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ABSTRACT

Parameter constancy and a model's mean square forecast error are two commonly used
measures of forecast performance. By explicit consideration of the information sets involved,
this paper clarifies the roles that each plays in analyzing a model's forecast accuracy. Both
criteria are necessary for "good" forecast performance, but neither (nor both) is sufficient.
Further, these criteria fit into a general taxonomy of model evaluation statistics, and the
information set corresponding to a model's mean square forecast error leads to a new test
statistic, forecast-model encompassing. Two models of U.K. money demand illustrate the

various measures of forecast accuracy.
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Parameter Constancy, Mean Square Forecast Errors, and
Measuring Forecast Performance: An Exposition, Extensions, and Illustration

Neil R. Ericsson!

1. Introduction

Parameter constancy and the mean square forecast error (MSFE) are two commonly
used measures of the forecast performance of empirical macro-models. Parameter constancy
has long been viewed as a desirable economic and statistical property, and it is closely linked
to the issue of predictive failure; cf. Chow (1960) and Hendry (1979). Further, parameter
constancy can imply super exogeneity, which is necessary to sustain counter-factual policy
simulations of an econometric model; cf. Hendry (1988). Lack of parameter constancy can
induce apparent unit roots, posing potential difficulties when testing for cointegration;
cf. Hendry and Neale (1991). The MSFE is a common criterion for evaluating the
performance of alternative macro-models; cf. Fair (1986) for a general discussion and Meese
and Rogoff (1983) for a classic example with models of the exchange rate.

Sometimes, the literature has viewed these two forecast criteria as competing rather
than complementary. Thus, this paper aims to clarify the roles of parameter constancy and the
MSEFE in evaluating the forecast accuracy of a model.

Section 2 works through some simple examples to show that (i) parameter constancy is
neither necessary nor su\fficicnt for minimizing MSFE across a given set of models, and
(ii) both criteria together are necessary but not sufficient to obtain the best forecasting model,
even on only the data available from the given set of models. Section 3 explains why,

showing that parameter constancy and minimizing MSFE are criteria that evaluate a given

Forthcoming in a special issue of the Journal of Policy Modeling entitled Cointegration,
Exogeneity, and Policy Analysis. The author is a staff economist in the Division of
International Finance, Federal Reserve Board. The views expressed in this paper are solely the
responsibility of the author and should not be interpreted as reflecting those of the Board of
Governors of the Federal Reserve System or other members of its staff. I am grateful to Julia
Campos, Frank Diebold, Hali Edison, David Hendry, David Howard, Ross Levine, Jaime
Marquez, Garry Schinasi, and P.A.V.B. Swamy for useful comments and discussions, and to
Hong-Anh Tran for invaluable research assistance. I am particularly indebted to Edison,
Schinasi, and Swamy, whose empirical papers on modeling and forecasting exchange rates
motivated this paper; cf. Edison (1985), Edison and Klovland (1987), Edison (1991), Schinasi
and Swamy (1989), and Swamy and Schinasi (1989). All numerical results were obtained
using PC-GIVE Version 6.01; cf. Hendry (1989). '
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model (respectively) against that model's own data and against other models' data. Both are
reasonable criteria, but other criteria are also important for determining the forecast adequacy
of an empirical model. Section 4 introduces a new model evaluation criterion, "forecast-
model" encompassing, and the corresponding test statistic. Further, Section 4 shows that
minimum MSFE, forecast encompassing, and forecast-model encompassing parallel variance
dominance, variance encompassing, and parameter encompassing respectively.  Section 5
discusses several implications for forecasting integrated and cointegrated variables. Section 6
comments briefly on the role of time-varying coefficient models in forecasting. Section 7
illustrates the various forecast-based criteria with an application to two models of narrow
money demand in the United Kingdom.

Before turning to the heart of the paper, three remarks may be helpful. First, the results
in this paper are quite general. However, to illustrate the central concepts, simple, static,
Gaussian models are used as examples throughout. See Hendry and Richard (1982) for a
framework in which more general results may be obtained.

Second, in order to abstract from sampling issues, results are often presented as
"asymptotic". This in no way invalidates the results, but simply permits a clearer exposition.

‘Third, the concept of an "adequate forecasting model" is intentionally left vague.
Roughly, such a model efficiently uses the information available for creating forecasts. It is
defined in part by its negation. For instance, a model is inadequate for forecasting if its
forecast errors are predictable, a situation including both parameter nonconstancy and lack of
forecast encompassing (as will be seen below). For Gaussian processes, minimum MSFE is a
condition for forecast adequacy, but Section 2 below shows that it is not sufficient because the

corresponding errors may still be predictable.

2. Parameter Constancy and Minimizing MSFE

This section shows that: (i) parameter constancy is neither necessary nor sufficient for
minimizing MSFE across a given set of models, and (ii) both criteria together are necessary
(but not sufficient) to obtain the best forecasting model on the data available. Four

"propositions” establish (i) and (ii), which are illustrated by some simple examples. The
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analytical form of the MSFE and of Chow's (1960) “prediction interval" statistic clarifies the
absence of relationship between minimizing MSFE over a set of models and obtaining
parameter constancy for an individual model.

To show the lack of connection between parameter constancy and minimizing MSFE,
consider the following simple process in which the dependent variable A is linearly dependent
upon three regressors, each of which is normally and independently distributed.

Models and the data generation process. Suppose that the data (y[, t=1,...,T+n) are
generated by:

Yo = Bixp + Byxy + Bixg, + g g ~ NID(0,02) , (1a)
and the x;'s are normally and independently distributed (NID):

Xy ~ NIDO,w,;) ‘ i=1,2,3, (1b)
where @;, the variance of x;, may change over time. The double index on @, denotes that the
variance is the ith diagonal element from the (diagonal) contemporaneous covariance matrix
(Q) of the {x;}. Equations (1a)-(1b) are referred to as the data generation process (DGP). To
exclude trivial cases, 02 and all @,'s are positive and all B;'s are nonzero.

The econometrician does not know the DGP, and estimates the following (mis-
specified) models by OLS over a subsample [1,T] and evaluates their forecast performance

over n periods [T+1,T+n].

M;: Yo = O4X t U, Up ~ NID(O’O%) (2a)
MZ: o = ylxlt + Y2x2[ + Uy Uy, ~ NID(O’G%) (2b)
Mz: y = Gixg + 833, + U3, us, ~ NID(0,6%) (2c)

The sets of coefficients {y}, {7,712}, and {§,,8;} are used to distinguish the models'
coefficients from the underlying coefficients of the DGP, i.e., { B..B,.B5}. For convenience, Y
denotes the prediction of y in period j, using the parameter estimates from model M; estimated
over [1,T]. For example, 372j is:

5 = VXt Yara j=T+1,..,T+n, 3)
where 5’1T and ?ZT are the coefficients y, and 7,, estimated over [1,T].

The MSFE for the ith model is:



T+n
MSFE; = &[ Y (yj—§fij)2/n ] i=1,2,3, (4a)
J=T+1

where the expectation &[-] is over {¢}. For the models discussed in this paper, each term in
the summation in (4a) has the same expectation, so MSFE; = & [(y;¥;;)?], independent of j, for

J=T+1,...T+4n.

In practice, the MSFE is estimated by the sample average of the squared forecast errors:

- T+n
MSFE;, = Y (yj-yij)z/n i=1,2,3, (4b)
J=T+1

for the ith model. Most of the discussion in this paper is in terms of the underlying population
moments, 1.e., the MSFE, thereby abstracting from the additional complication of the sampling
distribution of (4b).2

Parameter constancy may be evaluated by any of a number of statistics, with Chow's
(1960, pp. 594-595) "prediction interval” statistic being one of the more common.3 The Chow

statistic can be written as:

CHOW;(n,T-k) = { (Y™™ ?T"")'[Var(Y?"-YT*“)]'I(YE'I‘-Yﬁ‘;)/n (&2 J0% )

T+1 " T+l +1 " T+l
T+n )
— Y A -
= | ) z (y_l yU) /n }/GiT + Op(T 1)
J=T+1
= FE./62 -1
MSFEx/O'iT + Op(T ), (5)
T+n S T+n T+n

where YT+1=(yT+1“‘yT+n) s YT+1 is the forecast of Y.

by model M;, 6’? is the estimated

T+1 T
equation error variance for model M; over [1,T], k; is the number of regressors in model M;,

and Op(T-l) denotes a term of order T-! in probability. As (5) clarifies, the Chow statistic in

2Note that the estimation and forecast periods do not overlap. By contrast, (e.g.) dynamic
simulation uses overlapping (usually identical) estimation and "forecast” periods. Mean square
forecast errors from such simulations may have quite different properties from those discussed

herein. See Hendry and Richard (1982), Chong and Hendry (1986), and Pagan (1989) on the
role of dynamic simulation in model comparison.

3Chow (1960) also discusses a parameter constancy test statistic based on the analysis of
covariance, in which estimates of the coefficients over the two subsamples are compared for
equality; see Fisher (1922) for its original development. This statistic is distributed as
F(k;,T+n-2k;) under the null hypothesis, with classical assumptions about the regressors and
disturbances. This covariance test statistic is sometimes (and confusingly) referred to as the
"Chow statistic" although Chow (1960, p. 592) was well aware of its presence in the literature.
In the current paper, the phrase "Chow statistic" refers exclusively to Chow's prediction
interval statistic (5).

Wilson (1978) discusses conditions under which each of the Chow (prediction interyal)
statistic and the covariance statistic is uniformly most powerful. Fisher (1970) and Dufour
(1980) present intuitive derivations of the two statistics.
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effect tests whether each of the forecast errors of a given model has zero mean, ie.,
& (yj-)“'ij)=0 for j=T+1,...,T+n. It does so by comparing the mean square forecast error against
the estimated error variance over the estimation subsample. Under the null hypothesis, and
with fixed regressors and normal disturbances, the Chow statistic is distributed as F(n,T-k;).
"Significant” Chow statistics are often referred to as "predictive failure”; cf. Hendry (1979).4

To simplify the analysis even further, suppose that T is large enough so the uncertainty
in estimating the model parameters can be ignored when considering the characteristics of the
MSFE and the Chow statistic. This assumption and virtually all assumptions in (1)-(2) are for
expositional purposes only, and most of the results below obtain under more general conditions
(e.g., nonlinearity; autocorrelated, multicollinear, endogenous regressors, more or fewer
regressors relative to those in the models here; non-normality of the errors and/or regressors).

Examples 1 and 2 consider two situations, one in which all population data moments

are constant and the other in which some of them change over time.

Example 1: constant population data moments. This is equivalent to having
(@, B;, i=1,2,3) and 62 constant in (1).

All models (i.e., M, M,, M3) will have constant parameters because the corresponding (OLS)
estimators are functions of the sample data moments, with the sample data moments being
constant in expectation (by assumption). For the DGP in (1), OLS for each model in (2) is
unbiased for the relevant subset of { B1.B,.B;}, and is so only because the regressors are
uncorrelated with each other and are static. That property does not generalize. However, even
with (e.g.) correlated regressors, constant population data moments are sufficient for parameter

constancy.

From (1) and (2), it follows directly that the mean square forecast errors for M, M,,

and M3 are:

4The first term on the last line of (5) is 1/n times Hendry's (1979) x2 statistic for testing the
numerical accuracy of the forecasts. Chow's statistic tests their statistical accuracy by
accounting for the uncertainty arising from estimating (rather than knowing) the regression
coefficients. This affects only the finite sample distribution of the statistic: Hendry's and
Chow's statistics are asymptotically equivalent. Because coefficient uncertainty is ignored for

the most part in this paper, the equivalency proves useful, given the simpler form of Hendry's
statistic. '



MSFE, = o2+ o, + foy, (62)
MSFE, = o2+ R, (6b)
MSFE; = o2+ o, . (6¢)

Clearly, M; has the largest MSFE; the ranking of M, and M; depends upon the relative

magnitudes of f3w,, and Bw;;. This indeterminacy leads to the first proposition.

Proposition 1. If a model has (empirically) constant parameters, it can have
either a smaller or a larger MSFE than some other model.

That is, parameter constancy is not sufficient for obtaining the smallest MSFE among a set of

models.

Nonconstant population data moments help demonstrate the lack of necessity.

Example 2: nonconstant population data moments. Suppose that the variance of
X,, increases from @,, to w}, at time T+1 and remains at @}, thereafter.

For models M; and M3, the increase from ®,, to @}, implies a forecast error variance larger
than the estimation subsample error variance, so the Chow statistic will indicate parameter
nonconstancy. If regressors are correlated, either or both models may have coefficient
nonconstancy, apparent (e.g.) through graphs of the recursively estimated coefficients.

The mean square forecast errors for the models are:

MSFE;, = o2+ Bk, + fBos, (7a)
MSFE, = o2+ R, (7b)
MSFE; = o2+ o}, . (7c)

Again, My has the largest MSFE, but the ranking of those for M; and M3 could be the same as
(or different from) the ranking of (6), depending upon w%,. Further, whether or not a model
exhibits parameter nonconstancy has little to do with its ranking by MSFE. For instance, M3
can have a smaller or larger MSFE than M,, depending upon the values of 3%, and ffwss,

but M3 exhibits parameter nonconstancy whereas M, does not. This indeterminacy implies

another proposition.

Proposition 2. If a model has (empirically) nonconstant parameters, it can have
either a smaller or larger MSFE than some other model.

That is, parameter constancy is not necessary for obtaining the smallest MSFE among a set of



models.

Whether the parameters of the "other" model are constant or not makes no difference to
either Proposition 1 or Proposition 2, and this provides a different view on the lack of necessity

and sufficiency.

Proposition 3. For both Propositions 1 and 2, the constancy or otherwise of the
"other" model is immaterial.

For instance, consider a fourth model:

Mgy, = Xy, + Uy, u,, ~ NID(0,57) , (8a)
which has MSFE:

MSFE; = o2+ o, + foy, . (8b)
Model My has constant parameters, but its MSFE may be smaller or larger than that for M;
(which has nonconstant parameters), depending upon the relative variances of the Tegressors.
Hence, parameter constancy is neither necessary nor sufficient for minimizing MSFE across a
given set of models. Table 1 summarizes the properties of these models; Figure 1 provides a
schematic of their relationships in terms of MSFE.

The ranking of models by MSFE can change across subsamples as well. For instance,
the ranking of the models above depends upon the variances of the regressors, and those need
not remain constant over subsamples. Unless a model is well-specified in a very general sense
(i.e., "congruent" with the evidence; cf. Hendry (1987), Campos and Ericsson (1988), and
White (1989)), there is no guarantee whatsoever that an observed ranking in mean square
forecast error will obtain over different sample periods.

Finally, consider the relationship between the properties of parameter constancy and

minimizing MSFE, and an adequate forecasting model.

Proposition 4. Individually and jointly, parameter constancy and minimizing
MSFE are necessary but not sufficient to ensure an adequate forecasting model.

Necessity is shown by considering the implications of lacking either property.
Specifically, forecast errors from a nonconstant model contain a predictable element (e.g.) by
imposing an incorrect coefficient on the variable with nonconstant moments. For instance, M3

imposes a zero coefficient on x,,. Also, a model that.does not minimize MSFE, does not do so
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Table 1. Models for the discussion of MSFE and parameter constancy

Model Equation MSFEl. Constancy!
M, Yo T Xyt Uy 02 + ﬁ%a%(Z + ﬂ%w% No
My y = 7ixp+ Yaxg + Uy, 0% + Bws, Yes
M3 y, = §x, + 83Xq, + Uy, o2 + B3, No
_ )
M; Vi = Xt Xy + Xy, + Us, o2 Yes
DGP y, = Bix; + By + Bixs, + € o2 Yes
Note:

1Model constancy is evaluated under the condition that the variance of Xo changes at time

T+1, i.e., that w3,#m,,. Hence, models excluding X,, are nonconstant.

Figure 1. The ranking of MSFE, across models'*2

\/\
\/

1Arrows denote direction of decreasing MSFE. The ranking of MSFE is indeterminate for
each of the following pairs of models: ( A 3,) (M3, A ) and (M )

2Models in W are always constant. Models in roman are nonconstant if @%,#®,,, and are
constant otherwise.

Notes:
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because it makes inefficient use of the information available for forecasting. A model that has
constant parameters and does minimize MSFE across a set of models meets a necessary
condition for being an adequate forecasting model. However, that condition is only necessary,
and is not sufficient.

Lack of sufficiency can be shown, as follows. For the DGP and models above, model
M, has constant parameters and, if B3}, is larger than B}e,;, M, minimizes MSFE among the
models M;, My, M3, and My. However, the forecast errors for M, are:

Uy = Yj-Vy = Byxsj+g j=T+1,...,T+n, 9
and so are predictable on the data sets available to the models M;, My, M3, and M. The
Tegressor Xs; is valuable in forecasting y;» and M, ignores that information but M3 does not.
Technically speaking, the forecast error ﬁ2j 1S not an innovation with respect to the information
set generated by models M;, My, M3, and M.

This analysis clarifies why minimizing MSFE is not enough for obtaining a good
forecasting model. Although model M, minimizes MSFE over the set of models M;, My, My,
and (if Fjasy;<P3ars,) Ms, the forecast errors of each model may be (in part) predictable from
some other model's data.

Conversely, it is possible to create a model from the data of those four models which
uniformly dominates M;, M3, My, and M, in MSFE, and which has constant parameters. One

such model, denoted Ms, is:

Ms:  y, = mxg + TyXy + MyXg, + Us, us, ~ NID(0,6%) , (10a)
with MSFE:
MSFEs = o2. (10b)

Model Ms has a smaller MSFE than even M, and has constant coefficients. Model M;
happens to be the DGP and happens to nest M;, M;, M3, and My, but neither property is
necessary for it to "dominate” the other models in terms of MSFE. Rather, model M;s
dominates M;, M, M3, and M, because the forecast errors of any one of those four models are
in part predictable from the regressors used in Ms, but not conversely. Note also that € itself
may be in part predictable on a larger information set, in which case the corresponding model's

MSFE would be smaller than 62 in (10b). Hendry ( 1986) discusses some of these issues in the
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related context of n-step ahead ex ante forecasts from macro-models.

If a model M, minimizes the MSFE over a set of models {M.}, that shows that the
other models are worse in a specific sense. It does nor show that M, is a good forecasting
model, even on only the data available in the models {M;}. Even jointly, parameter constancy
and minimum MSFE do not ensure efficient forecasting from the information available.
Hence, there exists a need for more powerful tools in evaluating the forecast performance of
models. The key to designing those tools is the information set against which models are
being evaluated when MSFEs are compared. In Section 3, information sets resolve the logical
status of parameter constancy vis-a-vis minimum MSFE. In Section 4, information sets define

a taxonomy for test criteria, with parameter constancy and minimum MSFE being members of

that taxonomy.

3. Information Sets

Information sets help clarify both why the MSFE and parameter constancy are sensible
criteria for evaluating how "well" a model forecasts, and why having constant parameters and
minimizing MSFE over a set of models are not in general sufficient conditions for obtaining an
adequate forecasting model. The MSFE and tests of parameter constancy evaluate a given
model against different sources of information, being either other models' MSFEs or the given
model's fit over the estimation subsample. The former is obvious; the latter follows from (5),
the equation for the Chow statistic. Expressed somewhat differently, the Chow statistic
evaluates a given model over different subsamples of that model's data, whereas minimizing
MSFE evaluates several models over a given subsample but across the models' different
datasets. The informational content of an alternative model's data and of the data of one's own

model need not be (and generally are not) equivalent, so tests based on those information sets

need not give similar results.

4. The Roles of Parameter Constancy and MSFE in Empirical Modeling
This section discusses how parameter constancy and minimizing MSFE fit into a
general framework for evaluating (and designing) empirical models. That framework is based

on the information sets against which models are evaluated and designed. It clarifies the
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relationship of parameter constancy and minimizing MSFE to other test statistics. It also
results in a new test statistic, forecast-model encompassing, which is a more general and more
stringent criteria for evaluating forecast performance than minimizing MSFE.

How well or poorly designed an empirical economic model is depends upon its ability
(or lack thereof) to capture salient features of the data and to deliver reliable inference on
economic issues (e.g., coefficient estimates, predictions, policy effects). Many statistics exist
for evaluating such properties of a model; they relate to goodness-of-fit, absence of residual
autocorrelation and heteroscedasticity, valid exogeneity, predictive ability, parameter constancy,
the statistical and economic interpretation of estimated coefficients, the validity of a priori
restrictions, and the ability of a model to account for properties of alternative models. These
test statistics can serve as criteria both for evaluating existing specifications and for designing
new ones. Table 2 summarizes the statistics, which are arranged by the type of information

generating testable null hypotheses:

(A) the data of one's own model,

(B) the measurement system of the data,
(C) economic theory, and

(D) the data of alternative models.

For details, see Spanos (1986), Hendry and Richard (1982), Ericsson and Hendry (1985),
Hendry (1987), and Ericsson, Campos, and Tran (1991).

Parameter constancy belongs to category (A3) in Table 2 [the relative future of the data
of one's own model], and is at the heart of model design, both statistically and economically.
Most estimation techniques require parameter constancy for valid inference, and those that
seem not to do so, still posit "meta-parameters" assumed constant over time. Since economic
systems appear far from constant empirically, and the coefficients of derived ("non-structural"
or "reduced form") equations may alter when any of the underlying parameters or data
correlations change, it is important to identify empirical models which have reasonably

constant parameters and which remain interpretable when some change occurs.5 That puts a

5See Goldfeld and Sichel (1990) for a discussion of the nonconstancy of many estimated
money-demand equations. That nonconstancy implies nonconstancy in one or more of the
equations of the underlying data generation process.
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Table 2. Evaluation/design criteria

Information Set

Null Hypothesis

Alternative Hypothesis

References

(A) own model's
data

(Al) relative
past

"

(A2) relative
present

(A3) relative
future

(B) measurement
system

(C) economic
theory

(D) alternative
models’ data

(D1) relative
past

"

(D2) relative
present

(D3) relative
future

"

innovation errors

normality of the
errors

weakly exogenous
Tegressors

constant parameters,

adequate forecasts

data
admissibility
theory
consistency

variance
dominance

variance
encompassing

parameter
encompassing

exogeneity
encompassing

MSFE dominance

forecast
encompassing

forecast-model
encompassing

first-order residual
autocorrelation

qth—order residual
autocorrelation

invalid parameter
restrictions

qth—order ARCH

heteroscedasticity
quadratic in regressors

qth—order RESET

skewness and
excess kurtosis

invalid conditioning

parameter nonconstancy,
predictive failure

"impossible” predictions
of observables

"implausible” coefficients,
predictions; no cointegration

poor fit relative to an
alternative model

inexplicable observed
error variance

significant
additional variables

inexplicable valid
conditioning

poor forecasts relative to
those of alternative models

informative forecasts
from alternative models

regressors from alternative
models valuable for forecasting

Durbin and Watson (1950, 1951)

Box and Pierce (1970);
Godfrey (1978), Harvey
(1981, p. 173)

Johnston (1963, p. 126)

Engle (1982)

White (1980, p. 825),
Nicholls and Pagan (1983)

Ramsey (1969)
Jarque and Bera (1980)

Sargan (1958, 1980), Engle,
Hendry, and Richard (1983)

Fisher (1922), Chow (1960),
Brown, Durbin, and Evans
(1975), Hendry (1979)

Engle and Granger (1987)

Hendry and Richard (1982)

Cox (1961, 1962),
Pesaran (1974), Hendry (1983)

Johnston (1963, p. 126),
Mizon and Richard (1986)

Hendry (1988)
Granger (1989),

Granger and Deutsch (1991)
Chong and Hendry (1986)

(this paper)
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premium on good theory. Conversely, empirical models with constant parameterizations in
spite of "structural change" elsewhere in the economy may provide the seeds of fruitful
research in economic theory. Parameter constancy typically is evaluated by comparing
parameter estimates of a given model obtained from different subsamples of data. Recursive
estimation of an equation provides an incisive tool for investigating parameter constancy, both
through the sequence of estimated coefficient values and via the associated Chow statistics; cf.
Dufour (1982).

Minimizing MSFE, like parameter constancy, focuses on the 'relative future", but on
that of alternative models' data rather than on the data of one's own model. Thus, MSFE
dominance belongs to category (D3). Because the structure of (D3) parallels that of (D1) [the
relative past of alternative models' data], (D1) is briefly discussed to elucidate the connections
between the two. Also, for reasons which will be apparent shortly, the criterion of minimizing
MSFE will be referred to as MSFE dominance.

Parameter encompassing, variance encompassing, and variance dominance. Consider
the following two alternative non-nested linear models, both claiming to explain Yoo

Mi: y, = 8z, + v, vy, ~ NID(0,0%) (11a)

My: = 8z + vy, vy, ~ NID(0,0%) (11b)
VThc notation is distinct from that in Section 2 above. In (11), 6, and &, are kyx1 and k,x1
vectors of unknown parameters. The vectors z;, and z, are of k; and k, regressors
respectively, with each vector having at least some variables which are not in common with
those in the other vector. For simplicity, assume that none are in common. To ensure the
feasibility of the parameter-encompassing and forecast-model encompassing statistics, assume
that T > k;+k, and n > max(k; k,).

As alternative models, (11a) entails the irrelevance of z, in explaining y,, given z,,; and
vice versa for (11b). In any event, the variables Yo 21 and z,, are generated by some process,
and, under the simplifying (but inessential) assumption of joiritk nofmality, zy, and z,, can be
linked using:

2y = Mz + Gy, (12)
where Il is defined by & (2,81)=0, and (again for expositional simplicity)  &({;,§7)=Q.
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Substituting (12) into (11a) obtains:

— ’
Y, = 61z + Vit

]

(8" Mzy + (vy + 8161

= (05)Zy, + Vy, - (13)
In (13), the parameter &, and the error v,, are derived from (11a) and (12), being I1”§, and
v;+01{;, respectively. Consequently, (13) is what model (11a) predicts model (11b) should
find, and it implies several hypotheses, including:

Hy: 6, = II'§, (14a)
and

Hy: 03 = o + 8;QF, . (14b)
These hypotheses are called parameter encompassing and variance encompassing respectively,
and the positive definiteness of Q in the latter implies variance dominance:

H: o < 6. (14c)
H,, Hp, and H_ are implications of omitted variable bias in (11b), assuming that (11a) plus (12)
are the DGP. These three hypotheses, albeit in reverse order, generate the evaluation criteria
for (D1) on Table 2; cf. Hendry (1983) and Mizon and Richard (1986).

Parameter encompassing by (11a) of (11b) may be tested using the formula in (14a) or
by testing whether z,, is irrelevant if added to (11a). To see the latter, let 5, be unconstrained,
and define the kox1 vector y as 6,-I1’6;. H, is equivalent to y=0. By substitution of
8, =II"8,+7 in (13),

Yo = 0(zy + Vzy + vy (15)
Thus, H, is equivalent to claiming that z,, has no power in explaining y,, given z,, (or in
explaining the residuals from (11a)). In practice, it is simplest to estimate §, and 7 jointly in
(15) and test =0 with the standard F-statistic.

Variance encompassing may be tested either using (14b) or by testing the insignificance
in (11a) of the firted values from (11b). That is, hypothesis Hy can be tested by jointly
estimating 6, and o in:

Yi = O0(z; + ayy + vy, (16)

P

and testing that a=0 (where §, =0/.z,). Testing =0 is equivalent to testing
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0% = 0'% + 6;Q4,; see Davidson and MacKinnon (1981, p. 789), Hendry (1983), and Mizon and
Richard (1986). Equally, Hy, is equivalent to claiming that a certain linear combination of Zy,
namely y,, has no power in explaining the residuals from (11a). Because (16) is testing for
the insignificance of that certain linear combination, rather than of any linear combination (as
in (15)), the test of =0 is a narrower test than that of y=0. The t-statistic on « in (16) is
Davidson and MacKinnon's (1981) P statistic: it is asymptotically N(0,1) when M; is true and
is asymptotically equivalent to Cox's (1961) statistic for testing non-nested hypotheses, as
applied to linear regression models by Pesaran (1974).

The logic of the hypotheses in (14) is as follows: variance dominance is necessary, but
not sufficient, for variance encompassing, which in turn is necessary, but not sufficient, for
parameter encompassing. Conversely, if =0 in (15), then « also must be zero in (16), from
which it follows that o7 is less than 03 because z;, 1s not an exact linear transformation of z,,.

In light of the preceding analysis, it readily follows that MSFE dominance parallels
variance dominance and that two other forecast criteria (forecast encompassing and the new
forecast-model encompassing) parallel variance encompassing and parameter encompassing.
The remainder of this section explores those connections between (D1) and (D3).

Forecast-model encompassing, forecast encompassing, and MSFE dominance. Assume
that the two alternative models (11a) and (11b) have been estimated over the sample period
[1,T] and are being used to forecast over [T+1,T+n]. The forecasts from the two models are:

Vij = 61z (17a)

§12j = 6§zzj j=T+1,..,T+n, (17b)
ignoring (again) the uncertainty arising from estimating coefficients over [1,T]. As with (13)
above, under M,,
= b&jz;; + Vi

j
(61IDzy; + (v + 6141

Y

= 0z + [y;9yp + 615,
}A’zj + (Yj')A/zj) s (18)
where the last line follows from (17b) and the equality y; =y; Equation (18) implies two

testable hypotheses:
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H%: 6, = II'§; (19a)
and

Hi: & (yj-§'2j)2 = & (yj-)”rlj)2 + 6;Q*%5, , (19b)
where an asterisk * denotes the corresponding hypothesis or matrix over the forecast period.
The second hypothesis may be written as:

H¥: MSFE, = MSFE; + 6;Q%, , (19¢)
and implies:

H¥*: MSFE; < MSFE,. (194d)
These three hypotheses H*, H¥, and H* are called "forecast-model” encompassing, forecast
encompassing, and MSFE dominance. Forecast encompassing could be called MSFE
encompassing as well; see Chong and Hendry (1986). From (19d), it follows that an adequate
forecasting model must minimize MSFE (asymptotically), but doing so is a necessary (and not
sufficient) condition for obtaining an adequate forecasting model, as discussed in Section 2.
The design of tests of H¥ and H} parallels that of those of H, and H,,.

Forecast-model encompassing by (11a) of (11b) may be tested using the formula in
(19a) or by testing whether zy; is irrelevant in explaining the forecast errors from (17a). As
with parameter encompassing, let Y= §,-I1"8,. By substitution in (18),

y; = 6{211. + y’zzj + vy j =T+1,...T+n, (20a)
or

Yi- ¥y = Yz + vy (20b)
H¥ is equivalent to =0 and so to claiming that z); has no power in explaining the forecast
errors from (17a). For large T, fixed zij's, and normal v, P it is straightforward to show that the
standard F-stc="~<~ testing =0 in (20b) is distributed as F(k;,n-k;) under M;; for stochastic
(weakly exogenous) zij's, it is distributed as F(k,,n-k,) for large n. See the Appendix for
details.

An exact test of forecast-model encompassing also exists. It can be motivated most
easily by recognizing why the F-statistic for =0 in (20b) does not have a simple exact
distribution: the statistic conditions upon the estimated value of J,, thereby ignoring the

uncertainty inherent in the corresponding estimator of §;. The solution is simple: estimate 6,



15
and v jointly. To do so, consider the following model:

y, = 61z + Vz¥ + v, t=1,.,T+n, (21)
where the entire data sample [1,T+n] is used, and z}, is zero over [1,T] and equal to z,, over
[T+1,T+n]. The F-statistic for =0 in (21) is exactly distributed as F(k,,T+n-k;-k;) under M,
for fixed zj's and normal vy; asymptotically so for stochastic (weakly exogenous) z;'s.
Instrumental variable and recursive generalizations of the test statistics for ¥=0 in (20b) and
(21) follow naturally.6

Forecast encompassing by (11a) of (11b) may be tested either using (19¢) directly or by
testing for the insignificance of the forecast values (17b) in explaining the forecast errors from
(17a). Thus, H¥ can be tested by estimating o in:

Vi- Vi = 0¥y + vy j=T+1,...,T+n, (22)
and testing that @=0. That is equivalent to testing that MSFE, = MSFE; + §;Q*4,, following
the logic used for variance encompassing. Noting that y,,=6z;;, (22) is similar to (16), the
principal difference being that the time period is [T+1,T+n] rather than [1,T]. Chong and
Hendry (1986) have shown that, for large T and n, the t-statistic on o is N(0,1).7

The logic of the hypotheses in (19) is as follows: MSFE dominance is necessary, but
not sufficient, for forecast encompassing, which in turn is necessary, but not sufficient, for
forecast-model encompassing. Conversely, if ¥=0 in (20b), then « [in (22)] must be zero
because =025 If a=0, then MSFE; is less than MSFE, because z;; is not an exact linear
transformation of Z);-

Forecast-type encompassing and parameter constancy. As illustrated in Section 2, even
if the "structural” relationship has constant parameters (e.g., (m;,0%2) in (10a), or (§;,0%) in

(11a)), nonconstant population data moments have implications for the empirical constancy (or

6The structure of (21) also leads to two classes of forecast-based encompassing tests, one which
assumes constancy between the estimation and forecast samples, and one which does not.

TAn extensive literature has developed on the combination or "pooling" of forecasts, i.e., where
some (usually linear) combination of forecasts from different models is taken to obtain a new
forecast. In comparision to any of the individual model forecasts, that new forecast may have
better properties, usually being a smaller MSFE. Given the discussion in the text above,
finding such a pooled forecast is prima facie evidence of all individual models being mis-
specified, and may well indicate that a single model can be constructed which has a smaller
MSEFE than even the pooled forecast. See Clemen (1989) for a review and bibliography on
combining forecasts, and Granger (1989, pp. 187-191) and Diebold (1989) for recent analyses.
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lack thereof) of mis-specified models. Nonconstant population data moments also have
implications for forecast-type encompassing tests. For instance, if the (reduced-form) variance
matrix Q changes, MSFE, in H} will alter as that new matrix (ie., Q* in (19¢)) does.
Likewise, if the Il matrix changes, because M, (falsely) assumes &, is constant, M, will have
systematic forecast errors which are a function of the changing Il matrix. These "predictions”
about model behavior suggest a more general encompassing strategy, including predicting
problems in alternative models of which their proponents are unaware. Corroborating such
phenomena adds credibility to the claim that the successful model reasonably represents the

data generation process, whereas disconfirmation clarifies that it does not.

5. Forecasting with Integrated and Cointegrated Variables

This section describes a certain lack of invariance present in the forecast-encompassing
statistics, and illustrates that lack of invariance with a cointegrated process. The forecast-
encompassing statistic is then modified to produce an "invariant" test statistic, which tests
"forecast-differential encompassing”. See Lu and Mizon (1991) for a related discussion.

The forecast errors y-y;; and y;-y,; are invariant to nonsingular linear transformations of
the corresponding models' data, (y;z;;)" and (y;z;)". However, the forecasts themselves are
not invariant to such transformations, and so neither is the forecast-encompassing test statistic
from (22). Specifically, suppose that both zy; and 2y, include the lagged dependent variable
Yir in which case models M; and M; may be written without loss of generality with either ¥
or ij as the dependent variable, where A is the first-difference operator. In the first case, with
Y the auxiliary equation for the forecast-encompassing statistic is (22) as written. In the
second case, Af’zj .vplaces §12j as the right-hand side variable in (22). In both cases, the
t-statistic on « is asymptotically N(0,1) under the null hypothesis of M; being correctly
specified. However, the two t-statistics are not necessarily equivalent under mis-specification
of M;. This is most apparent when y; is an integrated process.

To illustrate, suppose that Vi Zijp and z,; are each I(1) processes, and that cachrmodel
(M; and M,;) represents a cointegrating relationship. This could arise if (e.g.) Zy; and Zy;

involved different lag structures of the same underlying variables. From Granger (1986), the
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forecast errors yj-ylj and yj-)“/zj are each I(0), whereas the forecasts 91]‘ and 92j are I(1). Thus,
in order for (22) to be "balanced" in terms of orders of integration, o must be zero.
Surprisingly, a must be zero even if M; is mis-specified and M, is the correct model. That is,
the forecast-encompassing test may have no power when the dependent variable is I(1).89

For Yj Zyjs and Z); with the properties specified, both M; and M, have error-correction
representations.  In the error-correction representation, the dependent variable is ij, rather
than ¥ The corresponding forecast errors remain unchanged numerically, but the right-hand
side variable in (22) becomes A§’2j, an I(0) variable, in contrast to yzj, which is I(1). Balance
is unaffected by the value of & in the regression with A)"zzj, so the corresponding forecast-
encompassing test appears more promising for good power properties than the test based on
(22) with 92j on the right-hand side. This feature supports formulating forecast models "in 1(0)
space” as error-correction models, rather than "in I(1) space” in terms of the original [I(1)]
levels variables.

It may be desirable to have a forecast-encompassing test which is invariant to
nonsingular linear transformations of the data. Such a test may be constructed as follows. As
(22) stands, the coefficient on 91]' is constrained to be unity, while the coefficient on 5’21‘ is
estimated unrestrictedly. Instead, both coefficients could be estimated, with their sum
constrained to be unity. The resulting equation can be written as:

Yi- ¥y = o*(Yy; - ¥ + Vi j=T+1,....T+n, (23)
where o* is estimated unrestrictedly, and o*=0 is tested. This equation would parallel
Davidson and MacKinnon's (1981) J statistic if the coefficients in ylj were estimated jointly
with o*.

The test from (23) has two important features. First, because the right-hand side
variable is the differential between the two forecasts [()72]--91]-)] rather than either forecast alone,

the right-hand side variable is unaffected by nonsingular linear transformations of the models'

8 am grateful to Stephen Hall for bringing to my attention (via David Hendry) the apparently
low power empirically of Chong and Hendry's forecast-encompassing test with I(1) forecasted

variables.  Also, see Hendry (1989, pp.95-97) on implications of nonsingular linear
transformations of a linear model's data.

9Either or both of models M; and M, might lack cointegration, in which case the distributions
of the forecast-based test statistics may change. We do not consider such cases here.
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data. Thus, the test of a*=0 is invariant to such transformations. Second, for integrated Y 21
and z,; with both models cointegrated, the right-hand side variable (¥2;-¥1;) 1s 1(0), preserving
balance. This follows because 3’11‘ and 92]' must each cointegrate with y; (with unit
coefficients), and so )‘11j cointegrates with 921' (also with unit coefficients). The t-statistic on or*
will be called the forecast-differential encompassing statistic, noting the form of the right-hand
side variable.

As a practical matter, any of a model's forecast errors, its forecasts, or the forecast
differential (92j-§rlj) may have a nonzero mean. Thus, the power of the tests from (22) and
(23) may be affected by the inclusion of a constant term in the auxiliary regression. Under the
null of correct specification, the constant term should have a zero coefficient, so it is
appropriate to test that ¢ (or o*) and the constant term's coefficient are jointly zero.

Before applying several of the above tests to a pair of empirical models, we briefly

consider the class of models with time-varying coefficients.

6. Forecasting and Models with Time-varying Coefficients

Time-varying coefficient (TVC) models have been proposed as a means of improving
forecast performance. The results above can clarify when that may (or may not) be so.

First, if the data are generated with time-varying coefficients and a correctly specified
TVC model is estimated and used for forecasting, then the TVC forecasts will minimize
MSEE, and (in general) fixed-coefficient models will have a higher MSFE. Evidence that the
TVC model satisfied the evaluation criteria listed on Table 2 would be necessary for the model
to be credible as representing the data process.

Second, sometimes an estimated TVC model is recognized as being mis-specified, but it
is claimed that the TVC model will forecast better than fixed-coefficient models because the
fomer accounts (in part, at least) for observed parameter nonconstancy in the latter; cf. Chow
(1984). However, for general parameter nonconstancy, a TVC model need not minimize
MSEFE relative to a fixed-coefficient model, even asymptotically and even if the TVC model
nests the fixed-coefficient model. An example suffices.

Suppose that the data are generated as:
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Vo = 8z + vy, v~ NID@O,63), = (24)
where z,, is stationary, distributed as N(,¥,,); and 6,=6-6 (620) for the first half of the
estimation period, 6,,=6+6 for the second half of the estimation period, and 6,=6 for the
forecast period, which is the single observation T+1 (for expository convenience). The fixed-
coefficient model is (24) but assumes that 61[ is constant. The TVC model specifies (e.g.) that
(8,-0)=¢(8,,_-8)+&, where &, is assumed to be (e.g.) white noise, |¢]<1, and & is the
unconditional mean of 6, cf. Swamy and Tinsley (1980) and Chow (1984).

The fixed-coefficient model, although manifesting parameter nonconstancy in sample,
has & (SIT)=5, and so has a MSFE of approximately of. The TVC estimate SlT is
approximately 8+6 because the TVC estimator places more weight on recent data than on older
data. Here, the TVC model does so by obtaining estimates of & and ¢ which are
approximately 6 and unity respectively. For the forecast observation T+1, the TVC model uses
the prediction 8;,T+IZI,T+1’ which is approximately &

or (6+6)z Thus, the TVC

1,7%1,T+1
model has MSFE of approximately 0}+6"'¥,,6, which is greater than o2.

1,T+1°

7. An Empirical Illustration: Models of Narrow Money Demand in the United Kingdom
This section calculates the MSFE and forecast-type encompassing statistics for two
models of U.K. money demand from Hendry and Ericsson (1991). The first model is an error
correction model, the second is a partial adjustment model, and the forecast period is the
1980s.
Hendry and Ericsson (1991) develop a constant, parsimonious, error correction model of
narrow money in the United Kingdom for the period 1964(3)-1989(2). Estimating their

equation through 1979 and forecasting over the 1980s obtains the following.

P 5T G

- 0.63 R’; - 0.102 (m—p-y)t_1 + 0.021 (25)
(0.10) (0.013) (0.007)

T = 62 [1964(3)-1979(4)] + 38 forecasts R2 =069 &= 1.389%
The data are nominal M; (M), 1985 price total final expenditure (Y), the corresponding

deflator (P), and a (learning-adjusted) net interest rate (R*). Lower case denotes logarithms,
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and standard errors are in parentheses. Hendry and Ericsson (1991) describe the data in their
appendix and discuss the statistical and economic merits of (25) in their Section 4.

Hendry and Ericsson (1991) also estimate a partial adjustment model for real narrow
money with an autoregressive error, in the spirit of Goldfeld (1973). Contrasting with results
on U.S. data, the partial adjustment model appears reasonably constant during the missing
money period: the Chow statistic is F[12, 29] = 1.89 [p-value = 0.079] for forecasts over
1973(1)-1975(4). When estimated through 1979 and forecast over the 1980s, the estimates for

the partial adjustment model are as follows.

(m—p)t = 0955 (m-p)t_l + 0.087 Y,
(0.024) (0.020)
- 078R* - 043 - 031a (26)

©on ' (04 (013 V!

T = 62 [1964(3)-1979(4)] + 38 forecasts & = 1.572%
The coefficient on @, is the estimated parameter of the (modeled) first-order autoregressive
disturbance.

For money-demand equations, the 1980s are of particular interest to forecast, as
Goldfeld and Sichel (1990, p. 300) note: "..., in the 1980s, U.S. money demand functions,
whether or not fixed up to explain the 1970s, generally exhibited extended periods of
underprediction as observed velocity fell markedly.” In the United Kingdom, velocity fell by
twice the percentage drop in the United States. Somewhat surprisingly, neither model fails the
Chow test, as seen in Table 3.

Figure 2 graphs the forecast errors from (25) and (26). Visually, the errors from (25)
appear uncorrelated with near zero mean, whereas those from (26) are highly autocorrelated,
trending from large and positive in 1980 to largc and negative in 1989. These series are the
dependent variables in the auxiliary regressions for calculating the forecast-type encompassing
test statistics. The particular type of test determines the "independent” variables in those
auxiliary regressions. Figures 3 and 4 present those variables for the forecast-encompassing
tests. Figure 3 graphs the forecasts of A(m-p), from (25) and (26), while Figure 4 graphs the

forecasts of (m-p), from (25) and (26). For reference, Figures 3 and 4 also include the series
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Table 3. Chow, encompassing, and related statistics

Null hypothesis (i.e., hypothesized encompassing model)1’2

Statistic error correction: (25) partial adjustment: (26)
no constant constant no constant constant
Chow statistic 0.73 0.81
[0.84] [0.75]
F[38,57] F[38,57]
o 1.389% 1.572%
Root MSFE 1.232% 2.507%
Forecast encompassing3
Variable forecast is: A(m-p), 0.00 0.70 422 3.78
[0.96] [0.50] [0.047] [0.032]
F[1,37] F[2,36] F[1,37] F[2,36]
Variable forecast is: (m-p), 1.12 1.21 0.09 63.14
[0.30] [0.31] [0.77] [0.000]
F[1,37] F[2,36] F[1,37] F[2,36]
Forecast-differential encompassing 2.27 1.65 125.54 63.35
[0.14] [0.21] [0.000] [0.000]
F[1,37] F[2,36] F[1,37] F[2,36]
Forecast-model encompassing 0.85 29.38
[0.53] {0.000]
F[5,33] F[5,33]
Forecast-model encompassing4 0.37 3.27
("exact") [0.87] [0.009]
F[5,90] F[5,90]
Notes:

IThe three entries for a given statistic and equation are: the value of the statistic, the right-
hand tail probability associated with that statistic, and the statistic's distribution under the
null hypothesis of that equation being correctly specified. The estimation period is
1964(3)-1979(4) [T=62]; the forecast period is 1980(1)-1989(2) [n=38].

2The phrases "constant” and "no constant” denote whether or not a constant term is included
in the auxiliary regression, i.e., in (22) or (23).

3Quantitatively similar results obtain for the following pairs of variables forecast: Am, and m,,
and A(m-p-y), and (m-p-y),.

4The full-sample (T=100) values of @,_; in (26) are used to calculate the "exact"
forecast-model encompassing test statistic.
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being forecast. The initial underprediction and subsequent overprediction by (26) is clear in
both graphs although, from the Chow statistic, these deviations are not statistically detectable
as a structural break. Even so, the forecast-type encompassing test statistics detect the
systematic (and hence predictable) nature of (26)'s forecast errors.

Specifically, as shown in Table 3, equation (26) fails all forecast-type encompassing
tests, except for the forecast-encompassing test with (m-p), as the forecast variable and no
constant term included in (22). That single lack of failure is due to the approximately zero
mean of (26)'s forecast errors and the large nonzero mean of (m-p);: see Figures 2 and 4
respectively. Inclusion of a constant term results in rejection at the 0.1% level, with the
(upwardly) trending (m-p); "explaining” the (downwardly) trending forecast errors.

Equation (25) dominates (26) substantially in terms of MSFE. Additionally, (25)
encompasses (26) according to all forecast-based encompassing tests.

The results for (25) and (26) show how two models may be empirically constant, yet (at
least) one may be inadequate for forecasting. This parallels Proposition 1. In evaluating
models of the U.S. trade balance, Marquez and Ericsson (1991) find an empirically nonconstant

model that obtains the minimum MSFE with respect to all other models considered. That

parallels Proposition 2.

8. Summary

Parameter constancy and minimizing the mean square forecast error are sensible criteria
that evaluate empirical models against two different information sets, the data of one's own
model and the data of alternative models. MSFE dominance is a necessary condition for two
more general criteria for evaluating forecast performance: forecast encompassing and forecast-
model encompassing. Parameter constancy, MSFE dominance, and the two types of forecast
encompassing fit into a general taxonomy of model evaluation criteria. Satisfying all those
evaluation criteria (and not just those of parameter constancy and MSFE dominance) are in
general necessary for obtaining an adequate forecasting model. Two models for money

demand in the United Kingdom help illustrate the concepts developed.
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APPENDIX. Distributions of Statistics for Testing Forecast-Model Encompassing

The basis for the forecast-model encompassing test statistic is the auxiliary regression in
(20b):

ViV = Yz + vy j =T+1,..,T+n. (A1)
Under M,, for large T, fixed zij's, and normal vy, the dependent variable in (Al) is Vi and 7yis
zero, so the standard F-statistic testing =0 is distributed as F(kp,n-k;). For stochastic (weakly
exogenous) zij's, it is distributed as F(kj,n-k;) for large n. See Hendry (1979) and Kiviet
(1986).

The distribution of the modified forecast-model encompassing test statistic from the

auxiliary regression in (21) follows directly from (e.g.) Johnston (1963, Chapter 4).
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