Revision - Effective Date: July 24, 2006 Expiration Date: July 24, 2011 ### **James Webb Space Telescope Project** ## **Performance Specification** for # James Webb Space Telescope Micro-Shutter Assembly Launch Lock Actuator July 24, 2006 **JWST GSFC CMO** July 24, 2006 **RELEASED** #### ITAR RESTRICTED DATA #### U.S. Citizens / US Permanent Residents (Green Card Holders) Only The unclassified technical information included herein is controlled under the ITAR, 22 CFR 120-130, by the U.S. Department of State. Transfer of this information to a foreign person or entity requires an export license issued by the U.S. Department of State or an ITAR exemption to the license requirement prior to the export or transfer. National Aeronautics and Space Administration CHECK WITH JWST DATABASE AT: https://ngin.jwst.nasa.gov/ TO VERIFY THAT THIS IS THE CORRECT VERSION PRIOR TO USE. #### CM FOREWORD This document is a James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Subsystem Configuration Management (CM)-controlled document. Changes to this document require prior approval of the Subsystem CCB Chairperson or designee. Proposed changes shall be submitted to the JWST CM Office (CMO), along with supportive material justifying the proposed change. Changes to this document will be made by complete revision. #### WAIVERS AND DEVIATIONS Waivers and deviations against this document can be found in the NGIN library https://ngin.jwst.nasa.gov/ under this document record. Questions or comments concerning this document should be addressed to: JWST Configuration Manager JWST Configuration Management Office Mail Stop 443 Goddard Space Flight Center Greenbelt, Maryland 20771 #### JAMES WEBB SPACE TELESCOPE PROJECT Sheet: 1 of 1 | | DOCUMENT CHANGE RECORD | | Sheet. 1 01 | |--------------|------------------------------|----------------|------------------| | REV
LEVEL | DESCRIPTION OF CHANGE | APPROVED
BY | DATE
APPROVED | | Rev - | Released per jWST-CCR-000564 | D. Sohl | 7/24/2006 | #### List of TBDs/TBRs | Item
No. | Location | Summary | Ind./Org. | Due Date | |-------------|----------------------------|---|-----------------------|-----------------| | 1 | Section 3.2.2,
Page 3-5 | , ICD Drawing number S. Schwinger/ GSFC | | 8/31/06 | | 2 | Section 3.2.8,
Page 3-6 | , | | 8/31/06 | | 3 | Section 3.5.3,
Page 3-8 | ICD Drawing number | S. Schwinger/
GSFC | 8/31/06 | #### TABLE OF CONTENTS | 1.1 | SCOPE | 1-1 | |-----|--|-----| | 1.2 | DEFINITIONS | | | REQ | OUIREMENTS | 2-1 | | 2.1 | DESCRIPTION | 2-1 | | 2.2 | PHYSICAL CHARACTERISTICS | | | | 2.2.1 Mass | | | | 2.2.2 Dimensions | 2-1 | | | 2.2.3 Wires | 2-2 | | | 2.2.4 Materials and Finish | 2-2 | | | 2.2.5 Cleanliness | 2-2 | | | 2.2.6 External Leakage | 2-2 | | | 2.2.7 Identification and Marking | | | 2.3 | MECHANICAL CHARACTERISTICS | 2-2 | | | 2.3.1 Stalled Condition | 2-2 | | | 2.3.2 Motor Configuration | 2-3 | | | 2.3.3 Step Angle | 2-3 | | | 2.3.4 Reduction Gear Ratio | | | | 2.3.5 Actuator Operation. | | | | 2.3.6 Pull-in Torque and Pull-in Step Rate | | | .4 | ELECTRICAL CHARACTERISTICS AND PERFORMANCE | | | | 2.4.1 Motor Type | | | | 2.4.2 Redundancy | | | | 2.4.3 Motor Excitation | | | | 2.4.4 Power | | | | 2.4.5 Motor Constant | | | | 2.4.6 Torque Constant | | | | 2.4.7 Maximum Wire Gage | | | | 2.4.8 Dielectric Strength | | | _ | 2.4.9 Insulation Resistance | | | 2.5 | LIFE REQUIREMENTS | | | | 2.5.1 Duty Cycle | | | | 2.5.2 Number of Cycles | | | | 2.5.3 Mission Life | | | 6 | 2.5.4 Shelf Life | | | 2.6 | ENVIRONMENTAL REQUIREMENTS | | | | 2.6.1 Static Loads | | | | 2.6.2 Dynamic 2.6.3 Shock Shock | | | | 2.6.4 Acoustic | | | | 2.6.5 Thermal | | | | 2.6.6 Vacuum | | | | 2.0.0 v acuum | ∠-9 | # ii CHECK WITH JWST DATABASE AT: | Perfor | mance | Specification for | JWST-SPEC-006638 | |--------|-------|-------------------------------|------------------| | JWST | MSA | Launch Lock Actuators | Revision – | | | | 2.6.7 Atomic Oxygen | 2-10 | | | | 2.6.8 Radiation – Total Dose | | | | | 2.6.9 Humidity | 2-10 | | | | 2.6.10 Venting | 2-10 | | | 2.7 | ANALYSIS REQUIREMENTS | 2-10 | | | | 2.7.1 Stress | 2-10 | | | | 2.7.2 Fatigue | 2-10 | | | | 2.7.3 Wear | 2-10 | | | | 2.7.4 Lubrication | 2-11 | | | | 2.7.5 Motor Torque Margin | 2-11 | | | 2.8 | TESTING | 2-11 | | 3.0 | VER | IFICATION | 3-1 | | | 3.1 | INSPECTION | 3-1 | | | | 3.1.1 Visual Inspection | | | | | 3.1.2 Physical Measurement | | | | | 3.1.3 Documentation Search | 3-1 | | | 3.2 | ANALYSIS | 3-1 | | | 3.3 | TEST | 3-1 | | | | 3.3.1 Acceptance Test | 3-1 | | | | 3.3.2 Test Failures | | | | | 3.3.3 Test Procedure | 3-2 | | APPE | ENDIX | A. ABBREVIATIONS AND ACRONYMS | A-1 | #### **LIST OF FIGURES** | <u>Figure</u> | <u>Page</u> | |--|-------------| | Figure 2-1. Random Qualification Vibration Profile | 2-7 | | Figure 2-2. Random Acceptance Vibration Profile | 2-7 | | Figure 2-3. Qualification Sine Vibration Profile | 2-8 | | | | | LIST OF TABLES | | | <u>Table</u> | <u>Page</u> | | Table 2-1. Stalled Test Period. | 2-3 | | Table 2-2. Excitation Table | 2-4 | | Table 2-3. Actuator Inertial Limit Loads | 2-5 | | Table 2-4. Random Vibration Spectral Density | 2-6 | | Table 2-5. Sine Sweep Vibration Test Levels | 2-8 | | Table 2-6. Maximum Expected Shock Environment | 2-9 | | Table 2-7. Acoustic Levels | 2-9 | #### 1.0 INTRODUCTION #### 1.1 SCOPE This specification describes the electrical, mechanical, operating environment, and verification testing requirements for Engineering Test Unit (ETU) Launch Lock Actuators for a National Aeronautics and Space Administration (NASA) payload, the James Webb Space Telescope (JWST). The Actuators shall implement general spacecraft requirements that cover a rotary actuator unique to the Micro-Shutter Assembly (MSA) of the Near-Infrared Spectrograph (NIRSpec) instrument, one of several instruments aboard JWST. #### 1.2 **DEFINITIONS** **Maximum Internal Friction Torque (TF int max):** The internal friction that the motor must overcome to move the output with no load on the output shaft at the beginning of life (BOL). **Motor Torque:** Torque available at the motor rotor due to electrical excitation of one commutation state. **Pull in Rate:** The maximum demanded stepping rate to which the actuator can respond without loss of steps when initially at rest with a given output load and a given electrical excitation as defined in this document **Pulses per second (PPS):** Motor step rate. **Motor Step Size:** Angle between unpowered detents (positions of angular stability) of the motor **Pull-in Torque at Pull-in Step Rate:** The output torque and stepping rate which the actuator can respond at rest without losing steps with a given electrical excitation rate. **Detent Torque:** The maximum motor holding torque when unpowered. **Motor Constant, KM:** This is a constant that describes the motor efficiency if the motor were operated as a sinusoidally commutated brushless dc motor. Its units can be Newton-meters / sqrt (watt) or ounce-inches / sqrt (watt). **Torque Constant, KT:** This is a constant that describes the relationship between current and torque if the motor were operated as a sinusoidally commutated brushless dc motor. Its units can be Newton-meters / amp or ounce-inches / amp. **Actuator Unit:** Also referred to simply as "actuator," this is the harness, output flange, mounting flanges, motor, gearbox, bearings, and mechanical interfaces, as described herein. **Engineering Test Unit (ETU):** Non-flight hardware that simulates flight hardware in form, fit and function for a specific test. The ETU is not required to have flight-like certification, and it will not be used for flight. **Qualification Unit:** Unit used to qualify a flight design. See prototype and protoflight component definitions. **Prototype Unit:** Hardware intended to qualify flight hardware of a new design. The unit <u>is not</u> intended to fly. The hardware is subject to Qualification Test levels and durations. **Flight Unit:** The Flight Unit is hardware that will be used operationally in space. **Acceptance:** The verification process that justifies that a Certificate of Compliance can be issued that certifies that the Actuator meets the specified requirements. **Qualification:** The verification process that demonstrates that a design (not each individual flight unit) will function properly under conditions more severe than it will experience in orbit. It also serves as a quality control screen to detect deficiencies. Qualification tests are performed to Limit Level with a qualification test factor, e.g. $1.25 \times 1.25 1$ **Life Test:** A test to demonstrate that a component or subsystem will operate within design specifications while subject to the predicted use. This includes all pre-flight qualification testing, launch conditions, and on-orbit operation and environment. The test article must perform without failure for a minimum of 2.0 times the expected number of operations or cycles expected. **Component:** A functional subdivision of a subsystem and generally a self-contained combination of items performing a function necessary for the subsystem's operation. Examples are electronic box, transmitter, gyro package, actuator, motor, and battery. For the purposes of this document, "component" and "unit" are used interchangeably. **Unit:** A functional subdivision of a subsystem, or instrument, and generally a self contained combination of items performing a function necessary for the subsystem's operation. Examples are electronic box, transmitter, gyro package, actuator, motor, and battery. For the purposes of this document, "component" and "unit" are used interchangeably. **Assembly:** A functional subdivision of a component consisting of parts or subassemblies that perform functions necessary for the operation of the component as a whole. Examples are a power amplifier and gyroscope. **Part:** A hardware element that is not normally subject to further subdivision or disassembly without destruction of design use. Examples include resistor, integrated circuit, relay, connector, bolt, and gaskets. **Instrument:** A spacecraft subsystem consisting of sensors and associated hardware for making measurements or observations in space. For the purposes of this document, an instrument is considered a subsystem (of the spacecraft). **Survival Temperature:** A non-operational temperature at which the unit must dwell to verify its ability to withstand this temperature extreme without causing damage. 1-2 CHECK WITH JWST DATABASE AT: https://ngin.jwst.nasa.gov/ JWST-SPEC-006638 Revision – **Hot/Cold Start:** The powering on and driving of an actuator at a given temperature extreme (after dwelling at that temperature). The actuator is not required to meet the performance specifications at this temperature and exposure to this temperature must cause no permanent damage to the unit. #### 2.0 REQUIREMENTS All of the written requirements in this document shall apply at the end of spacecraft (SC) life (EOL), which will occur no earlier than 5 years post launch (if Launch=2008, then EOL=2008+5=2013) except as otherwise noted. #### 2.1 DESCRIPTION The Actuator Unit shall have a six-pole permanent-magnet two-phase stepper motor with redundant windings driving a two-stage speed reducer driving a load-carrying output shaft. There shall be two configurations of actuator units, with each unit of a configuration being identical to one another. One configuration will be exempt from all the environmental requirements specified in this document, unless specifically stated to apply to that configuration. The other configuration will comply with all environmental requirements. The two configurations are as follows: - 1. Exempt from non-specific environmental requirements, referred to as the Ambient Temperature Actuator (ATA) - 2. Complies with all environmental requirements, referred to as the Helium Cryogenic Actuator (HCA) #### 2.2 PHYSICAL CHARACTERISTICS Detailed envelope and interface drawings (mechanical and electrical) shall be supplied to the government. All Contractor drawings prepared for this unit shall conform to the requirements of MIL-DTL-31000B. The Interface Control Drawing shall include specific information regarding all of the following parameters: #### 2.2.1 Mass Total as delivered, each actuator mass shall be less than or equal to 0.200 kg (0.44 pounds). The Contractor shall also indicate the mass and the approximate center of mass on the Interface Control Drawing. #### 2.2.2 <u>Dimensions</u> The actuator assembly (including gear staging) shall not exceed 2.036 inched from the mounting interface and shall be no larger than 1 inch in diameter. Interface locations and physical envelope should be within the ranges specified in Goddard Space Flight Center (GSFC) Drawing No GX XXXXXXX (TBD). The Contractor Interface Control Drawing shall include specific details and dimensions including but not limited to - Size, location and tolerance of mounting holes - Flange thickness - Reference surfaces 2-1 CHECK WITH JWST DATABASE AT: https://ngin.jwst.nasa.gov/ - Overall physical envelope - Variations from the dimensions shown in GSFC Drawing No GX XXXXXXX (TBD) #### 2.2.3 **Wires** The wire from the stepper motor shall be of the M22759/11 Teflon insulated type, sized according to the derating schedule found in EEE-INST-002, using the requirements found in section 2.4 of this specification. Each primary and redundant side of the motor shall require four wires, each carrying less than 2 amps. The total count of wires of an actuator unit shall be 8 wires. Lead lengths of all wires shall be no less than 61 cm (24 inches). #### 2.2.4 Materials and Finish All materials and processes shall be in accordance with spaceflight standards and approved by the Government. All parts shall be passivated and external surfaces shall be conductive, with a maximum resistance of 10⁹ ohms/square. Aluminum parts shall be finished with iridite per MIL-C-5541, Class 3. Titanium surfaces shall be finished per AMS 2488 and conductive surfaces identified in the design shall be masked. #### 2.2.5 Cleanliness The assembly and integration shall be performed in a class 100 environment. The test operations should be performed in a clean, dust-controlled environment such that performance is not compromised. The units shall be inspected after test and re-cleaned if necessary. #### 2.2.6 External Leakage There shall be no external leakage of lubricant. #### 2.2.7 Identification and Marking Each unit shall be permanently marked with the part number and a unique sequential serial number in the area designated on the interface drawing, GX XXXXXXX (TBD), in a manner to be approved by the Government. #### 2.3 MECHANICAL CHARACTERISTICS Actuator assemblies shall have the following physical and nominal performance characteristics, except as otherwise noted. #### 2.3.1 Stalled Condition The actuator shall be capable of meeting nominal performance requirements after running continuously under flight-like conditions against hard stops at maximum operational temperature and in vacuum without any damage to the unit for a period as indicated in Table 2-1 at a motor pulse rate of 100 pps. All "follow-on" units shall demonstrate this capability at ambient conditions. **Table 2-1. Stalled Test Period** | Test | Time | Temperature | Pressure | |---------------|-----------|---------------|---------------------------| | Qualification | 6 Minutes | Max operating | 1 x 10 ⁻⁵ Torr | | Acceptance | 1 Minute | Ambient | Ambient | #### 2.3.2 Motor Configuration The motor shall be of a two-phase design with six-poles. #### 2.3.3 Step Angle The motor step angle shall be 30 degrees. #### 2.3.4 Reduction Gear Ratio The reduction gear ratio shall have a combined reduction ratio of 100:1. #### 2.3.5 Actuator Operation The actuator shall operate for a period of 20 seconds at 100 pps rotating the output shaft in the CW direction, then for a period of 20 seconds at 100 pps rotating the output shaft in the CCW direction, being one cycle of operation. #### 2.3.6 Pull-in Torque and Pull-in Step Rate The actuator shall be capable of driving 100 in-oz load at the output shaft at 100 PPS over the operational temperature range and at a minimum drive voltage of 26 volts with both windings energized 100% of the time. #### 2.4 ELECTRICAL CHARACTERISTICS AND PERFORMANCE #### **2.4.1 Motor Type** The motor shall be a six-pole, two-phase, stepper motor. #### 2.4.2 Redundancy Motor windings shall be redundant. A short or break in any winding shall not affect the redundant winding in any way and vice versa. #### 2.4.3 Motor Excitation The actuator shall be capable of being driven by a constant voltage driver of 26 Vdc with the motor states sequentially excited in accordance with Table 2-2 ("+" is +26 V, "-" is 0 V.). **Table 2-2. Excitation Table** | Step | A | В | С | D | |------|---|---|---|---| | 1 | + | - | - | + | | 2 | + | - | + | - | | 3 | - | + | + | - | | 4 | - | + | - | + | #### **2.4.4** Power The actuator power consumption shall not exceed 0.5 W (at 26 Vdc) at 100 pps with the actuator bulk temperature at 25°C. #### 2.4.5 Motor Constant The motor constant shall be at least Km = 1.3 oz-in/sqrt (watt) at room temperature. #### 2.4.6 Torque Constant The torque constant shall be Kt = 17.8 oz-in/amp, plus zero, minus 5%. #### 2.4.7 Maximum Wire Gage The wire gage for the actuator coils shall be no finer than 40 AWG. #### 2.4.8 <u>Dielectric Strength</u> Dielectric material between mutually isolated electrical circuits shall withstand a test voltage of at least 200 VAC for 60 seconds without exceeding a current of 1.0 ma. #### 2.4.9 <u>Insulation Resistance</u> Insulation resistance between mutually isolated electrical circuits shall be at least 100 megaohms at a test voltage of at least 500 Vdc for 60 seconds minimum. #### 2.5 LIFE REQUIREMENTS #### 2.5.1 Duty Cycle The actuator shall accommodate a duty cycle consisting of sweeping and hold modes that can run in either direction as described in paragraph 2.3.5. The HCA actuators shall support usage consistent with the required life at cryogenic temperatures. #### 2.5.2 Number of Cycles The anticipated number of cycles for the HCA units is 2000. Refer to paragraph 2.3.5 for cycle definition. Units shall perform within specification after experiencing this number of cycles. #### 2.5.3 Mission Life Mission orbit life shall be 5 years as defined in Section 2.0. #### 2.5.4 Shelf Life Shelf life shall be 10 years when packaged using agreed-to procedures. #### 2.6 ENVIRONMENTAL REQUIREMENTS HCA actuators shall be designed to meet all of the performance and other design requirements of this specification. #### 2.6.1 Static Loads The actuator shall be capable of withstanding the inertial loads in Table 2-3, applied individually. **Table 2-3. Actuator Inertial Limit Loads** | Direction | Acceptance (Limit)
Loads | Qualification Loads | |-----------|-----------------------------|---------------------| | X | 30 g | 37.5 g | | у | 30 g | 37.5 g | | Z | 30 g | 37.5 g | #### 2.6.2 **Dynamic** The actuator shall be capable of withstanding the random vibration levels shown in Table 2-4 and Figure 2-1. The actuator shall also be capable of withstanding the sine vibration levels of Table 2-5. The loads are considered to act in any of the three mutually perpendicular component axes. **Table 2-4. Random Vibration Spectral Density** (2 Minutes/Axis for Qualification Testing and 1 Minute/Axis Acceptance Testing) | Frequency | Spectral Density (g ² /Hz) | | | |--------------|---------------------------------------|------------------------------------|--| | (HZ) | Qualification
(ETU) Levels | Acceptance (Flight) Levels (g²/Hz) | | | 20 | 0.01 | 0.01 | | | 20-50 | +8.21 dB/oct | + 6.31dB/oct | | | 50 | 0.20 | 0.10 | | | 200 | 0.20 | 0.10 | | | 200-250 | -22.3 dB/Oct | -16.97 dB/Oct | | | 250 | 0.06 | 0.04 | | | 800 | 0.06 | 0.04 | | | 800-2000 | -3.89 dB/oct | -3.01 dB/oct | | | 2000 | 0.01 | 0.01 | | | Overall Grms | 8.99 G rms (1 σ) | 7.39 G rms (1 σ) | | Figure 2-1. Random Qualification Vibration Profile Figure 2-2. Random Acceptance Vibration Profile **Table 2-5. Sine Sweep Vibration Test Levels** (2 Oct/Min/Axis for Qualification Testing and 4 Oct/Min/Axis Acceptance testing) | Qualification | | Acceptance | | | |---------------|------------------|-------------|------------------|--| | Frequency | Amp/Acceleration | Frequency | Amp/Acceleration | | | 5 – 20 Hz | ± 15 mm | 5 – 20 Hz | ± 12 mm | | | 20 – 100 Hz | 20 g | 20 – 100 Hz | 16 g | | Figure 2-3. Qualification Sine Vibration Profile #### 2.6.3 **Shock** During JWST spacecraft system level test and verification program as well as during launch, the actuator could be exposed to shock levels defined in Table 2-6 and therefore must be designed to withstand the maximum shock environment shown in Table 2-6. **Table 2-6. Maximum Expected Shock Environment** | Frequency (Hz) | SRS (G peak) | |----------------|--------------| | 100 | 20 | | 1000 | 700 | | 10000 | 700 | #### 2.6.4 Acoustic The actuator will be subjected to acoustic levels at the spacecraft system level testing, as well as during launch, as defined in Table 2-7 and shall be capable of withstanding the acoustic environment. Table 2-7. Acoustic Levels | Octave Band
Center Frequency
(Hz) | Noise Level (dB) re: 2 x 10 ⁻⁵ Pa | | | |---|--|------------|----------------| | | Qualification | Acceptance | Test Tolerance | | 31.5 | 132 | 128 | -2, +4 | | 63 | 134 | 130 | | | 125 | 139 | 135 | | | 250 | 143 | 139 | -1, +3 | | 500 | 138 | 134 | | | 1000 | 132 | 128 | | | 2000 | 128 | 124 | | | OASPL | 146 | 142 | -1, +3 | | Duration | Prototype 120 sec
Protoflight 60 sec | 60 seconds | -0, +5% | #### **2.6.5 Thermal** HCA Actuators shall be capable of operation throughout a temperatures range of 20 K \leq T \leq 320 K. On orbit operating temperature range is 25 K \leq T \leq 40 K. #### **2.6.6** Vacuum The HCA actuator shall be capable of meeting all performance requirements of section 2.3 at ambient as well as when exposed to a vacuum environment of 1×10^{-5} Torr. 2-9 CHECK WITH JWST DATABASE AT: https://ngin.jwst.nasa.gov/ #### 2.6.7 Atomic Oxygen Materials used in the construction of the actuator assembly shall not generate contamination products resulting from the interaction with an atomic oxygen environment. All operational requirements shall be satisfied during exposure to an atomic oxygen environment of 300 km (180 mile) perigee of transfer orbit for two weeks. #### 2.6.8 Radiation – Total Dose The proposed JWST spacecraft will be positioned in a Lissajous L2 orbit. The total ionizing dose (TID) of radiation is not likely to exceed 42.5 krads. #### **2.6.9 Humidity** The actuator shall be capable of meeting the requirements herein after and during exposure to 20 to 70% relative humidity prior to launch. #### **2.6.10** Venting The actuator shall survive external depressurization from one atmosphere to 10⁻⁵ Torr in 30 seconds. The actuator shall be vented to minimize lubricant loss and prevent internal pressurization during external depressurization of one atmosphere to 10⁻⁵ Torr in 30 seconds. #### 2.7 **ANALYSIS REQUIREMENTS** #### **2.7.1** Stress The actuator shall demonstrate positive margins of safety on ultimate failure modes using a yield F.S. of 1.25 and ultimate F.S. of 1.40 on flight limit levels shown in Table 2-1 in worst-case combinations. All margins of safety shall be verified by a detailed hand stress analysis of the actuator that assesses all primary and secondary structure, joints, fasteners, bearings and gear loads. #### 2.7.2 Fatigue Fatigue life of the gear box shall be demonstrated with detailed analysis using the 95% reliability curves for the materials. The number of cycles to be used are per section 2.5 using a factor of two and a reference load on the harmonic drive of 11 N-m (100 in-lbs) of torque. #### 2.7.3 Wear The wear life of all sliding or rolling surfaces, including the gearbox teeth, and bearings, shall be demonstrated with a detailed analysis or by similarity using appropriate margins of safety. The reference load on the output bearings should be no more than the axial preload. Reference cycles are listed in Section 2.5. #### 2.7.4 Lubrication The Contractor shall provide analysis to show that sufficient lubricant is available throughout the life of the actuator so that it can meet the its specified performance and life requirements as defined in section 2.6. The Contractor shall also provide a stress-cycle, or ball-pass, analysis to support the lubricant choice. #### 2.7.5 Motor Torque Margin Provide analysis showing that the output torque stated in Section 3.3.11 is attainable at all specified speeds under the worst case operating conditions. This analysis shall show that the output capability shall be met given the following: $$Ta = 4 \times T_{unknown} + 1.25 \times T_{known}$$ Where Ta = the torque available at the output under worst case environmental and operating conditions. T_{unknown} = all frictional and other resistive torques that are difficult to characterize over life, i.e. bearing friction, harmonic drive efficiency, etc. T_{known} = all inertias and other resistive torques that do not change over life This calculation shall include all components from input of torque at the motor rotor through the actuator assembly to the output. #### 2.8 TESTING The contractor shall perform the tests listed in Section 3.0 of this document. #### 3.0 **VERIFICATION** The contractor shall conduct a verification program that demonstrates the hardware design is qualified and meets all requirements contained in this document. The contractor shall provide a verification matrix defining the method of verification for each specific requirement of this document. Verification methods include inspection, analysis, test or a combination of these techniques. #### 3.1 INSPECTION Verification by inspection includes visual inspection of the physical hardware, a physical measurement of a property of the hardware, or the documentation search demonstrating hardware of an identical design has demonstrated fulfillment of a requirement. #### 3.1.1 <u>Visual Inspection</u> Visual inspection of the physical hardware by a customer appointed qualified inspector. #### 3.1.2 Physical Measurement Physical measurement of hardware property (i.e. mass, dimensions, etc.) demonstrating the hardware meets specific requirement. #### 3.1.3 <u>Documentation Search</u> Verification of requirements based on similarity shall include supporting rationale and documentation and shall be approved by the Government. #### 3.2 ANALYSIS Verification of performance or function through detailed analysis, using all applicable tools and techniques, is acceptable with the following conditions. For structural loads, design qualification by analysis requires that positive margins of safety be shown using factors of safety of 2.0 on yield and 2.6 on ultimate. Government approval is required for verification by analysis. #### **3.3** TEST The Contractor is required to only perform Acceptance Testing. The Contractor is not required to perform Qualification Testing, unless it is necessary to justify issuance of the Certificate of Compliance. #### 3.3.1 Acceptance Test The verification process that demonstrates that hardware meets the specified requirements so that a Certificate of Compliance can be justifiably issued. #### 3.3.2 <u>Test Failures</u> The MSA Program Representative shall be notified of any test failures within 24 hours of such occurrence. The test shall be completed to obtain as much information as possible. No replacement, adjustment, maintenance, or repairs are authorized during testing. #### 3.3.3 Test Procedure The Government shall review and approve test procedures for all tests. Test procedures shall include pass/fail criteria and Mandatory Inspection Points (MIPs) for QA. #### Appendix A. Abbreviations and Acronyms | Abbreviation/ | | |---------------|---| | Acronym | DEFINITION | | ATA | Ambient Temperature Actuator | | BOL | Beginning of Life | | DC | Direct Current | | EOL | End of Life | | ETU | Engineering Test Unit | | GSFC | Goddard Space Flight Center | | HCA | Helium Cryogenic Actuator | | ICD | Interface Control Drawing | | JWST | James Webb Space Telescope | | MIP | Mandatory Inspection Point | | MSA | Micro-Shutter Assembly | | NASA | National Aeronautics and Space Administration | | NIRSpec | Near-Infrared Spectrograph | | R to D | Rotary to Digital | | SC | Spacecraft | | TF int max | Maximum Internal Friction Torque |