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ABSTRACT

This paper investigates the market’s expectations for oil prices
during the Persian Gulf crisis. To do so a general method for using op-
tions markets to recover the implied distribution for futures prices is
developed. The method applies to a wide class of distributions. In par-
ticular, it is not limited to those distributions arising from diffusion

or jump-diffusion processes.



War and Peace:
Recovering the Market'’s Probability Distribution of Crude 0il
Futures Prices During the Gulf Crisis

William R. Melick and Charles P. Thomas1

This paper investigates the market’s expectations for oil prices
during the Persian Gulf crisis. To do so a general method for using op-
tions markets to recover the implied distribution for futures prices is
developed. . The method applies to a wide class of distributions. In par-
ticular, it is not limited to those distributions arising from diffusion
or jump-diffusion processes.

During the Persian Gulf crisis there was wide interest in the likely
movement in oil prices in the event of a substantial disruption in oil
supplies, and the perceived probability of such a disruption. Given
their information content, futures and options prices are a natural

source for insight on these issues. Analysts typically use Black's

1. The authors are staff economists in the Division of International
Finance. This paper represents the views of the authors and should not
be interpreted as reflecting the views of the Board of Governors of the
Federal Reserve System or other members of its staff. We would like to
especially thank David Bates, Jon Faust, and Ed Green for their extensive
comments. We also thank Allan Brunner, Neil Ericsson, Jeff Fuhrer,
Ludger Hentschel, and George Moore, as well as participants in the
International Finance Monday Workshop. Elizabeth Vrankovich and Dara
Akbarian provided valuable research assistance.

2. Most option pricing models follow Black and Scholes (1973) and assume
that the price of the underlying asset follows a geometric Brownian
process described as follows: dS/S = pu-dt + o-dZ where S is the price of
the asset, py is a deterministic drift parameter and dZ is i.i.d. normal
with mean zero. This generates a lognormal distribution for the asset
price.

Under a jump diffusion process, the motion of the underlying asset
price is described as follows: dS/S = (u - A-k)-dt + 0-dZ + xk-dq where p
and dZ are the same as above; Prob(dq = 1) = X-dt; and (l+x) is
lognormally distributed. The asset follows geometric Brownian motion
until a moment where dq = 1. At that moment the asset price jumps by the
random amount x-S. After the jump the process resumes Brownian motion
from the new level until the next jump.



(1976) option pricing model to "back-out" expected future prices and/or
volatilities (e.g. Overdahl and Matthews (1988))3. However, the lognor-
mality assumption of Black’s model can render it ill-suited for periods
such as the crisis when several distinct and identifiable regimes were
possible. For example, market participants may have perceived a
tri-modal distribution for future oil prices, where the three peaks cor-
respond to a return to normalcy, the éontinuation of unsettled
conditions, and a large disruption in Saudi Arabian production in the
event of war.

To investigate unsettled times in other markets, methods have been
developed to estimate jump diffusion processes with options prices (see
Bates (1990) for an application to the stock market prior to October
1987). The jump diffusion process has two advantages. First, combined
with a fairly standard specification for the utility function of the ag-
gregate investor, it yields tractable formulae for pricing the
nondiversifiable risk associated with the jumps. Second, it yields
manageable formulae for close approximations to the value of American
options--the type most commonly traded. However, the jump diffusion
process has the drawback of imposing a great deal of structure on the
stochastic process underlying the futures prices.

The method developed here was designed to apply to a wide class of
distributions and to impose minimal structure on the underlying stochas-
tic process for futures prices. In exchange for this generality we give
up some scope in terms of where the method can be applied. In par-

ticular, our method is only directly applicable to those markets where

3. Black (1976) is a straightforward modification of Black and Scholes
(1973), to account for the zero cost of carry for futures contracts.



changes in the futures price are uncorrelated with changes in the market
portfolio, i.e., where the market beta is zero.4 Our method also gives
up some accuracy in the formulae for approximating the American option
prices. Our method is based on finding bounds for the option prices
given a distribution for futures prices. We find that for the estimated
distributions the bounds are quite close together and argue that the ap-
proximations based on them will be quite accurate.

The rest of the paper is organized as follows: Section 2 derives
bounds for the price of an American option on a futures contract under
very general assumptions concerning the distribution of the futures price
at the option’s expiration. The third section illustrates how the bounds
can be used with option prices to recoveci the distribution for futures
prices. Section 4 discusses the particulars of an application to the oil
market, while Section 5 presents the results of that application. A sum-

mary and concluding remarks are found in Section 6.

II. Bounds on American Options’ Prices

With European style options the relationship between the distribu-
tion of futures prices and the option price is very direct. For calls
(puts), the value of the option is simply the value of the portion of the
distribution above (below) the strike discounted back to the present

using an appropriate interest rate. For American style options the

4. The method developed here depends on the risk neutral valuation of
the options. As such it could be applied to markets with a positive
beta, provided the underlying stochastic process is smooth enough to
permit the dynamic replication of the option. 1In this case, however, the
estimated distributions represent the risk-neutral, or martingale
equivalent, probabilities rather than the true, or actuarial,
probabilities. For a discussion of this issue see Cox and Ross (1976)
and the references therin.



relationship between the distribution and the option price is less direct
owing to the premium associated with the right to exercise before expira-
tion. In general the option’s value will depend on the entire stochastic
process for futures prices, not just the distribution for futures prices
at the option’'s expiration. To deal with this early exercise premium we
develop bounds for the maximum and minimum value of an option given that
the futures price is taken from a particular distribution at the option’s
expiration.» That is, for all stochastic processes that imply a given
distribution for the futures at the option’s expiration, there are bounds
for the option’s value which can be expressed in terms of that distribu-
tion alone. In the estimation routine these bounds are weighted to
arrive at a predicted value for the option.

The bounds are derived in detail below, but a short preview will
clarify where we are headed. The lower bound corresponds to a stochastic
process whereby no uncertainty is resolved until the last day of the op-
tion's life (i.e. futures prices remain constant until the day of
expiration). The upper bound corresponds to a stochastic process whereby
all uncertainty in the futures price is resolved tomorrow (i.e. any price
move is made tomorrow and between tomorrow and expiry prices do not
change further). The value of the option undef these two processes can
be expressed in terms of the distribution at the end point alone.

In the next two subsections we introduce some notation and review
the standard option pricing problem. The last subsection presents for-
mulae for the maximal and minimal values with some intuition. The proofs
are relegated to the appendix. The derivations in this section are in

terms of futures prices that follow a discrete state Markov process. In



the actual implementation we switch to a continuous distribution formula-
tion.

II1.1 Notation

Time is indexed by days from the option’s expiration. Today is
denoted by T, tomorrow by T-1, etc., until date 0 which corresponds to
the option’s expiry. All dating and references to expiry are relative to
the option’s expiration--not the futures’. The futures price t periods
prior to expiry is a discrete random variable denoted by F' which can
take on a finite number of values indexed by m = (1,2,..M}5. Let Et
denote the Mxl vector of possible realizations of the futures price in
period t. This support is the same for all periods and the time super-
script will be suppressed. A particular realization for the futures
price at time t is denoted F;.

The process by which futures prices evolve is described by a length

T_l,..,Wl} where

E-1p gt B4 In
J 1

period T, the period T futures price is known so WT collapses to a single

T sequence of MxM transition probability matrices (WT, ¥

e-1_ o

for t < T a typical element of Wt is ¢§j= Prob{F
row (wi ) representing the probability of moving from today'’s futures
price to any point on the support tomorrow. We will denote the product

of all elements in the sequence of transition matrices by
T T t-1 T . A
r = wm - I v . I'" is the 1xM vector product of the Markov transition
*t=T,..,2

matrices. As such, it is the period T distribution of futures prices at

the option’s expiration given that the futures price in period T is Fi.

5. In fact futures prices can only take on discrete values since they
are quoted to the penny. Considering only a finite number of values is
not a constraint in practice.’



This is the distribution of interest that we estimate using the options
prices.

I1.2 Value of American Options on Futures

We now derive the price of an American option in terms of an ar-
bitrary sequence of transition probabilities. The derivation assumes
that changes in the price of oil futures are uncorrelated with changes in
the market portfolio, i.e., that oil price risk is diversifiable.6
Under this assumption, oil futures and the options on them will be priced
as though traders were risk neutral using the true probabilities. We
also assume that the cost of carry for futures is zero.7

With no cost of carry, futures prices will martingale, i.e

FT - ET[FT_l], where ET denotes expectations taken at time T. By

iterated expectations

6. To confirm that the market beta on crude oil futures is near zero, we
ran the following regressions: AF = o + ﬂ-(Rm- R:.) and AF = a + B-R_,
where AF is the weekly dollar change in the Pricé of the nearby crude oil
futures contract, R _ is the weekly gross rate of return on the S&P 500
index, and R_ is th@® gross rate of return on a T-bill maturing in one
week, The results for the two specifications were qualitatively the
same. Between June 1983 and July 1990 and between February 1991 and
December 1991 the estimated betas were insignificantly different from
zero and the corrected R squared of the regressions were near zero or
negative. Within the crisis period (August 1990 and January 1991) there
were five weeks when large declines in oil prices were accompanied by
large increases in the S&P index and four weeks when large increases in
oil prices were accompanied by large declines in the index. Including
these nine observations in the sample results in a small (negative)
though statistically significant beta. Including the crisis period
raises the corrected R squared, though it remained below .06. For a
discussion of this specification see Black (1976) or Dusak (1973).

French (1990) obtained similar results for the pre-crisis period.
He estimated the covariance between daily changes in West Texas
Intermediate spot prices and the S&P 500 between January 1984 and
December 1988 and found it nearly zero.

7. For large traders, margin requirements can be met with liquid,
interest bearing securities such as T-bills.



T
(1) Fm = E

To value the American call option, we begin with its value at expiry
and work backwards (using notation similar to Smith (1979)). At expiry,

time 0, the call option is worth

(2) C{Fg,O, X] = Max[Fg- X, 0] ,

where X is the strike price of the option.

One day prior to expiry, the option can be exercised for Fi— X or it

can be held until expiry. If held, it is worth its expected value at

11

time O discounted back to period 1 or p [C[FO,O, X]] where

plz 1/(1+r1) is the one period discount factor given r1 is the cne day

interest rate at period 1. Given this choice, the value of the option is

1

(3) C[F;,l, X] = Max[Fi- x, pL-8licir®,0, X17]

where the futures price is known to be F;.

Similarly, two days before expiry the value of the option is given

by

2

4) C[Fi,Z, X] = Max[Fi- X, p2-E2[(c[FL,1, X]1].

Substituting from (3) yields

1 0

(5) C[Fi,z, X] = Max[Fi- X, p2-EX[Max[F'- X, pr-Er(c[F°,0, X]1]1].



Similar substitutions give the value of the option an arbitrary number of
days prior to expiry. Let C[EZ,Z, X] denote the M vector of option
values--one for each possible realization of the futures price.

In terms of the stochastic processes discussed above, for a par-

" . . . t
ticular realization of the futures price in period t, Fm’ the value of

the option is given by the following recursive relation:

(6) CIFS,t, X] = Max[Ft- x, p%% - c(E""1e-1, x1], ve > 0

m m m.

t t

C[F ,t, X] = Max[F°- X, 0], £t =0.
m m
t . t j-1 . .
From (1), we can replace Fm with ¢m - I v - F which yields an ex-
: j=t,..,2

pression for the option’'s value in terms of the interest rates, the
strike price, and the sequence of ¥s alone.

While we might like to estimate all of the elements of the ¥s
freely, this is clearly not feasible given the information in the market.
An approach used by Bates (1990) and others is to specify a stochastic
process which generates all of the ¥Us from relatively few parameters.

The approach we take is somewhat different and focuses on the T alone.
Our approach begins with upper and lower bounds on the option’'s price.

I1.3 Bounds on the Option Price

To compute the bounds, we start with the following thought experi-
ment: Suppose we were in period T and knew the true FT, but did not know
the sequencz of ¥s that generated it. What can we say about the option's
price? We find that given a FT there is a sequence of ¥s, that yields a

value for the option lower than any other sequence of ¥s whose product is



PT. Similarly there is a sequence of ¥s that yields a value for the op-

tion higher than any other sequence whose product is FT. The value of
the option under these sequences are therefore bounds for the option
price consistent with FT.

The derivations of the minimal and maximal values are relegated to
the Appendix. Below we give the formulae and intuition for the bounds,
which are straightforward. The sequence for the minimal value cor-
responds to a stochastic process whereby the futures price does not
change between period T and period 1. Between period 1 and period O it
moves with probabilities given by FT. To see why this sequence generates
a minimum value consistent with PT, note that the optioﬁ can be exercised
in period T to yield Fi- X. If it is not exercised in period T, then it
will not be exercised until period 0. Under the assumed sequence, the
futures price does not move between period T and period 1 so waiting to
exercise for a fixed futures price just delays the receipt of a fixed
revenue, which is suboptimal since revenues are discounted in time. The

option may be held until period 0, however, because between period 1 and

period 0 the futures price does move--with transition probabilities given
by FT.
In period O the option is worth Max[Fg- X, 0]. 1Its expected value

at time T, if exercised in period O, is FT- Max[F - X, 0] which in terms
of period T dollars is BT-FT- Max[F - X, 0], where ﬁTE Hpt
t=T,..,1

Therefore, to value the option under this sequence we need only com-
pare two expectations, each of which uses only FT. The option’s value

under this sequence is the following:

T

7y €rt;T,X,57] = Max[TT- F - X, pL-T0. Max[F - X, 0]].
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In effect this process has removed any premium from the possibilityb
of early exercise between periods T-1 and period 1. - We note that this is
the value of a European option with the added value of being able to ex-
ercise today.

The intuition behind the process that yields the maximal value is
similar. Suppose that the futures price will move between periods T and
T-1 and not move again between periods T-1 and period 0. For those fu-
tures prices for which it is worth exercising after period T-1, it is
also worth exercising in period T-1. Moreover, since revenues are dis-
counted it is always better to exercise earlier than later if revenues
are the same. Thus, since exercising in period T-1 means the revenues
are discounted least, the option will never be exercised after T-1.
Therefore, if the option is exercised it will be exercised in period T or
period T-1, but not thereafter.

For such a process, the value of exercising the option both today
and tomorrow can be written in terms of FT. Hence the maximum value of

the option can be expressed in terms of the FT:

(8) 8IrT;T,X,p] = Max[I'- F - X, pL-TT. Max[F - X, 0]].

American put options are valued analogously with minimal and maximal

values in terms of I'L given by

(9 PrrT,x 5] = Max(x - rT- F, pT.rT. Max(X - F, 0]] and

(10) BIr';T,X,p"] = Max[X - T7- F, pT.rT. Max[X - F, 0]].
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Comparing (9) with (10), or (7) with (8), we note that the maximal
and minimal values differ only by the discount factor used in the second
item in the outside Max[]. In (10), FT- Max[X - F, 0] is discounted by
the one period factor pT where in (9) the same sum is discounted by the T
period discount factor 5T. For reasonable values of the interest rates,
say 7%, the bounds on an option with six months to expiry will differ by
at most about 3-1/2%. For options deep in the money the first item in

the Max[] of (9) will be larger than the second and the difference be-

tween the bounds will be less than this 3-1/2%.

III. Recovering the Distribution

Equations (7) - (10) give bounds for American option prices T days
before expiration in terms of the interest rates, strike prices, and the
period T distribution for futures prices in period 0. To recover this
distribution from actual option prices we need to clarify exactly what
information the option prices contain, impose some structure on the dis-
tribution, and construct a point estimate for the option’s value from the
bounds.

ITT.1 Weighting Scheme

To apply standard estimation techniques requires a point estimate
for the option price conditional on the estimated distribution. To gen-
erate such an estimate we weight the upper and lower bounds computed
above. There are many possible weighting schemes. To find a reasonable
one, we compared the true value of an American option with its bounds for
several known processes. Where the option’s value lay between the bounds

depended on how far the option was out of the money and on how quickly
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uncertainty about the futures price was resolved. Based on these com-
parisons, we chose to use two weights. The first weight, wl, is used for
all call options that are in the money and for all put options that are
out of the money (Fi > X). The second weight, w2, is used for the calls
that are out of the money and the puts that are in the money (F; < X).

In terms of the above, the estimated options prices are given as

A .

follows where estimated parameters are denoted by

(11) ¢ = Ql-ﬁ[fT;.] + Q-wl)- 0% if T Fas X
(12) ¢ = w2-B[0%5.] + (1-w2)-8[0L:.] 1if f*Tf F< X~
(13) P = wl-B(r;.] + Q-wD)-B0%;.] if T F< X
(14) P = w2-B[(0T;.] + (1-w2)-P(r%;.] if L. F= x

In the previous section, we claimed that for reasonable discount
factors, the bounds are quite close, so a weighted average of them is a
good approximation to the option’s value. Chart One gives a feel for how
close the bounds are using the estimated distribution (discussed below)
for a typical day. The top two panels plot the bounds for calls and puts
for various strike prices (solid lines for upper bounds and dashed lines
for lower bounds). We note that the lines are almost indistinguishable.
The bottom two panels plot the difference between the bounds across
strikes.

For the day plotted, the options had 38 days to expiration and the

relevant T-bill rate was about 7 percent. Thus the discount factors in
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the formulae for the bounds differed by about 0.8 percent. On this day
the futures price was about $29, so none of the puts was more than $5 in
the money and the difference between the bounds for each put was the full
0.8 percent of the option price. For the calls, the story is the same
for those with strikes above $20. For those with strikes below $20, the
first item in the expression for the lower bound is greater than the
second, and the bounds differ by less than 0.8 percent of the option
price.

II11.2 Data Limitations vis-a-vis the Distribution

It is clear that the logic behind the bounds does not depend in any
crucial way on the assumption of a discrete distribution. The bounds can
be used for an arbitrary distribution by making the following substitu-
tions:

PT- F becomes ET[FO];

rT. Max[F - X, 0] becomes (EL[FC|F= X] - X) -Prl[F°

v

X]; and

FT‘ Max[X - F, O] becomes (X - ET[FOIFOS X])-PrT[F0

IA

X].
With these substitutions and (11)-(14) the actual option prices can

be written in terms of estimated conditional expectations, estimated

probabilities, and an error term as follows:

(15) G[X] = wi-Max[ET[F°] - X, pT- (ET[F|F% %] - X)-Prl(F°

v

X]] +

(1-wi) -Max[ET[F°] - X, pT- (EL[FO|FO X] - X)-Prl[F°

v

X]] + €

where i = 1 if ET[FO] > X and i = 2 otherwise

(16) P(X] = wi-Max[X - EL[F°], pT-x - BX[F°|F% x])-PrY(F°

IA
X
+
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T T T

(77, 57 x - EN[FO|FO x]) - pri(F® < X]] + ¢
where i = 1 if ET[FO] < X and i = 2 otherwise

(l-wi)-Max[X - E

The error, e, will be the result of any noise in the system, two ex-
amples of which are immediately obvious. First, as the same weights are
applied across all options for a given contract/day, there will be a
pricing error induced by weighting thé two bounds. Second, actual option
prices are rounded to the nearest penny, also creating errors in the
equation.

From (15) and (16) it is clear that even if there were no errors in
the pricing relations, the fact that strikes are at discrete intervals
and, more importantly, that they do not span the entire support of fu-
tures prices places an important limitation on what the option prices can
reveal about the distribution. The recorded option prices only contain
information about the conditional expectation and probability mass in the
following segments of the support: 1) the segment below the lowest
strike, 2) the segments between each strike, and 3) the segment above the
highest strike. 1In particular, if XL and XH are the lowest and highest

strikes, then all the information revealed by the options will be in

terms of the following:

a7 e x ] . Pri[F < X ]

T 0 0 T 0 |
(18)  E(F| X <F<x], pri[x << X,] K< X<y X;< XK
19y ET[FO|F% X pri[F0 » X

Any number of distributions could generate the same results for the

conditional expectations and probabilities in (17)-(19). For example,
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for any given distribution we can construct a second distribution out of
a series of non-overlapping uniform densities which will be observation-
ally equivalent to the given distribution relative to the data described
by (17)-(19).

Thus, it is clear that any estimated distribution require§ éaféful"
interpretation, especially in the regions below the lowest strike and
above the highest strike. For crude éil, strikes are almost always $1.00
apart (in a few instances $5.00), allowing a fine demarkation of the dis-
tribution within the range of strikes. 1In the tails beyond the sfrikés;
however, we have information only on the conditional expectations and the
probabilities. Thus the shape of the distribution in the tails will
depend importantly on the functional form assumed for the dfstribﬁtion.
Chart Two illustrates this point with three obsgrvationally»equiyalent
distributions. The solid line is a mixture of three IognOrméls; while
the dashed lines replace the upper tail with uniform densities that yield
the same results for (19).

II1.3 Functional Form of Distribution

In choosing a functional form for the estimated distribu;ion,wg
tried to balance flexibility, parsimony, and ease of intefpretation. For
reasons explained in Section IV, we specify thatléhe futuréé pficé ;t the
option’s expiration is drawn from a mixture of thrée 1ogﬁofm5i disfribu-
tions. More formally, the distribution function fof'futures bficés gll
is given by -
(20) g[F°] = =

0 0 0
1g1[F ] + "zgz[F ] + “353[F |

where
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0
, In(F")-u,
21) g [F] = (——L——pyrexpl (———D)?/2].

sqrt[2x]o . F ‘ i

The components of (15) and (16), using the properties of the lognormal

distribution, can be expressed as:

SR
3 g
(22) EL[FO] - z 7 explu +—5]
1=1 .
3 In(X) -u,
(23) PrT[FOZX] - 3 vwi(l-é[———;———il)
=1 i
3 . In(X)-u,
(26) Prl[FOsx]) = % re[———F
i=1 %
T..0,.0 | 3 a?+2ui 1n(X)-u.-o? 1 0
(24) E'[F |F2X] = 3 myexp[— 5—1(23( 1]-5) / Pr_[F’'=X]
i=1 1 ai t
pome 2 2
3 0. +2u, In(X) -u, -0
(25) ET[FOIF0X] = (B ([F°] - = mexpl——Lcal L1123y e 15%x],
- Gk e i=1 1 Ui t

where & represents the cumulative normal distribution function.8
Using equations (15),(16) and (20)-(25) a pricing equation can be

written for any optioﬁ in terms of eleven parameters ((wi,ui,ai,wl,WZ)

i=1,2,3) and two observables (X and p).
The parameters of the model, exemplified by equations (15) and (16),

are estimated by minimizing the sum of squared errors for all options on

a given contract/day, imposing the following constraints:

3
(26) z o= 1
i=1

; O0=<w,<1

i , i=1,2.

8. The mean of the lognormal distribution is exp(u+02/2) (Mood,
Graybill, and Boes (1974)). Calculation of (20) and (21) used integral
3.322 from Gradshteyn and Ryzhik (1980).
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The restriction on the sum of the s reduces the number of parameters
from eleven to ten. Details on the data and estimation are found in

Section IV. Note that given our martingale assumption for futures
prices, (20) also provides an estimate of the current futures price, Fi.

I1T.4 Benghmark Distribution

In order to gauge the results from our model, the distribution for
futures prices was also recovered using a "standard" option pricing
model. Thg most common assumption in the option pricing literature is
that the underlying commodity price follows a geometric Brownian process,
which implies that the‘futurgs price at expiration will be drawn from a
lognormal distribution. Given the lognormal distribution, and the as-
sumption that it is poss}ble to form a riskless hedge between the option
and the underlying commodity, a partial differential equation governing
the movement of the option price through time can be generated. For

European options the partial differential equation can be solved when the

terminal boundaryrconditidﬁ Max[O,FO-X] is applied. For American options
the partial differential equation cannot be solved due to the possibility
of early exercise. Sevéral approximations have been developed to price
American optioné.undef‘these “standérd" assumptions, with the quadratic
approximation of Barone-Adesi aﬁd Whaley (1987) (hereafter BAW) being the
most easily calculafed and most commonly used. We constructed a
"standard" model by assuﬁing that prices will be drawn from a single log-
normal distribution and used the BAW approximation to generate option

pricing equations. We recovered the 2 parameters (ub and ab) of the

single lognormal (hereafter SLN) distribution by minimizing the sum of
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squared deviations of predicted from actual option prices, again, using

the BAW approximation to price each option.

IV. Application to the 0il Market

IV.1 Data Sources

Options on crude oil futures have been traded on the New York
Mercantile Exchange (NYMEX) since November 14, 1986. Data on settle
prices for all crude oil options on futures for all trading days over the
period July 2, 1990 through March 30, 1991 were purchased from NYMEX.

For each options contract and each trading day (contract/day) NYMEX

records nine pieces of information about the option:

1. Strike Price 2. Open Interest
3. Opening Price 4. High Price

5. Low Price 6. Last Price

7. Settle Price 8. Volume

9.

Exercises

We used the settle price as the value of the option in equations
(15) and (16). The settle price is determined at the end of each day by
a settlement committee made up of roughly 20 options market participaﬁts.
The committee frequently relies on the average of bid and ask prices
during the last minutes of trading as starting points for the settlemeﬁt
prices. Heavily traded options are priced first, with put-call farity
used to price low volume options at the same strike when the’futures

market has settled. In the event of a limit move on the futures market9

9. There were no price limits in the options market. Over the entire
sample there were limits on crude oil futures price changes for all
contracts except for the one closest to expiration. In December of 1990
the limits on crude oil futures price movements were widened
substantially.
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the settlement committee relies on optiohs on the unconstrained spot or
. 10

nearby contract and spread trading.

During July 1990 through March of 1991, trading was concentrated in
seven contracts. For each contract/day, all option prices that were re-
corded with no open interest, no volume, and no settlements were excluded
from the data set. In addition, trading days within five working days of
1

the contract’'s expiration were also excluded from the data set.1 Table

1 lists summary information for each of the contracts after the exclu-

sions.
Table 1
Number of Range of Range of
Contract Estimation Total. Total Options Strikes Futures
Range Days Options _per Day per Day Price
~ Min Max Min Max Min Max

$ $ $ $

Oct90 7/02/90-08/29/90 41 1254 17 42 14 37 17.74 31.93
Nov90 7/02/90-10/04/90 66 2335 15 57 15 45 18.11 40.42
Dec90 7/02/90-11/01/90 84 3150 13 55 15 44 18.38 38.80
Jan91 7/02/90-11/29/90 104 3889 . 13 48 16 42 18.55 37.30
Feb91l 8/02/90-01/03/91 104 3866 11 43 5 51 23.27 35.95
Mar9l 9/10/90-01/31/91 99 3588 12 51 10 50 18.99 34,53
Apr9l 8/01/90-02/28/91 144 4827 11 44 10 45 17.91 33.21
Daily prices for the seven Treasury bills that matured as close as

possible after the options contracts expired were used to calculate p.

For each contract/day there are N (j# of options) equations like (15) and
(16) that form a constrained, nonlinear minimization problem. Among the

seven contracts there are a total of 642 trading days; each

trading/contract day was treated separately, therefore, 642 minimizations

10. We are grateful to NYMEX Board of Directors member Jim Zamora of ZAHR
Trading and former NYMEX employee Brad Horne for their descriptions of
the settlement process.

11. One day’'s worth of data for the December contract was also excluded
due to an obvious error in data entry on the part of NYMEX.
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were performed. Each day yielded two sets of parameter estimates, the
set of ten parameters from MIN and the set of two parameters from SIN.

IV.2 Estimation

Throughout the Persian Gulf crisis, market commentary focused on
three distinct outcomes: 1) a return to pre-Crisis conditions (e.g. Iraq
would peacefully withdraw from Kuwait), 2) a severe disruption to Persian
Gulf oil supplies (e.g. damage to Saudi Arabian facilities during a war),
and 3) a continuation of unsettled conditions over the relevant horizon
(e.g. a prolonged stalemate in which outcome 1 or 2 might eventually
occur). Given these three possibilities, we chose a mixture of three
lognormals as the form of the distribution to be estimated. If in fact
market participants felt that prices were likely to be drawn from a
tri-modal distribution this could be easily captured by the mixture.
Moreover, the mixture could also easily accommodate a uni-modal distribu-
tion if that would best fit the data (e.g. 11-x2=0). Ex ante, we
expected that as news hit the market, the relative weighting of the three
lognormals might change, as well as the parameters of each of the three
lognormals. For example, news of an Iraqi rocket attack on a Saudi
Arabian oil field might increase the weighting on the lognormal distribu-
tion with the highest mode, as well as increase the relevant range
encompassed by this lognormal distribution. Section V presents estimated
distributions for selected events during the Persian Gulf crisis.

Estimation of MLN was performed with the Numerical Algorithms Group
(NAG) FORTRAN algorithm EO4UPF on an IBM RS-6000, with an average mini-

mization taking approximately 10 minutes per contract/day. SLN was also
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estimated using EOQ4UPF. Starting values for SLN were taken from a mini-
mization in which the options were priced as if they were European. The

SLN estimates were then used as starting values for MLN according to

up = - .25, u, =, uy = Uy + .5,
0 " 0 " 0 "
0] =0 - .001, 0y = 0py 03 = Oy + .001 ,

where ug and ag represent starting values for MLN. Bounds for the
parameters were set so that 0<:xi<00 ) .0001<ai<qo .12 Analytic derivatives
were provided for both estimations. The derivatives were calculated
using Mathematica and they were numerically verified within the EO4UPF
algorithm prior to estimation.

The estimation procedures are illustrated in Chart Three. The top
panel plots the estimated density function using both a mixture of log-
normals (MLN) and a single lognormal (SLN). Given the density from the
single lognormal, the BAW formulae give predicted values for the option
prices. The triangles in the lower panels plot the difference between
the BAW predictions and the actual prices.

Given the MIN estimated distribution for the futures price, we can
compute upper and lower bounds for the option prices. The solid (dashed)
line in the lower panels plots the difference-between the upper (lower)

bound for the option price and the actual option price. The predicted

option price is a weighted average of these bounds, where the weights are

12. Moreover, each (u, o) pair was restricted such that the probability
of the futures price reaching $150 per barrel was less than 5 percent,
under each of the lognormal distributions. These bounds prevented the
algorithm from wandering off in nonsensical directions.



determined in the minimization routine. The hollow boxes plot the dif-
ference between the option prices predicted from the MILN distribution and
the actual prices. We note that this same MLN distribution was used to

draw the plots in Chart One.13

V. Results

V.1l Summary Measures

The first moments of the estimated distributions from MLN and SLN
were very similar and were extremely close to the actual futures price.
(The actual futures price can be viewed as an independent estimate of the
mean of the distribution.) The percentage mean absolute difference
(PMAD) between the mean from MLN and the mean from SLN was 0.1 percent.
The PMAD between the mean from MLN and the actual futures price across
all contract/days amounted to 0.45 percent, while the PMAD between the
mean from SLN and the actual futures price amounted to 0.51 percent. The
relationship between the mean from MLN and the actual futures price is
shown in Chart Four. Note that the contract/days in which there was a
substantial discrepancy between MLN’s mean and the futures price (points
off the horizontal line through zero) were the contract/days on which ac-

tual futures prices moved exactly $1.00, $1.50, $2.00, $3.00, or $4.00,

13. The bounds and errors plotted in charts One and Two differ slightly
from those used by the minimization routine for the following technical
reason: The minimization routine behaves significantly better if the
objective function is differentiable and if analytic derivatives are
supplied. The derived formulae for the bounds are not differentiable
since they include the Max operator. In estimation, we used a logit
weighting scheme to construct a differentiable approximation to the Max
operator where the weights on the two items in the Max move to zero and
one as the items move farther apart. The data plotted on the charts were
constructed using the actual formulae for the bounds, rather than the

differentiable approximation, together with the estimated distribution
and weights.
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that is, contract/days on which there was a limit move on the futures
contract. As discussed above, there were no limits in the options
market, hence the mean from MIN on these days should not be expected to
equal the futures price.

The similarity between the MLN and SLN distributions does not carry
over to higher order moments. Chart Five depicts representative prob-
ability density functions taken from the two methods; the top panel uses
estimates from the October contract on July 10th (3 weeks before the
crisis) and the bottom panel uses estimates from the January contract on
October 10th (in the midst of the crisis). Prior to the outbreak of the
crisis there is little qualitative difference in the two estimates, while
during the crisis the estimates from SLN cannot as easily accommodate the
significant probability mass above $50 per barrel. The SLN estimate is
forced to increase o, significantly extending the right-hand tail of the
distribution. Clearly, the oil market saw a significant chance of a
major disruption that had the capability of pushing prices to levels not
seen before.

Chart Six attempts to shed some light on the differences between the
right hand tails of the two estimates, using the April contract as an ex-
ample. The top panel plots 1.25*F$ along with ET[F0|F0>1.25*F$] from MLN
and SLN. The bottom panel plots PrT[FO>1.25*F$]. As can be seen from
the chart, the conditional expectation from MLN is generally above that
of SLN, while the probability from MLN is generally below that of SLN.
The reason for this result is visually apparent in the bottom panel of
Chart Five. The large o estimated via SIN forces relatively more of the
probability mass to the right but, since the distribution must remain

unimodal, leaves the bulk of the right-hand mass nearer the unconditional
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mean. These results hold across all the contracts. For 574 out of the
642 contract/days the conditional expectation from MLN is above that of
SIN. For 476 out of the 642 contract/days the probability of being above
1.25*F$ from MLN is below that of SLN. To make this more concrete: If a
policy maker or analyst were using the SLN estimates when the MLN were
closer to the truth, she would tend to overestimate the market’s assess-
ment of the probability of a major disruption while underestimating the
impact on prices of such a disruption.

These differences in the right-hand tails of the distributions are
also apparent when examining the pricing errors generated by SLN and MLN.
The right-hand tail of the distribution will be more important for pric-
ing out of the money calls and in the money puts. For out of the money
calls, across all contract days, SLN had a mean error (actual -
predicted) of $0.0865 compared to $0.0005 for MLN. For in the money puts
SLN had a mean error of $0.0445 compared to -$0.0004 for MLN. For these
options, SLN, on average, underpredicted the prices, again indicating
that SLN did not allocate enough probability mass to the right-hand tail.
As might be expected, SLN tended to overpredict the prices for in the
money calls (mean error of -$0.0430) and out of the money puts (mean er-
ror of -$0.0388), an overallocation of probability mass to the left-hand
tail of the distribution.

Although the differences between the estimates from MLN and those
from SLN are apparent, it is not obvious that these differences are sig-

nificant in a statistical sense. This issue is complicated since the SLN
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model cannot be nested within MLN.l4 Since the models are not nested,
the standard, asymptotic-chi-square assumption cannot be used when form-
ing a likelihood ratio test (or its F-test analog). Short of a Monte
Carlo simulation, little can be done to get around the non-nesting
problem. However, goodness-of-fit measures can shed some light on the
performance of the two models. The table below presents summary RMSE
calculations across all options and all days for each contract. These
measures are in dollars, presenting the average error across all the op-
tions for that contract. Using the October contract as an example, the
average error for MLN was a bit less than $0.02 while for SLN it was a
bit less than $0.07. (Both of these errors are relatively small, as
prices are recorded only to the nearest penny). As can be seen, the er-
rors from MLN are well below those for SLN. Additionally, the table
presents the number of days for which an F-test could not reject at the
five percent level the restrictions involved in moving from MLN to SLN,

acting as if the models were nested.15 This last column is not statisti-

14. The problem is as follows: We have two competing non-linear models

that explain a vector of option prices (y) on any given day. Denote the
two models by

(1Y y = g[wl, Ty, Mg, Uy, Uy, Ug, Oy, Oy, 63, Wy, W Z]

o
(2) y=hluw, al 2],

where Z represents the data matrix containing strikes and interest rates.

Model 2 can almost be nested within Model 1 (n,=mn,=0 or u,=u,=u, and

0,=0,=0,), except that g[] and h[] represent différent functlIonal forms.
In particular, g[] uses the weighted bounds where h[] uses the BAW
approximations.

15. The test statistic is given by

(ssel - sse2)/dfl
ssel/(df2-df1l)

(Footnote continues on next pagé)
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cally appropriate, given the non-nesting problem, but is presented as

informal evidence for model-selection.

Table 2
Contract MLN SLN Non-rejections/
RMSE RMSE Total Days

October .0156 . .0667 2/41
November .0184 .0724 2/66
December .0322 .0849 2/84
January .0367 .0832 6/104
February .0369 .1071 3/104
March .0341 .1339 3/99

April .0305 .1211 14/149

In sum, for most all of the contract/days considered, the formulation of
MLN appears to be preferred to that of SLN.

V.2 Selected Events

Throughout the Persian Gulf crisis, the o0il market often experienced
large movements in price when market participants’ expectations concern-
ing likely crisis outcomes were revised as "news" hit the market. It
makes for interesting storytelling, and further highlights the dif-
ferences between MLN and SLN, to compare estimated oil futures PDFs from

the two models immediately before and after receipt of the "news".

(Footnote continued from previous page)

where dfl equals eight (the ten parameters of MLN minus the 2 parameters
of SIN) and df2 equals the number of options for the particular
contract/day. This a conservative approach to the degrees of freedom;
were the models truly nested, MLN would reduce to SLN with either 2
(nl-n =0) or 4 (ul=u =Uy , 0,=0,=0 ) restrictions. The ambiguity in
restrictions is symp%omatic of a lack of identification for some of the
parameters of MLN under the null hypothesis that SLN is the true model.
See Breusch (1986). '
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On Thursday October 25, 1990 the London Financial Times carried a
report that Iraqi forces had attached explosives to 300 of Kuwait's 1000
0il wells, quoting a senior Kuwaiti engineer who had left Kuwait one week
earlier. This revelation pushed o0il prices up sharply, with the futures
contract nearest to expiration (December) rising $3.17 per barrel. Chart
Seven plots the PDFs from MLN and SLN for October 22 (top panel) and
October 25 (bottom panel) using the January contract. On October 22,
market expectations for futures prices were centered quite tightly around
$24 per barrel. The news of the mining widened each model’s distribution
significantly, with MLN allowing for a sizeable probability mass between
$60 and $70 per barrel.

The largest one-day change in oil prices in NYMEX history occurred
on Thursday January 17, 1991 when 1) several governments announced a
coordinated release of oil from their emergency inventories and 2) it be-
came clear that the coalition forces had total air supremacy. On January
17 the settle price for the March contract fell $9.66 while the settle
price for the April contract fell $7.82. The six panels of Chart Eight
trace the evolution of expected PDFs on the days surrounding January 17.
Prior to the first air strike (as can be seen in the first two panels),
the market was still expecting a fairly significant chance of a major oil
market disruption (perhaps Iraqi damage of Saudi Arabian oil facilities)
that could push prices to the $40-$60 per barrel range. On January 17th
these PDFs tightened dramatically, and on ensuing days the PDF generated
from MLN moved closer and closer to that from SLN. By January 23, there
was little difference between the two PDFs, as the market returned to al-
most a pre-crisis distribution (compare panel 6 with the top panel of

Chart 2). Through March of 1991 (the end of our data sample) there was



little difference between the two models, as evidenced by the relatively
large number of non-rejections for the April contract in the Table 2

above.

VI Conclusion

This paper develops a method for using option prices to estimate the
market’s probability distribution for commodity prices. The method is
quite general, allowing the standard lognormal distribution to be re-
placed by any from within a wide class of distributions. The particular
assumption of a mixture of three lognormal distributions used here was
driven by conditions in the oil market during the Persian Gulf crisis.
As the focus is only on the commodity’s probability distribution, no
structure is placed on the stochastic process governing movements in the
commodity price over time, unlike jump-diffusion methods. This lack of
structure is appealing, although the method is silent on the evolution of
prices which yield the distribution at the option’s expiration. Our
methodology should be useful to researchers who wish to impose a minimum
of structure and are 1) examining other markets during unsettled times,
or 2) investigating asset price distributions that are not adequately
described by the lognormal distribution (e.g. leptokurtotic
distributions). The major limitation of our method is that it is only
directly applicable to those markets where price.changes are uncorrelated
with changes in the market portfolio.

In the application to the oil market we find that the options
markets were consistent with the market commentary at the time, in that
they reflected a significant probability of a major disruption in oil

prices. We find that the estimated price of oil conditional on a major



- 29 .

disruption was often in the $50-$60 per barrel range, which is also con-
sistent with market commentary. We also find that the standard lognormal
assumption did a poorer job of characterizing the data than did our
method. In particular, we find that if policy makers or analysts had
used the distribution from the lognormal model where our model was closer
to the truth, they would have generally overestimated the market's as-
sessment of the probability of a major disruption and underestimated the
impact on prices of such a disruption.

Finaliy, examination of particular days confirmed the large shift in
market expectations that occurred when significant crisis-related news

reached the oil market.
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Appendix

Theorem One:

Given a period T futures price of Fz, let the true sequence of tran-

sition probabilities be given by {wi ,WT'l,...,Wl}, implying that the
. . . . . R . . T T t-1
period-T distribution for futures in period 0 is given by I' = ¢m 'tETW x

Of all sequences that yield FT, the value of an option (put or call) is

greatest for the following: {FT,I,I,...,I}. For this sequence, the value of

the call option is given by CT[Fm] = Max[Fm-x, pT FT- Max[Fm-x, 011.

Proof:

The proof has three steps. 1In step one we take an arbitrary se-

quence of transition probabilities that yields T and replace it with an

alternative sequence where Wl is replaced with the identity matrix and Wz is

replaced with ﬁz = Wz- Wl (FT is obviously unchanged). We show that in

period 2 the value of the option under the original sequence is no greater
than under the alternative sequence. In step two we show that given a se-
quence of transition probabilities of the form

{¢£ ,WT-l,...,WT-h,I,I,...,I}, the option will never be exercised after

T-h-1, so it can be treated as though it expired in period T-h-1 and had

transition probabilities given by {¢£ ,WT-I,...,WT'h}. In step three we

note that repeated application of step one to the ever shorter sequence of

transition probabilities produced in step two eventually gives us
{FT,I,I,...,I} as the sequence which yields the maximum value for the option

. . T .
for all sequences consistent with I'". For this sequence the value of the

option is as given in the statement of the theorem.

Step One: We want to show that the value of the option in period 2

under the original process is no greater than the value of the option in
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period 2 under the alternative process. We make the argument for.call op-
tions, but the analogous argument for puts is transparent.

Under the original process the period-2 value of the American call
option for any state m, is given by the following:

2.2 2 20,2 1 1c, 1 0
(1) C*[F,] = Max[F_-x, p §WmdMax[Fj-x, p ijkMax[Fk-x, 01]1].

Its value under the alternative process is given by

=22 2 2¢:2 1 1 0
(2) C°[F ] = Max[F_-x, p EwmkMax[Fk—x, p EIanax[Fn-x, 01]1].
=2 2 2. .2 sy s s e
To prove that C [Fm] =2C [Fm] for all m, it is sufficient to prove
=2 1 1 0
(3) | EwmkMax[Fk—x, p Elanax[Fn-x, 0]] =

2 1 1
§¢ijax[Fj-x, pléwjkMax[Fg-x, 0]]

To prove (3), we assume it does not hold and show that a contradic-

tion results. Thus we assume

=2 1 0 2 1 1 0
(4) EwmkMax[Fk-x, pEIanax[Fn-x, 0]] < ?ijMax[Fj-x, pEijMax[Fk-x, 0]]

where the superscript on pl is suppressed. The identity matrix weights in
(4) collapse to yield

=2 1 0 2 1 1 0
(5) EwmkMax[Fk-x, pMax[F, -x, 0]] < ?ijMax[Fj-x, pEijMax[Fk-x, 0]].

. 1 .0 1 0
Since Fy = F and 0 < p < 1, ((F-%) > p(Fo-x)) o ((Fg-x) > 0). Thus the
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interior Max[] on the LHS of (5) can be eliminated to yield

-2 0 2 1 1 0
(6) E@mkMax[Fk~x, 0] < ?wmjnax[Fj-x, pEijMax[Fk-x, 01]

Let @ = (j : (F} -x) > pZW}kMax[Fg-x, 0] } and let \Q denote its complement.
k

Then (6) can be written as

1 0
(7) 2w Max[F -x, 0] <J§Qw J(FJ x) + pJg\ng ijknax[pk-x, 0]

1 0

Using the martingale assumption, F} -V jk k’ and the fact that for all

k

Markov transition matrices ijk = 1 Vj, (7) yields

k

(8) 2w Max[Fo-x, 0] < Z ¥2 ) Tt k(F -x) + pJé\W EW}kMax[Fg-x, 0]

Let A = ) 2 ZW Max[F -x, 0]. Adding and subtracting A from the RHS of

Je\ﬂmJ
(8) gives
(9) Zw Max[F -x, 0]] <} ¥2 Zw k(F -x) +
jen ™ i J

Y ¥? ZW Max[F -x, 0] + (p-1)A.
jea™ k&
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Let A = {k : Fg~ X > 0). Then the remaining Max[] operators in (9) can be

eliminated to yield

(10) 2 2 k(F -x) < ). 2

0
A szk(F -X) + ), w2 Y . k(Fk-x) + (p-1)A.

Je\ﬂmJ keA j

Separating terms by A on the RHS, we have

1 0
(11) Z 2 (F -x) <Y 2 Y vl (F -x) + ), 2 Y v, (F-x) +
mk jen ™ wep JK jea ™ we\adk Tk

Lwi. T UL (FO-x) + (p-D)A.

Je\QmJ keA j

Combining terms for O and \Q yields

(12) 2 @2 (F -x) <)Y ¥ Y w (F -x) + ) v2 ) ol (F -x) + (p-1)A.
mk j mJ kea J jea mJ ke\AJk

Reversing the order of summation in the first term on the RHS gives us

(13) 2 P2 (FO-x) < Z T ¥ Fo-x) + 02 Tub (B0-x) + (p-D)a.
mk ; jk ol aaike Tk

. =2 .
By comstruction ¥ = § WmJ k' S° (13) yields

(14) Z #2, (¥ -x) < z w (F -x) + ). 2 Y vl (F -x) + (p-1)A.
mk ™k jen mj ke\AJk

Subtracting ) @ik(Fg-x) from both sides yields
keA
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2 1 0
(15) 0 <jénwmj ké\ﬁjk (Fi -x) + (p-1)A.

By construction of A, Vk € \A, (FE - xX) =0, so Z Wz. Z Wlk (Fg—x) < 0.
jen ™ ke\al

Since A is the sum of terms of the form Max[Fﬁ-x, 0], A must be non-

negative, which implies (p-1)A is non-positive. Thus the RHS of (15) cannot

be positive and we have a contradiction. This completes step one.

Step Two:

Given a sequence of transition probabilities of the form
{¢$.,WT-l,...,WT-h,I,I,...,I), the option will never be exercised after
T-h-1, and it can be treated as though it expired in period T-h-1 and had
transition probabilities given by {¢$.,WT'1,...,WT—h}.

Proof:

By assumption, Vt: 0 < t < T-h, ¥t - I so the value of the option is
given by

t t t-1 t.t-1
(16) C [Fj] - Max[Fj-x, p EIJnC [(F 1] = Max[Fj-x, p C [Fj]]

Let @ = (j: Fj-x > 0}. For all j € q, CO[FJ] = Max[Fj-x, 0] = Fj-x. Since

0 < p <1, by induction over (16) we have

(17) Ct[Fﬁ] - (Fyx), Vjea, Ve 0<t<Th,

By construction, Vj € \Q, Fj-x < 0, so Co[Fj] = Max[Fj-x, 0] = 0. Again by

induction over (16) we have
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(18) Ct[Fj] -0 Vje\n, Vt:0<t<T-h.

Combining (17) and (18) we have

(19) Ct[Fj] =;Mafo;-x, 0] Vt: 0 < t < T-h.

In particﬁlar:;uﬁdef the assumed sequence of transition probabilities

T+h-1

(20) C [Fj] = Max[Fj-x, 0].

But (20) is simply the value of an option that expires in period T-h-1.
Thus the value of the option under the assumed sequence is the same as the
value of ansoptian'éhétvexpifés in period T-h-1 with transition probabil-

ities givéﬁ By‘{¢$ ;ﬁ?ml,;{{,wT-h). ' This completes step two.

Step Three:

Whatever form this shorter sequence from step two takes, from step

one, we know it can be no greater than the sequence where WT-h is replaced

T-h+l is replaced by @T'h+l= WT-h+1- WT'h,

by T and ¥
Tﬁevrépeateq'application‘of'steps one and two eventually leads to a
sequence of transition probabilities of the form ({(I',I,I,...,I1).
With these transition probabilities, and the knowledge that the op-
tion will never be exercised after period T-1, the value of the option under

this sequence can be expressed as follows
(21)  GY[F ] - Max[E _-x, p'T - Max[F -x, 0]]
m L | T m

This completes the proof.

Theorem Two:
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Given a period T futures price of Fi, let the true sequence of tran-

T-1 1

sition probabilities be given by {¢$ U .,¥7}, implying that the

T T t-1

period-T distribution for futures in period 0 is given by I'" = ¢m -thW 1

For all sequences of transition probabilities that yield FT, the value of an
option (put or call) is smallest for the following sequence:

{Im ,I,...,1, 1M- FT), where 1M is an Mxl vector of ones. For this se-

quence, the value of the call option is given by CT[Fm] -

T T, Max[F _-x, 0]] where ﬁTs Hpt

Max[F_-x, p .
m t=T,..,1

Proof:
The proof is analogous to that of Theorem One and we only sketch it
here. Replace ¢$ with I and replace o'l wien 9771 - Ly - ¢$ cytl

The value of the option will be less than or equal to the option’s value un-
der the original sequence. Under this new sequence the option will not be
exercised in period T-1 and its value in T-1 can be expressed in terms of
Fi, ﬁT-l, and‘CT'z[FT-z] where CT-Z[FT-z] is a function of the remaining
original transition probabilities. No matter what the remaining original
transition probabilities are, we can lower the value of the option in T-1

1

(while preserving PT) by replacing #T°1 with T and replacing v1°2 yith

72 371 . 4Tl ynder this new sequence the option will not be exer-

cised in periods T-1 or T-2 and its value in period T-2 can be expressed in
terms of Fi, @T-Z’ and CT'3[FT-3] where CT-3[FT73] is a function of the

remaining original transition probabilities. The process continues until we

are left with a sequence of the form {Im ,I,...,1I, IM- FT).

Under this sequence the value of the option in period T can be ex-

T

pressed as CT[Fm] = Max[Fm-x, p) FT- Max[E -x, 0]. This completes the proof.
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Chart 1

For a Typical Day’s Estimated Distribution
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Chart 3

For a Typical Day

Implicit Density Functions
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Futures Price - Expected Price (3)
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Chart5
Implicit Density Functions

On July 10 for October Contract
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Chart 6
April Contract

Expected Price Given Price > Fut+25%
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Chart7

Mining of Wells: Density Functions from April Contract
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Chart 8

Air War: Density Functions from April Contract
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