Dr. Lederberg (Abstract of Remarka).
7. Becterial Genetios. Thls does not seem the place to 80 into many technical details, The following chart will probably suffice to renind this audience of pertinant developments.

MECHANISNS OF BIOLOGICAL VARIATIOM
(With Speoial Reforeace to Becteria).
(G1. Braun, "Bactorial Ganoties"; Luria, Bact. Rov. 1947; (ORML Symposiun 1955: J.C.C.P. 45, Supph.2)

1. Intracloaal Variation
"hutation". Spontaneous. Induced (X-raye;ultra-violet; chemicals).
Segregation -- from hotorokaryons, heteronypotes, or oytoplasmic complexes (Completes cycles of interclonal variation).

Qenetic Recombination.
2. Interclonal variation./ (Classified by dimonsions of genetio unit exchanged).

Sex (Syngany) - Puaion of hole muclei. Srampleaz E. coli x-12 bet collabontion of different muclel.
Heterokaryosie - Puaion of calle Fithout muclear fualon/ Ex: Stroptonjoes grieoun,
Cytoplasaic transfor ("ondoaymbiosis") - Ex. "keppa" in Paramecium; no certain oxamples in bacterin; ($F+?$). Olucosyl-nucleotides in phage?

Tranoduction - Mtransfor of a genatic iraquent from a donor to a recipient cell".
A. Madiated by DIIA: pneumococcus transformation
B. Modiated by phage: Salmonella; E. coll

B'.Phage itsolf as getic iragiont, iysogenic convoraion

For present purposes it is perhaps sufficient to emphasize that genetic variation can be accomplished oither by matation or by recombination, and that offort to find recombinational ayetem of one kind or another in various organisme have frequentily bean auccessful.
II. Some genaral remarks on genotic principles.

1. A givan trait may be controlled by one or a fow major genes (oligogenes) or by a great many, whose individual offect is much amaller (polygenes) or both. a priori
We have no/way of knowing wich applied to paralytogenesis in polivirus. The former would be sore encouraging for a santational approach.
2. Because of the infrequency of mutation, the usual obstacie is the development of specific selective techniques for the desired matant. For example, in E. coli it is easy to obtain a lactose-positive mutant (Lac+) from a Lac- stock, since one can select in a medium with lactose as sole carbon source. To obtain a Lacfrom Lact is much more difficult, but can be done with the help of an efficient indicator medium by whioh individual Lac- colonies are easily recognized. In addition, E.M.Lederberg had faund that Butyl Galactoside was a selective agent which intoxicate
favored Lac-, probably because Lac colls will patran themelvers with butyl alcohol when they aplit this substrate. Similariy, auxotrophic mutants can be selected from prototrophic populations by means of peniciliin, under comditions wher the auxotrophic cells are saved, and the pritotrophs killed.

Every effort should be made to rationalize selective techniques for deaired matanta. This is not always hopelass, if we know enough about the aysteal to be able to define precisely what we are looking for. For oxample, it is just conceivable that nonparalytogenic matants of pollo occur that do not adsorb so readily on neurons, and these could be concentrated by differential adsorption.

Less important, but technically useful, is the augrentation of the incidence of matanta in general by various mutagenic agents. Unfortunately, the conditions of matagenesis in viruses are still confused.

The same primary role of selective technique applies to recombination analysis. 3. When we don't know enough about the system, we may have to rely on irrational selection. Either we know (or hope for) a specific correlate that we can select with, or else we rely on the principle of "Imperfectibility", that etrolutionary specialiaation can only be accomplished at a price in terms of general adaptation. This may be the explanation for the attentation of viruses, 0.g., of yellow fever. This has not been studied sufficientily that we are on sure thapretical footing. Since this type of seloction alsp relfies on sporadic mitations, and these may occur in different patterns, one should carry this kind of experiment in many-
fold repilcate, in the hope that on of the matational sequances leading to adaptation in a now environment involves a dealaptation to the old. 4. Recombinational analysis should be of primary importance in many ways. The first is the information it can give on the genetic basis of paralytogenic variation in existing material.

There are two ways in which it can be applied specifioally. The first is a rather obvious extehsion of the oligoganic approsch. There may be any number of X viruses in nature which are genetically related (enough to cross) with polioviruses, eten though thoy cannot be migen reoognized as relatives either from their pathogenetic or immological characteristics. Whers X viruses already has characteristic host adaptations, it should not be too difficult to screen for recombinants of X by polio which have the antigenic character of polio, and the other (in this case desirable) characteristics of X. This might be tormed the recombinational introgreasion of poliovirus antigens into other strains. We know so little of the genetic relationships of viruses that there is no obvious criterion, before the trial itself, by which to recognize the rolatives.

The second approach is based on the atudies of "correlated variation" in the sense of Mather and Larner (see the latter's book, "Genetic Homestaals"for an excollent summary of examples from breeding experiments with fryitfflies, chichans, and other higher organims). When heterogeneous fruitilies are crossbred and subject to s tringent selection for a single charactor, e.g., number of abdominal hairs, the trait increases ateadily in successive generations, then reaches a ateady peak when the stocks have beenme "fixed" or genetically homogeneous. But concurrently, theret is a steady loas in the overall vitality, fortility, longevity, etc. of the flies, whioh is the correlated variation. This is understood by the selective offect of building up complex new combinations of various genes which have the maximan effect on the selected trait. Thia process is bound to break up similar
comadaptive gene complexes which have previously been assembled under the impetas of netural selection/ for the viability traits. Concretely, continued this would suggeat the/selection of repfeated aross-progeny of two lines of poliovirus, or polievirus + virus X, for any trait other than paralytogenehis, in the hope of breaking up previously evolved coadaptations for this trait. The advantage of this aystem over reliance on simple selection of is the possibility utilisation of inherent, "old" genetic variability between lines.

If I had to choose an imediate program, ny own predilection would be I would also give continued
 rationalization of the selection program, realizing how much more fundamental knowledge is needed for it.

