
Understanding the emergence of new zoonotic agents
requires knowledge of pathogen biodiversity in wildlife,
human-wildlife interactions, anthropogenic pressures on
wildlife populations, and changes in society and human
behavior. We discuss an interdisciplinary approach com-
bining virology, wildlife biology, disease ecology, and
anthropology that enables better understanding of how
deforestation and associated hunting leads to the emer-
gence of novel zoonotic pathogens. 

Approximately three fourths of human emerging infec-
tious diseases are caused by zoonotic pathogens (1).

These include agents responsible for global mortality (e.g.,
HIV-1 and -2, influenza virus) and others that cause limit-
ed deaths but result in high case-fatality rates and for
which no effective therapies or vaccines exist (e.g., Ebola
virus, hantaviruses, Nipah virus, severe acute respiratory
syndrome [SARS]-associated coronavirus) (2). Despite the
growing threat of zoonotic emerging infectious diseases,
our understanding of the process of disease emergence
remains poor. Public health measures for such diseases
often depend on vaccine and drug development to combat
diseases once pathogens have emerged. Indeed, many
believe that predicting emergence of new zoonoses is an
unattainable goal (3). Despite this, a growing trend in
emerging disease research attempts to empirically analyze
the process of emergence and move towards predictive
capacity for new zoonoses. These studies track broad
trends in the emergence of infectious diseases, analyze the
risk factors for their emergence, or examine the environ-
mental changes that drive them (4–6). 

Many new zoonoses are viruses that emerge as human
and domestic animal populations come into increasing con-

tact with wildlife hosts of potentially zoonotic pathogens
(1). The risk for emergence of new zoonotic agents from
wildlife depends largely on 3 factors: 1) the diversity of
wildlife microbes in a region (the “zoonotic pool” [5]); 2)
the effects of environmental change on the prevalence of
pathogens in wild populations; and 3) the frequency of
human and domestic animal contact with wildlife reservoirs
of potential zoonoses. The first factor is largely the domain
of virologists, particularly those analyzing evolutionary
trends in emerging viruses (7). The last 2 factors are stud-
ied by wildlife veterinarians, disease ecologists, wildlife
population biologists, anthropologists, economists, and
geographers (4,8). Understanding the process of emergence
requires analyzing the dynamics of microbes within
wildlife reservoir populations, the population biology of
these reservoirs, and recent changes in human demography
and behavior (e.g., hunting, livestock production) against a
background of environmental changes such as deforesta-
tion and agricultural encroachment. To fully examine
zoonotic emergence, a multidisciplinary approach is need-
ed that combines all of these disciplines and measures the
background biodiversity of wildlife microbes. We use hunt-
ing and deforestation in Cameroon as an example to discuss
the complex interactions between human behavior, demog-
raphy, deforestation, and viral dynamics that underpin the
emergence of diseases.

Logging, Hunting, and Viral Traffic 
Hunting of wildlife by humans is an ancient practice

that carries a substantial risk for cross-species transmis-
sion. Despite the discovery of cooking ≈1.9 million years
ago (9), the risk of zoonotic diseases emerging from hunt-
ing and eating wildlife is still of global importance because
of increases in human population density, globalized trade,
and consequent increased contact between humans and
animals.  
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Deforestation of tropical forests is 1 cause of increasing
contact between wildlife and hunters. However, the
mechanics of disease emergence are complex. For exam-
ple, clear-cut logging may be less likely to result in zoonot-
ic emergence than selective extraction because of the
relatively low contact rate between people and wildlife
during clear-cutting. Because of the high costs of extrac-
tion and transportation, logging in central Africa generally
involves selective extraction of high-value timber species.
Selective extraction is also more likely to sustain natural
diversity of wildlife than clear-cutting (10) and therefore to
sustain the diversity of potentially zoonotic pathogens
available to hunters. Selective logging generally involves
constructing roads and transporting workers into relatively
pristine forest regions. Although roads can bring health
care to rural communities, they also provide increased con-
tact between low-density, remote human populations and
urban populations with access to international travel,
which allows localized emergence events the potential for
rapid global spread (11,12). 

Building logging roads also leads to habitat fragmenta-
tion as forest edges along roads are degraded, which low-
ers the movement of wildlife between forest patches. This
process may have 3 counteractive effects. First, as patch
size decreases, smaller, more discrete, less dense popula-
tions of reservoirs result, some of which may be lowered
below the threshold density of some potentially zoonotic
microbes (13). In these cases, mathematical models of
infectious diseases predict that the microbes will become
extinct, lowering the risk for transmission to humans.
Second, in some cases, the loss of vertebrate reservoir host
species richness may result in increased abundance of
highly competent reservoirs of some zoonotic agents,
increasing the risk for transmission to humans. Although
this phenomenon has only been demonstrated for 1
pathogen, Borrelia burgdorferi, the causative agent of
Lyme disease (14), it may be more widespread. In this
case, fragmentation increases the relative abundance of the
highly competent reservoir, the white-footed mouse
(Peromyscus leucopus) and results in a higher risk for
infection to humans (14). Third, fragmentation due to road
building may increase the functional interface between
human populations and reservoir hosts. Historically, hunt-
ing activities radiated in a circular fashion from isolated
villages, with decreasing impact at the periphery of the
hunting range. Roads provide an increased number of
points at which hunting activities can commence. Road-
side transport means that hunters can lay traps and hunt at
the same distance from roads. This changes the pattern of
human contact from a circular pattern to a banded pattern
surrounding developed roads, increasing the area in which
hunting can be conducted with economic returns. 

Anthropology of Bushmeat Hunting, Trade, and
Consumption

Different activities associated with bushmeat trade will
involve different levels of risk for microbial emergence.
Hunting (tracking, capturing, handling, sometimes basic
field butchering, and transporting of the carcass) involves
contact with potentially infected vectors, whereas distant
consumption may not. Particularly high risks may be asso-
ciated with hunting nonhuman primates, and even greater
risks in hunting species such as chimpanzee, which are
phylogenetically closest to humans. Butchering (opening,
cutting, dressing, and preparing the carcass) is obviously
more high risk for bloodborne pathogens than the trans-
portation, sale, purchase, and eating of the butchered meat.

Research in medical anthropology has begun to exam-
ine indigenous theories of infectious disease (15) and the
cultural contexts within which diseases emerge (16), but
little data exist on local perceptions of health or other risks
associated with hunting and eating bushmeat. Humans as
well as other animals employ behavioral adaptations to
avoid exposure to infections, yet the type of protective
strategies that hunters might use and the effectiveness of
such strategies remain unknown. For this reason, anthro-
pologic studies of bushmeat should include not only the
details of hunting, but also the transportation of meat to the
village, the market, the kitchen, and onto the table. These
practices are often articulated along lines of gender and
ethnicity and within cultural contexts.

The demand for bushmeat in West and central Africa is
as much as 4 times greater than that in the Amazon Basin
(10). Estimates of the extraction rate in the Congo Basin
suggest that >282.3 g of bushmeat per person per day may
be eaten there, with a total of 4.5 million tons of bushmeat
extracted annually (17). Expanded demand for bushmeat
will likely lead to changes in the exposure of humans to
potentially zoonotic microbes. Therefore, assessing the
risk that bushmeat extraction and consumption poses to
public health will include an assessment of the economy
and geography of bushmeat demand and supply. 

Case Study: Bushmeat Hunting in Cameroon
A collaboration between Johns Hopkins University and

the Cameroon Ministry of Health and Ministry of Defense
is exploring emergence of infectious diseases in Cameroon
(Figure). The ecologic diversity in Cameroon and the
range of new and changing land-use patterns make it an
ideal setting to examine the impact of environmental
changes on novel disease transmission. Deforestation rates
in Cameroon are high, with a loss of 800–1,000 km2 forest
cover per year and corresponding increase in road-building
and expansion of settlements (18). Finally, Cameroon is
representative of the region from which a range of notable
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emerging infectious diseases, including HIV/AIDS, Ebola
and Marburg viruses, and monkeypox, have emerged
(Table).

A key factor driving the bushmeat trade in Cameroon
is the large and growing urban demand for bushmeat in
conjunction with the opening up of logging concessions in
the East Province. The construction of the World
Bank–funded Yaoundé–Douala truck road in the mid-
1980s and the European Union–funded extension of this
road to the border of the timber-rich East Province in 1992
dramatically reduced the cost of extracting timber and
increased access to these areas for bushmeat hunters. One
of the most important non-timber forest product activities
within this region is the poaching of bushmeat by market
hunters. The bushmeat market among households for
sauce preparation in Yaoundé alone is estimated at
≈$4 million annually (International Institute of Tropical
Agriculture [IITA], unpub. data). A recently conducted
consumption study showed that bushmeat plays an impor-
tant dietary role among poor households and is not a

luxury product eaten mainly by the rich. Across income
classes, the poorest 2 quantiles spent 16% and 17%,
respectively, of their meat budgets on bushmeat versus
7% for the richest quantile and 9% overall (IITA, unpub.
data). Finally, our work in Cameroon has shown that not
only bushmeat hunters but also persons who keep various
species of vertebrate pets or butcher and handle meat are
at risk for zoonotic transmission due to bites, cuts, and
other exposures to fluids or tissue (27).

Viral Chatter and Globalized Emergence
The global emergence of a zoonotic pathogen such as

SARS or HIV-1 and -2 requires 3 steps. First, the pathogen
must be successfully transmitted between a wild reservoir
and humans or their domestic animals. Several recently
emerging zoonoses have achieved this stage without fur-
ther transmission, e.g., Hendra virus. Second, the pathogen
must be directly transmitted between humans. Finally, the
pathogen must move from a local epidemic into the global
population. Understanding and predicting the global emer-
gence of pathogens require knowledge of the drivers of
each of these steps or processes. These are, in fact, stages
of emergence that have been described previously as inva-
sion, establishment, and persistence of infectious diseases
introduced into new host populations (8).

Evidence suggests that many pathogens are transmitted
between their animal reservoirs and humans but fail to be
transmitted from human to human or do so at rates that do
not allow pathogen establishment within the human popu-
lation. For example, sequence data from HIV-1 and HIV-2
suggest that as many as 10 prior transmission events into
human populations occurred over the last century before
this virus emerged globally (23). Recent data from our own
field sites suggest that simian foamy viruses infect bush-
meat hunters regularly, so far without evidence of human-
to-human transmission (26). Other pathogens, such as
avian influenza and Hendra viruses, which do not appear
to be transmitted through bushmeat consumption, have
also led to several small epidemics with little or no evi-
dence of human-to-human transmission. We have termed
this “viral chatter”, a seemingly common phenomenon of
repeated transmission of nonhuman viruses to humans,
most of which results in no human-to-human transmission
(28). We hypothesize that this mechanism is common in
viral emergence. High rates of viral chatter will increase
the diversity of viruses and sequence variants moving into
humans, increase the probability of transmission of a
pathogen that can successfully replicate, and ultimately
increase the ability of a human-adapted virus to emerge in
a more widespread manner. In some cases this process may
result in the evolution of a new viral strain (29) and may
be a very common mechanism for viral emergence into the
human population (23,28). 
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Figure. Location of the International Institute of Tropical Agriculture
Humid Forest Benchmark Region, Cameroon. ha, hectares. 



Monkeypox and Nipah viruses are examples of the sec-
ond stage towards global emergence. These viruses have
shown limited human-to-human transmission in a number
of relatively small epidemics before fading out (22,30).
This phenomenon can be understood by using what math-
ematical modelers of disease dynamics refer to as the
reproductive ratio (R0), which measures a pathogen’s abil-
ity to cause an outbreak. R0 is the number of secondary
cases in a population caused by a single case, assuming
that all other members are susceptible (8). When R0 is >1,
the pathogen will amplify within a population and cause an
outbreak. In the environmental conditions in which mon-
keypox and Nipah viruses emerged, R0 was <1, and ulti-
mately the epidemics faded out (22). 

One of the crucial questions in disease emergence is:
What environmental or evolutionary changes cause the R0
of wildlife viruses to rise above 1 in human populations?
In mathematical models for density-dependent transmis-
sion, R0 is proportional to host density, so that there is a
critical threshold of human population density (known as
the threshold density, NT), below which a pathogen will

fade to extinction. Increasing densities of human popula-
tions in urban centers close to bushmeat hunting areas and
the increasing rates of movement of people between vil-
lage, town, and city, will increase R0 and the risk for new
epidemic zoonoses. Alternatively, changes to human
behavior that increase the transmission of viruses between
people (e.g., sexual contact, injected drug use, or fluid con-
tact by means of medical procedures) will increase R0 and
may also assist in driving their emergence. 

In the final stage of emergence, increased travel or
migration facilitate the global spread of new zoonoses. For
example, increased movements between villages or cities
and higher between-person contact rates through increased
numbers of sexual partners appear to have facilitated the
early emergence of HIV/AIDS in Africa (12). This disease
became a global pandemic following the expansion of road
networks, changes in workforce demography, and increas-
es in international air travel to central Africa and globally
(12,23).

Our review suggests that predicting the emergence of
new zoonoses will be a difficult but important task for
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future medical research. This goal has been described as
challenging or impossible by some researchers (3).
However, we propose that it is now becoming possible to
conduct the science of predicting emerging zoonoses and
that far more attention should be paid to this approach than
is currently given (31). We have previously proposed 3 cri-
teria that can be used to predict which microbes are most
likely to emerge (6). These include microbes that have a
proven ability to 1) lead to human pandemics, 2) lead to
panzootics in (nonhuman) animal populations, and 3)
mutate at high rates and recombine with other similar or
dissimilar microbes. The high mutation rates of RNA
viruses and their predominance within zoonotic emerging
infectious diseases that are transmitted from human to
human suggest that this group is a key candidate for future
emergence (7). Simian foamy viruses are members of this
group, and the high rates of viral chatter observed in
Cameroon suggest a strong potential for their emergence
as a human-to-human transmitted pathogen.

Little is known about the complexity of this process,
but with ≈75% of human emerging infectious diseases
classified as zoonoses (1), understanding the process is
critical to global health. We propose that more attention be
given to multidisciplinary studies at all stages of the
process. For example, understanding how the rates of viral
chatter respond to anthropogenic land-use changes (e.g.,
deforestation, mining) that affect the density of wildlife
species and the prevalence of viruses that affect them will
be critical for predicting hotspots of disease emergence.
Second, understanding which viruses are likely to rapidly
evolve in humans, rather than become dead-end hosts, will
involve a combination of host immunologic and viral evo-
lutionary traits (7,32). Studies of the characteristics of the
zoonotic pool (i.e., the biodiversity of yet-to-emerge
wildlife viruses [5]) may explain these events. Some
strains within viral quasispecies may be able to infect and
be transmitted between humans far more readily than oth-
ers. Such complexity requires the collaboration of medical
scientists with many other disciplines, including geogra-
phy, ecologic and evolutionary biology, conservation biol-
ogy, medical anthropology, and veterinary medicine.

Recent advances in a number of fields include some of
direct relevance to predicting unknown zoonoses, among
them modeling multihost disease dynamics in wildlife and
humans (33), modeling the evolutionary dynamics of
pathogens (34), insights into the phylogenetic characteris-
tics of emerging pathogens (7,32), greater understanding
of the environmental changes that drive emergence (4),
risk assessments for pathogen transmission (35,36) and
introduction (37), and major advances in the technology
for microbial discovery (e.g., microarrays) and characteri-
zation (e.g., noninvasive sequencing) (38). A number of
collaborative initiatives between veterinary medicine,

human medicine, and ecology have already begun (39,40),
and our analysis suggests these should be strengthened by
even wider collaboration. The fusion of these diverse, rap-
idly evolving fields will allow the first steps to be taken
towards emerging disease research’s ultimate challenge of
predicting new zoonotic disease emergence.
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