NIBIB RESEARCH FOCUS AREAS Group 3

Moderators:

William Hendee (Wisconsin)
Donald Giddens (GA Tech)

Cartier/Tiffany Salons
December 17 – 8:30 AM

Session Focus

Determine the highest priority research focus areas that the NIBIB can support to address a critical biomedical research or health care need in the next five to ten years.

Philip Alderson, PhD Columbia University

NIBIB Impact

Support multi-disciplinary research training and infrastructure.

Highest priority

Molecular Imaging.

Laurence Clarke, PhD

NIBIB Impact

Promote multi-center cooperative agreements to network existing centers and private sector to accelerate technology development, validation, regulation, and translation to clinical application.

Highest priority

Next generation optical imaging systems for measurement of multi-spectral signatures; next generation IGI systems that meet the challenges posed by molecular imaging for improved target recognition and response measurement.

Donald Giddens, PhD Georgia Institute of Technology

NIBIB Impact

Develop technologies to image structure and function from the molecular to organ level and associated computational models that enable prediction of system function.

Highest priority

Bioengineering for the understanding of mechanisms of tissue growth and regeneration.

Warren Jones, PhD NIH/NIGMS

NIBIB Impact

Substantially increase the number of engineers that are supported by NIH, foster graduate programs that create scientists and engineers who can address biomedical problems with quantitative approaches.

Highest priority

Work closely with NCI to develop imaging techniques which will facilitate early cancer detection.

Robert Lenkinski, PhD

Beth Israel Deaconess Medical Center

NIBIB Impact

The creation of "Centers of Imaging Excellence" where an environment is established that fosters technical development, translation, and clinical research.

Highest priority

High-field MRI: development of physiological and metabolic methods.

Michael Marron, PhD

NIBIB Impact

Biomaterials & Tissue Engineering – create new, smart or self-monitoring materials designed for cell-, drug-, and gene-based therapies.

Highest priority

Nanotechnology – create & characterize functional materials, devices and systems, as well as exploitation of novel properties and phenomenon at this scale.

Larry McIntire, PhD Rice University

NIBIB Impact

Develop training programs that produce graduates capable of integration of quantitative bioengineering, cell and molecular biological, and clinical sciences.

Highest priority

Establish inter-disciplinary centers for the development of cellular and tissue engineering through real applications.

Bernhard Palsson, PhD

University of California – San Diego

NIBIB Impact

HT data (chemical and biological) integrated through large scale models.

Highest priority

In silico modeling procedures that bioengineers currently practice.

Anne Roberts, PhD UCSD Medical Center

NIBIB Impact

Utilizing imaging for guiding therapy – encompassing multiple technologies and across multiple disease processes.

Highest priority

Image guidance for percutaneous therapy of solid cancer, including functional information regarding behavior of cells.

Bruce Tromberg, PhD University of California - Irvine

NIBIB Impact

Create a culture which emphasizes 1) initiation and discovery and 2) translation and dissemination.

Highest priority

Multi-dimensional functional imaging with integration/co-registration of complementary information from multiple platforms.

