Disease Background Edmund J. Lewis, M.D.

Muehrcke Professor of Nephrology and Director of the Section of Nephrology Rush Medical College, Chicago, IL

7a s d f

sanofi~synthelabo

Magnitude of the Problem

- An estimated 135 million people have diabetes worldwide and it is expected that the prevalence will increase to 300 million by the year 2025¹
- Diabetes is the primary cause of ESRD and accounts for approximately 45% of new cases in the US²
- Type 2 diabetes accounts for approximately 90% of all cases of diabetes
- The annual costs associated with ESRD in 2010 has been projected to be \$28 billion in the United States alone²

¹The World Health Organization. *The World Health Report* 1997.

²U.S Renal Data System, USRDS 2001 Annual Data Report: Atlas of End-Stage Renal Disease in the United States. National Institutes of Health, Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2001

Natural History of Type 2 Diabetic Nephropathy

Renal Failure

A decrease in the ability of the kidney to carry out its primary function of filtering impurities from the blood. This is measured by the glomerular filtration rate (e.g., creatinine clearance) or evidence of retention of filterable molecules (e.g., creatinine, urea).

Relationship Between Serum Creatinine and Glomerular Filtration Rate (GFR)

Change in Renal Function at the Time of Creatinine Doubling in Patients with Type 1 Diabetic Nephropathy

End Stage Renal Disease

The clinical requirement for renal replacement therapy (i.e., dialysis or transplantation)

Medicare definition of ESRD for patients with diabetic nephropathy:

Serum creatinine: $\geq 6 \text{ mg/dL}$

Creatinine clearance: ≤ 15 ml/min

Relationship Between Serum Creatinine and Glomerular Filtration Rate (GFR)

Effect of Captopril on End-Stage Renal Disease or Death in Type 1 Diabetic Nephropathy

Reference: Protocol 12,928-257

Effect of Captopril on Doubling of Serum Creatinine, in Type 1 Diabetic Nephropathy

Reference: Protocol 12,928-257

Time to the Development of ESRD after Doubling Serum Creatinine in Type 1 Diabetic Nephropathy

Reference: Protocol 12,928-257

Glomerular Structure and Histology

Glomerular Histopathology in Type 2 Diabetic Nephropathy

Structural:

- Thickening of the glomerular basement membrane
- Expansion of the glomerular mesangium
- Increased glomerular type IV collagen signal
- Alteration of glomerular capillary wall selective permeability function
 - Increased albumin filtration *minus* renal tubular albumin absorption *equals* microalbuminuria

Microalbuminuria

Urinary excretion of abnormal quantities albumin (20 - 200 μ g/min) which is undetected by standard clinical test for proteinuria

Mesangial Changes Associated with Microalbuminuria

Structural Changes in Insulin-Dependent Diabetic Patients with Nephropathy

	Basement Membrane Thickness (nm)	Mesangial Expansion (Mesangial Area / Glomerulus)
Control ^{1,2} N = 8	343	0.18
Microalbuminuria ³ N = 10	580	0.22
Proteinuria ² N = 14	643	0.37

¹Living-renal donors ²Osterby *et. al.,* Diabetes 1990; 39: 1057 ³Osterby *et. al.,* Kidney Int. 1992; 41: 703

Connective Tissue Metabolism in Diabetic Nephropathy

*Living renal donors Adler *et. al.,* Kidney Int. 2001; 60:2330-2336

Structural:

- Thickening of the glomerular basement membrane
- Expansion of the glomerular mesangium
- Increased glomerular type IV collagen signal
- Alteration of glomerular capillary wall selective permeability function
 - Increased albumin filtration *minus* renal tubular albumin absorption *equals* microalbuminuria

Rationale for the Clinical Development Program

Inhibition of the renin-angiotensin system has a renoprotective effect in patients with nephropathy caused by type 1 diabetes, but there has previously been no prospective clinical trial data with similar definitive renal outcomes in patients with type 2 diabetes

Therapeutic Interruption of Diabetic Nephropathy

angiotensin II effect

Natural History of Type 2 Diabetic Nephropathy

Glomerular Histopathology in Type 2 Diabetic Nephropathy

