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ABSTRACT

This paper studies the dependence of velocity on stochastic monetary growth in a
model where households demand money for both its transactions and precautionary services.
The setup consists of a cash-in-advance economy in which individual uncertainty leads
households to value money for its insurance against adverse endowment shocks. With
stochastic monetary growth the distribution of money balances across households does not
settle down to a time invariant distribution, so one aim of this paper is to model this

distribution as an endogenous state variable.



Precautionary Money Balances with Aggregate Uncertainty

Wilbur John Coleman II1

1. Introduction

This paper develops a cash-in-advance model in which the transactions velocity of
money depends on a stochastic monetary growth rate. This model, which resembles the pure
currency economy developed by Lucas (1980), relies on individual uncertainty to generate a
precautionary demand for money, and relies on a dependence of this demand on its opportunity
cost to obtain a dependence of velocity on monetary growth. In contrast to Lucas' setup, the
model developed here includes uncertainty in national income and the stock of money, as
uncertainty in the latter is necessary for studying how velocity responds over time to shocks in
the money growth rate.2 The ability of this model to generate a significant demand for
precautionary money balances is in contrast to the representative-household cash-in-advance
models of Lucas (1982), Svensson (1985), and Lucas and Stokey (1987), in which little or no
cash is voluntarily carried across periods. In these models households usually spend all their
cash holdings on goods or assets, where the only sectors that absorb these cash receipts are

ones that are physically precluded from trading them away: almost all cash is held overnight

!The author is a staff economist in the International Finance Division of the Federal Reserve
Board. This paper should not be interpreted as reflecting the views of the Board of Governors
of the Federal Reserve System or its staff.

2Lucas (1980) does not consider monetary growth, but as suggested in Stokey, Lucas, and
Prescott (1989) it is straightforward to include a constant money growth rate into his model.
The equilibrium is otherwise the same one which Lucas computed, but with a modified rate of
time preference (i.e., one deflated by the money growth rate) and an inflation rate equal to the
money growth rate. In this sense one can use Lucas' setup to perform a comparative static
exercise to determine the dependence of velocity on constant money growth rates, but one
would not be able to study the dynamic response of velocity to a stochastic money growth rate.



in cash registers. This result is well documented by both Hodrick, Kocherlakota, and Lucas
(1991) and Giovannini and Labadie (1989).

The principal difficulty this paper addresses is modeling the distribution of meney
balances across households as an endogenous state variable. With aggregate uncertainty this
distribution does not settle down to a time invariant distribution, so one needs to model its
evolution. To simplify this problem only two types of households are considered, as opposed
to the continuum considered by Lucas, and in addition these households are assumed to exhibit
log utility. Even with these assumptions it is fairly easy to construct an example in which a
one percentage point increase in average monetary growth leads to a roughly one percent
increase in the velocity of money, so these assumptions provide a suitable setting with which
to begin a study of the role individual uncertainty plays in obtaining a dependence of velocity
on monetary policy.

In its reliance on two types of households with log utility this paper is similar to
Scheinkman and Weiss (1986), who study a version of this economy without exogenous
aggregate uncertainty. Foley and Hellwig (1975) and Bewley (1980) study models in which
there is no underlying transactions demand for money, but where individual uncertainty leads
to a precautionary demand for money in much the same way as it does in this paper. Recent
work by Imrohoroglu and Prescott (1991) attempts to introduce aggregate uncertainty into that

framework.

2. The Model

The model consists of a large number of two types of worker-shopper households that
produce a single perishable consumption good which can only be traded with fiat money.
Households of type i, i = 1, 2, are identical and collectively begin a period with one unit of
labor and a fraction m; of the aggregate money supply. These cash balances consist of

money acquired in the previous period in addition to lump-sum cash transfers from the



government. During the period the workers of type i households inelastically supply their
one unit of labor to produce Y units of the consumption good according to a stochastic
technology. These goods are sold to shoppers for cash, where each shopper only has access to
the cash he or she has on hand at the beginning of the period. At the end of the period the
households consume the purchased goods and consolidate the cash acquired from the sale of
goods with the unspent cash.

In addition to the distribution of output (yl, ¥,), the economy consists of an arbitrary
number of additional exogenous state variables (ys, Ygr - Y ). Denote the entire list of

n
exogenous state variables for a particular period by y.

ASSUMPTION 1: y € Y, Y s finite. The shocks evolve according to the Markovian

transition probabilities n(y’|y). Furthermore, 0 < y;<ei=12.

2
With this assumption there exists an o > 0 such that yl-/ ‘2 yj 2o, all ye Y. Denote the

J=1

conditional expectation with respect to 7(- |y) as Ey‘
Denote the aggregate money supply by M and the equilibrium shares held by the two

types of households by m = (ml,mz). Each household assumes the next period's values of

these variables evolve according to
M’ =hy’' YWM, m’ = L(m,y),

where y’ is the next period's values of the exogenous state variables.3 The monetary-policy

function A completely specifies the law of motion for the aggregate money supply, but with

3If h depends on y” then the exogenous shocks realized next period are known to the
monetary authorities at the beginning of that period, which is when next period's monetary
transfer takes place.



individual uncertainty one still needs to specify how the lump-sum transfers of money get
distributed across households. To focus this paper on the implications for velocity of varying
the opportunity costs to holding precautionary money balances, these transfers are modeled so
that they do not alter the distribution of money.# This leads to a slight problem, as in
equilibrium each household's monetary transfer must be in proportion to its money holdings,
and as money holdings differ across households, so must the transfer. To retain the lump-sum
nature of the transfer, allow the monetary authorities to identify a household by its type, and
thereby constrain them to provide a transfer that is proportional to the average money holdings
of households of that type. As a household cannot alter its type, these transfers will appear to
be lump sum. The aggregate monetary transfer M’ - M is thus distributed such that
households of type i receive (M’ - M)mlf.

Denote the price of consumption in terms of money by P, which households assume is

homogeneous of degree one in M:

P(m,y,M) = p(m,y)M.

Along with the transition matrix 7, the functions &, L, and p are known to all households.
The monetary-policy function 4 is chosen by the government, while the determination of L
and p is part of the equilibrium problem. For the households, however, these are simply
some arbitrary, fixed functions.

Along with a household's knowledge of its type, its state variables consist of the
aggregate state variables (m,y) and its beginning-of-period post-transfer money holdings
relative to the aggregate money supply, n;. A household chooses time-stationary

state-dependent functions for consumption c; and next period's pre-transfer money relative to

40n the other hand, Grossman and Weiss (1983) and Rotemberg (1984) focus on the ability of
monetary shocks to alter the distribution of money balances.



A
the current money supply, nl.:5

A
Ci = Cl-(ni,m,y), n; = Qi(ni,m’y)~

These choices are subject to the budget and cash-in-advance constraints
A
2.1 pim.y)c; + n; = pimy)y; + n,,

2.2) p(m,y)ci < n;.
At the beginning of the next period the households of type i receive a lump-sum monetary
transfer equal to (hA(y”.y) - 1)Ll.(m,y)M, so their relative post-transfer money holdings evolve

according to

0 (n;my) +(A(y,y) - DL;(m,)
n. = .
h(y",y)

l

A household's preferences over the above choices are defined by the expected

discounted utility over the implied sequence of consumption,

g
E{IEOB u(cit)],

where 0 < B < 1, (nO,mO,yO) is known, the expectation is over sequences {yt}, and the

5The notation reflects the collective choice of households of type i. Disaggregating to reflect
the choices of individual households is straightforward.



associated sequence {c phpm t} is computed using C, O, 1 and L.

ASSUMPTION 2: The single-period utility function u:R 4 R is bounded, continuously
differentiable, strictly increasing, strictly concave, and u’(0) = «.

1

Denote s = (ni,m,y), S=R ++xS xY (S 1 is the one-dimensional unit simplex), and for

N
any s e S define the constraint set Qi(s) c IRE as all (ci,nl.) that satisfy
N A
P(m’)’)cl + ni S p(m’y)yl+ n'l" p(m7y)cl S nl'a (Cl'rni) 2 0

Note that for any s e § Qi(s) is nonempty, compact, convex-valued, and continuous and
convex in n;.
Define Vl.(s) as the value of the objective function at the optimum, beginning with the

indicated state vector, which satisfies

1+ ()DL ()
2.3) Vinmy) = ASUD ) +BE |V, , Limy).y ||t
(¢;.n;)€Q;(s) Y h(y’.y)

Consider the Banach space of bounded, continuous, real-valued functions v:§ - R equipped
with the sup norm, and let 7 denote the subset of functions that are increasing and concave in
their first argument. Under Assumptions 1-2, given any continuous monetary-policy function
n¥* 4 R, disuibution of money function L:S'x¥ = §', and price function p:S'xy R,
standard arguments prove the following results. There exists a unique value function Vi eV
that satisfies (2.3), and this Vi is strictly-increasing and strictly-concave in its first argument.
Also, for each s € § the supremum in (2.3) is attained by unique values Ci(s) and Ql.(s), and

these policy functions C i and Qi are continuous in their first argument.



DEFINITION: A stationary equilibrium consists of (i) value functions Vi e 7, (i)
continuous functions Ci and Qi mapping [O,l]xSle into, respectively, R + and [0,1], and
(iii) continuous functions L and p mapping SIXY into, respectively, S1 and [R+ 4+ such
that Vi satisfies (2.3) with the associated policy functions Ci and Qi’ and the following

relationships hold for any m e Sl, veY,i=1,2:

24 Limy) = Q;(m;m.y),
(2.5) p(m.y)C (m;myy) + Q(mm.y) < p(my)y; + m;,
(2.6) pm.y)C (mm.y) < m,,
2 2
2.7) JElC [mm.y) = jzly f

Equation (2.4) equates the type i household's demand for money with what was assumed for
that type of household, (2.5) requires the household to lie on its budget constraint, (2.6)
requires the household to lie within its cash-in-advance constraint, and (2.7) requires the
aggregate demand for goods to equal its aggregate supply.

At the equilibrium, since u#’(0) =« the ranges of the policy functions Ci and Qi lie
in the interior of Qi(s), so by Benveniste and Scheinkman's theorem (1979, Theorem 1) the
value function Vi is continuously differentiable in its first argument at (m,y), all me S 1, m; >
0,i=1,2,all y. Denote the multipliers associated with (2.1) and (2.2) at the equilibrium by
ll.(m,y) and (pl.(m,y) respectively. The equilibrium can then be further characterized as

consisting of functions ¢, p, L, A, and ¢ such that



(2.8) p(m.y)c(myy) + L(m.y) = p(m.y)y; + m,
2.9) p(m,y)cl.(m,y) < m; with equality if (pl.(m,y) >0,
(2.10) u’(cmy) = A my) + o(m.y)p(m.y),
(2.11) Aimy) = BE [(A;Lim.y).y") + @ L(m.y).y Nh(y" .y,
2 2
(2.12) Lcmy)= 1y,
j=17 =1’

By construction, any strictly-positive solution to these equations is an equilibrium.
At this point, as mentioned in the introduction, assume households exhibit log utility,
u(c) = In ¢.6 Following an argument made by Lucas and Stokey (1987) for a related

economy, rewrite the system (2.8)-(2.12) as (m ¢ Sl, yeY, i=1,2):

(2.13) @m.y) = max{0, 1/m, - A(m,y)},

(2.14) ¢ (m.y) = min{m/p(m.y), 1/(A,(m.y)p(m.y))},
(2.15) Lm.y) = plm.y)y; + m; - pim.y)c(m.y),

(2.16) Afm.y) = BE  [max{1/L(m.y), 2,(Lom,y).y NIhO" Y-

6A property of the equilibrium will be the existence of [c,c] such that 0 < ¢ < c(my) < ¢ <,
i=1,2,all m and y in some ergodic set. It would thus be sufficient at this point to define a
utility function that satisfies Assumption 2 and which agrees with log utility on the set [c,c],

and then to restrict the analysis to this ergodic set from this point on.



2 2
Define y =} Y and 5)1. = yl./)'f. Combine the resource constraint Y, ¢ j(m,y) =y with (2.14)
j=1 Jj=1
to arrive at an equation in equilibrium prices:

2
(2.17) y =X min{ mp(m.y), /(A (m,y)p(m,y))}.
J=1 ' !

Note that (2.14), (2.15) and (2.17) imply L(m)y) e Sl, and thus that money supply equals

money demand.
3. The Equilibrium

This section proves the existence of an equilibrium by constructing a sequence whose
limit solves (2.13)-(2.17). Each of the functions ¢, p, L, and ¢ is first written only in terms
of .)L, and then A is written as the solution to a pair of equations only in A. This pair of
equations is used to define a nonlinear monotone operator that maps a compact subset of A's
into itself.  Applying Tarski's fixed-point theorem for monotone maps then provides a
particular monotone sequence of A's that converges to an equilibrium.

Use (2.17) to write p as

2
(3.1) pimy) = (1/y) L min{m., 1/A(m,y)},
j=1 J J

and substitute this equation into (2.14) to write ¢ as

min{ml-, 1A (my)}
(32) ci(m’y)z 5 l y.

jzlmm{mj, lllj(m,y)}
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Substitute these equations into (2.15) to derive

2
(3.3) Ll.(m,y) = j:l. 'Zlmin{mj, 1/Aj(m,y)} +m, - min{ml., l/kl.(m,y)}.
j:
Along with (2.13), equations (3.1)-(3.3) define ¢, p, L, and ¢ solely in terms of A.
Perhaps the most obvious way to advance is to substitute (3.3) into (2.16) to derive a
pair of equations in A, but it turns out to be more useful to proceed in a less direct way. To
proceed from this point requires restricting the set of A's, which in turn requires the following

assumption on monetary policy.
ASSUMPTION 3: 0 < h(y’,y) <=, all y and y’, and ﬁEy[l/h(y',y)] <1,all y.

This assumption essentially ensures that the expected return on money not exceed the rate of
time preference, which is an assumption that has become standard in working with
cash-in-advance models.

Choose a B* < 1 such that supyBEy[l/h(y’,y)] < ﬂ*. As long as h satisfies
Assumption 3 such a ﬁ* can be chosen. Define B = 1/(1 - B*) > 1, and define the function

)L*:S1 - IRE as

%
Ai(m) = B/ml..

% %
Note that A is not a bounded function. Using A define the set F(Sle) =

l“l(Sle)xI‘z(Sle), where

li:Sle - lR+, /li is continuous,
E 3
ri(sle)= 0 <A (my) <A (m),

0< Ai(m,y) - li(m',y), m; < m;
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A A
Equip T(S 1xY) with the usual pointwise partial ordering: A < A if )Ll.(m,y) < li(m,y), i=1,
2,all m,y.

Define the function G:S lexI'(S le) - IR_% as

G (Lyi2) = BE Jmax( V1,2 (Ly" )} /hGy’ ).

Note that, in view of (2.16), the equilibrium functions A and L satisfy A(my) =

G(L(m,y),y;A). Using (3.3) and G, define L(m,y;A) as the solution to

2
(3.4) LmyA) = S‘ililmin{mj, VG (L(m,y;1),y; 0} + m - min{m;, 1/G (L(m.y;2).y;1)}.
j:

LEMMA 1:  Under Assumptions 1-3, for any A € F(Sle) there exists a unique

continuous L that satisfies (3.4); furthermore, L(m,y;A) € S 1, and for any m and m’ in S 1,
0< Li(m,y;)L) - Ll.(m',y;l)s m; - m; if m; > m;
PROOF: Fix (m.y,A). The solution L(m,y;A) consists of (11,1—11) such that
Z(ll,ml,y;l) =my - :vzmin{ml, l/Gl(ll,l-ll,y;)L)} +)71min{1 -my, 1/G2(ll,1—ll,y;k)} - 11

equals zero. ;tl. € I*l.(S‘le) is decreasing in m; so Gi is decreasing in li’ and thus Z is
strictly decreasing in 11. Z is also continuous in ll, positive for l1 = (), and negative for l1
=1 so there exists a unique root 0 < l1 <1. L is continuous since Z is continuous in m.
Z is increasing in m, hence L1 is increasing in m. From (3.3) m, —Ll(m,y;l) 1s

increasing in my if
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&zmin{ml, 1/G | (L(m,y;A),y;0)} - &lmin{l-ml, 1/G2(L(m,y;l),y;7t)}

i increasing in mi, which is true by the monotonicity properties of G and L. Since L. =1

2
- L1 a similar result holds for L2. Q.ED.

Use the solution L to (3.4) to define the nonlinear equation A(m.,y) = G(L(m.y;A),y;A),
which consists of a pair of equations only in A. To solve this equation, define the operator F

on F(Sle) such that (FA)(m.y) = G(L(m,y;A),y;A), which is equivalent to
(3.5) (FA)(m.y) = ﬁEy[maX{ VL (m,y; ), A (L(m,y; ),y )} h(y” . »)].
An equilibrium A corresponds to a fixed point of F.

LEMMA 2: Under Assumptions 1-3, F is monotone on T'(S le).

PROOF: Choose an A% and lb, both in I'(S le), such that A% > lb. F is monotone
if G(L(m,y;)ta),y;la) > G(L(m,y;lb),y;kb), all (m,y) in Sle. Suppose, for some (m,y) and
some i, that Gi(L(m,y;la),y;PLa) < Gl.(L(m,y;)Lb),y;lb). Without loss of generality, suppose i
= 1. Note that G(y:A%) 2 GUy:A%, all (1), s0 G LimyADyAY < G, LimysAD)y: a0
implies Ll(m,y;la) > Ll(m,y,lb), which in tumn implies G2(L(m,y;7ta),y;la) >

GZ(L(m,y;lb),y;lb). In view of (3.4), these last three inequalities cannot all be true.  Q.E.D.

The monotonicity of F can be used to prove the following lemma, which is needed to

define a compact subset of I'(S 1XY) that gets mapped into itself by F.

LEMMA 3: Under Assumptions 1-3, F(T(S'xV)) ¢ TSIy, FA™) is bounded, and
there exists an € >0 such thar L(my;A) > €, all (my)e S 1><Y and all AeTI'(S le).
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PROOF: Choose any A e F(Sle). To prove F(A) € F(Sle) note first that F(A) is
continuous and since L-l.(m,y;/l) '1S- increasing in m; it follows from (3.5) that Fl.()L) is
decreasing in m.. As F is monotone, the remaining condition F(1) < l* holds if F(;L*) <

E 3
A . Note that

Gilyi) = BE fmax (1, BAMAG )] = BBE,[V/AG” )1
It needs to be shown that BBEy[l/h(y’,y)]/Ll.(m,y;k*) < B/ml., or that Ll.(m,y;l*) >
,BEy[llh(y’,y)]ml.. In view of the monotonicity properties of (3.4) that were exploited in the
if

proof of Lemma 1, this inequality holds for L1

BEy[l/h(y',y)]m1 <my —j’zmin{ml,ml/B}, all m,y.

A sufficient condition for this inequality to hold is B* < 1 - 1/B, which is satisfied by the
definitionyof B. A corresponding argument holds for L2. These results prove F(I'(S le)) c
rs'xy). | |

Fl.()L*) 1s bounded if Li(m,y;/l*) >0, all m,y, and i.' Consider first i = 1. Note that
Ll(m,y;l*) > Ll((O,l),y;)L*), where Ll((O,l),y;k*) solves

Ly 1y:27) = 5ymin{ 1, (BBE[1hty’ »7 (1 - L (0D D).

Since ;I(BBE},u/h(y',y)])‘l > B B > 0, clearly L (©.12y:2) > 0. A corresponding
argument holds for L2.
Denote the bound on F()L*) by y andlet € = o/y> 0. From (3.4) Ll(((),l),y;l) 2

jvl/y 2 € and thus Ll(m,y;)L) 2 & Again, a 'corresponding argument holds for L2.

Q.ED.
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Lemma 3 states that evcln'though A* is unbounded, F (;t*) < JL*«- is bounded. It is an
odd feature'of F that in general for no bounded constant function k is it true that F(k) < k.

Define A =F (l*) and choose an € > 0 such that L(my;A) 2 ¢ all A¢ F(Sle).
According to Lemma 3 such an & can be chosen. Define the subset F(Slxb =

Fl(Sle)xfz(Sle) of T(S!xY), where

/1 'Sle -+ R, )Ll. is continuous,
re'xn=10 < A;(m,y) <1 (my), | |
Sk(my)—l(m ,y) _zfml. —mzl,miSm;.

Equip l"l.(S le) with the sup norm and I'(S le) with thé product topology. I'(S le) is an
equicontinuous family of functions that are defined on a compact set. We can now prove the

main theorem.

THEOREM 4: Under Assumpnons 1-3, there exists a ﬂxed pomt A=F (}L) Ae I"(S xn
Moreover, both F" (O) and F (l) uniformly converge to a fixed point, say A min and l |
respectively, and if /1 is any other fixed point in T'(S ’xY),, then )Lmin <A s lmax

| PROOF: Lemma 2 broves that F i1s monotone. F is continuous gincc 'S le) is an
equicontinuous family of functions defined on a compact set, and for any sequ’encek {ll.} that
converges to some A, where ll., Ae (S lxh, the sequence {F (li)} converges pointwise to
F(A). To prove F(I(S'xY)) c T(S'x¥), choose any A ¢ T(SIxY), any i =1, 2, any m, m’ in
S1 such that m; < ml'.,' and any y e Y. By Lemma 3 and the monotonicity of F,0< F(A)< A

and 0 < (F k)l.(m,y) -(F A)i(m’,y). To prove

(Fm) - F A’ y) < €% |m - m7],

note that
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(Fmy) - FA)m’ y)
< ,B*Ey[max{ VL (my;A),A(L(m.y;A),y")} - max{ VL (m".y;2).A,(L(m" y; 1),y )}].

In the expectations operator there are four combinations that may result depending on which

argument 1s selected by each of the two max operators. Each combination satisfies the desired

inequality:

VL{m,y;4) - 1L (m” y;)) < S‘Z(Ll-(m,y;l) -L(m".y;2)) < &2 |m; -m?],
ALm,y;A)y") - A(Lim’ y;0).y") < E'Z(Ll-(m,y;l) - L(m’.y;2)),
VL my;2) - AL(m” y;2),y") < VL (my;2) - YLAm’ y; ),
A(L(my;:A).y") - UL, (m",y;4) < VL (m.y:A) - 1/L,(m” y;1).

The latter two inequalities used the property that the terms on the left are always positive

(recall m; < m;).

Fis thus monotone, continuous, and maps a partially-ordered compact set into itself.

The assumptions of Tarski's fixed point theorem are met, which completes the proof.
Q.ED.

While Theorem 4 does not assert there only exists one fixed point of F, it does assert

that if F"(O) and Fn(l) converge to the same fixed point then there exists no other fixed

point in I'(S le). This condition can be verified in practice.
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4. Velocity and Menetary Policy

Towards the end of this section explicit solutions constructed along the lines suggested
by Theorem 4 are used to study simulated time paths of money, income, and velocity. These
simulations- reveal that this model exhibits the following two features:- (i) the velocity of
money is appreciably less than its institutional maximum of one, and (i1), the dependence of -
velocity on monetary policy is quantitatively important. Both results are quantitative in rature,
so it is difficult to prove theoretically that they necessarily follow from this type of model, and
for this reason it is difficult to get a precise sense as to why this model exhibits
quantitatively-important effects while a similar representative-household setting does not.
What can be proven, however, is that under some circumstances velocity is less than one, and
that velocity is higher in economies with higher monetary growth. This is in contrast to
velocity always equaling one in the representative-h(')usehoid version of this economy, which is
essentially Svensson's (1985) economy restricted to log utility households. The role of
individual uncertainty in obtaining these results is made explicit in their proof, and in this way
one can begin to understand the link between individual uncertainty and velocity. This link 1s

further developed in a less formal argument in terms of money's insurance-value.
Velocity, Individual Uncertainty, and Monetary Growth

The velocity of money v(m,y) corresponding to a fixed point A of F can in general

be written as

: 2
4.1y ~ v(my) =Y min{m. 1/A.(m,y)}.
j=1 J J

To prove that under some circumstances velocity is strictly less than one, fix any f > 0,
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suppose A(y’,y) is constaai at k> B, and, for a constant aggregate output y = 1, suppose the
three divisions of this output across households, (o, 1 - o), (1/2, 1/2), and (1 - @, @), occur
with probabilities Ty Ty and 3 respectively. The parameters o and 7 reflect the level
of individual uncertainty. To standardize the comparison with the representative-household
economy, consider velocity when money and income happen to be evenly distributed. What

will be proven is if o < (1/2)(8/h) and

(1/2)(1 + a) -1
7r1>(1—[3/h)+H - ] - Bihi,
((172)(B/R) - a) + (1/2)(1 + @)

then for any fixed point A of F it follows that v(1/2,5/2) < 1 (note that as % approaches B
these restrictions approach o < 1/2 and T > 0). Due to the monotonicity of F,if A isa

fixed point then A > F(F(0)) = F2(0), and so

2
v(I25/2) < 3 min{l/2, 1/(F20)j(1/2,5f/2)}.
=1

The proof is complete if (F 20)1(1/2,'/2) > 2. It is straightforward to show
(FO),(1/2,9) = (B/RY/L,(1/2,%:0),
where L1(1/2,y;0) solves
L1(172,y;0) = 12 - y,min{1/2, L (122,y;00/(B/h)} + yqmin{ 1/2,(1-L (1/2,y;00)/(B/R)}.

The solution is L1(1/2,oc,1-a;0) = (12)((1+a)/(1 + (1-a)(l3/h)"l)), L1(1/2,57/2;0) = 1/2, and
L1(1/2,1—a,a;0) =1- L1(1/2,a,1—a;0). Since L1(1/2,57/2;O) = 1/2, it follows that
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(F20),(1/2512) = (BIRE; pmax(2, (FO),(1/2,y"))]

H (1/2)(1 + @)
=2

-1
} T, + (Bh)(1 -nl)].
((1/2)Brh) - @) + (1/2)(1 + )

The assumptions on o and 7, ensure (F20)1(1/2,57/2) > 2.
Velocity is thus less than one for an apparently wide range of individual uncertainty.
For example, if = .9975, h =1, and « = .45, then velocity is less than one for any =

.0358.

1>

To prove that higher monetary growth leads to higher velocity, consider two
economies, @ and b, such that ha(y',y) < hb(y’,y), all y, ¥y’ (functions for economy a are
denoted by a subscript g, and likewise for economy b). In economy a monetary growth is

uniformly lower than that for economy b. The following lemma is essential for deriving the

result.

LEMMA 5: For any A e T (S'xnnl ('), F_(3)2 F, (3.

PrROOF: Note that Ga(l,y;l) 2 Gb(l,y;l), and a proof similar to that of Lemma 2
establishes this result. - Q.ED.

It follows from Lemma 5 that Fa(O) > F b(O), Fa(Fa(O)) > F b(Fa(O)) 2 F b(F b(O)), and
by induction that FZ(O) > FZ(O). In the limit, then, the minimum fixed point of F for
economy a 1is higher than that of economy b. On the other hand, starting from the maximum
fixed point of F for economy b, say ﬁb’ it also follows from Lemma 5 that Fa(ﬁb) >
F b(ﬁb) = ﬁb’ and thus that the maximum fixed point of F for economy a is higher than that
for economy b. In this sense, as seen from (4.1), a monetary policy of uniformly higher

monetary growth leads to higher velocity.
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The Precautionary Demand for Money

One's intuition suggests that households only hold excess cash balances if its insurance
value offsets its low return. To see this formally, note that since cash is perfectly liquid, and

as derived from eqs. (2.9)-(2.11), excess cash is held by type i households when

u'(cm.y)) = BE [u’ (cLimy),y N@my)pLimy),y Yy’ ),

and no excess cash is held when

u'(cm.y)) 2 PE [’ (c(Limy).y )@my)pLim.y).y Yoy’ ).

Money's rate of return is captured by the rate of deflation @Emy)/p(L(m.y),y Yh(y’.y)), and
money's insurance value is captured by the correlation between (the marginal utility of)
consumption and money's ex post real return. A necessary condition for excess cash balances
to be held is either a relatively high return on money, or, given the return on money, a
relatively low correlation between consumption and money's return.

The ability of individual uncertainty to lower the correlation between household
consumption and the return on money gives it the ability to lower velocity. Without individual
uncertainty consumption next period equals y’ and money's ex post real return equals
y’/yh(y”,y). Given a monetary policy that satisfies a condition like Assumption 3, the positive
correlation between consumption and money's rate of return that stems from the effect of
output shocks on prices is sufficient to drive the level of precautionary money balances to

ZCT10.
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Some Simulations

At the level of theory what has been proven is that velocity can be less than one and
that velocity increases under a monetary policy of uniformly higher monetary growth.
Associating some quantitative magnitude to these two statements requires studying equilibria
that are explicitly computed for particular values of the model's parameters. Throughout this
exercise 8 =.9975, which, if one thinks of the model's time period as monthly, corresponds to
a 3 percent annual rate of time preference. For the stochastic process describing the

endowments, assume
z. z.
Y 11 it
.= +
Y =ye [1+e™),

where 21t 2y = 0 and thus j)t equals the aggregate endowment. For studying velocity
only Y; t/jf , matters, so the stochastic process for y ; drops out (in part, this result is due to the

log utility assumption). Assume z.

it is iid over time and is drawn from a discrete distribution

that approximates the Normal(0, oz ) distribution.”

To isolate the effect of individual uncertainty on the velocity of money, Table 1 reports
average velocity v for a constant money supply and various values of 0'2.8 The statistics in
this table are based on a simulated time series of 10,000 starting from a uniform distribution
of money and income. The columns labeled cvy and cv,, are the coefficients of variation of
household income (yl./)'i) and velocity. Velocity falls from .9392 for c,=.110 7218 for

c, = .3, so that on average a one percentage-point increase in Gy leads to a roughly two

7For a finite number n, the possible values (Zl’ Zyy oo Zn) are the points from a
Hermite-Gauss quadrature rule and the probabilities (71:1, Tys - o o nn) are the weights from
this rule. For the following simulations n = 11. Tauchen (1987) generalized this approach to
Markov processes.

b
8Both limits Fn(O) and Fn(l ) were computed and found to be the same. Some of the
computational details of this approach are described in Coleman (1990).
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percent decrease in velocity.

Table 1
Average Velocity and Household-Specific Uncertainty

Constant Money Supply, h =1

o, cvy 14 cv,

1 0502 9392 0102
2 0998 8317 0170
3 .1480 7218 0219

With velocity well away from its upper limit (v = .8317 for cvy = .0998), this model
opens up the possibility that velocity responds to a wide variety of forces. To study how
average velocity differs under various constant monetary growth rates, Table 2 reports average
velocity for three values of % (again, these statistics are based on a simulated time series of
10,000 starting with a uniform distribution of money and income) The column labeled ha is
simply the annual money growth factor (hlz). As the annual monetary growth rate increases
from O to 5 percent velocity increases from .8317 to .9048, and as monetary growth
increases to 10 percent velocity increases to .9317. A one-percentage point increase in the
average annual money growth rate thus leads to a roughly 1 1/2 percent (1.49%) increase in
velocity for relatively low levels of monetary growth, and a roughly 1/2 percent (.53%)
increase in velocity for relatively high levels of monetary growth.9 The one percent

mentioned in the introduction is the average over these two numbers.

°In a somewhat different terminology, the semi-elasticity of velocity with respect to the average
money growth rate is .0149 and .0053 respectively.
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Table 2

Average Velocity and Monetary Policy

c.=.2
V4
h ha v cv
1.000 1.000 8317 0170
1.004 1.049 9048 0207
1.008 1.100 9317 0220

Tables 1 and 2 report properties of the distribution of velocity at any point in time, but
studying the dynamics between velocity and money requires knowledge of the joint
distribution of velocity at various points in time and, for a stochastic monetary growth rate, the
Joint distribution of monetary growth and current and future values of velocity. Table 3
reports velocity's autocorrelation function for the three constant money growth rates in Table
2. Although monetary growth is constant and income is iid, velocity is significantly
autocorrelated (for % = 1 velocity's autocorrelation at lag 1 is .72). This is due to the
distribution of money being a state variable, and evidently the evolution of this state variable
is fairly persistent.10 Following a negative income shock which leads households to consume
out of money balances, households reaccumulate money gradually. Somewhat paradoxically,
although for different reasons, for this type of example velocity is not autocorrelated (it is
constant) when there is either only one type of housechold or a continuum of different

households. In both cases the distribution of money balances does not vary over time.

10The autocorrelation function of m, is similar to that of wv.



Table 3

Velocity's Autocorrelation Function

o,= 2
Lag h =1.000 k= 1.004 h = 1.008
1 72 .61 52
2 40 .24 17
3 24 .10 05
4 14 05 02
5 08 .03 01
6 05 .01 00

To study the joint distribution of monetary growth and velocity, consider a discrete

state Markov process for the monetary growth rate with transition matrix

hy hy 3

hy = 1.000 Y G4 (1-p (1/4)(1-p
hy =1.004 | (1/2)(1-7) y (1/2)(1-p)|.
hy =1.008 [(/4)(1-y) (3/4)(1-p) Y

h

Let ht be the monetary growth rate between the current period and the next period, which is
known at time 7. For y=.9 (which implies there is a roughly 30 percent chance that a choice
of h will remain in effect for one year) Table 4 reports the autocorrelation function for both
money and velocity along with the crosscorrelation function for velocity with lagged money
growth rates. The contemporaneous correlation between monetary growth and velocity is .47
(recall that ht is the money growth rate between ¢ and r+1), and the correlation between
lagged money growth rates and velocity dies out very slowly (at about the same rate as the
autocorrelation function for monetary growth). Although the full range of possibilities is not
explored, evidently the dependence of velocity on monetary growth displayed in Figure 2 can

be exploited in a stochastic monetary growth setting to obtain a wide variety of dynamic
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relationships between velocity and monetary growth.

Table 4

Auto- and Cross-Correlation Functions for Money and Velocity

c,= 2,y=.9
Lag ACF(h) ACF(v) CCF(lag h with v)
0 1.00 1.00 54
1 .88 .69 47
2 a7 41 41
3 .67 28 36
4 .59 21 31
5 52 17 27
6 46 14 24

5. Concluding Remarks

Although this paper sought to explain why household's hold precautionary money
balances, in some sense this demand is a fiction as we no more observe it than we do a risk
premium. We think there exists such a demand, but our only evidence is its ability to explain
the observed relationship between real money balances and a variety of factors. What we
observe is summarized by a joint distribution that captures the dynamics of such a relationship,
and with this in mind this paper studied the dynamics between velocity and a stochastic
monetary growth rate that a precautionary demand for money induces. That this demand
yields a rich dynamic relationship between velocity and monetary policy seems promising.

In this model money provided the only means to smooth consumption, so it is natural
to criticize this setup as failing to acknowledge the many other ways in which households
smooth consumption. Debt contracting, or for that matter any other financial contract, could
fundamentally alter the equilibrium. Without an explicit model it is difficult to address the

many issues that come to mind, but a sensible outcome is nevertheless one that retains some
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individual uncertainty in which money plays a unique role for insuring against short-term risks.
In addition to its assumed transactions role money would then retain its precautionary role,

which this paper has shown can be a quantitatively important component of the demand for

money within a cash-in-advance context.
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