

- A federation of over 200 worldwide national agencies, universities, and research institutions in more than 80 countries
- © GPS satellite orbits to 5 cm the highest precision in the world
- © Precise positions (5 mm) for 350 worldwide reference stations
- All products mutually consistent in the IGS realization of the International Terrestrial Reference Frame
- Continuous development of new applications and products in Working Groups and Pilot Projects

The foundation of the International GNSS* Service (IGS), formerly the International GPS Service, is a global network of over 350 permanent, continuously operating, geodetic-quality GPS and GLONASS tracking sites. The station data are archived at three Global Data Centers and six Regional Data Centers. Ten Analysis Centers regularly process the data and contribute products to the Analysis Center coordinator, who produces the official IGS combined products. The Central Bureau is responsible for day-to-day management of the IGS following policies set by the IGS International Governing Board.

*Global Navigation Satellite System

The IGS classic product set — satellite orbits, clocks, Earth rotation parameters, and station positions — is augmented by newer products borne from IGS Working Groups and Pilot Projects:

- Tropospheric path delay
- Ionospheric grid total electron content
- Real-time developments
- · iteal-time developments
- GLONASS classic products
- Low Earth orbiters
- Sea Level & Tide Gauges (TIGA)
- GNSS/Galileo initiative

• Precise Timing

The IGS reference frame coordinator determines tracking site coordinates and velocities in the International Terrestrial Reference Frame (ITRF), and organizes the IGS contribution to ITRF.

Central Bureau Information System

CDDIS Global Data Center

IGN Global Data Center

SIO Global Data Center

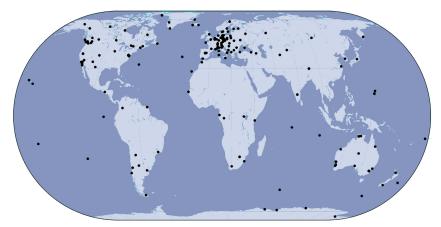
http://igscb.jpl.nasa.gov
http://cddis.gsfc.nasa.gov
http://igs.ensg.ign.fr
http://sopac.ucsd.edu

IGS Central Bureau Jet Propulsion Laboratory MS 238-540 Pasadena, CA 91109 USA Telephone: (818) 354-2077

Fax: (818) 393-6686

(GPS Broadcast Values Included for Comparison)

GPS SATELLITE EPHEMERIDES/ SATELLITE & STATION CLOCKS		ACCURACY	LATENCY	UPDATES	SAMPLE Interval
Broadcast	Orbits Sat. clocks	~160 cm ~7 ns	real time		daily
Ultra-Rapid (predicted half)	Orbits Sat. clocks	~10 cm ~5 ns	real time	4x daily	15 min 15 min
Ultra-Rapid (observed half)	Orbits Sat. clocks	<5 cm ~0.2 ns	3 hours	4x daily	15 min 15 min
Rapid	Orbits Sat. & Stn. clocks	<5 cm 0.1 ns	17 hours	daily	15 min 5 min
Final	Orbits Sat. & Stn. clocks	<5 cm <0.1 ns	~13 days	weekly	15 min 5 min


Note 1: IGS accuracy limits, except for predicted orbits, based on comparisons with independent laser ranging results. The precision is better. Note 2: The accuracy of all clocks is expressed relative to the IGS timescale, which is linearly aligned to GPS time in one-day segments.

Final		15 cm	~2 weeks	weekly	15 min
GEOCENTRIC COORI					
Final Positions	Horizontal Vertical	3 mm 6 mm	12 days	weekly	weekly
Final Velocities	Horizontal Vertical	2 mm/yr 3 mm/yr	12 days	weekly	weekly
EARTH ROTATION PA	ARAMETERS				
Ultra-Rapid (predicted half)	Polar Motion Polar Motion Rate Length-of-day	0.3 mas 0.5 mas/day 0.06 ms	real time	4x daily	4x daily
Ultra-Rapid (observed half)	Polar Motion Polar Motion Rate Length-of-day	0.1 mas 0.3 mas/day 0.03 ms	3 hours	twice daily	4x daily
Rapid	Polar Motion Polar Motion Rate Length-of-day	<0.1 mas <0.2 mas/day 0.03 ms	17 hours	daily	daily (12 UTC)
Final	Polar Motion Polar Motion Rate Length-of-day	0.05 mas <0.2 mas/day 0.02 ms	~13 days	weekly	daily (12 UTC)

Note: The IGS uses VLBI results from IERS Bulletin A to calibrate for long-term LOD biases.

ATMOSPHERIC PARAMETERS

Final tropospheric zenith path delay	4 mm	<4 weeks	weekly	2 hours	
Ultra-Rapid tropospheric zenith path delay	6 mm	2-3 hours	every 3 hours	1 hour	
Ionospheric TEC grid	2-8 TECU	~11 days	weekly	2 hours; 5 deg (lon) x 2.5 deg (lat)	
Rapid ionosphere TEC grid	2-9 TECU	<24 hours	daily	2 hours; 5 deg (lon) x 2.5 deg (lat)	

The subnetwork of IGS stations contributing hourly data

IGS coordination and outreach activities are organized by the Central Bureau, which is sponsored by the National Aeronautics and Space Administration (NASA) and managed for NASA by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology.