
Lessons from Applying Modern Software Methods and Technologies
to Robotics

Lorenzo Fl̈uckiger
Carnegie Mellon University

NASA Ames Research Center
lorenzo@email.arc.nasa.gov

Hans Utz
USRA/RIACS

NASA Ames Research Center
hutz@email.arc.nasa.gov

Abstract— Autonomous mobile robots of today are software-
intensive systems. The rapidly growing code base of robotics
projects therefore requires advanced software development
methods and technologies, to ensure their scalability, reliability
and maintainability. In this paper, we analyze modern concepts
and technologies that we applied to our software development
process and show how they contribute to enhancing these design
dimensions.

I. INTRODUCTION

Today most of robotics systems are software-intensive
systems, and thus call for appropriate use of development
methodologies and tools. Advances in robotics capabilities
go in pair with advances in computing systems. The first
robots obviously had very limited computing capacities com-
pared to today. In the past a single person could carefully
craft the entire software for a robot, often using a bottom-
up approach to keep the system functional with the scarce
resources available. Today, most robots are driven by pow-
erful processor(s) with ample memory, and their software
is designed and written by an entire team of people, often
distributed among various institutions.

The previous SDIR-05 workshop focused on identifying
problems in robotic software development and proposing
solutions. These solutions mostly consist of elaborate robotic
architectures that have been developed to address the com-
plexity of robotic systems. Rather than presenting another
architecture, we would like to illustrate in this paper how
a wider adoption of proven methodologies from the soft-
ware engineering field is highly beneficial to robotics. We
acknowledge that robotics software has many specificities
that make it difficult to develop for, but we also strongly
believe that advanced software engineering practices and
technologies can be leveraged in the field of robotics to
improve the quality, reliability and maintainability of robotic
systems.

Current research platforms for space robotics, such as the
SCOUT, ATHLETE or Robonaut robots [1]–[3] significantly
extend the capabilities available to today’s planetary robots
such as the Mars Exploration Rover (MER) [4]. In space
robotics, space qualified hardware apply that will probably
restrict these robots’ computational power to below what
earth-bound robot systems have available at the same time.
Nevertheless, the targeted feature set will result in software
systems with such a degree of complexity that it will vastly

benefit from modern software development technology with
respect to maintainability, scalability and reliability.

The remainder of the paper is organized as follows. The
second section of the paper introduces the requirements
linked to robotic software development in the context of
our research area. The third section of the paper expose
how some key practices in software development can help
construct robotic software. In particular we show how
reusing existing assets, using middle-ware, creating abstract
interfaces and decoupling the components lead to a more
scalable and flexible software system. The benefits of the
implemented solution regarding the scalability and flexibility
of our robotic systems are exposed in the fourth section.

II. ROBOTIC SOFTWARE FOR EXPLORATION ROBOTS

The Intelligent Robotics Group (IRG) at NASA Ames
is dedicated to improving the understanding of extreme
environments, remote locations, and uncharted worlds. IRG
conducts applied research in a wide range of areas with
an emphasis on robotics system science and field testing.
Current applications include planetary exploration, human-
robot fieldwork, and remote science. In this context, the
IRG rover software is subject to the two classical difficulties
encountered by current robotics systems: 1) managing the
intrinsic complexity due to the multiple domains involved
in robotics and its inherent connection to a large number of
unique hardware devices; 2) managing scalability as more
sensors, actuators and control schemes are integrated as well
as with respect to multi-robot missions that include human-
robot interaction.

The robotic software developed at IRG needs to support
the variety of hardware platforms currently in use: six
wheeled Martian rover analogK9, multiple versions of our
low cost four wheel roverK10, and the latest Antarctic
traverse roverK11. IRG uses these robots for diverse exper-
iments calling for various sensor or actuator configurations
(orientable spotlight, pan-tilt camera, indoor tracking system,
outdoor GPS, etc.) and conducts field tests requiring inte-
gration of various scientific instruments (microscope imager,
drilling system, ground penetrating radar, etc.). In addition
to the robot controller itself, the robotic software developed
at the IRG includes components from the group’s areas
of expertise in applied computer vision and human-robot
interaction. Finally, the robot controller needs to smoothly



Fig. 1. The IRG’s rovers currently in service. Each rover has completely
different hardware controllers and internal architecture and was designed for
different types of experiment. Nonetheless they share a large common code
base and can be controlled using the same network-transparent interfaces.

integrate with the interactive 3D visualization and monitoring
systems for ground control.

To manage this complexity and create a scalable system
the robotic software is required to:

• reuse control frameworks developed in-house, or by
external groups, to minimize the code development
and maximize the reliability (same framework used in
multiple scenarios)

• handle the distributed characteristic of mission scenarios
involving multiple robots and multiple modes of inter-
action

• include a modular and flexible robot controller to
quickly and easily adapt the system to new scenarios

III. SOLUTION APPROACH

Despite all its specificities, robotic software nonetheless
remains software, and thus good general principles and best
practices are applicable. So it is no surprise that the solution
we choose to address our robotic scalability and complexity
problem follows one of the key practices used as foundation
of the Rational Unified Process (RUP) [5], a widely used
software development methodology: ”Elevate the level of
abstraction” (see Fig. 2).

This RUP principle encompasses a number of practices
that contribute to the overall scalability and flexibility of soft-
ware design. In this paper, we concentrate on the following
proven practices: ”reusing existing assets”, ”leverage higher
level frameworks”, ”focus on the architecture” and ”decou-
pling of components”. In addition, this paper introduces how
our project leverages some advanced software technologies,
like the middleware CORBA [7]. We are especially interested
in how these practices and technologies could be applied
within robotic software architectures.

ELEVATE THE LEVEL OF ABSTRACTION
Benefits: Productivity, reduced complexity
Pattern: Reuse existing assets, reduce the
amount of human-generated stuff through
higher-level tools and languages, and archi-
tect for resilience, quality, understandability, and
complexity control.
Anti-pattern: Go directly from vague high-level
requirements to custom-crafted code.

Fig. 2. ”Elevate the level of abstraction” pattern [6]

A. Reuse existing software assets

Reuse of software assets can save significant time to
a robotic team, enabling it to focus on its core research
instead of developing or redeveloping software. However,
code reuse is not an easy task since it presupposes that
the existing assets were designed to be reused. It is hard
to anticipate all the usages of the component during the
original design of a reusable component. CLARAty [8], the
Coupled Layer Architecture for Robotic Autonomy lead by
the Jet Propulsion Laboratory (JPL), provides an extensive
set of robotics frameworks such as locomotion and naviga-
tion subsystems. Applying them to different physical robots
can both save development time and leverage the robotic
expertise encapsulated in the framework. IRG contributed
for several years to the CLARAty project on specific topics,
and in return, benefits from this large code base targeted
to planetary rovers. Currently IRG’s robots are using several
high level capabilities offered by CLARAty. One requirement
to gain access to the CLARAty control frameworks is to
write adaptations of generic hardware abstractions for the
targeted hardware device.

1) Hardware Devices:As with most robotic systems, the
various platforms differ vastly with regard to the sensor,
actuator and controller hardware. IRG created adaptations
of several base CLARAty classes to benefit from higher
level constructs. The best example is the adaptation of the
CLARAty generic ”Controlled Motor” to the K9, K10 and
K11 rovers1, enabling to use the ”Locomotion” framework
which computes motor commands from higher level drive
commands.

2) Control Frameworks: By abstracting the hardware
devices, the IRG rovers benefit mainly from two control
frameworks provided by CLARAty: the ”Locomotor” and
the ”Navigator”. For example, the Navigator will compute a
sequence of drive commands to reach a goal while avoiding
obstacles extracted from a point cloud.

B. Use high level software systems

To enable the scalability of our robotic system while
minimizing its complexity, we consider each robot controller,
all control systems (user GUI, astronaut commands, planner
actions, etc.) and every high level scientific instrument as

1K9, the various K10 and K11 have different hardware controllers,
meaning several different adaptation of the generic Controlled Motor



individual components. An additional requirement we put
on the architecture is to allow each of these components
to run on different nodes and communicate through the
network, while keeping efficiency for localized components.
Middleware technologies, like CORBA, can manage the
distributedness of components and their communication.

The robotics middleware Miro [9] makes extensive use
of CORBA as communication infrastructure and customizes
it for the robotics domain. Our approach is to apply these
middleware concepts to our robot software infrastructure
and factor CLARAty frameworks into network transparent
services with high-level abstract interfaces.

Miro offers support for the following paradigms to the
robotic world:

• Distributed or localized communication using the
CORBA infrastructure

• A set of abstract interfaces to allow communication
between objects and the propagation of data structures

• A Publish/Subscribe protocol to distribute telemetry
among components of the system

• A Parameter and Configuration Management framework

C. Focus on architecture with interface definitions

Separating interface definition from implementation is a
pre-requisite for a consistent and extensible architecture.
It also enables parallel development that often takes place
within a team or among distributed teams across institutions.
This separation can be performed using interface classes that
are a proven concept for encapsulation. Interface classes
contain only method declarations, no method definitions
and no data. Recent programming languages, such as Java,
provide this concept as part of the language. It is possible to
enforce this concept in the C++ domain by using a neutral
language to declare the interfaces2.

In our project, the interfaces between all the subsystems
and devices are defined in CORBA Interface Definition
Language (IDL) [10]. As shown in Fig. 3, language spe-
cific interfaces are then automatically generated from the
IDL. The code generator can create interfaces for multiple
language bindings. The benefit is that programs written in
different languages can all interact with the same robot
controller. Using this scheme, the interface definition is kept
unique across the project for all programming languages
used. Although the generated code by itself does not im-
plement strictly pure abstract interfaces, developers cannot
modify the code without changing the interface definition.
This scheme effectively enforces the separation of interface
from implementation.

D. Decoupling

Abstract interface definitions and a service-based de-
sign allow for decoupling the individual subsystems into
a component-based architecture. Component-based design

2Interface classes can be created in C++ using pure virtual methods.
However, nothing prevents a developer to mix interface definition and
implementation.

Fig. 3. From the Interface Definition Language, interfaces for various
programming language are generated

requires the ability to flexibly wire the inputs and out-
puts of the different components for the different run-time
configurations of a robotic system. Sensors are added to
the system or temporarily removed. Different application
scenarios require additional components in the system. So the
software configuration of the applied system changes rapidly
during the initial testing, and even after deployment.

CORBA based systems and similar middleware-oriented
designs allow different modules of the system to be started
in their own process, allowing the individual addition and
removal of modules to the run-time configuration. Never-
theless, managing half a dozen or more processes is not a
trivial task. A specific startup sequence is usually required
due to dependencies of the different modules. Often, the
parameterization changes for individual runs of a module.
Furthermore, separating modules into individual processes
on the same machine can result in unnecessary interprocess
communication overhead where co-location optimizations
are possible. Tools like MicroRaptor [11] help in managing
processes on different machines in a distributed robotics
scenario, but can do little about combining services on the
same machine.

1) Component model:So far, generally applicable com-
ponent models are not readily available to the robotics
domain. They are either limited in scope by design, such as
JaveBeans, which is essentially tied to the Java world. Others
are limited in availability, such as the CORBA component
model (CCM) [12], for which interoperable implementations
have still not hit the mainstream. Nevertheless, off-the-
shelf available frameworks (such as ACE [13]) can provide
important features of a component-based archtitecture within
todays robotic applications.



The high degree of decoupling of individual robotics
services allows for combining them in a Service Oriented
Architecture (SOA), using the Component Configurator pat-
tern. Fig. 4 shows an example of SOA applied to our
robots. The services are grouped into multiple dynamic
libraries and the controller uses run-time linking to load and
configure the individual components for a specific scenario.
This minimizes the need for recompilation and relinking,
shortening turnaround times, as well as reducing the memory
footprint of the controller. Unused parts of the system,
such as controllers for unused sensors or algorithms not
needed within a specific scenario, do not get loaded into
memory. The Component Configurator pattern also encapsu-
lates reconfigurability, allowing one to discard and re-enable
services without the need to stop the other controller services.
It also helps to prevent the software system from becoming
bloated by components from former application scenarios
that accidentally get interlinked with the core system and
can no longer be removed without significant development
effort and risk to overall system stability. The discardability
of individual components encourages factoring out reusable
parts into base libraries, keeping the individual subsystems
optional to the overall robot controller.

Fig. 4. Illustration of a subset of the components used to dynamically
construct a robot controller using the Service Configurator pattern. The
connections between the components are created at run-time. When a service
is started, the corresponding component exposes its interfaces so they can
be discovered by the other components.

2) Publish-Subscribe architecture:Middleware provided
infrastructure can also enable further decoupling of the
components of a software architecture. CORBA provides
multiple specifications for publisher-subscriber architectures.
The most feature-rich is the Notification Service, which is
configured in Miro for data distribution purposes. Publisher-
subscriber models decouple information sources (data sup-

pliers) from information sinks (data consumers) by an in-
termediate object, the event channel. This is mostly used in
a push-model of communication, where the data consumers
register an instance of a callback interface with the event
channel and are called when suppliers push new data into
the channel. The notification service can push data to the
consumer in a separate thread and also provides advanced
filtering capabilities to decouple the control flow between
the producer and the consumer side.

3) Control flow decoupling: We also applied another
concept from the distributed systems middleware to further
decouple control flow between clients and servers for regu-
lar method calls: Asynchronous Method Invocation (AMI).
Robot operations often take a lot of time. For instance, a
navigation task for a robot can take several minutes. At the
client side, it is undesirable to have a blocking operation
that hands off the thread of control to the server side for
the complete operation. At the same time, it is of utter
importance for the client to know the outcome of the task
which was handed of to the server. The server side design
is greatly simplified by the use of a blocking semantics,
where the controller exits the control loop after the task is
finished and returns success or failure to the caller. AMI
provides a communication pattern for this problem set. In
essence, it allows a blocking servant method to be called
in a non-blocking manner. The IDL-compiler generates an
alternate method to call in the client-side proxy, which will
immediately return after the call is dispatched to the servant.
The client can provide a callback that will be executed once
the servant has finished. The return value and out-parameters
of the method are the parameters of the callback’s signature.

IV. PRELIMINARY RESULTS

The abstractions and modularizations described in the
above section allowed for a set of improvements in our robot
control infrastructure, that would have been very difficult to
achieve without these concepts and technologies.

A. Advances in Scalability

a) Abstract interfaces:The abstract service interfaces
allow control of different robots through the same interface.
Furthermore, they facilitate the replacement of the robot
controller with a robot simulator without changing anything
on the client side.

b) Publisher/subscriber architecture: The
publisher/subscriber architecture used for telemetry
distribution decouples the suppliers of information from the
consumers. This enables easy replacement of input streams
for sensor-centric processes, such as pose estimation,
with logged data streams for development and evaluation
purposes.

c) Link time dependencies:The use of abstract service
interfaces resulted in a tremendous reduction in link-time
dependencies to other subsystems. Where a former client ap-
plication communicating with a high-level interface drew in
more than 40 conceptually unnecessary library dependencies
to other robot software modules, the abstract interface design



is limited to about half a dozen. These libraries contain code
actually used by the client implementation.

d) Remote inspectability:An important side effect of
network transparent high-level interfaces is that they add
remote inspectability for each individual service. This is an
important entry point for scripting, unit testing, and online-
supervision of the system in operation. In case of a failure,
the individual components can be analyzed as part of the
running system, tremendously reducing the time to locate
the culprit. This interaction can even be used to work around
some of the problems the autonomous system encounters by
human intervention.

B. Advances in Flexibility

Component-based architectures provide a very high level
of flexibility by allowing for extensive configurability. This
however requires proper support to stay manageable. The
different components need to access other components for
pulling in additional information from sensors and subsys-
tems, as well as for pushing results. These links need to be
easily reconfigurable to ensure the flexible applicability of a
component.

e) Run-time configuration:For the Component Config-
urator pattern [14] we rely on the implementation provided
by the ACE library, the Service Configuration framework.
It provides a meta-server concept for services and uses run-
time linking to draw in services from dynamic libraries in
a plug-in architecture like manner. The configuration of the
meta-server can be specified in a configuration file on startup.
Additionally, it can be altered at run-time. There are two
different grammars available for the configuration file syntax:
A custom designed one as well as an xml-based version. This
setup allows us to add science instruments or other robot
payloads to the software system without having to alter or
re-link any part of the base-controller.

f) Service configuration:For the configuration of the
individual services, the Service Configurator framework only
provides command-line equivalent capabilities. Therefore,
for service configuration, the parameter framework provided
by Miro is deployed. The tool support of parameter frame-
work (code generation, GUI editors) saves development time
and reduces error sources in the configuration process, such
as syntax errors or typos in configuration files.

V. CONCLUSION AND FUTURE WORK

In this paper we analyzed the way in which software
methods and technologies contributed to our ongoing task of
mastering the intrinsic complexity and scalability issues of
the robotics domain. We concentrated on four practices to in-
crease the level of abstraction of our robotic software: 1)reuse
existing control frameworks to leverage acquired expertise
while minimizing development effort; 2) use robotics mid-
dleware to allow the distribution of components and simplify
communication; 3) create high-level interfaces to guarantee a
consistent and extensible architecture while supporting paral-
lel development; 4) decouple the components of the system
using a service oriented design and advanced middleware

features to increase flexibility and reusability. The result of
this work is a ”loosely coupled, highly cohesive” system
providing a reconfigurable software architecture adaptable to
different robotic application scenarios.

The benefits in productivity, reliability, and maintainability
of our new software architecture convince us that there
is much to leverage from the software methodologies for
the robotic field. We hope that this paper will encourage
the robotic community to utilize more of the practices and
technologies readily available from the software engineering
field.

The work in this paper was mostly centered on a single
robot system. Our ongoing research targets, among others,
multi-robot applications with respect to team fault-tolerance
against individual or temporary robot dropouts. In this con-
text we continue leveraging advanced software development
methods and technologies.

VI. ACKNOWLEDGMENTS

This work was supported by the NASA Exploration Tech-
nology Development Program and the Mars Technology
Program.

REFERENCES

[1] T. W. Fong, I. Nourbakhsh, C. Kunz, L. Flückiger, R. Ambrose,
R. Simmons, A. Schultz, and J. Scholtz, “The peer-to-peer human-
robot interaction project,” inAIAA Space 2005, Long Beach, Califor-
nia, September 2005.

[2] R. Hirsh, J. Graham, K. Tyree, M. Sierhuis, and W. J. Clancey, “Intelli-
gence for human-assistant planetary surface robots,” inIntelligence for
Space Robotics, A. M. Howard and E. W. Tunstel, Eds. Albuquerque,
NM: TSI Press, 2006, pp. 261–279.

[3] W. Bluethmann, R. Ambrose, M. Diftler, S. Askew, E. Huber, M. Goza,
F. Rehnmark, C. Lovchik, and D. Magruder, “Robonaut: A robot
designed to work with humans in space,”Autonomous Robots, vol. 14,
no. 2, pp. 179–197, March 2004.

[4] J. J. Biesiadecki and M. W. Maimone, “The mars exploration rover
surface mobility flight software driving ambition,”Aerospace Confer-
ence, 2006 IEEE, pp. 15 pp.–, 2006.

[5] P. Kroll and P. Kruchten,The Rational Unified Process made easy.
Addison-Wesley, 2003.

[6] P. Kroll and W. Royce, “Key principles for business-driven
development,”Rational Edge, 2005. [Online]. Available: http://www-
128.ibm.com/developerworks/rational/library/oct05/kroll/

[7] Object Management Group. (2006) CORBA FAQ. [Online]. Available:
http://www.omg.org/gettingstarted/corbafaq.htm

[8] I. Nesnas, A. Wright, M. Bajracharya, R. Simmons, and T. Es-
tlin, “CLARAty and challenges of developing interoperable robotic
software,” in Proceedings of the 2003 International Conference on
Intelligent Robots and Systems (IROS 2003). Las Vegas, Nevada:
IEEE/RSJ, October 2003.

[9] H. Utz, S. Sablatn̈og, S. Enderle, and G. K. Kraetzschmar, “Miro
– middleware for mobile robot applications,”IEEE Transactions on
Robotics and Automation, Special Issue on Object-Oriented Dis-
tributed Control Architectures, vol. 18, no. 4, pp. 493–497, August
2002.

[10] Object Management Group. (2006) OMG IDL. [Online]. Available:
http://www.omg.org/gettingstarted/omgidl.htm

[11] (2006) Mircroraptor web site. [Online]. Available:
http://gs295.sp.cs.cmu.edu/brennan/mraptor

[12] D. C. Schmidt and S. Vinoski, “Object interconnections: The CORBA
component model: Part 1, evolving towards component middleware,”
C/C++ Users Journal, February 2004.

[13] D. C. Schmidt and S. D. Huston,C++ Network Programming.
Addison-Wesley Longman, December 2002, vol. 1.

[14] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,Pattern-
Oriented Software Architecture: Patterns for Concurrent and Net-
worked Objects. Wiley & Sons, 2000.


