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. 
The structures of organic molecules are sometimes so bewilder- 
ingly complex that chemists have difficulty describing, classifying, 
and even naming them. Graph theory, a special tool borrowed 
from topology, has now been used to reduce even quite com- 
plicated chemical structures to a chain of numbers so that a 
computer can analyze them. This attempt to make organic chem- 
istry more systematic could make it much easier for students to 
learn basic principles and to solve vexatious problems of classify- 
ing chemical compounds so that computers could be more readily 
applied to retrieve chemical information. It may be a forerunner 
of similar mathematical simplifications thdt will be. applied to 
chemical genetics and other much more complex fields. ’ 

Topology of Molecules 
Joshua Lederberg 

The enterprise known as science rests on two pediments: the power and 
social utility of empirical knowledge, and the esthetic satisfaction that 
comes from an elegant restatement of principles. These views have been 
contrasted as the Baconian versus Newtonian justifications of science. 
Newton’s name evokes a very apt image, his epochal contributions to the 
mathematical formulation of physics. Some esthetes judge how far a 
science has advanced in its development by the extent to which it has been 
mathematized - made into a deductive science by a set of axioms and 
rules for their manipulation. 

The fruitfulness of pursuing such an aim is debatable for such fields as 
embryology, genetics, or psychology. Outside the rather special area of 
evolutionary theory, few examples of useful prediction are based upon any 
comprehensive mathematization of living behavior. On the other hand, 
for many special situations, models can be created that are sufficiently 
simplified to justify the application of some numerical mathematics or 
statistics. In his essay in this volume, Hirsh Cohen has discussed many 
examples of this kind of application of mathematics to biology and medi- 
cine. 

With the rapidly growing speed, size, and availability of digital com- 
puters, the esthetic ideal of rationalizing a science acquires a new dimen- 
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sion of practical importance. If we could give biology sufhcient formal 
structure, it might be possible to mechanize some of the processes of 
scientific thinking itself. Many of the most striking advances in modern 
biology have come about through the formulation of some spectacularly 
simple models of important processes, for example, virus growth, genetic 
replication, and protein synthesis. Could not the computer be of great 
assistance in the elaboration of novel and valid theories? We can dream of . 
machines that would not only execute experiments in physical and 
chemical biology but also help design them, subject to the managerial 
control and ultimate wisdom of their human programmer. 

This vision is so far beyond our present grasp, it makes what will be 
reported below seem quite trivial. These remarks may, however, give some 
notion of the reasons a geneticist took an interest in the formalization of 
organic chemistry. Chemical genetics embodies many statements in 
natural language, and its reasoning embodies an enormous range of 
expertise covering chemistry, geometry, and most of the natural sciences, 
as well as that most difficult realm, common sense. As a further compli- 
cation, many quite fundamental discoveries are being reported almost 
daily. I wanted more experience with the mechanization of a simpler 
science before tackling chemical genetics. A scan across neighboring 
disciplines suggested that elementary organic chemistry might be a chal- 
lenge that was more amenable yet had not been exhausted. 

For various reasons, including the good fortune oi my association with 
Professor Carl Djerassi of Stanford’s Chemistry Department, the analysis 
of mass spectral data for the solution of structural problems% organic 
chemistry was taken as the focal process for which a formalization would 
be attempted. Equally fortunately, Professor E. A. Feigenbaum joined the 
faculty of Stanford’s Computer Science Department, and the entire effort 
of translating the formalisms and developing the heuristics for imple- 
mentation on the computer has been done in close collaboration with him. 

We may now turn to a consideration of the application of some elemen- 
tary nonnumerical mathematics, that is, graph theory, for the representa- 
tion of organic molecules. The use of these representations for a computer 
mechanization of the concepts of organic structural analysis will be 
summarized briefly. 

The mathematical tool for translating chemical structures into a form 
that a computer can handle digitally is a concept that topologists 
call a graph. This kind of graph has little relation to the curves and bar 
charts used to display data; rather, it is a formal diagram for analyzing 
connections among a number of entities, in this case the individual atoms 
that make up an organic molecule. 

Graphs have two components: nodes (representing atoms) and edges 
(chemical bonds between atoms). Each edge is associated with exactly two 
nodes, each node with at least one edge. The lengths of.the edges are 
irrelevant. Disconnected graphs are regarded as representing molecules 
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that are distinct, even if they are bound by diffuse chemical forces as in : :. j..:.. .‘.“_ ” 
a crystal. 

Our main approach is mapping: a rule of correspondence between 
a part of a chemical structure and a part of some abstract graph. Graphs 
lend themselves to canonical forms, that is, methodical choices among 
equivalent representations according to a precise rule, which eliminates 
ambiguity and redundancy. The objective is to represent each molecular 
structure by just one graph and, conversely, to have each graph represent 
just one structure. Chemistry will re-emerge after a few levels of abstrac- 
tion. 

The structural formula for an organic molecule is then a paragon of 
a topological graph, that is, the connectivity relations of a set of chemical 
atoms we take as the nodes of the graph. True, we recognize more than one 
type of connection - double, triple, and noncovalent bonds, as well as 
single bonds. From an electronic standpoint, however, the special bonds 
could just as well be denoted as special atoms. The structural graph does 
not specify the bond distances and bond angles of the molecule. In fact, 
these are known for only a small proportion of the enormous number of 
organic molecules whose structure is very well known from a topological 
standpoint. 

Most of the syllabus of elementary organic chemistry. thus comprises 
a survey of the topological possibilities for the distinct ways in which sets 
of atoms may be connected, subject to the rules of chemical vaIence. The 
student then also learns rules that prohibit some configurations as unstable 
or unrealizable. (He may later earn his scientific reputation by justifying 
or overturning one of these rules.) But the field of organic chemistry has 
reached its present stature without many benefits from any general anal- 
ysis of molecular topology. These benefits might arise in applications 
at two extremes of sophistication: teaching chemical principles to college 
undergraduates and teaching them to electronic computers. They may 
also apply to the vexatious problems of nomenclature and systematic 
methods of information retrieval. 

Although the topological character of chemical graphs was recognized 
by the first topologists, very little work has been done on the explicit 
classification of graphs having the greatest chemical interest. Some dificult 
problems, e.g., the analytical enumeration of polyhedra, remain unsolved. 

This article will, then, review some elementary features of graphs that 
may be used for a systematic outline of organic chemistry. 

.,.- 

.._, :,’ ‘., 

All the Ways to Build a Molecule 
A problem statement might be; Enumerate all the distinct structural 

isomers of a given elementary composition, say CaH7N02. That is to say, 
produce all the connected graphs that can be constructed from the atoms 
of the formula, linked to one another in all distinct ways, compatible with 
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the valence established for each element (4, 3, 2, 1 for C, r‘J, 0, H, rcspec- 
tively). For compactness, H can be omitted from the representations, 
being implied by every unused valence of the other atoms. 

The first discrimination is between trees and cyclic graphs, the “ali- 
phatic” versus the “ring” structures of organic chemistry. Trees are graphs 
that can be separated into two parts by cutting any one link. How may 
we establish a canonical form for a tree, after first noting its order (num- 
ber of nodes)? 

The first step might be to find some unique place to begin the descrip- 
tion. A tree must have at least two terminals and may have many more if 
highly branched; these are, therefore, not suitable starting points. How- 
ever, each tree has a unique center. In fact, in 1869 Jordan showed that 
any tree has two kinds of center, a mass center and a radius center. Each 
center has a unique place in any tree; the two may or may not coincide. 

To find the radius center, the tree is pruned one level at a time, cut 
back one link from every terminal at each level. This will leave, finally, 
an ultimate node or node pair (in effect, edge) as the center, the radius 
not of a length but, rather, of levels of pruning needed to reach the center. 

To identify the mass center of a tree, we must consider the two or more 
branches that join to each nonterminal node. The center is the node whose 
branches have the most evenly balanced allocation of the remaining mass 
(node count) ‘of the tree. This is the same as saying that none of the pend- 
ant branches exceeds half of the total mass. If the structure is a union of 
equal halves, the center is the edge that joins them. 

‘Each of the centers (Figure 1) is unique and so could solve our problem 
of defining a canonical starting point of a description. The center of mass 
is more pertinent to finding a list of isomers, which of course have the 
same mass. The radius center is ill-adapted for this but matches conven- 
tional nomenclature, which is based on finding the longest linear path, 
that is, a diameter. 

In chemical terms, the center divides the graph into two or more 
radicals. These radicals can be ordered by obvious compositional prin- 
ciples, giving rise to a canonical description of the whole graph in a lin- 
ear code. Thus, methionine becomes (C(N)(C(O)(=O))(C-C-S-C)) 
or, in a parenthesis-free notation the example should make obvious, 
C* * *NC. :OOC*C*S*C. This is more legible to the human reader, if the 
implied hydrogens are restored, as 

CH.. *NH2 C. :OH 0 CH2.CH2.S.CH3. 

Any linear code has an implicit numbering system: Each atom is num- 
bered according to the place where it occurs in the string. 

Some thirty years ago, Henze and Blair showed how Jordan’s principle 
could be used for the enumeration of isomers of saturated hydrocarbons 
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and some simple derivatives of them. Here, the nodes are all carbon atoms, 
and the enumeration can. proceed by working outward from smaller to 
larger complexes. For example, for the isomers of undecane, CnHZ4, 

. N”z 
S-CH, 

UIeO Mefhionim 

FIGURE 1. Chemical treesandtheir centers. 
In urea, the carbon atom is both the radius 
center and the mars center. 

In mrthioninc, carbon atom 1 is the mass 
center, according to the numerical partition 
7 . . . 7 3 4. Carbon atom 2 is the radial 
center, on a diameter of 7, that is, thr center 
of a largest string 

(C-s-G-c-c-C=O). 

For both analyses, WC ignore hydrogen 
atoms. 

one atom is designated as center, leaving 10 to be allocated among 2, 3, 
or 4 branches. Only the following partitions shown in Figure 1 satisfy 
the rules (leaving dissymmetry .out of account): 

Branches PlWtltlOnS No. of partitions 

3 4 

1 1 1 1 22 
1 21 222 I ,- 

4 6 
324323 

554443 
i- 

No closed algebraic expression has been found for this enumeration. 
However, the recursive expansion was done manually by Henze and 
Blair with a few trivial errors later found by a computer check. No 
organic chemist will be surprised by the enormous scope of his field of 
study. There are, for instance, 366,319 isomeric icosanes, CZ~H,~, and 
5,622,109 icosanols, C,oHrlOH (Table 1). 

.I. . 

: : _ :. 

_. 
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Table 7. Counting the dilferent arrangements of compounds of carbon 
and hydrogen containing no double or triple bonds and no rings. These 
have the general formula &Hz,,+z. 

Number’of Carbon Atoms Number of Possible Isomers 

11 159 
1 1 12 355 I. 
2 1 13 802 
3 1 14 1858 
4 2 15 4347 
5 3 16 10359 
6 5 17 24894 
7 9 18 60523 
8 18 19 148284 
9 35 20 366319 

10 75 

The total range of acyclic compounds containing atoms other than 
that of the hydrocarbons C or H is, of course, very much larger than these 
subsets. To generate them, an allocation of nodes to constituent radicals 
takes account of the kind as well as number of remaining atoms. A com- 
plete enumeration of structural isomers of a given composition, for ex- 
ample of alanine, CSHJVO~, can thus be made. We find 216 such isomers 
if we apply only these simple topological principles, compared with just 
5 isomers of C6H1,. 

Graphs of Ring Compounds 
Cyclic graphs are less tractable than trees. A linear representation is 

difftcult because every path may return to a specific node already defined. 
The symmetries of cyclic graphs complicate the problem of defining a 
unique center on morphological criteria. These taxonomic difhculties are 
reflected by the existence and popularity of the American Chemical 
Society’s Ring Index, which displays the “11524 rings known to chem- 
istry” together with a profusion of synonyms and arbitrary numbering 
systems. Many more rings are discovered every day. 

Molecules may also contain both acyclic and cyclic parts. However, if 
a strictly cyclic part is once defined, it can be regarded as a single node in 
a tree. 

We now consider the strictly cyclic graphs, wherein at least two (some- 
times more) links must be cut to separate the graph. First we produce a 
set of strictly trivalent cyclic graphs. Then these are related to the chem- 
ical graphs by ignoring the bivalent nodes of the latter. That is, the triva- 
lent vertices are preserved to describe an abstract, basic graph and each 
linear path between vertices maps onto an edge of the basic graph. The 
degenerate case of zero vertices, the circle, must be included in the set 
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since the simple ring is the most important cyclic structure of organic 
chemistry. A double ring’ can be generated in only one way, mapping 
onto a two-vertex trivalent graph: the molecule naphthalene maps onto 
the hosohedron. Figure 2 gives some of the more familiar cyclic hydro- 
carbons to illustrate these correspondences. 

Some organic molecules have one or more quadrivalent vertices. 
This contingency can be met head-on by enumerating the full set of 
corresponding tri- quadrivalent graphs. It is expedient to convert these, 
when needed, to trivalent graphs by any of a number of tricks. For 
example, map a quadrivalent node onto a pair of connected trivalent 
nodes. 

We now proceed to enumerate the trivalent graphs, each with an asso- 
ciated canonical representation and an implied numbering of nodes and 
edges for mapping the molecule. 

Once Around the Network 
A practical key to the solution of this problem, as to many other net- 

work problems, takes advantage of the Hamilton circuits found in most 
of the abstract cyclic graphs having chemical interest. A Hamilton circuit 
is a round trip through the graph that traverses each node just once. It 
therefore uses n edges, leaving out n/2 edges of a trivalent graph. Figure 
3 is Hamilton’s own example, the dodecahedron, proposed by him as a 
parlor game, each node representing a city that the round-the-world 
traveler would wish to visit once but not more often. 

A convenient representation of an HC maps the nodes and edges of the 
circuit as vertices and bounding edges of a regular polygon, The remain- 
ing n/2 edges then form chords, each node being one of the two termini 
of one chord. A description of the graph then needs only some notation 
for the n/2 chords. First, we should canonicate the orientation of the 
polygon, having chosen to initialize the HC arbitrarily among n nodes 
and 2 directions (the rotational and reflectional symmetries of the poly- 
gon). Each node is joined by some chord having a certain span. The 
span list can be put in cyclic order, where it is immaterial which node is 
selected as starting point. The effect of reflection is also easily computed. 
If the span list is regarded as a number, its minimum value under rotation 
or reflection becomes the canonical form. For example, an g-node graph 
might be represented (Figure 4) by any one of the span lists 17522663, 
31752266, and so on, or the reflections 75226631, and so on. Of these, one 
quickly finds that 17522663 is the lowest-valued, hence the canonical form. 

The same procedure establishes a canonical ordering of the nodes and 
edges. For the latter, we take the HC sequence (the polygon) first, then 
each chord in order of first reference. 

The span list has n terms. Only n/2 are necessary since each chord is 
referred to twice in the span list. For an abbreviated code, simply omit the 
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FIGURE 2. The cyclic trivalent grafhs with 8 or fewer nodes. Up to 6 nodes, these all have 
Hamilton circuits but may also be represented in othr ways. In a few examples, the circuits 
are drawn with emphasis on planar map representations. Complete tables of chord lists like 
those shown under the circuit (polygonal) representations have been published for up to 72 
nodes, uirtually exhausting graphs of chemical interest. 

The chemical examplcs are, wherever possible, hexacyclic hydrocarbons. Each vertex stands 
4”. n rnrLnn ntnm 



POLYGONAL POLYHEDRAL 
REPRESENTATION FORM 

AAAA 

AABB 

AACA 

ABCE 

cs 
\ 

ASDA 

@ 
ACDB 

@ 
AECA 

0 
SSBS 

EXAMPLE 

83 
Nonpolygonal graph wth known chemical examples 

CODE - 

MAPPING ON POLYHEDRAL CHEMICAL 
UNDERLYING GRAPH FORM EXAMPLE 

(8A:l,S:ACA) 

\WAE)EAA 1 

A Homllfonian path where 

0 circuit is lack= 

Thejinai example has no Hamilton circuit. It can be computed either as a predicted union 
of two circuits (A with ACA, edge 1 with edge S), in canonical form, or as a Hamiltonian 
path (*(AE)EAA), th e asterisk signifying that the pobgon cannot be closed, and (AE) that 
two chords, A and E, both issue from the same, initial, node. 

As explained in the text, each chord of the polygonal representation is coded by one character 
for its span thefirst time it is encountered in a serial circuit of nodes. 
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FlGURE 3. Hamilton’s own Hamilton cir- 
cuit. The abstract dodecahedron, repre- 
sented as a planar map of 20 nodes. 

. . 

second reference to any chord. Thus 17522663 becomes 1522 to encode the 
graph in a canonical form (Figure 4). Since we need more than 10 num- 
bers, we use the alphabet, character by character. Thus 1522 becomes 

17522663 31752266 63175226 66317522 

75226631 2 2orB 

FIGURE 4. Symmetries and encoding of a cyclic trivalent graph with 8 nodes. There are 76 
symmetry operations (8 rototional X 2 rejlcction). Shown are 8 rotations, and a reflection that 
could be combined with each of these. With eachjgure is also a span list; the canonical choice 
of the 76 (not all distinct) is the lowest-valued span list, 77522663, calculated with the upper 
rightmost node as the initial. This can then be reduced to the code AEBB. 

AEBB. Furthermore, we can reconstruct the-graph from the code by 
retracing the steps just recited. Caution: Unlike span lists, the abbre- 
viated chord lists cannot be freely rotated. 

Having a systematic, linear code, we are now in a position to compute 
all possible Hamilton circuits. Any span list is a string of numbers; 
therefore, the complete set of circuits can be sieved by a computer pro- 
gram from the series of integers. A great deal of fruitless computation can 
be saved by incorporating some of the canons of preferred representations 
into the generating algorithm. For example, no later digit can be smalier 
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than the leading digit; else a simple rotation of the span list, which is an 
obvious isomorphism, would give a smaller, preferred code number. 

In this manner, exhaustive lists of Hamilton circuits for n _< 12 have 
been computed. They are illustrated here up to n = 8 (Figure 2). Some 
planar, trivalent graphs lack a Hamilton circuit. The simplest has 8 nodes 
(Figure 2, last item) and, as it happens, it does underlie the mapping of 
a known compound. Obviously, these graphs will not be anticipated by 
a computer program that generates Hamilton circuits. However, it is not . . ‘.‘.:..: .‘;L ~~.-L?.‘:-~:~~~: ::.::; :- . 
difficult to describe these figures as unions of circuits or else, for every ‘. _ 
practical case, as Hamilton paths. Furthermore, at each level of graph- 
building, it is possible to anticipate combinations of cut edges that will 
yield circuit-free graphs upon union with other partial graphs. A complete 
set of trivalent graphs is, therefore, computable. 

The special case of the smallest, circuit-free trivalent polyhedron has 
been a challenge to mathematicians for some time. A polyhedron is here 
defined as a 3-connected trivalent planar graph, that is, one that cannot be 
separated with less than three cuts. Tait had conjectured that a Hamilton 
circuit always existed, but this was refuted by Tutte with a 46-node 
counterexample. Subsequently a 38-node case was built which lacks a 
Hamilton circuit (Figure 5). So far as is known, this is the smallest; 

;:. . . 

IC) td) 

FIGURE 5. A graph wifh special edges and two HC-fret polyhedra. (a) has 16 nodes. The 
marked edges are included in any HC of the graph. Hence the 3-cu1 (b), with 15 nodes, obli- 
gates the marked edge as part of an HC of any graph in which (b) is inserted. This leads to a 
contradiction, that is, no Hamilton circuit in (c) Tulle’s graph, with 46 nodes and (d) with 
38 nodes. 

however, there is no proof of it. All the trivalent polyhedra with up 
to 18 and 20 nodes have been scrutinized or anticipated, and all have 
Hamilton circuits. 

No incisive theory yet deals with these curiosities of empirical mathe- 
matics, in the same sense that we have no systematic generator for pro- 

., 

.,.. 
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ducing the nth prime number. However, if the elegance of the theory of 
polyhedra is marred by such empiricism, it is no impediment to putting 
the chemistry of real molecules on the computer. 

Nonplanar graphs are theoretically important possibilities. The corre- 
sponding molecules (Figure 6) should be difficult but not impossible to 
synthesize. So far, none has been reported. 

(al Ibl Ccl fdl 

FIGURE 6. h’onplanar graphs. (a) and (6) are Kuratowshi’s fundamental jorms, 4-valent 
and 3-vatent, respectively. At least one of these must be included in any nonplanar graph. (c) 
is a projection of (b) as a tetrahedron with an additional internal chord, and (d) is a hype- 
thetical molecular structure that maps on to (c). 

Mapping and Symmetry 
Having explored the trivalent graphs, we now return to mapping 

chemical atoms on their nodes and bonds or linear chains on their edges. 
$any graphs have substantial symmetry, and the correspondingly redun- 
dant operations must be considered to decide on a canonical representa- 
tion. Here, again, the HC’s are helpful. If an HC is present, it can also be 
projected on the same graph after any symmetry operation. Therefore, 
the whole set of symmetry operations is included within the list of the 
HC’s, giving both remarkable economy of computational effort to the 
search for the symmetries and a straightforward expression of the oper- 
ators. To describe a molecular structure, we can map it on an arbitrary 
choice of form and then subject the result to the symmetry operators. The 
canonical representation satisfies some rule, say the highest-order listing, 
of the mapped elements. Thus, for the morphine nucleus, we would have 
to choose among the 4 symmetries of its underlying graph (Figure 7), and 
we can then encode the morphinan molecule as 

(8BDDB 4*0031301000 NC3,C3,0$3,C). 

The first two words define the basic map, “*” standing for a fused 
edge, and the digits for the lengths of the paths between vertices. The last 
clause maps the atomic strings on to the nonempty edges. 

Besides the linear paths of the cyclic structure, the mapping may also 
include specifications for fused edges (quadrivalent centers), hetero- 
atom replacements of vertices, and specifications of stereoasymmetry of 
vertices. The details are inevitably fussy, but the computer handles all 
the fuss once the program is worked out. After the mapping, each atom is 
numbered in the order of its reference. 
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FIGURE 7. kiqbping a comph ring: morphhan. 

Applications 

I 
.-..,: .,.,,:. ,; ;;. .:I ‘. 

-. .. .: 
. . . .,.. .... ; 

This development was needed for a continuing effort to program the 
automatic computation of structural hypotheses to be matched against 
various sets of analytical data, especially mass spectra. The growing 
sophistication of instrumental methods has already begun to outdo the 
chemist’s capacity to interpret the results. Since mass spectrometers now 
commercially available can generate 10,000 spectra per second, the need 
for computational assistance to make full use of this speed is self-evident. 
Such devices are also being considered for the automated esploration of 
the planets, which puts even heavier demands on the local intelligence 
available to the system. 

These applications relate primarily to the possibility of anticipating 
hypothetical structures. The language also provides a format for express- 
ing synthetic insights, that is, the elementary reactions by which func- 
tional groups can be altered or exchanged. We might then expect the 
ultimate development of computer programs that have been taught a 
few thousand unit processes (and their limitations) and could be chal- 
lenged to anticipate a synthetic route from given precursors to a given 
end product. Such programs might at least assist the chemist by remind- 
ing him of a few among myriad possibilities of combining the unit proc- 
esses learned from the same chemist or, better, from a diverse school. For 
the moment, we do not consider the empirical testing in the computer’s 
own laboratory of a few thousand routes chosen on its own initiative. 

The nomenclatural utility of a system of canonical forms is self-evident. 
We are very nearly at the point where linear notation may again be 
dispensable for human use since the computer should be able to interpret 
structural graphs as such. However, a mathematically complete system 
of classification of structures is still important, regardless of the notation 
in which the structures are expressed. 

There are, of course, many alternative approaches to notation, reviewed 
by a National Academy of Sciences Committee (1964) and appearing 

. . 
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from time to time in the Journal of Chemical Documentation. As far as I 
know, none of them has been addressed to the exhaustive prediction of 
canonical forms, and most of them are too complicated to be easily 
adaptable to this end. 

Computer Implementation 
The notation of the computer language called DENDRAL is the 

foundation of some current efforts at mechanized induction in organic 
chemistry. A program to generate all isomers of tree structures has been 
fully implemented in the LISP programming language and is routinely 
run on a time-shared PDP-6 computer at Stanford University. Most of 
this program was developed on the Q-32 computer of the System Develop- 
ment Corporation at Santa Monica, California, using remote teletype 
consoles located at various homes and offices at Stanford, 400 miles away. 

The kernel of the program is a “topologist” embodying the principles 
of the first part of this paper. It is, however, restrained by some common- 
sense chemistry to eliminate many inappropriate constructions. For 
example, the chemist knows that enolic structures like -CH=CH- OH 
are unstable, rapidly reverting to a tautomeric equivalent (aldehydes), 
.CH2*CH=O, and this information is embodied in the higher-level 
program. Also included is a model of the process of molecular fragmen- 
tation in the mass specirometer, leading to a deduction of the mass 
spectrum expected from a hypothetical structure. The program uses the 
input data to guide its induction of candidate hypotheses, then tests 
these hypotheses deductively against the data, in an emulation of the 
traditional scientific method. 

Much to our surprise, the program already works with real data, some- 
times giving correct solutions. Not so surprising, the program greatly 
outdoes human chemists in problems like generating all the isomers of a 
given composition. Most of us founder on the isomorphisms. 

Students encountering organic chemistry for the first time are often 
frustrated because they are challenged with graph-theoretic concepts, 
implicitly, without being told that this is their problem. For example, 
a student is expected to use his intuition to discover that there are only two 
isomers of C2HoO (in our notation, CH2. sCH3 OH, ethanol, and 
0. mCH3 CH3, dimethyl ether), but this intuition is achievable only 
with extensive practice. And even an experienced chemist will be hard-put 
to describe, irredundantly, all the isomers of slightly more complicated 
molecules, say C,H,,O. Many problems in elementary chemistry are 
solved by excluding all but one of a list of possible isomers, implying that 
the whole list is deducible. The concept of the center of a tree and the 
algorithms for systematic generation of isomers should be of substantial 
value in teaching this subject, quite apart from the implementation of 
the algorithms on the computer. The same consideration should also 
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apply to the ways in which rings can be built and to positional isomerism 
of substituted rings. . 
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