	[image: image1.png]

Independent Verification & Validation Facility
	Independent Verification

and Validation
	IVV 09-1

Revision: J

Effective Date:

August 13, 2007

DOWNLOADED AND/OR HARD COPY UNCONTROLLED
Verify that this is the correct version before use.

	APPROVAL SIGNATURES
	DATE

	Gregory Blaney (original signature on file)
	IMS Representative
	08/13/2007

	
	
	

	REVISION HISTORY

	Revision
	Description of Change
	Author
	Effective Date

	Basic
	Initial Release
	Bill Jackson IT/215
	08/15/1997

	A
	Pages 4 through 9 changed to reflect IV&V purchased, DCR-9A review comments incorporated
	Bill Jackson IT/215
	03/06/1998

	B
	Ames SLP format
	Bill Jackson IT/215
	04/29/1998

	C
	Quality Record - format changes
	Bill Jackson IT/215
	08/26/1998

	D
	Section 6.3 is modified to include the technical report for design and verification reviews. Section 8.0 is modified to add technical report to quality records
	Bill/Jackson IT/215
	10/08/1998

	E
	References to Ames Quality Manual replaced with references to IV&V Facility Quality Manual
	Bill Jackson IT/215
	09/10/1999

	F
	Format and Number changes; Delete Reference to Ames Research Center
	Griggs
	12/01/2000

	G
	Modified to correct Quality Record identification
	Costello
	04/16/2001

	H
	Modified to incorporate WBS resulting from IV&V Transition
	Dan Solomon
	05/14/2004

	I
	Added references to IEEE standards and the IEEE acronym
	Ken Costello
	03/16/2006

	J
	Updated WBS
	Marcus Fisher
	08/13/2007

	
	
	
	

	REFERENCE DOCUMENTS

	Document
	Title

	IVV QM
	IV&V Quality Manual

	IVV 09-4
	Project Management

	IVV 09-4-1
	Work Instruction for IV&V Services Risk Management

	T2103
	IPEP Template

	T2104
	Notional Network Diagram Template

	
	

1.0 Purpose

The purpose of this system level procedure (SLP) is to establish a consistent method for providing independent verification and validation (IV&V) technical services to customers, sufficient to ensure safety and risk mitigation for the successful deployment of software-intensive systems. This SLP provides a work breakdown structure (WBS) template to promote consistency in providing IV&V technical services.
2.0 Scope

This SLP is applicable to IV&V technical activities provided by the NASA IV&V Facility.
3.0 Definitions and Acronyms
Official NASA IV&V Facility roles and terms are defined in the Quality Manual. Specialized definitions identified in this SLP are defined below.
3.1 Assertion
An assertion is a declaration used to test whether or not a stated property is TRUE or FALSE during execution.

3.2 Invariant
An invariant is a property of the system that always evaluates to TRUE.

3.3 Mission

A Mission is a NASA development project that is the recipient of IV&V technical services as defined in a Formal Agreement.

3.4 Postcondition
A postcondition is a property that is TRUE after the event it succeeds.

3.5 Precondition
A precondition is a property of the system that is assumed to be TRUE prior to the event it precedes.
3.6 Project

In the context of this SLP, a Project is one or more IV&V, independent assessment (IA), or system/software engineering task(s) being performed by the NASA IV&V Facility for a specific customer.
3.7 Property
A property is a desired behavior, or non-behavior, of the system represented as a Boolean predicate that is evaluated as either TRUE or FALSE.

3.8 System

A system is a group of interacting, interrelated, and/or interdependent software and/or hardware elements that form a complex whole that accomplishes defined objectives.

3.9 System Behavior or Behavior
System behavior, or behavior, is the collective response of a system as it reacts to external and internal stimuli.
3.10 System Reference Model (SRM)
An SRM describes the goals of the system, what the system must do to achieve these goals, and the operational environment in which the system must function. The SRM must represent the desired system behaviors: 1) what the system is supposed to do; 2) what the system is not supposed to do; and 3) what the system is supposed to do under adverse conditions
3.11 Test Case

A Test Case is documentation that specifies inputs, predicted results, and sets of execution conditions for a test item.

3.12 Test Design

A Test Design is documentation that specifies the details of the test approach for a software feature or combination of software features. The Test Design identifies the associated tests.
3.13 Test Oracle
A Test Oracle is documentation that specifies the expected output for a given input of test cases.
3.14 Validation

Validation is the process of evaluating artifacts to ensure that the right behaviors have been defined in the artifacts. The right behaviors are those that adequately describe what the system is supposed to do, what the system is not supposed to do, and what the system is supposed to do under adverse conditions. Validation ensures that the software system performs to the user’s needs under operational conditions.

3.15 Verification

Verification is the process of determining if the products of each development activity fulfill the requirements or conditions imposed by a previous development activity. This goal is achieved by showing that each functional and non-functional requirement has been implemented within the system. Verification flows from a set of validated requirements and formally or informally shows, based on risk, that the implementation of those requirements (e.g., desired system behavior/non-behavior) is correct and complete. Verification does not strictly focus on functional requirements; it also includes non-functional requirements.
3.16 Acronyms
C&DH

Command and Data Handling

IA

Independent Assessment
IMS

NASA IV&V Facility Management System

IPEP

IV&V Project Execution Plan
IV&V

Independent Verification and Validation

QM

Quality Manual
SLP

System Level Procedure

SRM

System Reference Model
WBS

Work Breakdown Structure
4.0 Process Flow Diagram
A flow chart is not applicable to this SLP.
5.0 Responsibilities

Responsibilities are not applicable to this SLP.
6.0 Procedure

The following table describes the WBS template used by the NASA IV&V Facility to support IV&V project analysis activities. The IV&V analysis tasks for individual Projects shall be defined in the associated IV&V Project Execution Plan (IPEP).
	1.0
	Validation

	
	The goal of validation is to determine whether the system products meet the operational need. This goal is achieved through the development and application of a system reference model (SRM) that will include the development of a formal specification. The SRM and the formal specification can then be used to show (e.g., validate) that the right system behaviors are specified and the associated requirements are unambiguous, correct, complete, consistent, and verifiable. The SRM and formal specification can also be used to validate (or develop) a test design that will demonstrate that the software products meet the specification and the operational need.

	
	1.1
	Obtain/Develop a System Reference Model (SRM)

	
	
	Obtain/develop an SRM that describes the goals of the system, what the system must do to achieve these goals, and the operational environment in which the system must function. The model must represent the desired system behaviors:

1. What the system is supposed to do

2. What the system is not supposed to do

3. What the system is supposed to do under adverse conditions

The SRM must be complete and accurate to serve its intended purpose, and generally needs to represent features, functions, properties, and capabilities of the system under discussion. For example, when modeling the system for its states and state transitions, the SRM must represent all states, guard conditions, actions, transitions, and triggers.

To meet the requirements and test validation temporal objectives, an iterative refinement of the SRM will be necessary. Each iteration must be of sufficient scope and abstraction to enable the validation of the desired requirements set and test design. Each iteration will include some or all of the following lower-level WBS elements (e.g., 1.1.X) to meet the SRM criteria:

	
	
	1.1.1
	Identify System Goals

	
	
	1.1.2
	Identify Operational Environment

	
	
	1.1.3
	Write Use Cases

	
	
	1.1.4
	Develop Activity Diagrams

	
	
	1.1.5
	Develop Sequence Diagrams

	
	
	1.1.6
	Develop Collaboration Diagrams

	
	
	1.1.7
	Develop State Charts

	
	
	1.1.8
	Develop Specifications Using Assertions

	
	
	1.1.9
	Verify Specifications with Model Checker

	

	
	1.2
	Validate System Requirements

	
	
	Requirements are evaluated for all levels of system decomposition (i.e., system requirements through component requirements) and for various quality attributes and functionality (e.g., safety, integration, and dependability) to determine whether or not the defined behaviors, non-behaviors, and non-functional requirements adequately meet the needs of the system and expectations of its stakeholders and users.

The goal of validating the requirements, at whatever level, is to ensure that the right behaviors have been defined and the behaviors are of high quality. The right behaviors are those that adequately describe:

1. What the system is supposed to do

2. What the system is not supposed to do

3. What the system is supposed to do under adverse conditions

Requirements of high quality can be characterized as being unambiguous, correct, complete, consistent, and verifiable.

· Unambiguous

· A requirement or set of requirements can only lead to one interpretation.

· Correct

· Applicable requirement(s) meet all or part of the goals and behaviors of the system (Note: not all requirements can be evaluated in isolation; it may require a set of requirements to be evaluated together in order to determine that a particular goal or behavior is being met).

· The requirements are an accurate elaboration of the defined objectives or goals (i.e., the use of temporal modal operators like “next”, “until”, “always”, and “eventually”, are appropriately used to reflect the desired behavior).

· The requirements adequately refine the higher-level requirements.

· Design or implementation-specific information is specified as constraints to the behaviors captured in the requirements.

· Complete

· All the needed information to completely specify a desired behavior is identified (i.e., all preconditions, postconditions, and invariants are specified for the described behavior).

· Threads of behavior are represented by more than one requirement, versus one compound requirement that attempts to capture the entire thread (i.e., that each requirement specifies only one “thing”).

· The use of conjunctions (e.g., “and”, “or”) are restricted to preconditions, postconditions, and invariants.

· Consistent

· Aspects of behaviors (e.g., preconditions, postconditions, invariants, states, state transitions) are used similarly throughout the requirements (i.e., events that trigger certain transitions captured in one requirement can not be negated or contradicted by another requirement).

· Verifiable

· Each requirement is specified with sufficient detail such that it can be shown to pass or fail some measurable criteria.

Requirements at each level1 shall be validated. Each Project shall define how its Mission has decomposed its requirements and apply the above criteria for each of the following tasks as applicable:

	
	
	1.2.1
	Validate System Requirements

	
	
	1.2.2
	Validate Segment Requirements

	
	
	1.2.3
	Validate Element Requirements

	
	
	1.2.4
	Validate Subsystem Requirements

	
	
	1.2.5
	Validate Component Requirements

	
	
	1.2.6
	Validate System-Software Safety Requirements

	
	
	1.2.7
	Validate Integration Requirements

	
	
	1.2.8
	Validate Dependability Requirements (e.g., reliability, “…ility”)

	

	
	
	
 NASA Missions go through a logical decomposition in defining their requirements. Each Project needs to identify how its Mission’s requirements decomposition is correlated to WBS elements 1.2.2 through 1.2.5. This WBS was developed using standard systems engineering terminology, which decomposes the system into system, segment, element, subsystem, and component. For example, Mission decomposition would be system requirements, then observatory segment requirements, then spacecraft element requirements, then command and data handling (C&DH) subsystem (within the spacecraft element) requirements, and then command processing component requirements (within the C&DH subsystem).

	
	1.3
	Validate Test Design

	
	
	Evaluate the test design against both the SRM and the validated requirements. The goal is to verify and validate that the software products meet the specification and the operational need using the validated test design as a tool. A valid test design meets each of the following criteria:

· The scope of the test design covers the behaviors identified in the SRM under nominal and adverse conditions.

· The scope of the test design covers all of the validated requirements.

· The test cases will exercise the software sufficiently and within the operational context to verify that the system behaviors, requirements, and interfaces are properly implemented.

· The test oracle(s) contain the correct inputs and expected outputs for the software behaviors, requirements, and interfaces they are designed to test.

To meet the objective of timely validation, an iterative approach may be required. Each iteration may include some or all of the following lower-level WBS elements (e.g., 1.3.X) necessary to validate the different levels of tests (e.g., system, integration, unit):

	
	
	1.3.1
	Validate Scope of Test

	
	
	1.3.2
	Validate Test Cases

	
	
	1.3.3
	Validate Test Oracle

	

	2.0
	Verification

	
	The goal of verification is to determine if the products of each development activity fulfill the requirements or conditions imposed by a previous development activity. This goal is achieved by showing that each functional and non-functional requirement has been implemented within the system. Verification flows from a set of validated requirements and formally or informally shows, based on risk, that the implementation of those requirements (e.g., desired system behavior/ non-behavior) is correct and complete. Verification does not strictly focus on functional requirements; it also includes non-functional requirements.

	
	2.1
	Verify Software Architecture

	
	
	Verify the software architecture against the specifications developed in the SRM. Assess whether or not the proposed software architecture satisfies the behaviors in the SRM, and that it is a feasible solution.

Feasibility is a quality attribute used to indicate whether or not the proposed software architecture will successfully satisfy the needs of the system, while still being practical and satisfying all other “…ility” requirements. For example, a software architecture may satisfy a system behavior, but its file transfer approach for fault management may not make it a practical solution for responding to adverse conditions (i.e., it may take too long to respond to faults if entire files have to be loaded across the bus).

	
	2.2
	Verify Software Design

	
	
	The goal is to ensure that the proposed software design adequately satisfies the software architecture and validated software requirements. An adequate design is determined by assessing it for completeness, correctness, consistency, ambiguity, and testability.

· Unambiguous

· The documentation is legible, understandable, and could result in only one interpretation by the intended audience.

· All acronyms, mnemonics, abbreviations, terms, symbols, and special design languages are defined.

· Correct

· The software design satisfies the software architecture and validated requirements (i.e., behaviors in the SRM, as well as non-functional requirements like safety or other “…ility”-like requirements).

· The software design complies with applicable Mission and NASA standards, references, and policies.

· Complete

· There is a logical decomposition into subsystems and modules, and their interactions are specified.

· The hardware, software, and user interfaces are specified to an appropriate level. An appropriate level is one that identifies the information being processed, communication mechanisms and protocols, and services that particular subsystems or modules provide (i.e., behaviors that are changed or affected based on communication between two modules).

· Functionality (e.g., algorithms, state/mode definitions, input/output validation, exception handling, reporting, and logging) is specified at the appropriate level of decomposition.

· Performance criteria (e.g., timing, sizing, speed, capacity, accuracy, precision, safety, and security) are specified at the appropriate level of decomposition.

· Consistent

· States and state transitions are used similarly throughout the design. For example, if event ε triggers Object1 to transition to state A, then elsewhere in the design that same event shall not cause Object1 to transition to a state other than A.

· All terms and concepts are used similarly within the design itself, as well as with external artifacts such as the system and software architectures.

· Testability

· There are objective acceptance criteria such that the design can be shown to pass or fail.

	
	2.3
	Verify Interface Design

	
	
	The goal is to ensure that the interface design satisfies the validated integration requirements. Analyze the design to verify that each interface defines the services to be provided and/or consumed, the preconditions for invoking the interface, the postconditions, and the invariants. The interface design should have the minimum number of interfaces necessary (i.e., avoid point-to-point interfaces) to improve robustness. Verify that the interface design isolates behavioral components from each other, and from computational components and data stores. Using the architecture and the SRM, identify missing or undefined interfaces or services that need to be supplied or consumed.

	
	2.4
	Verify System Behavior Implementation

	
	
	The goal is to ensure that the implemented system does what it is supposed to do, does not do what it is not supposed to do, and reacts as desired under adverse conditions. Verify actual system behavior in the implemented system against expected (or designed) behavior. This includes ensuring actions are being performed for the right reasons, and ensuring unexpected actions do not occur. The difference between this IV&V objective and verifying the requirements implementation is that not all required functionality may be captured as a formal system or software requirement. The objective of this task is to ensure that non-documented behaviors are adequately represented in the implementation.

	
	2.5
	Verify Requirements Implementation

	
	
	The goal is to ensure that the source code correctly implements the validated requirements, and the source code and documentation (both embedded and stand-alone) are complete and provide an adequate reference for source code maintainability and upgrade.

· Correct

· Functions and features produce the desired outputs or products.

· The implementation accurately represents the design and architectural elements.

· The implementation complies with applicable coding standards and best practices.

· Complete

· All the functions and features are included as specified (e.g., initialization, user interface, use case realization, reporting, display, exception handling).

· The implementation complies with all the constraints specified (e.g., data integrity, transaction and state monitoring, input/output validation).

· The implementation meets all the performance criteria (e.g., timing, sizing, speed).

· The implementation includes all the design and architectural elements (e.g., classes, modules, coupling, cohesion).

· Maintainable

· The documentation is readable, understandable, and is consistent with the other elements of the implementation.
· The source code characteristics support modification (e.g., modularity, consistent use of coding terms).

	
	2.6
	Verify Interface Implementation

	
	
	The goal is to ensure that the source code correctly implements the interface design.

Establish that the interface implementation:

· Conforms to the required level of design robustness and coupling

· Correctly implements interface preconditions, postconditions, and invariants

· Provides required services across the interfaces

	
	2.7
	Verify System-Software Safety Implementation

	
	
	The goal is to ensure that the source code correctly implements the safety-related aspects for the Mission. Safety-related aspects can be documented in various sources, but commonly are captured in the requirements, SRM, hazard reports, fault tree analysis reports, and/or failure modes and effect analysis reports.

	
	2.8
	Verify Dependability Implementation

	
	
	Verify that the software source code correctly implements the required level of dependability. The dependability of a system is based upon its availability, consistency, reliability, safety, and recoverability. Verify that the source code correctly implements the behaviors needed for each of these characteristics.

	3.0
	Management

	
	Management of the Project involves several activities that share the goal of ensuring that the IV&V effort plans for and implements IV&V Services adequately, with respect to cost, schedule, and technical performance. Even though Project management activities are described in IVV 09-4, “Project Management”, the following sections describe the actual activities.

	
	3.1
	Planning

	
	
	Develop an IPEP using the T2103, IPEP Template. The IPEP is baselined at the beginning of each Project and formally updated every six months if needed.

As part of the IPEP, detailed schedules are developed from the T2104, Notional Network Diagram Template, which reflects the implementation of the IV&V effort. The Project schedules are developed using a network diagram depicting all of the work required to be performed on the Project, and the logical relationships between the work packages represented in the schedule. Each work package within the schedule shall include the resource(s) needed to perform the work as well as an estimate for the effort required. Schedules are routinely assessed, at least monthly, to ensure they are being met, and to identify and manage any risks that could adversely affect the success of meeting the schedule.

Verify that all IV&V tasks comply with task requirements defined in the IPEP and/or task order. Verify that IV&V task results have a basis of evidence supporting the results. Assess all IV&V results and provide recommendations for program acceptance and certification.

Evaluate proposed changes to the Project (e.g., anomaly corrections and requirements changes) for effects on previously completed IV&V tasks and future IV&V tasks. Verify that the change is consistent with system requirements and does not adversely affect other requirements directly or indirectly. An adverse effect is a change that could create new system hazards and risks or impact previously resolved hazards and risks. Plan iteration of affected tasks or initiate new tasks to address the software change or iterative development process.

For Project planning purposes, the highest risk behaviors in the SRM shall receive more scrutiny than lower risk behaviors. An assessment shall be performed to determine the level of rigor that is applied for each of the behaviors in the SRM.

	
	3.2
	Issue and Risk Management

	
	
	Track Project-generated issues from initiation through closure by the Mission and/or IV&V Services. Issue writing guidelines are maintained by IV&V Services and act as a guide for writing high quality issues. All severity one and severity two issues are brought forward to the IV&V Services Lead prior to the Project submitting them to the Mission.

Identify and track Project risks and Mission risks. Provide recommendations to mitigate these risks. Risks are managed according to IVV 09-4-1, “Work Instruction for IV&V Services Risk Management”.

Communicate the issues and risks to the appropriate Project and Mission management.

7.0 Metrics

Any metrics associated with this SLP are established and tracked within the NASA IV&V Facility Metrics Program.

8.0 Records
There are no records associated with this SLP.
CHECK THE MASTER LIST at http://ims.ivv.nasa.gov/
VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE

16 of 16

[image: image1.png]