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Parachlamydiaceae: Potential
Emerging Pathogens
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Parachlamydiaceae, which naturally infect amoebae, form a sister taxon to the Chlamydiaceae on the
basis of the Chlamydia-like cycle of replication and 80% to 90% homology of ribosomal RNA genes.
Because intra-amoebal growth could increase the virulence of some intracellular bacteria, Parachlamydi-
aceae may be pathogenic. Arguments supporting a pathogenic role are that Chlamydia pneumoniae, a
well-recognized agent of pneumonia, was shown to infect free-living amoebae and that another member of
the Chlamydiales, Simkania negevensis, which has 88% homology with Parachlamydia acanthamoebae,
has caused pneumonia in adults and acute bronchiolitis in infants. The recent identification of a 16S rRNA
gene sequence of a Parachlamydiaceae from bronchoalveolar lavage is additional evidence supporting

potential for pathogenicity.

N osocomial pneumonia, a frequent complication associ-
ated with considerable illness and death (1,2), is the lead-
ing cause of death from nosocomial infections (3).
Community-acquired pneumonia, which is also common, is
associated with a case-fatality rate of up to 8.8% (4). Despite
use of standard diagnostic methods, no microbial cause could
be identified in 47% to 55% of community-acquired pneumo-
nia worldwide in adults (5—7) and 20% to 75% of nosocomial
pneumonia (8,9). Emerging intracellular bacteria, which grow
poorly or not at all on media used routinely for detecting
human pathogens from clinical samples, could be the caus-
ative agents of these pneumonias of unknown etiology. During
recent decades, several previously unrecognized intracellular
bacteria have been discovered through the genotypic approach.
In addition, use of amoebal coculture procedures (10) allows
recovery of some fastidious gram-negative bacteria, such as
the Legionella-like amoebal pathogens (11,12), Candidatus
Odyssella thessalonicensis (13), Sacrobium lyticum (14), sev-
eral Afipia species (15), and Chlamydia-like endosymbionts
(16,17).

Amoebae: Microbial Trojan Horses

Although Legionella was the first pathogen demonstrated
to multiply and persist in amoebae (18), several other fastidi-
ous intracellular bacterial pathogens, including Chlamydia
pneumoniae (19), Mycobacterium avium (20), Listeria mono-
cytogenes (21), and an FEhrlichia-like organism (22), may
infect free-living amoebae. Extensive study of the ecology of
Legionella pneumophila has confirmed empirical observations
of its predilection for growth in hot water tanks and its local-
ization in sediment (23). Rowbotham described the ability of
L. pneumophila to multiply intracellularly within protozoa
(18) and suggested that free-living amoebae could be a reser-
voir for Legionella species (24). As amoebae are common
inhabitants of natural aquatic environments and water systems
(25,26) and are resistant to extreme temperatures, pH, and
osmolarity conditions while encysted (27), the Legionella
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reservoir is important. Growth of free-living amoebae at high
temperatures (44°C to 53°C) was observed more frequently for
strains isolated from hot-water tanks (mainly Hartmanella ver-
miformis) than for those isolated from moist sanitary areas
(mainly Acanthamoeba, Naegleria, and Valkhampfia species)
(26). This great tolerance of cysts and species-dependent ther-
motolerance of trophozoites could account for the difficulty in
eliminating Legionellae from water systems (28). The resis-
tance of Acanthamoeba spp. cysts to various disinfecting solu-
tions (29-31) complicates the eradication of free-living
amoebae. Moreover, a wide variety of Enterobacteriaceae
have increased resistance to chlorination when ingested by 7et-
rahymena pyriformis (32). Thus, free-living amoebae could
readily act as Trojan horses for bacterial endosymbionts
(33,34).

The relationship between Legionellaceae and free-living
amoebae, which serves as a model for other endosymbionts
such as Parachlamydiaceae, is not restricted to the role of res-
ervoir. Indeed, Acanthamoeba strains were found to produce
Legionella-containing vesicles, which may be agents of trans-
mission of legionellosis. The risk of transmission may be
underestimated by plate count methods (35). In addition,
Legionellae grown inside amoebae were more virulent (36,37),
more motile (24), and more resistant to biocides (38) than are
bacteria cultured in axenic media. The entry of Legionellae into
monocytes was found to be enhanced by the intra-amoebal
growth environment (39). In addition, intra-amoebal growth of
L. pneumophila was shown to induce an antibiotic-resistant
phenotype, while Legionellae cultured in broth did not (40).
Similarly, M. avium living within Acanthamoeba had greater
resistance to rifabutin, clarithromycin, and azithromycin than
did strains living in macrophages (41). This finding could result
from decreased uptake of antibiotics into the amoebae, an inac-
tivation of the compound within amoebae, or a change in the
bacterial phenotype. Replication of bacteria in amoebae was
found not only to affect the bacterial host (through increased
potential for spread, resistance to biocides and antibiotics, and
acquisition of virulence traits) but also to enhance the pathoge-
nicity of the free-living amoebae (42).

625



SYNOPSIS

The Parachlamydiaceae

These Chlamydia-like endosymbionts are small Gimenez-
stained (43) coccoid bacteria (Figure 1) that naturally infect
amoebae and are inconsistently stained with Gram stain. Elec-
tron micrographs of Acanthamoeba demonstrate the presence
of bacteria at different developmental stages typical of the
Chlamydiales, such as elementary and reticulate bodies (Fig-
ure 2). A new Parachlamydiaceae family was proposed (44)
that forms a sister taxon to the Chlamydiaceae, as it has a
Chlamydia-like cycle of replication and 80% to 90% homol-
ogy of ribosomal RNA genes. This family comprises two gen-
era, of which the type strains are Parachlamydia
acanthamoebae (17) and Neochlamydia hartmanellae (45).
Members of the Parachlamydia were proposed to have at least
95% homology of the 16S or 23S rRNA genes with P. acan-
thamoebae (44). However, comparison of the 16S rRNA gene
sequences of four additional Parachlamydia with P. acan-
thamoebae showed substantial phylogenetic diversity within
this genus (Figure 3), with 91.2% to 93.1% 16S rRNA gene
sequence homology with P. acanthamoebae (46). The ecologic
loci and prevalence of the Parachlamydiaceae are unknown,
but the latter could be underestimated, as this fastidious gram-
negative bacteria was recovered only by amoebal cultures, a
procedure not performed routinely on clinical samples. More-
over, these Chlamydia-like organisms have potential for wide-
spread dissemination, as they are mostly endosymbionts of
Acanthamoeba, a free-living amoeba with worldwide distribu-
tion (27).

Figure 1. Hall's coccus within Acanthamoeba polyphaga. Diff Quick
staining (Dade, Boehring, Paris, France). Magnification X 1,000.
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Figure 2. Hall's coccus within Acanthamoeba polyphaga. Electron
microscopy, magnification X 12,000, bar = 1 ym.

Strains of Parachlamydiaceae

Nine strains of Parachlamydia have been described
(Table). The first, P. acanthamoebae, was identified within
Acanthamoeba BN9, an amoeba recovered from the nasal
mucosa of a female volunteer (17). Its 16S rRNA sequence
had 88.2% homology with Simkania negevensis and 87%
homology with Chlamydophila pneumoniae (17). The second,
Bergl7 endosymbiont, also isolated from the nasal mucosa of
a female volunteer, seems to have an rRNA signature similar
to that of the Bn9 endosymbiont, as demonstrated by the bind-
ing of the Bn9¢s¢ hybridization probe designed for in situ
identification of P. acanthamoebae (17). The third, Hall’s coc-
cus, was found in an Acanthamoeba isolated from water taken
from a humidifier in a case of humidifier-associated fever in
Vermont (16). Its 16S rRNA gene sequence had >99% similar-
ity with that of Bn9 endosymbiont and 86% to 87% with those
of four Chlamydia species (16). Two additional Parachlamy-
diaceae, UWE1 and UWE25, were also found to infect Acan-
thamoeba. Both amoeba strains were recovered from soil
samples from Washington State (46). A sixth strain, UWC22
endosymbiont, infected an Acanthamoeba recovered from
infected corneal tissues (46). TUME] endosymbiont was
found in an amoeba recovered from municipal sewage sludge
in Germany (46). The eighth strain, Neochlamydia hartman-
nellae, is the only strain of Parachlamydiaceae isolated from
Hartmanella vermiformis. It did not grow on Acanthamoeba
sp. or Naegleria, and its 16S rRNA gene sequence had only
92% homology with that of P. acanthamoeba and varied from
91.6% to 97.1% with the four latter endosymbionts of Acan-
thamoeba (45). The last one, CorvenA4, could not be isolated.
Only its 16S rRNA sequence was retrieved from a respiratory
sample (47).
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Rationale for Potential Pathogenicity

Intra-amoebal growth may increase the virulence of some
intracellular bacteria (39), prompting concern that other intra-
cellular bacteria recovered from amoebae, such as the
Parachlamydiaceae, could be pathogenic. Indeed, a bacterium
able to survive exposure to the lytic enzymes of amoebal
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Figure 3. Neighbor-joining phylogenetic tree of the 16s rRNA gene
sequence of Chlamydiales, including Chlamydiaceae, Parachlamydi-
aceae, and Simkaniaceae, compared with Legionella pneumophila (M
59157) as outgroup. Bar represents estimated evolutionary distance.
The numbers at each node are the results of bootstrap analysis; each
value is derived from 100 samples.
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phagolysosomes would probably also survive the lytic activity
of macrophages. This hypothesis is supported by the fact that
mutants of Legionella that have similar cytotoxic defects and
intracellular replication in mammalian macrophages and pro-
tozoa have been isolated (48), suggesting a common adaptive
mechanism to the intracellular environment. Moreover,
Parachlamydia can adapt to mammalian cells, as demon-
strated by successful passage from an amoebal host to Vero
cells (a monkey cell line) (17). Additional arguments in favor
of a pathogenic role of the Parachlamydiaceae are that
Chlamydia pneumoniae, a well-recognized agent of pneumo-
nia, was shown to infect free-living amoebae (19) and that
another member of the Chlamydiales, Simkania negevensis
(49,50), which has 88% homology with P. acanthamoebae
(46), has been shown to cause pneumonia in adults and acute
bronchiolitis in infants (51,52).

Strong evidence that some Parachlamydiaceae could be
pathogenic came from the identification of Hall’s coccus in an
amoeba isolated from the source of an outbreak of humidifier-
associated fever in the United States, as well as related sero-
logic studies (16). In a study of 500 patients with pneumonia,
fourfold rising titers against Hall’s coccus were observed in
two patients and convalescent-phase antibodies in three others
(53). In a second study, two patients had convalescent-phase
antibodies (16). These results were recently confirmed: &
(2.2%) and 3 (0.8%) of 371 patients with community-acquired
pneumonia were seropositive (titer >1/50) or had a fourfold
rise in Parachlamydia antibody titers compared with none of
511 healthy study participants (54). The recent identification
of a 16S rRNA gene sequence of Parachlamydiaceae from
bronchoalveolar lavage provides additional evidence of poten-
tial pathogenicity (47). However, the contamination of this
specimen by an amoeba harboring the CorvenA4-Parachlamy-
dia could not totally be ruled out. These findings should be
interpreted cautiously as water contamination probably led to
the initial false attribution of Afipia felis as the causative
organism of cat-scratch disease (55). The identification in res-
piratory tract specimens of three new Chlamydia-like strains,
which had phylogeny closer to that of the Parachlamydiaceae
and Simkaniaceae than the Chlamydia and Chlamydophila
(56), is an additional argument in favor of a role of the
Parachlamydiaceae in the pathogenesis of respiratory dis-
eases.

In addition, a patient with adult Kawasaki syndrome was
found to have a fourfold rise in antibody titer to P. acan-
thamoebae (54). A possible relationship between a previous
respiratory infection and Kawasaki syndrome has already been
reported (57,58). Thus, the role of Parachlamydia in the
pathogenesis of Kawasaki syndrome should be explored
further.

As Parachlamydia could potentially be resistant to lytic
macrophages enzymes for years, it could enhance chronic
inflammatory disease or chronic pathogenic mechanisms, such
as the one leading to vascular damage. A role of Parachlamy-
diaceae in the pathogenesis of arteriosclerosis is suggested by
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Table. Strains of Parachlamydiaceae

% 16S IRNA homologyb

Strain Sample, context and location Host? to BN9 to C. pneumoniae® Ref
BN9 endosymbiont Nasal swab of female volunteer, Germany Acanthamoeba sp. strain BN9 100 87.6 17
Bergl7 endosymbiont ~ Nasal swab of female volunteer, Germany Acanthamoeba mauritaniensis nad na¢ 17
Hall’s coccus Water sample, humidifier fever, Vermont Acanthamoeba sp. 99.6 87.4 16
UWE]1 endosymbiont Soil samples, Washington State Acanthamoeba sp. strainUWE1 93.7 86.6 46
UWE?25 endosymbiont Soil samples, Washington State Acanthamoeba sp. strain UWE25 93.2 86.8 46
UWC22 endosymbiont Infected corneal tissues, Washington State ~ Acanthamoeba sp. strain UWC22 91.3 87.3 46
TUMEI] endosymbiont Municipal sewage sludge, Germany Acanthamoeba sp. strain TUME1 91.0 87.2 46
Neochlamydia Water system of a dental unit, Germany Hartmanella vermiformis 91.5 86.8 45
hartmannellae

CorvenA4 Bronchoalveolar washing, France na® 91.4 85.0 47

#Bacterial strains were identified in free-living amoebae, isolated by culture on nonnutrient agar.
bEstimated with Clustal W ¢ available on the website of Pole Bio-Informatique Lyonnais, Lyon, France (http://pbil.ibcp.ft/).

€16S rRNA of Chlamydophila pneumoniae strain N16 (GenBank accession number U68426).

Bergl7 endosymbiont was shown to have a similar rRNA signature from Bn9 endosymbiont (binding of the Bn9¢sg hybridization probe designed for in situ identification of
Parachlamydia acanthamoebae); however, the 16S rRNA sequence of that strain is not available.
Direct polymerase chain reaction amplification and sequencing from DNA extracted from the respiratory sample; no strain was isolated.

the presence in an abdominal aneurysm specimen of a
Chlamydia-like strain that had a sequence closer to that of P.
acanthamoebae than to Chlamydia, Chlamydophila, and Sim-
kaniaceae (56). Some serologic studies have suggested that
Chlamydophila pneumoniae could play a role in the pathogen-
esis of arteriosclerosis (59,60), although this observation was
not confirmed in other studies (61,62). Such a discrepancy
might result from serologic cross-reactions or confounding by
a pathogen such as Parachlamydia, which in light of its
homology could share epitopes, mode of transmission, or both
with C. pneumoniae.

Based on this rationale, one may hypothesize that some
Parachlamydiaceae could cause pneumonia. Thus, patients
with nosocomial or community-acquired pneumonia of
unknown etiology should ideally receive an extensive diagnos-
tic work-up, including testing for Parachlamydia. In addition,
patients with arteriosclerosis and Kawasaki disease or other
infectious syndromes of unknown etiology should perhaps be
tested for Parachlamydia. As Parachlamydia strains were all
identified within free-living amoebae, recent history of swim-
ming in ponds, rivers, or swimming pools might prompt a spe-
cific diagnostic approach.

Diagnostic Methods

No diagnostic tool is commercially available. Because of
the fastidious nature of Parachlamydiaceae, molecular biol-
ogy is probably the easiest and cheapest diagnostic approach.
Serologic testing is also promising; however, it requires anti-
gen and a laboratory capable of performing amoebal coculture.
Serologic results may be useful for epidemiologic studies, as
they may provide information on past or present contact with
the antigen. Both molecular and serologic methods may yield
results in <24 hours.
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Although time-consuming, culture-based diagnostic meth-
ods have the advantage of enabling the recovery of strains.
These methods encompass two main approaches. The first one
directly targets the recovery of Parachlamydiaceae, with
amoebae used as cell background. A convenient broth for
amoebal coculture is Page’s modified Neff’s amoeba saline
(PAS) (10), which is preferable to Nelson’s and peptone-yeast
extract-glucose medium because PAS is devoid of nutrients,
thus reducing overgrowth of potential contaminants in clinical
samples. Although incubation at 37°C may be ideal for bacte-
rial recovery, lower temperatures (30°C—-35°C) are generally
used to prevent amoebal death or encystment (12,13,20). The
coculture should be examined regularly for amoebal lysis or
Gimenez-positive cocci. The second culture-based method is
designed to recover free-living amoebae, which will then be
examined for the presence of endocytobionts. Briefly, amoebal
culture is performed by adding the clinical sample to nonnutri-
ent agar (1.5 g agar in 100 mL PAS) supplemented with living
Enterobacter cloacae or Escherichia coli, incubating at 25°C—
30°C, and examining the plate daily for the presence of amoe-
bae. To date, all Parachlamydiaceae strains have been recov-
ered by the second approach.

Future Directions

The role of Parachlamydia sp. as an emerging pathogen
needs to be confirmed. In view of the genetic diversity of the
Parachlamydiaceae (46), their phylogeny needs to be eluci-
dated, as the various species could be associated with species-
specific pathogenicity. Search for additional Parachlamydia
strains in hospital water systems could help define potential
nosocomial exposures. Because the Parachlamydiaceae are
difficult to culture, simpler approaches are being developed,
including serologic and molecular tests. These methods could
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be performed on a large number of samples from both healthy
and ill persons. Patients with community-acquired pneumonia,
nosocomial pneumonia, Kawasaki disease, and arteriosclerosis
should be tested. Increased resistance to antimicrobial drugs,
which may be associated with intra-amoebal growth, is
another promising area for future study.

Dr. Greub is a Swiss physician specialized in medical microbiol-

ogy and infectious diseases, working as a postdoctoral fellowship in
the Unité des Rickettsies in Marseille. His current research focuses on
Parachlamydiaceae and other emerging intracellular bacteria.
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