
 

  
Abstract— The Radio Plasma Imager (RPI) on the IMAGE 

spacecraft provides valuable information on the remote and local 
electron densities in the Earth's magnetosphere. This information 
is derived from the RPI plasmagrams, a common visual 
representation of active radio-sounding data in the format of 
echo intensity as a function of echo delay time (ordinate) and 
sounding frequency (abscissa).  Due to the large volume of the 
archived RPI plasmagram imagery, automated data exploration 
software, “Cognitive Online Rpi Plasmagram Ranking 
Algorithm“ (CORPRAL), has been developed to identify 
plasmagrams containing signatures of interest. CORPRAL 
routinely scans the RPI mission database to select qualifying 
plasmagrams. The echo detection algorithms implemented in the 
CORPRAL, still yield significant "false-alarms" and thus can 
benefit from the assistance of additional image processing 
techniques.  As a NASA CICT/IDU Technology Infusion task, we 
are exploring the adaptation and incorporation of the recursive 
hierarchical segmentation (RHSEG) technique that was 
developed for a broad class of remotely sensed images of the 
Earth. The RHSEG algorithm iteratively builds a hierarchy of 
image segmentations of various detail levels using a hybridization 
of region growing, and constrained spectral clustering. Analysis 
of the segmentation hierarchy allows one to track the 
characteristics of each region in the process of its growing to 
optimally select the best segmentation level to describe the 
corresponding feature. Treatment of plasmagrams with the 
RHSEG will then provides good candidate signatures for 
registration, thus improving the robustness of CORPRAL. This 
paper discusses our progress to date. 

I. INTRODUCTION 

HE Imager for Magnetopause-to-Aurora Global 
Exploration (IMAGE) satellite [2], launched in March 

2000, is in a polar orbit with apogee of about 7 RE altitude 
where it is well situated to observe the structure and dynamics 
of the Earth’s magnetosphere during geomagnetic storms and 
the changes in the local plasma using the Radio Plasma 
Imager (RPI) [1]. The RPI instrument consists of a radio 
transmitter, receiver, and 3-axis antenna systems.  Like radar, 
RPI transmits short, phase-coded pulses of electromagnetic 
waves that propagate to remote plasma regions and detects the 
reflected pulses as echoes. RPI is the first instrument to use 
radar echo techniques to measure remote magnetospheric 
densities along with natural noise and other emissions. 
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The RPI instrument on IMAGE is currently obtaining radio 

remote-sensing data about the density distribution of 
magnetospheric plasmas. RPI's chief product is the 
plasmagram, as shown in Fig. 1.  The figure shows received 
signal strength (color scale) as a function of echo delay (range 
in vertical scale) and radio-sounder frequency (horizontal 
scale) of the radar pulses. The echoes observed above 500 
kHz in Fig 1. are ducted echoes from within the Earth's 
plasmasphere. The vertical intensification near 400 kHz is a 
locally excited resonance. This resonance contains 
information about the local plasma density, while the echoes 
contain information about magnetic field aligned densities 
away from the spacecraft. Radar echoes from and within 
important magnetospheric structures, such as the 
magnetopause and the plasmapause, appear as traces on 
plasmagrams [9-13].  

  

 
Fig. 1.  IMAGE RPI Plasmagram at 03:22:33 on Sep. 17, 

2001, designated 20010917_032244. 

 
Less than 20% of all plasmagrams contain echo traces 

because RPI is a radar of opportunity whose signal reflects at 
a remote location and returns to the spacecraft location only 
sporadically on any particular orbit. The need to search for 
useful information in the IMAGE/RPI mission database 
holding 900,000 plasmagram images has been the rationale 
for development of automated techniques for data exploration 

Processing Radio Plasma Imager Plasmagrams 
Utilizing Hierarchical Segmentation 

 I. A. Galkin, G. Khmyrov J.C. Tilton and S. F. Fung 
 and B. W. Reinisch  
 University of Massachusetts NASA Goddard Space Flight Center 
 Lowell, MA Greenbelt, MD 

T



 

and signature characterization. 

II. CORPRAL  

Cognitive Online Rpi Plasmagram Ranking Algorithm 
(CORPRAL) [3,4] is an automated RPI data exploration 
system developed to identify plasmagrams containing 
signatures of interest. The signature recognition approach in 
the CORPRAL is best described as “biologically plausible” as 
it uses a model of the early (pre-attentive) vision system in 
mammals that “pops up” visual cues in the field of view 
without willful concentration of attention. The early vision 
can be described as a task that runs in the background and 
requests switch of attention to objects that present potential 
danger or special interest. This system is especially effective 
in rapid detection of salient objects by identifying their 
contours. Existing studies of the pre-attentive vision suggest 
that it implements a “bottom up” processing of visual 
information, where the raw image undergoes multiple stages 
of transformations in eye retina and cortical networks of the 
brain. Because each stage extracts elements of higher 
perceptual strength from its input, this model is often referred 
to as  Marr’s pyramid of perception [16]. 

The core of the plasmagram processing algorithm is a 
recurrent neural network that seeks the optimal state of 
dynamic system of interacting rotors, edge elements found by 
locating sharp intensity gradients in the plasmagram image 
and evaluating their local orientation. Fig.2 illustrates 
intermediate and final steps of CORPRAL analysis of the 
plasmagram in Fig.1. 

The founding principle of the pre-attentive vision model 
designed for the CORPRAL analysis is collective interaction 
of rotors under Gestalt perceptual restrictions [14] of good 
continuation, smoothness, co-circularity and proximity. In the 
iterative process of this interaction, rotors align tangential to 
existing echo traces (as shown in middle panel of the Fig.2). 
This iterative process is best described in terms of the energy 
minimization, and in our case is accomplished by a feed-back 
optimizing neural network evolving into the global minimum 
of its energy. The starting configuration of rotors is obtained 
by finding edgel elements (edgels), sharp gradients of image 
intensity that are typical for object boundaries, and evaluating 
their local orientation. Once the rotors are optimally aligned 
to the traces, they are grouped in trace segments by a bottom-
up clustering algorithm driven by a grouping criterion that 
considers alignment and proximity of rotors. Finally, the 
found segments are subjected to higher-level perceptual 
grouping analysis that may combine together segments 
belonging to the same trace. The grouping algorithm evaluates 
connection scores for all pairs of candidate segments. The 
score considers length and smoothness of a line connecting 
the gap between the trace segments. The lower panel of Fig. 2 
shows seven traces found by CORPRAL in the plasmagram 
shown in Fig.1. 

To reduce computational demand of the optimization 
problem of collective rotor interaction, we introduced a 

thresholding algorithm that removes noise background prior 
to localization of edge elements. The noise pixels are 
identified using the echo detection principle commonly used 
in radar and remote sensing operations. The present version of 
the CORPRAL software uses an adaptive thresholding 
algorithm that evaluates the local noise level using a 1D 
sliding analysis window placed vertically on the plasmagram. 

The CORPRAL analysis is performed on the plasmagram 
images in the RPI mission database at UMass Lowell as soon 

Fig.  2. CORPRAL processing results for the plasmagram 
in Fig.1. (Top to bottom): detected echoes, optimized 
rotor orientations, and found traces. 



 

as they arrive for ingestion from the IMAGE Space Mission 
Operating Center at Goddard SFC. Plasmagrams tagged for 
the presence of traces (presently over 145,000) are available 
for queries from the RPI BinBrowser data visualization 
platforms [15]. 

As analysis of the CORPRAL performance shows, the 
thresholding technique in its present implementation causes a 
noticeable “false-alarm” rate. As a NASA CICT/IDU 
Technology Infusion task, we are exploring the adaptation and 
incorporation of the recursive hierarchical segmentation 
(RHSEG) technique [5] as a technique for improving echo 
detection algorithm, or in the capacity of a full-featured trace 
extraction technique. 

III. RECURSIVE HIERARCHICAL SEGMENTATION  

Recursive hierarchical segmentation (RHSEG) [5], [6] is 
being investigated as an approach for reducing the number of 
“false-alarms” produced by CORPRAL.  RHSEG is a 
recursive formulation of hierarchical segmentation (HSEG), 
which is a hybrid of hierarchical step-wise optimization 
(HSWO) [7] and constrained spectral clustering that produces 
a hierarchical set of image segmentations based on detected 
convergences.  HSWO is an iterative approach to region 
growing in which the optimal image segmentation as 
measured by a dissimilarity function is found at N-1 regions, 
given a segmentation at N regions.  The initial segmentation at 
N regions can be provided by some other segmentation 
procedure or may be defined by labeling each image pixel as a 
single pixel region.  The iterative process continues until 
stopped by some stopping criterion (defined later in this 
section).  HSEG optionally interjects between HSWO 
iterations merges of spatially non-adjacent regions (i.e., 
spectrally based merging or clustering) constrained by a 
threshold derived from the previous HSWO iteration, and 
includes an approach for selecting segmentations from 
particular iterations to save as a final segmentation hierarchy 
result.  While the addition of constrained spectral clustering 
improves the segmentation results, especially for larger 
images, it also significantly increases HSEG’s computational 
requirements.  To counteract this, a computationally efficient 
recursive implementation of HSEG (RHSEG) has been 
devised [5].  Included in this implementation is special code 
that is required to avoid processing window artifacts caused 
by RHSEG’s recursive subdivision and subsequent 
recombination of the image data.   

A. HSEG Algorithm[6]: 

1) Give each image pixel a region label and set the global 
dissimilarity value, dval, equal to zero.  If a pre-
segmentation is provided, label each image pixel 
according to the pre-segmentation.  Otherwise, label each 
image pixel as a separate region. 

2) Calculate the dissimilarity value, dissim_val, between all 
pairs of spatially adjacent regions.  If spclust_wght > 0.0, 
also calculate dissim_val for spatially non-adjacent 
regions. 

3) Find the smallest dissim_val between spatially adjacent 
pairs of regions and set the value of the maximum 
merging threshold, max_threshold, equal to it. 

4) If spclust_wght equals zero, go to step 7.  Otherwise, 
merge all pairs of regions (spatially adjacent or spatially 
non-adjacent) with dissim_val = 0.0 or dissim_val < 
spclust_wght*max_threshold. 

5) If the number of regions remaining is less than or equal to 
the preset value conv_nregions, go to step 11.  Otherwise, 
update the dissim_val’s between spatially adjacent pairs 
of regions as necessary. 

6) Find the smallest dissim_val between spatially adjacent 
pairs of regions and set threshold equal to it.  If threshold 
> max_threshold, set max_threshold = threshold. 

7) Merge all pairs of spatially adjacent regions with 
dissim_val ≤ max_threshold.  (Update the dissim_val’s 
for spatially adjacent regions between each merge as 
necessary.) 

8) If the number of regions remaining is less than or equal to 
the preset value conv_nregions, go to step 11, or if 
spclust_wght equals zero, go to step 11.  Otherwise, 
update the dissim_val’s between all pairs of spatially 
adjacent and non-adjacent regions. 

9) Merge all pairs of spatially adjacent or non-adjacent 
regions with dissim_val ≤ spclust_wght*max_threshold.  
(For the most part, only spatially non-adjacent merges 
will occur.  Update the dissim_val’s for spatially adjacent 
and non-adjacent regions between each merge as 
necessary.) 

10) If the number of regions remaining is less than or equal to 
chk_nregions, go to step 11.  Otherwise, go to step 6. 

11) If the number of regions remaining is less than or equal to 
conv_nregions, save the current region label map to disk 
along with associated region information and STOP.  
Otherwise, let prev_dval = dval, calculate the current 
global dissimilarity value, and set dval equal to this value.  
If prev_dval = zero, save the current region label map to 
disk along with associated region information, and go to 
step 6.  Otherwise, calculate dratio = dval/prev_dval.  If 
dratio is greater than the preset threshold convfact, save 
the region label map from the previous iteration to disk 
along with associated region information, and go to step 
6.  Otherwise, just go to step 6. 

 
Note that spclust_wght, chk_nregions, convfact, and 

conv_nregions are user specified parameters. If spclust_wght 
= 0.0, HSEG is essentially identical to HSWO with 
convergence checking (step 11) for segmentation hierarchy 
selection. The associated region information mentioned in step 
11 above is the region number of pixels list, and optionally 
includes the boundary region map, the region number of 
boundary pixels list, the region mean vector list, the region 
standard deviation list, and the region criterion value list (the 
portion of the global dissimilarity value contributed by each 
region). 



 

B. Recursive HSEG (RHSEG) Algorithm[5]: 

1) Given an input image X, specify the number levels of 
recursion required (rnb_levels) and pad the input image, 
if necessary, so that the width and height of the image can 
be evenly divided by 2nblevels-1.  (A good value for 
rnb_levels results in an image section at level = 
rnb_levels consisting of roughly 1000 to 4000 pixels.)  
Set level = 1. 

2) Call rhseg(level,X). 
3) Execute the HSEG algorithm (per part A this section) on 

the image X using as a pre-segmentation the segmentation 
output by the call to rhseg( ) in step 2. 

where rhseg(level,X) is as follows: 

1) If level = rnb_levels, go to step 3.  Otherwise, divide the 
image data into quarters (i.e., half the width and height 
dimensions) and call rhseg(level+1,X/4) for each image 
quarter (represented as X/4). 

2) After all four calls to rhseg() from step 1 complete 
processing, reassemble the image segmentation results. 

3) If level < rnb_levels, initialize the segmentation with the 
reassembled segmentation results from step 2.  
Otherwise, initialize the segmentation with one pixel per 
region.  Execute the HSEG algorithm (per part A this 
section) on the image X with the following modification:  
Terminate the algorithm when the number of regions 
reaches the preset value min_nregions. 

4) If level = rnb_levels, exit.  Otherwise, find the regions 
that are likely to contain pixels that are more similar to 
one or more other regions.  This is done through 
examining pairs of regions that border each other along 
the processing window seam between the four 
reassembled sections of image data and pairs of regions 
that are spectrally similar to each other.  Then, for these 
pairs of regions, swap region assignments of pixels that 
are switch_pixels_factor more similar to the other region 
(generally switch_pixels_factor > 1.0 to prevent 
excessive switching of pixel region assignments).  This 
process is described in more detail in [8] (which was 
used as the basis for a recent patent application).  After 
the completion of this region assignment swapping 
process, exit. 

Note that rnb_levels, switch_pixels_factor, and min_nregions 
are user specified parameters. 

If max_npixels is the product of the number of row and 
columns in the recursively subdivided image data at the 
deepest level of recursion, the number of spatially non-
adjacent regions that need to be compared in step 4 of HSEG 
is less that the greater of max_npixels and 4*min_nregions.  
This significantly reduces the computational burden. 

The region assignment swapping procedure outlined in step 
4 of rhseg( ) is necessary because, especially when processing 
image larger than 512x512, processing window artifacts are 
often seen in the image segmentation results along the seams 
between the recursively subdivided and reassembled image 
portions, unless this region assignment swapping process is 
carried out.  The region assignment swapping process is very 

efficient and adds very little overhead (less than 10%) to the 
computation requirements. 

Since the region assignment swapping procedure can 
introduce spatially non-connected regions, when RHSEG is 
utilized with no spectral clustering (i.e., spclust_wght = 0.0), 
connected component labeling must be run on the resulting 
region labeling to restore the spatial connectivity of the 
regions.  Since this will generally result in an increase in the 
number of regions, the HSEG algorithm must be again run on 
the connected component labeling result until the 
segmentation reaches the number of regions specified in step 
3 (min_nregions, or if level = 1, the greater of min_nregions 
or chk_nregions).  The connected component labeling and 
rerunning of the HSEG algorithm can substantially increase 
the processing time required.  Note that RHSEG run with no 
spectral clustering is effectively a recursive version of HSWO. 

IV. REGION MERGE AND GLOBAL DISSIMILARITY 

CRITERION: 

Several different region merge dissimilarity criteria can be 
used with RHSEG (see [5] and [6]).  This study uses the 
“mean squared error” (MSE) dissimilarity criterion [6]: 
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where Xi (Xj) is the subset of the image X corresponding to 
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Likewise, several different global dissimilarity can be used.  
This study uses the “mean squared error” (MSE) global 
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where χp is an image pixel value, N is the number of regions, 
and M is the number of pixels in image X. 

V. PLASMAGRAM ANALYSIS USING RHSEG 

A. Plasmagram 20010917_032244: 

To gain an understanding of the behavior of RHSEG in 
analyzing RPI plasmagrams, several plasmagrams have been 
studied.  To avoid early discouragement, an admittedly easy 
plasmagram was chosen for initial analysis:  IMAGE RPI 
Plasmagram at 03:22:44 on Sep. 17, 2001 (Fig. 1), designated 
20010917_032244. 

The first thing to be noted about this plasmagram is that 
there are only 76 distinct data values in it.  This means that 
ANY segmentation approach that allows non-adjacent regions 
to merge will produce the same 76 region segmentation with a 
zero threshold. 

RHSEG was initialized from the zero threshold 76 region 
segmentation and run on plasmagram 20010917_032244 with 
rnb_levels = 1, spclust_wght = 1.0, convfact = 1.1, and 
conv_nregions = 2.  Convergence checking was initiated 



 

immediately at the 76 region point (chk_nregions = 76). 
Major jumps in dval and max_threshold were noticed 

between hierarchical level 10 (66 regions, dval = 0.0901673, 
and max_threshold = 20.0357) and hierarchical level 11 (10 
regions, dval = 2.02209, and max_threshold = 11524.2).  
RHSEG was then rerun with chk_nregions = 10, and the 10 
region segmentation result was inspected with the 
HSEGViewer visualization tool, which is specifically designed 
to inspect and manipulate the results obtained form HSEG 
and RHSEG. 

Starting at the 10 region segmentation, RHSEG produced a 
segmentation hierarchy consisting of eight hierarchical levels.  
The segmentation at the first hierarchical level has 10 regions 
in it and the segmentation at the second hierarchical level has 
9 regions in it.  In other words, eight of the regions at the 
second hierarchical level are identical to the regions at the 
first hierarchical level, while one region at the second 
hierarchical is formed by the merge of a pair of regions at the 
first hierarchical level.  The other six hierarchical levels (after 
the first two) have 8, 7, 6, 5, 4 and 2 regions in them, 
respectively.  The segmentations at the coarser levels of the 
segmentation hierarchy are formed from selective merges of 
pairs of regions in the segmentations at the finer levels of the 
segmentation hierarchy. 

Fig. 3 shows a color coded result of the RHSEG 
segmentation result.  Regions 4, 5, 7, 8 and 10 at the finest 
segmentation hierarchy level eventually merge going down 
the segmentation hierarchy to form one region at the coarsest 
level of the segmentation hierarchy.  These regions were seen 
to form the lower data value background (blue in Fig. 3).   
Regions 2, 6 and 9 at the finest segmentation hierarchy level 
eventually merge going down the segmentation hierarchy to 
form one region at hierarchical level 7 (the second coarsest 
level).  These regions were seen to form the intermediate level 
background (tourquoise in Fig. 3).  Regions 1 and 3 at the 
finest segmentation hierarchy level also merge going down the 
segmentation hierarchy to form on region at hierarchical level 
7.  These regions contain the plasma resonances and trace 
signals (color coded pink in Fig. 3). 

 

Fig. 3.  Initial result from RHSEG.  Three regions were 
selected with the HSEGViewer program:  Low value 
background (blue), intermediate value background 
(tourquiose), and signal (pink). 

Shape descriptors under investigation should allow the 
automatic extraction of the regions corresponding to the 
resonance and trace signals (work in progress).  Shape 
descriptors being sought are mathematical constructs that can 
indicate whether or not a region is elongated, and in which 
direction.  An elongated region at a constant frequency would 
indicate a plasma resonance.  An elongated region at varying 
frequency would indicate a plasma trace. 

A mask was created with regions 1 and 3 from the initial 
result from RHSEG, and RHSEG was rerun with this mask 
and the same parameters as before, with the exception of  
spclust_wght = 0.0, and convfact = 1.02.  Major jumps in dval 
and max_threshold were noticed between hierarchical level 9 
(27 regions, dval = 4.8965, and max_threshold = 600.333) 
and hierarchical level 10 (24 regions, dval = 5.1304, and 
max_threshold = 1128.53).  RHSEG was then rerun with 
chk_nregions = 24, and the 24 region segmentation result was 
inspected with the HSEGViewer visualization tool. 

Regions 18, 19, and 24 were seen to form part of the 
background (grayish-blue), regions 17, 21, 22 and 23 make of 
regions corresponding to resonance signals (shades of brown), 
and trace signals were found in regions 10, 11, 12, 13, 14, 15, 
16 and 20 (other colors).  Regions 1-8 (each having less than 
eight data points) were left unlabeled (black).  The masked 
out area is grey.  The color coded result is displayed in Fig. 4. 

Again, shape descriptors under investigation should allow 
the automatic extraction of the regions corresponding to the 
resonance and trace signals (work in progress). 

B. Plasmagram 20010118_023716: 

A second test was performed on the IMAGE RPI 
Plasmagram at 02:37:16 on Jan. 18, 2001 (Fig. 5), designated 
20010118_023716. Again, the first thing to be noted about 
this plasmagram is the limited number of distinct data values.  
Since there are only 62 distinct data values, any segmentation 
approach that allows non-adjacent regions to merge will 
produce the same 62 region segmentation with zero threshold. 

RHSEG was initialized from the zero threshold 62 region 
segmentation and run on plasmagram 20010118_23716 with 

Fig.  4.  Final result from RHSEG.  Three regions were 
selected with the HSEGViewer program:  Background 
(grey and greyish-blue), unlabeled (black), resonance 
signals (shades of brown), and trace signals (other 
colors). 



 

rnb_levels = 1, spclust_wght = 1.0, convfact = 1.1, and 
conv_nregions = 2.  Convergence checking was initiated 
immediately at the 62 region point (chk_nregions = 62). 

Major jumps in dval and max_threshold were noticed 
between hierarchical level 11 (42 regions, dval = 0.480455 
and max_threshold = 63.249) and hierarchical level 12 (10 
regions, dval = 1.63727 and max_threshold = 2503.99).  
RHSEG was then rerun with chk_nregions = 10, and the 10 
region segmentation was inspected with the HSEGViewer 
visualization tool. 

In this case the trace and resonance regions are not clearly 
delineated.  Fig. 6 shows the 10 region segmentation result, 
color coded using HSEGViewer to look similar to the pseudo 
colored plasmagram data as shown in Fig. 5.  Regions 4, 5 and 
10 make up the blue background region.  Regions 6 and 9 
make up the tourquoise region, which is a mix of background 
resonances and plasma trace (especially at the higher 
frequencies).  Regions 7 and 8 make up the dark green region, 
and region 3 makes up the light green region.  These regions 
are mostly background at the lower frequencies, but include 
some resonance and trace signals at the higher frequencies.  
Region 2 is colored orange, and consists primarily of the 
strongest trace and resonance signals.  The yellow colored 
region 1 consists primarily of the more moderate trace and 
resonance signals. 

In studying plasmagram 20010917_032244 in the previous 
section, the next step was to create a mask from the regions 
covering most of the trace and resonance signals.  However, 
the results here are too mixed to do this.  Some preprocessing 
might be useful in cleaning up the results.  Perhaps 
subtracting the minimum, mean or median values from the 
signal at each frequency would more cleanly delineate the 
trace signals (of course, this would obliterate the resonance 
signals).  This would even help the analysis in the cleaner 
plasmagram 20010917_032244 of the previous section.  Note 
that a couple of the trace signals are split into subregions in 

Fig. 4 (note the pink and red subregions for one trace and the 
light green and dark green subregions for another trace).  The 
subregions arise because the background adds to the signal, 
and the background varies with frequency.  Subtracting the 
minimum, mean or median value should serve to make the 
trace values appear more similar along the entire length of the 
trace, which would make it more likely the whole trace will be 
seen as one region by RHSEG.  This preprocessing should 
have the same effect for plasmagram 20010118_023716.  The 
result of testing this type of preprocessing should be available 
for the conference presentation. 

VI. SUMMARY  

An increasing number of the Earth observing programs 
spawn the intelligent system applications to establish an 
automated clearinghouse for dispersed and disorganized data. 
The computer plays an especially powerful and enabling role 
in those projects where the dataset size precludes manual 
processing. Our work was inspired by the practical need of 
locating scientifically-significant data records in the large 
archive of IMAGE/RPI plasmagrams, snapshots of plasma 
conditions in the Earth's magnetosphere. Less that 4% of 
nearly 900,000 collected plasmagram images have been 
manually analyzed. We developed an automated data 
exploration tool, CORPRAL, to locate, sort and pre-classify 
plasmagrams containing traces of remote reflections of the 
RPI signal. CORPRAL uses a biologically plausible model of 
pre-attentive vision replicating the key components of low-
level, bottom-up analysis in retina and brain cortex. Exploring 
the plasmagram archive with CORPRAL yielded almost 
150,000 plasmagrams with traces (~17% of all data). We plan 
to seek further enhancements of the CORPRAL by bringing 
its design closer to the bio-plausible solutions developed over 
the million years of evolution. This paper discussed a 
particular problem of false-alarm rate caused by imperfections 
of the edge analysis in CORPRAL. We look into higher 

Fig.  5. IMAGE RPI Plasmagram at 02:37:16 on Jan. 
18, 2001, designated 20010118_023716. 

Fig. 6. Colored coded initial segmentation result 
from RHSEG.  Regions are colored coded to 
closely match the pseudo coloring used in Fig. 
5 to display the input data. 



 

complexity 2D techniques to analyze echo integrity across the 
plasmagram images and thus help to bring down the false 
positive decisions. HSEG method for hierarchical 
segmentation of visual information is a well established 
technique developed for a broad class of remotely-sensed 
images. The RHSEG implementation of the segmentation 
technique demonstrates good potential for this task. We are 
working on developing shape descriptors for the RHSEG 
technique that would allow constrained clustering to find 
elongated regions corresponding to the plasmagram traces. 
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