Crude Oil	Hurricane Katrina	N/A N/A	210
154	2005	50	Crude Oil	Hurricane Katrina	N/A	116
155	2005	50	Crude Oil	Hurricane Katrina	N/A	137
156	2005	50	Crude Oil	Hurricane Katrina	N/A	128
157	2005	50	Crude Oil	Hurricane Katrina	N/A	137
158	2005	50	Crude Oil	Hurricane Katrina	N/A	117
159	2005	95.24	Crude Oil	Hurricane Katrina	N/A	140
160	2005	220	Calcium Chloride	Hurricane Katrina	N/A	172
161	2005	307	Crude Oil	Hurricane Katrina	N/A	153
162	2005	50	Crude Oil	Hurricane Katrina	N/A	223
163	2005	130	Condensate	Hurricane Katrina	N/A	228
164	2005	75	Crude Oil	Hurricane Katrina	N/A	285
165	2005	66.7	Aviation Fuel	Hurricane Rita	N/A	182
166	2005	582	Crude Oil	Hurricane Rita	N/A	230
16/	2005	35.7	Diesel	Hurricane Rita	N/A	230
168	2005	44	Diagol	Hurricane Kita		204
109	2005	11.9	Diesei	Hurricane Rita		204
171	2005	2000		Hurricane Rita	Ν/Α Ν/Δ	230
172	2005	150	Condensate	Hurricane Rita	N/A	234
172	2003	12	Diesel	Hurricane Rita	N/A	231
174	2005	100.8		Hurricane Rita	N/A	472
175	2005	536.4	Crude Oil	Hurricane Rita	N/A	2107
176	2005	1494	Diesel	Hurricane Rita	N/A	232
177	2005	1410.9	Diesel	Hurricane Rita	N/A	182
178	2005	53.4	Crude Oil	Hurricane Rita	N/A	230

Table 3.2 ~ *Continued* ~

#	Year	Size bbl	Material	Cause	Operation	Water Depth ft
179	2005	212	Synthetic Based Mud	Eq failure, Human error	Drilling	4304
180	2006	150	Synthetic Based Mud	Weather related	Drilling	6844
181	2006	62	Caustic Cleaner	Eq failure	Drilling	252
182	2006	107	Synthetic Based Mud	Human error	Drilling	6832
183	2006	125.6	Condensate	Hurricane Rita	Production	240
184	2006	294	Calcium Bromide	Human error	Completion	5636
185	2006	70	Synthetic Based Mud	Human error	Drilling	6926
186	2006	383	Synthetic Based Mud	Eq failure	Drilling	6037
187	2006	162.8	Synthetic Based Mud	Human error	Drilling	123
188	2006	142.8	Crude Oil	Hurricane Rita	Submerged Platform	230
189	2006	110.6	Crude Oil	Hurricane Katrina	Submerged Platform	88
190	2006	47.4	Crude Oil	Hurricane Rita	Submerged Platform	170

Table 3.2 ~ *Continued* ~

3.4 Platform Hydrocarbon Spills

Table 3.3 summarizes all of the platform hydrocarbon spills from among all spills associated with platforms between 1973 and 2006. It should be noted, that when the spills are attributable to an individual hurricane, such as Hurricane Katrina, spills in these hurricanes were counted as one single spill. However, the total spill volume was recorded and utilized as a basis for subsequent statistics. It can be seen from Table 3.3 that the total number of platform spills from 1973 to 2006 is 74, with sizes ranging between nearly 10,000 barrels and the threshold of reporting, 50 barrels.

3.8

3.5 Platform Spill Statistics

The primary platform spill statistical information required is the spill frequency distribution by different causes and spill sizes, and the spill rate per well year. Table 3.4 summarizes the spill size distribution among the principal reported causes. As can be seen, the major cause attributable to almost 50% of the spills – at 35 out of 74 spills – is equipment failure. However, although hurricanes have only caused a relatively small number of spills, their total spill volumes are the largest, giving the largest spill volume total. The largest single spill, however, is the tank failure which caused a spill of nearly 10,000 barrels.

The spill rate data, given per production well-year, is shown in Table 3.5, again, by causal distribution as well as two broad spill size categories of small and medium spills and large and huge spills. Here, it becomes immediately evident that the largest spill potential in terms of volume is attributable to hurricanes, which are responsible for roughly 43% of the large and huge spills.

Table 3.3Summary of GOM OCS Platform Hydrocarbon Spills (1973-2006)

#	Year	Size bbl	Cause	Operation		
1	1973	9935	Tank ruptured	Production		
2	1973	7000	Rough Seas	Production		
3	1973	239	Human error	Drilling and Motor Vessel		
4	1973	95	Human error	Drilling and Motor Vessel		
5	1974	130	Liquid Level Control	Production		
6	1974	75	Hurricane	Production		
7	1974	50	Liquid Level Control	Production		
8	1974	120	Human error	Production		
9	1974	200	Hurricane	Drilling, Compl., or Workover		
10	1975	166	Collision	Production and Motor Vessel		
11	1975	100	Collision	Drilling and Motor Vessel		
12	1976	300	Eq failure and Human Err	Drilling and Motor Vessel		
13	1977	70	Eq failure and Human Err	Drilling and Motor Vessel		
14	1978	104	Eq failure LACT	Production		
15	1979	321	Eq failure Transfer hose	Drilling and Motor Vessel		
16	1979	165	Weather related	Motor Vessel		
17	1979	60	Liquid Level Control	Production		
18	1979	1500	Collision -Hurricane	Drilling and Motor Vessel		
19	1980	286	Human error	Drilling		
20	1980	258	Weather related	Production and Motor Vessel		
21	1980	95	Excessive wear	Drilling		
22	1980	150	Tank ruptured	Motor Vessel		
23	1980	80	Weather related	Drilling and Motor Vessel		
24	1980	83	Eq failure and Human Err	Production		
25	1980	1456	Weather related	Production		
26	1980	118	Eq failure Transfer hose	Drilling and Motor Vessel		
27	1981	58	Eq failure, Human error	Production		
28	1981	50	Eq failure Transfer hose	Drilling and Motor Vessel		
29	1981	64	Not Identified	Completion or Workover		
30	1982	400	Eq failure Transfer hose	Drilling and Motor Vessel		
31	1982	228	Eq failure Transfer hose	Drilling and Motor Vessel		
32	1982	214	Eq failure Transfer hose	Drilling and Motor Vessel		
33	1983	540	Eq failure Transfer hose	Drilling and Barge		
34	1983	125	Eq failure Transfer hose	Production		
35	1983	77	Eq failure Transfer hose	Drilling and Motor Vessel		
36	1983	320	Collision	Drilling and Motor Vessel		
37	1983	200	Eq failure Transfer hose	Drilling and Motor Vessel		
38	1983	77	Eq failure Transfer hose	Drilling and Motor Vessel		
39	1983	95	Collision	Drilling and Motor Vessel		
40	1983	119	Collision	Production and Motor Vessel		
41	1984	50	Tank ruptured	Production		
42	1984	100	Human error	Drilling and Motor Vessel		
43	1985	107	Eq failure Pipe Elbow	Drilling		
44	1985	60	Eq failure, Human error	Deactivation		
45	1985	50	Eq failure	Workover		
46	1985	643	Eq failure Flow meter	Drilling and Motor Vessel		
47	1985	66	Weather related	Production		
48	1985	58	Eq failure Transfer hose	Drilling and Motor Vessel		
49	1987	60	Eq failure BOP	Drilling		

#	Year	Size bbl	Cause	Operation
50	1988	50	Eq failure, Human error	Production
51	1988	64	Human error	Drilling
52	1988	50	Leak, Wellhead assembly	Production
53	1989	400	Eq failure Liquid level	Production
54	1991	280	Eq failure, Human error	Production
55	1992	100	Other, Inuff. Mud weight	Drilling
56	1995	600	Human error	Drilling and Motor Vessel
57	1995	75	Eq failure	Production
58	1995	89	Weather related	Drilling and Motor Vessel
59	1995	436	Eq failure, Human error	Production
60	1996	105	Weather related	Drilling and Motor Vessel
61	1997	170	Human error	Production
62	1998	100	Weather related	Production
63	1999	105	Weather related	Production and Motor Vessel
64	1999	125	Eq failure	Workover
65	2000	200	Human error	Drilling
66	2000	60	Eq failure, Human error	Production
67	2001	127	Eq failure	Production
68	2002	1536	Hurricane	N/A
69	2003	262	Human error	Motor Vessel
70	2003	429	Human error	Motor Vessel
71	2003	60	Human error	Motor Vessel
72	2004	954	Hurricane Ivan	N/A
73	2005	3093	Hurricane Katrina	N/A
74	2005	6897	Hurricane Rita	N/A

Table 3.3 ~ Continued ~

Only one spill (Crude Oil, Condensate, Diesel) counted per Hurricane

27	Small <100 bbl
40	Medium 100 - 999 bbl
7	Large 1000 - 9999 bbl
0	Huge >=10000 bbl

Table 3.4
Summary of GOM OCS Platform Hydrocarbon Spills by Size and Cause

CAUSE CLASSIFICATION	NUMBER OF	JMBER SPILL SIZE OF BBL											NUMBER OF SPILLS								
	SPILLS	1	2	3	4	5	6	7	8	9	10	11	12	13	14	S	М	L	Н	SM	LH
Equipment failure	35															17	18			35	
Process Equipment	14	130	50	104	60	95	107	50	643	60	50	400	75	125	127	7	7			14	
Transfer Hose	12	321	118	50	400	228	214	540	125	77	200	77	58			4	8			12	
Incorrect Operation	9	300	70	83	58	60	50	280	436	60						6	3			9	
Human Error	12	239	95	120	286	100	64	600	170	200	262	429	60			3	9			12	
TANK FAILURE	3	9935	150	50												1	1	1		2	1
SHIP COLLISION	6	166	100	1500	320	95	119									1	4	1		5	1
WEATHER	10	7000	165	258	80	1456	66	89	105	100	105					3	5	2		8	2
HURRICANE	6	75	200	1536	954	3093	6897									1	2	3		3	3
other	2	64	100													1	1			2	
TOTALS	74															27	40	7		67	7

		Small a	nd Medium Spi 50-999 bbl	lls	Large and Huge Spills >=1000 bbl					
CAUSE CLASSIFICATION	HIST. DISTRIBUTION %	NUMBER OF SPILLS	EXPOSURE [well-years]	FREQUENCY spill per 10^4well- year	HIST. DISTRIBUTION %	NUMBER OF SPILLS	EXPOSURE [well-years]	FREQUENCY spill per 10^4well- year		
EQUIPMENT FAILURE	52.24	35		1.6434						
- Process Equipment	20.90	14		0.6574						
- Transfer Hose	17.91	12		0.5635						
- Incorrect Operation	13.43	9		0.4226						
HUMAN ERROR	17.91	12		0.5635						
TANK FAILURE	2.99	2	212971	0.0939	14.29	1	212971	0.0470		
SHIP COLLISION	7.46	5		0.2348	14.29	1		0.0470		
WEATHER	11.94	8		0.3756	28.57	2		0.0939		
HURRICANE	4.48	3		0.1409	42.86	3		0.1409		
OTHER	2.99	2		0.0939						
TOTALS	100.00	67		3.1460	100.00	7		0.3287		

Table 3.5 GOM OCS Platform Hydrocarbon Spill Statistics (1973-2006)

REFERENCES

 Bercha International Inc., "Alternative Oil Spill Occurrence Estimators for the Beaufort and Chukchi Seas – Fault Tree Method", Volume II, Appendix A – Historical Data, OCS Study MMS 2002-047, Final Report to US Department of the Interior, Minerals Management Service, Alaska Outer Continental Shelf Region, August 2002.

March 2008

2. MMS Website, <u>www.mms.gov/incidents/spills</u>.

The Department of the Interior Mission

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering sound use of our land and water resources; protecting our fish, wildlife, and biological diversity; preserving the environmental and cultural values of our national parks and historical places; and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to ensure that their development is in the best interests of all our people by encouraging stewardship and citizen participation in their care. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration.

The Minerals Management Service Mission

As a bureau of the Department of the Interior, the Minerals Management Service's (MMS) primary responsibilities are to manage the mineral resources located on the Nation's Outer Continental Shelf (OCS), collect revenue from the Federal OCS and onshore Federal and Indian lands, and distribute those revenues.

Moreover, in working to meet its responsibilities, the **Offshore Minerals Management Program** administers the OCS competitive leasing program and oversees the safe and environmentally sound exploration and production of our Nation's offshore natural gas, oil and other mineral resources. The MMS **Royalty Management Program** meets its responsibilities by ensuring the efficient, timely and accurate collection and disbursement of revenue from mineral leasing and production due to Indian tribes and allottees, States and the U.S. Treasury.

The MMS strives to fulfill its responsibilities through the general guiding principles of: (1) being responsive to the public's concerns and interests by maintaining a dialogue with all potentially affected parties and (2) carrying out its programs with an emphasis on working to enhance the quality of life for all Americans by lending MMS assistance and expertise to economic development and environmental protection.