Recombination of exogenous oligonucleotides with chromosomal DNA in yeast

• The *delitto perfetto* system for *in vivo* targeted mutagenesis using oligonucleotides

Mechanisms of recombination and double strand break repair
 with oligonucleotides

In vivo targeted mutagenesis using oligonucleotides (*Delitto perfetto*)

1: INSERT CORE **COunter selectable** 1111 REporter (e.g., URA3KI + kanMX4; select for either marker) **Frequency:** 2: REPLACE CORE 10-5 - 10-4 WITH OLIGOS 1111 (URA3KI counterselection and kanMX4 confirmation) PRECISE SPECIFIC MUTATION DELETION

Storici et al., Nat. Biotech. 2001

Induction of a double-strand break (DSB) stimulates oligo targeting more than 1000 fold

Targeting is highly efficient -- up to 15%!

Selection is NOT needed

What is the mechanism of oligonucleotide targeting to a DSB?

Strand invasion or Single strand annealing

Homology dependent DSB repair

From: Symington, Microb. and Mol. Biol. Rev., 2002

DSB repair with an oligonucleotide: possible intermediates

bridge

template

Focus of this study

- Understand mechanisms of DSB-mediated oligonucleotide targeting in yeast
- Dissect DSB repair pathways using oligo-mediated targeting

Effect of null mutations in DSB repair on targeting of ss-oligos to a DSB

Effect of null mutations in DSB repair on targeting of ss-oligos to a DSB

Genotype	Oligo e / f
WT	x 1 (0.8%)
MRX (mre11/rad50/xrs2)	x 0.4
rad52	x 0.005
rad59	x 0.05
rad51	x 3.0
rad54	x 2.0
rad55	x 3.4
ku70	x 1.1
lig4	x 1.3

Targeting of oligonucleotides to a DSB:

Homology dependent repair

•Only Rad52 is essential

Independent of Rad51, Rad54 and Rad55

Increased 2-3 X in rad51, rad54, rad55 mutants

Major pathway: Rad52-dependent SSA

rad51 and rad54 stimulate oligonucleotide targeting

Can oligos target sites distant from the DSB?

Does the targeting require Rad51 function?

Oligos can effciently target sites distant (up to 12 kb) from the DSB by a SSA mechanism

A large region around a DSB is activated for recombination

Is targeting stimulated when oligos are homologous to only one side of a break?

Is targeting stimulated when oligos are homologous to only one side of a break?

Is there strand bias for oligos targeting to one side of the break?

Repair of a DSB with a ss-oligo supports 'template' model

Repair of a DSB with a ss-oligo supports 'template' model

Delitto perfetto in vivo mutagenesis using oligonucleotides •very efficient •high throughput

Mechanisms of recombination and double strand break repair with oligonucleotides

via single-strand annealing (SSA) with resected ends of a DSB
also distant sites (up to 12 kb) from a DSB are targeted via SSA

- primarily through a "template" mechanism
- •only RAD52 is essential
- •we confirm the RAD52 capacity to perform SSA in vivo
- Rad51, Rad54 and Rad55 suppress oligonucleotide targeting

Acknowledgements:

Mike Resnick Dmitry Gordenin

> Kevin Lewis (Texas State Univ.) Kirill Lobachev (Georgia Tech.) Christopher Durham

Joyce Snipe and all the Resnick group

Thank you !