IGS LEO session Ottawa 11/04/2002

LEO activities at ESOC

Henno Boomkamp

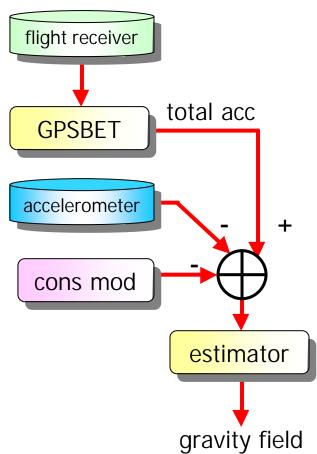
Presentation outline

- Overview of CHAMP analysis at ESOC
- Current POD results for CHAMP
- Expected development of LEO+GPS processing capability
- Conclusions

CHAMP analysis at ESOC (1)

Objectives, status before CHAMP

- Objectives
 - Development of *low* LEO analysis capability based on GPS
 - Participation in IGS LEO pilot project analysis
 - Development of combination solution capability LEO+GPS
- Dynamic POD before CHAMP
 - ESOC POD software never used below orbits like ERS, Envisat
 - Implemented gravity field models only partially normalised, numerically unstable for degrees higher than 80 - 85
 - Limited capability for estimating empirical accelerations
- Reduced dynamic and kinematic POD before CHAMP
 - Some experience with flight receiver data, sequential filter GPSBET
 - Precision levels strongly dependent on data quality and LEO clock estimation



CHAMP analysis at ESOC (2)

CHAMP analysis as initially planned

- Kinematic solutions from sequential filter provide position, velocity and total acceleration
- Accelerometer signal used to remove non-conservative component from the total acceleration
- Several components of conservative acceleration can be accurately modelled (luni- solar gravity, planets, solid Earth tides)
- Remaining signal used to estimate gravity field in new software

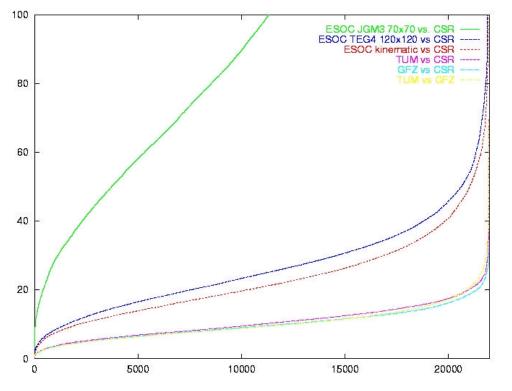
New gravity field allows dynamic POD

CHAMP analysis at ESOC (3) CHAMP analysis in practice

- Experience with kinematic POD
 - Sequential filter precision levels limited to ~ 20 cm in position and $\sim 10^{-3}$ m/s² in acceleration
 - Data gaps cause orbit gaps or temporary divergence at meter level
- Experience with accelerometer data in dynamic models
 - The normal points do not always provide the added precision that is expected from the signal, especially around attitude events
 - Problems with numerical integration of the signal due to gaps, noise, spikes in the early data
- New approach- dynamic solutions
 - Implementation of fully normalised, high resolution gravity field
 - Accelerometer signal still used to assist non-conservative modelling, but not to replace it fully
 - Abundance of empirical parameters to provide adequate freedom to the solution, but not as much as a kinematic solution

Current POD results for CHAMP (1) <u>Comparison kinematic - dynamic</u>

Both solutions use


- Zero differenced pseudo range and phase data
- GPS orbits and clocks fixed to ESOC contribution to IGS
- Kinematic solution (from campaign)
 - Two prediction / smoothing cycles, data editing process after first run
 - Solution is very homogenous but limited to ~25 cm RMS

Dynamic solution

- At present limited to 120 x 120 gravity (TEG4 used)
- Arc lengths still limited (~ 4 hours)
- 1 drag parameter per orbit
- Empirical 1-CPR every hour
- Pass-dependent biases for CHAMP (LEO clock)

Current POD results for CHAMP (2) Estimated POD precision

Orbit error distributions ESOC (cm)

Using precision estimates	(cm)
from the orbit campaign:	
• CSP	6 75

· USK	0.75
• GFZ	7.31
• TUM	8.31
 ESOC Kinematic 	26.0
 old ESOC dynamic 	29.3
 new ESOC dynamic 	84.6

Precision dynamic solutions limited by known software problems.

These problems are being solved together with implementation of combined LEO + GPS capability.

Development of combined LEO + GPS capability Required modifications to POD

Software changes

- Satellite dependend memory allocations
- LEO and GPS pre-processing merged into one system
- Some remaining modifications to gravity field and tides
- Changes to handling of LEO clock in combination solution
- Perhaps some further changes for JASON
- Analysis and verification
 - Experiments for reaching adequate set of estimated parameters
 - Experiments for relative weighting LEO and GPS
- Schedule
 - Capability for combined analysis LEO + GPS expected at ESOC around September - October 2002

Conclusions

- Current ESOC POD for LEO still based on kinematic solutions
- Precision of kinematic solutions limited to around ~ 25 cm
- Kinematic solutions will not allow for combined analysis with GPS
- Dynamic solutions are rapidly improving. LEO only solutions are expected to reach adequate precision in immediate future.
- Combination analysis with GPS developed simultaneously in parallel with LEO improvements.
- First combination solutions LEO+GPS expected around September

