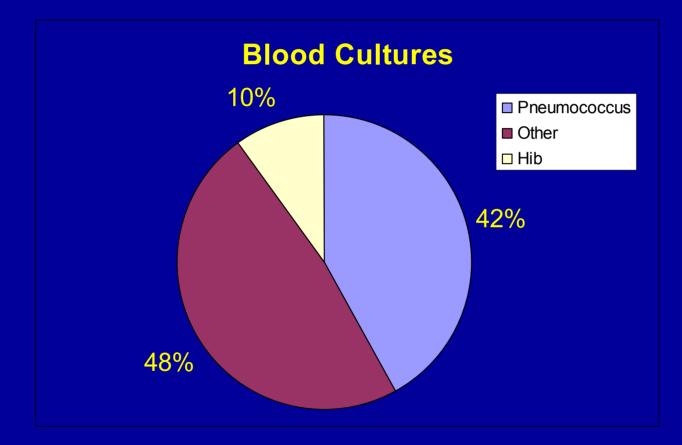

Alternative strategies for neonatal protection against Hib and Pneumococcus Mathuram Santosham MD, MPH Johns Hopkins University Baltimore, MD


WHO Young Infant Study Group 0-90 Days

167 positive cultures of 2452 samples

WHO Study Group, PIDJ 1999; 18:S17

CSF Cultures 0-90 Days

40 positive cultures

WHO Study Group, PIDJ 1999; 18:S17

Alternative strategies for protection of Neonates against Hib and Pneumococcal Disease

- Passive immunization
- Neonatal Immunization
- Maternal Pre-pregnancy immunization
- Maternal Pregnancy immunization
- Post-partum immunization

Passive Immunization

Bacterial Polysaccharide Immune Globulin Preparation

1. Immunization of plasma donors

a. *H. influenzae* type b polysaccharide or conjugate

b. Polyvalent N. meningitidis (2 or 4 serotypes)

c. Polyvalent S. pneumoniae (14 or 23 serotypes)

- 2. Plasmapheresis of donors 2X/week
- Plasma pooled and fractionated by cold ethanol procedure of Cohn and Oncley to prepare an im globulin
- 4. Characterization of antibody concentrations Santosham et al. NEJM 1987

Bacterial Polysaccharide Immune Globulin Efficacy Trial

White Mountain Apache Infants Randomized to Receive BPIG or Placebo at 2, 6 and 10 months of age

Santosham et al, NEJM 1987

Bacteremic Hib Infections

(within 3 months of BPIG/Placebo)

	BPIG	Placebo
No. children at risk	353	350
No. of doses given	858	838
Invasive Hib disease 1-90 days after immunization*	0	7 <i>p</i> =0.007
1-120 days after immunization**	1	7 <i>p</i> =0.04
*Efficacy 100% (95% CI=46.7-100%) **Efficacy 85.8% (95% CI=-11.4-99.7%)	Santos	ham et al. NEJM 1987

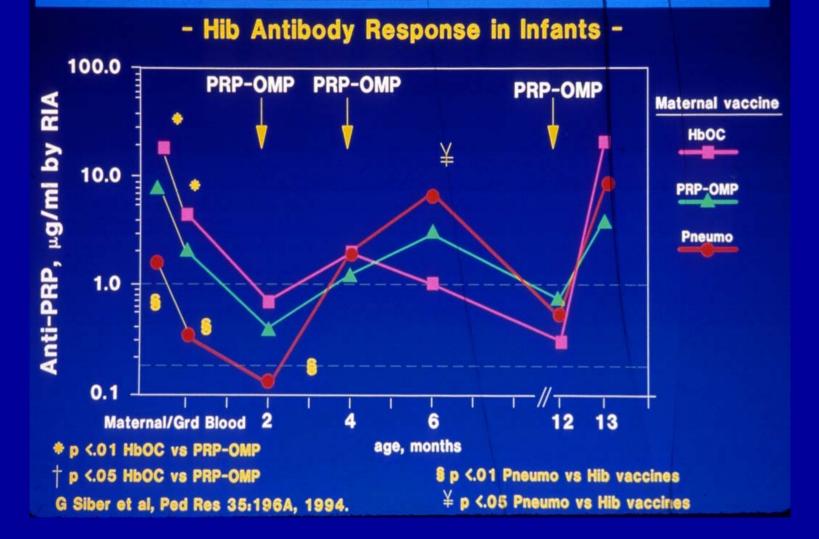
BPIG Use In Alaska, YK Delta July 31st to Dec 31st 1990

- 620 of 966 newborns received BPIG at birth
- 1 case of Hib among BPIG recipients vs. 7 cases in non-recipients

p=.007 Singleton R, personal communication

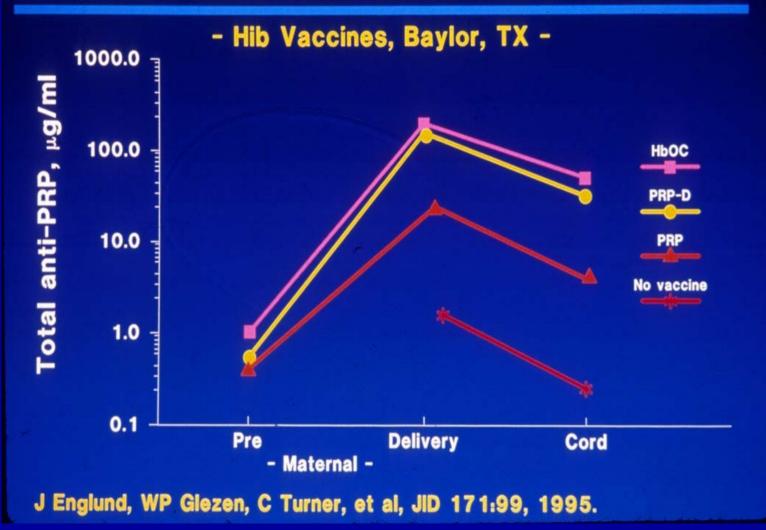
Maternal Immunization Pre-Pregnancy Pre-Pregnancy Immunization Study -Sacaton, AZ

Healthy non-pregnant women randomized to receive:
-HbOC
-PRP-OMP
-23 Valent pneumococcal vaccine

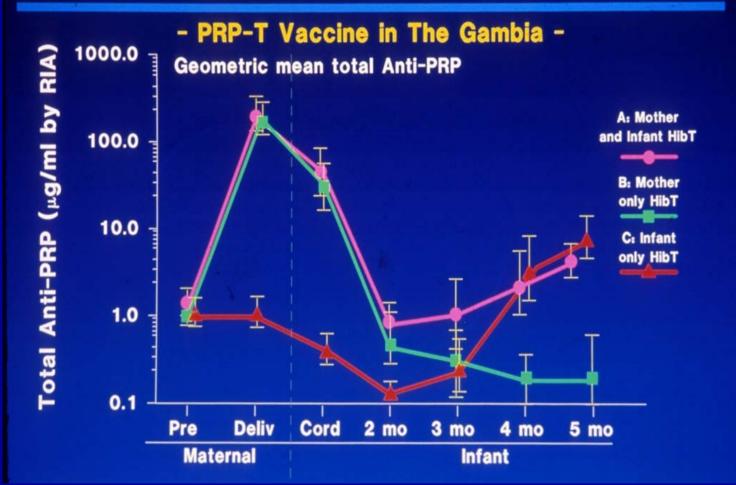

Santosham PIDJ 2001; 20:931

Schedule for Immunization

Non-pre	egnant moth	ers E	Birth	Infants					
Mos.	0 13	1	18	19	0	2		4	>12
Grp A	HbOC	HbOC				PRP- OMP	PRP- OMP	PRP- OMP	
Grp B	PRP- OMP	PRP- OMP				PRP- OMP	PRP- OMP	PRP- OMP	
Grp C	PS-23					PRP- OMP	PRP- OMP	PRP- OMP	
Sera	ХХ	Х	Х	Х	Х	Х		Х	Х
					Santosh	am PID	J 2001	; 20:931	


Persistence of total anti-PRP levels in women after primary immunization					
		(Geometric me	an (µg/ml)	
	HbOC	PRP-OMP	Control	p	
Pre	2.2	2.9	2.3	NS	
1 mo. Post	111	33.3	2.7	<0.01	
21 mo. Post	16.7	6.6	2.13	<0.01	
37 mo. Post	14.6	5.4	2.0 Santosham PII	<0.01 DJ 2001; 20:931	

MATERNAL IMMUNIZATION BEFORE PREGNANCY



Maternal Immunization Pregnancy

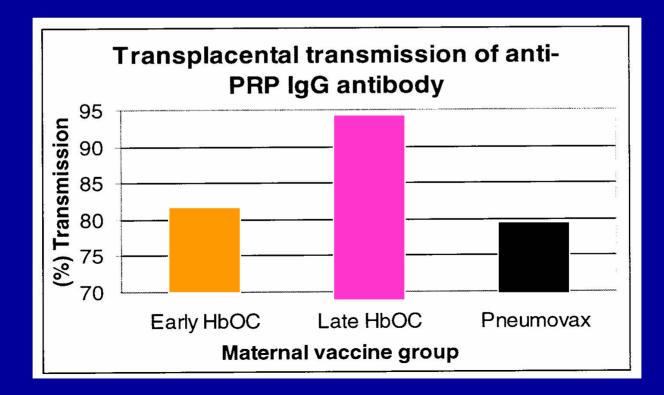
MATERNAL IMMUNIZATION IN THIRD TRIMESTER

MATERNAL IMMUNIZATION IN THIRD TRIMESTER

Mulholland et al; JAMA 1996; 275:1183

CORD PRP AB IN CORD FOLLOWING MATERNAL IMMUNIZATION

VACCINE	CORD TOTAL PRP Ab (RIA)	% Mat:Fetal	% infants with >1 ug/ml PRP
PRP	2.9	14	75
PRP-D	17.5	12	89
HbOC-10ug	28.8	17	95
HbOC 2 ug (early)	3.5		95
PRP-T	1.92	22	22
NONE: US	0.3	42	13
Gambia	0.3	36	19


TIMING OF VACCINE: IS THERE AN ADVANTAGE TO IMMUNIZATION DURING RATHER THAN PRIOR TO PREGNANCY?

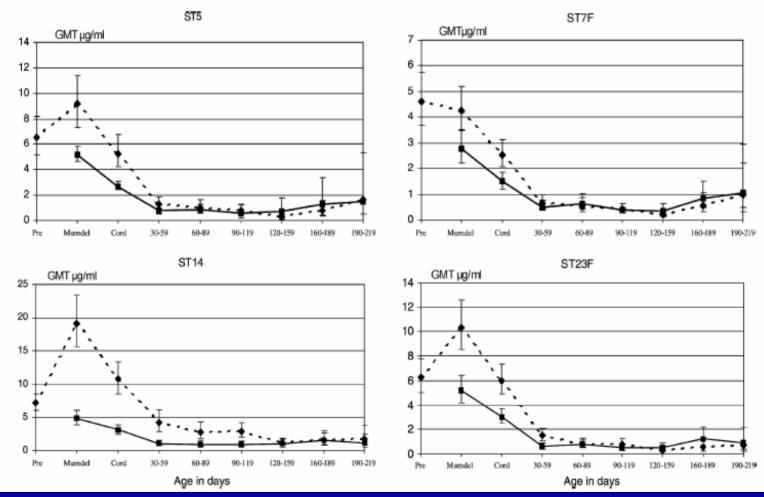
Timing of Hib <u>Vaccine</u> Pre-Pregnancy (HbOC)	IgG Anti- <u>Mother</u>	PRP(ug/ml) <u>Infant</u>	<u>%</u> Transmision
(HbOC) Sacaton, AZ ¹	20	11	73%
3 rd Trimester:			
Houston, TX ² (HbOC)	78	47	60%
The Gambia ³ (PRP-T)	4	2	61%

¹ Santosham et al,PIDJ 2001;20:931; ² Englund et al JID 1995; 171:99 ³ Mulholland et al. JAMA 1996;275:1182

TIMING OF VACCINE DURING PREGNANCY: RELATIVE TRANSMISSION OF MATERNAL ANTIBODY

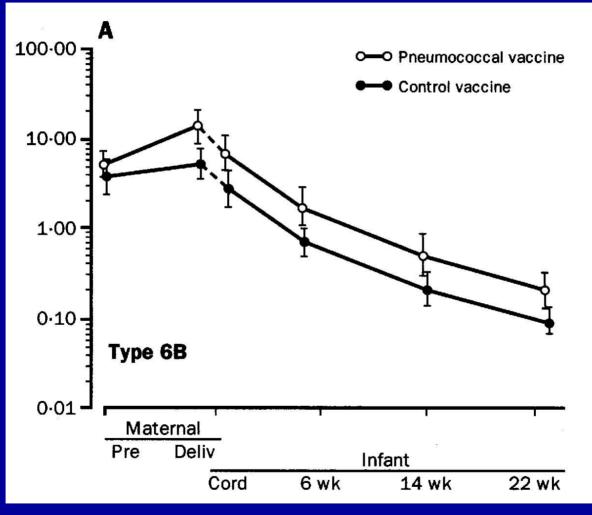
 PRP-CRM at 2 ug/dose or pneumococcal PS vaccine administered to 60 pregnant women at 32 or 36 weeks gestation:

PRP AB IN STUDY INFANTS AT TWO MOS.

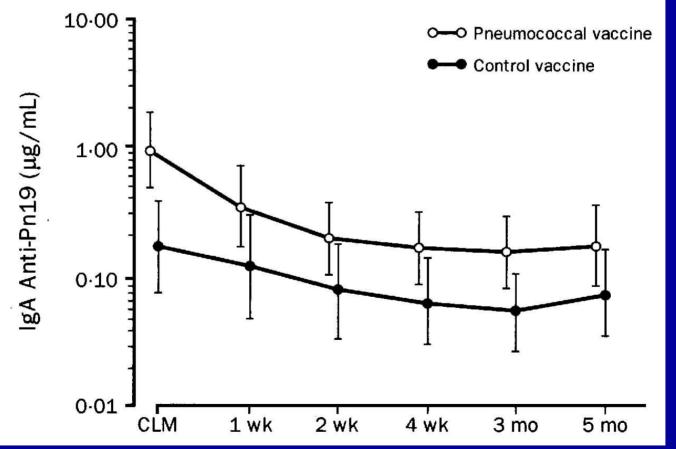

	Mean total PRP Ab (ug/ml)	% infants > 0.15 ug/ml	% infants > 1.0 ug/ml
CONTROL	0.10	17	0
US: PRP	1.5	<mark>82</mark>	36
US: PRP-D	14.4	100	93
US: HbOC	20.4	100	83
Gambia: PRP-T	0.35	61	26
Pre-Preg. HbOC	0.83	87	45
Pre-Preg. OMP	0.4	78	22

PREFERENTIAL TRANSMISSION OF IgG1 SUBCLASS

	lgG1				gG2	
VACCINE	Mat	Cord	%	Mat	Cord	%
CONTROL	.29	.32	127%	.49		111%
PRP	3.84	2.15	99 %	2.01	.62	22 %
PRP-D	41.9	18.9	74 %	12.9	3.38	46 %
HbOC	24.5	18.1	91 %	9.46	3.82	59 %
PrePreg HbOC	2.4	2.7	136%	4.4	2.4	60 %


Maternal Immunization with Pneumococcal Vaccines

GMT IgG antibody to Pnc serotypes 5, 7F, 14 and 23F - maternal immunization with PS-23


Lehmann D, Vaccine 2003; 21: 3446-3450

Pneumococcal serum IgG antibody in mothers and infants

Source: Shahid Steinhoff Lancet 1995

Breast milk pneumococcal type 19F antibody concentrations in pneumococcal and meningococcal vaccinees

Source: Shahid Steinhoff Lancet 1995

Cord Blood/Maternal Blood Pneumococcal antibody levels (%) – Women Vaccinated with Pneumococcal Vaccine – influence of Malaria

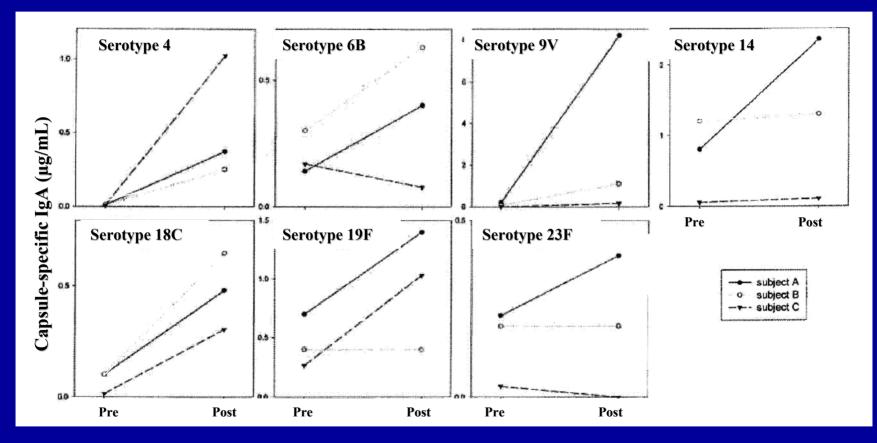
Serotype	Active infection placenta (N=4)	Non-infected placenta (N=11)
1	24	46
3	25	54
5	27	47
6	21	44
14	9	28
19	13	40

Adapted from Dempsey et al: Vaccine 1996:14:963-70

Efficacy of maternal immunisation with 14-valent pneumococcal polysaccharide vaccine in prevention of pneumonia in their children, Tari, Papua New Guinea 1973-1976

	Pneumonia episodes/ No. mothers		Efficacy	р
Age	Vaccine	Placebo		
In utero at time of maternal immunisation followed for 3 years	57/84	73/93	14%	0.1
Child age 1-17 months at time of maternal immunisation followed over next 5 months	84/286	133/310	32%	0.003
Child age 1-17 months at time maternal immunisation followed over next 3 years	218/286	284/310 & Douglas RM;	17%	0.02

TRANSPLACENTAL TRANSPORT OF PRP ANTIBODIES DEPENDS ON MULTIPLE FACTORS


- Vaccine administered
- TIME:
 - gestational age of fetus at birth
 - time between maternal vaccination and delivery
- Maternal IgG level
- IgG subclass
- <u>Placental abnormalities</u> such as malaria

OTHER FACTORS WHICH MAY VARY IN DIFFRERENT POPULATIONS

- Maternal IgG
 concentrations
- Integrity of the placenta
- Recent or repeated immunization with carrier protein, such as tetanus
- Maternal immune system (HIV)

Post-Partum Immunization

S. pneumoniae Capsule-specific IgA in Breast Milk After Immunization with 23-valent Vaccine

Finn, et. al. J Infect Dis 2002; 186:1422

Primary Objectives

 To determine whether infants of women immunized with PNCRM-9 and infants of control women who receive placebo during the third trimester of pregnancy have equivalent anticapsular polysaccharide (PS) IgG antibody responses to PNCRM-7 measured one month after the third vaccine injection given at 6 months of age.

 To compare local and systemic adverse events among women immunized with PNCRM-9 or placebo.

Study Design

Mother

- 22-28 wks: Enroll
- 32-35 wks: Study Product administration
- Delivery: Blood sample
- 2 mos: Breast milk & blood sample
- 6 mos: Blood sample
- 13 mos:Blood sample

<u>Infant</u>

- Birth: Cord blood
- 2 mos: Prevnar dose #1
- 4 mos: Prevnar dose #2
- 6 mos: Prevnar dose #3, blood sample
- 7 mos: Blood sample
- 12 mos:Prevnar dose #4, blood sample
- 13 mos:Blood sample

Daly KA et al. MIVS Poster PAS 2003

Vaccine safety assessment

Reasons Eligible Women Refused to Participate (n = 558)

Concern about vaccination during pregnancy	46%
Partner or family member objects	10%
Too busy	7%
Dislikes blood draws for self or infant	5%
Opposes immunizations	5%
Dislikes placebo control	<1%
No reason given	26%

Daly KA et al. MIVS Poster PAS 2003

Conclusions - 1

- **Pre- Pregnancy Immunization**
- Advantageous
- Avoids concerns re. complications of pregnancy
- **Disadvantageous**
- Uncertainty about time of delivery to time of vaccination
- Lack of routine scheduled visit

Conclusion 2

Maternal Immunization during Pregnancy Advantageous

- Coverage with maternal immunization with tetanus toxoid high
- Relatively easy to deliver the intervention <u>Disadvantageous</u>
- Perceptions of adverse effects during pregnancy